]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/tic6x-tdep.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2015 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51
52 #include "features/tic6x-c64xp.c"
53 #include "features/tic6x-c64x.c"
54 #include "features/tic6x-c62x.c"
55
56 #define TIC6X_OPCODE_SIZE 4
57 #define TIC6X_FETCH_PACKET_SIZE 32
58
59 #define INST_S_BIT(INST) ((INST >> 1) & 1)
60 #define INST_X_BIT(INST) ((INST >> 12) & 1)
61
62 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
63 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
64
65 struct tic6x_unwind_cache
66 {
67 /* The frame's base, optionally used by the high-level debug info. */
68 CORE_ADDR base;
69
70 /* The previous frame's inner most stack address. Used as this
71 frame ID's stack_addr. */
72 CORE_ADDR cfa;
73
74 /* The address of the first instruction in this function */
75 CORE_ADDR pc;
76
77 /* Which register holds the return address for the frame. */
78 int return_regnum;
79
80 /* The offset of register saved on stack. If register is not saved, the
81 corresponding element is -1. */
82 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
83 };
84
85
86 /* Name of TI C6x core registers. */
87 static const char *const tic6x_register_names[] =
88 {
89 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
90 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
91 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
92 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
93 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
94 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
95 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
96 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
97 "CSR", "PC", /* 32 33 */
98 };
99
100 /* This array maps the arguments to the register number which passes argument
101 in function call according to C6000 ELF ABI. */
102 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
103
104 /* This is the implementation of gdbarch method register_name. */
105
106 static const char *
107 tic6x_register_name (struct gdbarch *gdbarch, int regno)
108 {
109 if (regno < 0)
110 return NULL;
111
112 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
113 return tdesc_register_name (gdbarch, regno);
114 else if (regno >= ARRAY_SIZE (tic6x_register_names))
115 return "";
116 else
117 return tic6x_register_names[regno];
118 }
119
120 /* This is the implementation of gdbarch method register_type. */
121
122 static struct type *
123 tic6x_register_type (struct gdbarch *gdbarch, int regno)
124 {
125
126 if (regno == TIC6X_PC_REGNUM)
127 return builtin_type (gdbarch)->builtin_func_ptr;
128 else
129 return builtin_type (gdbarch)->builtin_uint32;
130 }
131
132 static void
133 tic6x_setup_default (struct tic6x_unwind_cache *cache)
134 {
135 int i;
136
137 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
138 cache->reg_saved[i] = -1;
139 }
140
141 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
142 static int tic6x_register_number (int reg, int side, int crosspath);
143
144 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
145 Bail out early if CURRENT_PC is reached. Returns the address of the first
146 instruction after the prologue. */
147
148 static CORE_ADDR
149 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
150 const CORE_ADDR current_pc,
151 struct tic6x_unwind_cache *cache,
152 struct frame_info *this_frame)
153 {
154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
155 unsigned long inst;
156 unsigned int src_reg, base_reg, dst_reg;
157 int i;
158 CORE_ADDR pc = start_pc;
159 CORE_ADDR return_pc = start_pc;
160 int frame_base_offset_to_sp = 0;
161 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
162 int non_stw_insn_counter = 0;
163
164 if (start_pc >= current_pc)
165 return_pc = current_pc;
166
167 cache->base = 0;
168
169 /* The landmarks in prologue is one or two SUB instructions to SP.
170 Instructions on setting up dsbt are in the last part of prologue, if
171 needed. In maxim, prologue can be divided to three parts by two
172 `sub sp, xx, sp' insns. */
173
174 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
175 2nd one is optional. */
176 while (pc < current_pc)
177 {
178 int offset = 0;
179
180 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
181
182 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
183 || (inst & 0x0ffc) == 0x9c0)
184 {
185 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
186 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
187 INST_S_BIT (inst), 0);
188 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
189 INST_S_BIT (inst), 0);
190
191 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
192 {
193 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
194 offset. The constant offset is decoded in bit 13-17 in all
195 these three kinds of instructions. */
196 unsigned int ucst5 = (inst >> 13) & 0x1f;
197
198 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
199 frame_base_offset_to_sp += ucst5 << 2;
200 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
201 frame_base_offset_to_sp += ucst5 << 1;
202 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
203 frame_base_offset_to_sp += ucst5;
204 else
205 gdb_assert_not_reached ("unexpected instruction");
206
207 return_pc = pc + 4;
208 }
209 }
210 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
211 {
212 /* The y bit determines which file base is read from. */
213 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
214 (inst >> 7) & 1, 0);
215
216 if (base_reg == TIC6X_SP_REGNUM)
217 {
218 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
219 INST_S_BIT (inst), 0);
220
221 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
222
223 return_pc = pc + 4;
224 }
225 non_stw_insn_counter = 0;
226 }
227 else
228 {
229 non_stw_insn_counter++;
230 /* Following instruction sequence may be emitted in prologue:
231
232 <+0>: subah .D2 b15,28,b15
233 <+4>: or .L2X 0,a4,b0
234 <+8>: || stw .D2T2 b14,*+b15(56)
235 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
236 <+16>:|| stw .D2T1 a10,*+b15(48)
237 <+20>:stw .D2T2 b3,*+b15(52)
238 <+24>:stw .D2T1 a4,*+b15(40)
239
240 we should look forward for next instruction instead of breaking loop
241 here. So far, we allow almost two sequential non-stw instructions
242 in prologue. */
243 if (non_stw_insn_counter >= 2)
244 break;
245 }
246
247
248 pc += 4;
249 }
250 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
251 ldw .D2T2 *+b14(0),b14 */
252 inst = tic6x_fetch_instruction (gdbarch, pc);
253 /* The s bit determines which file dst will be loaded into, same effect as
254 other places. */
255 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
256 /* The y bit (bit 7), instead of s bit, determines which file base be
257 used. */
258 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
259
260 if ((inst & 0x164) == 0x64 /* ldw */
261 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
262 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
263 {
264 return_pc = pc + 4;
265 }
266
267 if (this_frame)
268 {
269 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
270
271 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
272 {
273 /* If the FP now holds an offset from the CFA then this is a frame
274 which uses the frame pointer. */
275
276 cache->cfa = get_frame_register_unsigned (this_frame,
277 TIC6X_FP_REGNUM);
278 }
279 else
280 {
281 /* FP doesn't hold an offset from the CFA. If SP still holds an
282 offset from the CFA then we might be in a function which omits
283 the frame pointer. */
284
285 cache->cfa = cache->base + frame_base_offset_to_sp;
286 }
287 }
288
289 /* Adjust all the saved registers such that they contain addresses
290 instead of offsets. */
291 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
292 if (cache->reg_saved[i] != -1)
293 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
294
295 return return_pc;
296 }
297
298 /* This is the implementation of gdbarch method skip_prologue. */
299
300 static CORE_ADDR
301 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
302 {
303 CORE_ADDR func_addr;
304 struct tic6x_unwind_cache cache;
305
306 /* See if we can determine the end of the prologue via the symbol table.
307 If so, then return either PC, or the PC after the prologue, whichever is
308 greater. */
309 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
310 {
311 CORE_ADDR post_prologue_pc
312 = skip_prologue_using_sal (gdbarch, func_addr);
313 if (post_prologue_pc != 0)
314 return max (start_pc, post_prologue_pc);
315 }
316
317 /* Can't determine prologue from the symbol table, need to examine
318 instructions. */
319 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
320 NULL);
321 }
322
323 /* This is the implementation of gdbarch method breakpiont_from_pc. */
324
325 static const gdb_byte *
326 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
327 int *bp_size)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330
331 *bp_size = 4;
332
333 if (tdep == NULL || tdep->breakpoint == NULL)
334 {
335 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
336 return tic6x_bkpt_illegal_opcode_be;
337 else
338 return tic6x_bkpt_illegal_opcode_le;
339 }
340 else
341 return tdep->breakpoint;
342 }
343
344 /* This is the implementation of gdbarch method print_insn. */
345
346 static int
347 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
348 {
349 return print_insn_tic6x (memaddr, info);
350 }
351
352 static void
353 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
354 struct dwarf2_frame_state_reg *reg,
355 struct frame_info *this_frame)
356 {
357 /* Mark the PC as the destination for the return address. */
358 if (regnum == gdbarch_pc_regnum (gdbarch))
359 reg->how = DWARF2_FRAME_REG_RA;
360
361 /* Mark the stack pointer as the call frame address. */
362 else if (regnum == gdbarch_sp_regnum (gdbarch))
363 reg->how = DWARF2_FRAME_REG_CFA;
364
365 /* The above was taken from the default init_reg in dwarf2-frame.c
366 while the below is c6x specific. */
367
368 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
369 callee-save. */
370 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
371 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
372 else
373 /* All other registers are caller-save. */
374 reg->how = DWARF2_FRAME_REG_UNDEFINED;
375 }
376
377 /* This is the implementation of gdbarch method unwind_pc. */
378
379 static CORE_ADDR
380 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
381 {
382 gdb_byte buf[8];
383
384 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
385 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
386 }
387
388 /* This is the implementation of gdbarch method unwind_sp. */
389
390 static CORE_ADDR
391 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
392 {
393 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
394 }
395
396
397 /* Frame base handling. */
398
399 static struct tic6x_unwind_cache*
400 tic6x_frame_unwind_cache (struct frame_info *this_frame,
401 void **this_prologue_cache)
402 {
403 struct gdbarch *gdbarch = get_frame_arch (this_frame);
404 CORE_ADDR current_pc;
405 struct tic6x_unwind_cache *cache;
406
407 if (*this_prologue_cache)
408 return *this_prologue_cache;
409
410 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
411 (*this_prologue_cache) = cache;
412
413 cache->return_regnum = TIC6X_RA_REGNUM;
414
415 tic6x_setup_default (cache);
416
417 cache->pc = get_frame_func (this_frame);
418 current_pc = get_frame_pc (this_frame);
419
420 /* Prologue analysis does the rest... */
421 if (cache->pc != 0)
422 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
423
424 return cache;
425 }
426
427 static void
428 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
429 struct frame_id *this_id)
430 {
431 struct tic6x_unwind_cache *cache =
432 tic6x_frame_unwind_cache (this_frame, this_cache);
433
434 /* This marks the outermost frame. */
435 if (cache->base == 0)
436 return;
437
438 (*this_id) = frame_id_build (cache->cfa, cache->pc);
439 }
440
441 static struct value *
442 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
443 int regnum)
444 {
445 struct tic6x_unwind_cache *cache =
446 tic6x_frame_unwind_cache (this_frame, this_cache);
447
448 gdb_assert (regnum >= 0);
449
450 /* The PC of the previous frame is stored in the RA register of
451 the current frame. Frob regnum so that we pull the value from
452 the correct place. */
453 if (regnum == TIC6X_PC_REGNUM)
454 regnum = cache->return_regnum;
455
456 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
457 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
458
459 /* If we've worked out where a register is stored then load it from
460 there. */
461 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
462 return frame_unwind_got_memory (this_frame, regnum,
463 cache->reg_saved[regnum]);
464
465 return frame_unwind_got_register (this_frame, regnum, regnum);
466 }
467
468 static CORE_ADDR
469 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
470 {
471 struct tic6x_unwind_cache *info
472 = tic6x_frame_unwind_cache (this_frame, this_cache);
473 return info->base;
474 }
475
476 static const struct frame_unwind tic6x_frame_unwind =
477 {
478 NORMAL_FRAME,
479 default_frame_unwind_stop_reason,
480 tic6x_frame_this_id,
481 tic6x_frame_prev_register,
482 NULL,
483 default_frame_sniffer
484 };
485
486 static const struct frame_base tic6x_frame_base =
487 {
488 &tic6x_frame_unwind,
489 tic6x_frame_base_address,
490 tic6x_frame_base_address,
491 tic6x_frame_base_address
492 };
493
494
495 static struct tic6x_unwind_cache *
496 tic6x_make_stub_cache (struct frame_info *this_frame)
497 {
498 struct tic6x_unwind_cache *cache;
499
500 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
501
502 cache->return_regnum = TIC6X_RA_REGNUM;
503
504 tic6x_setup_default (cache);
505
506 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
507
508 return cache;
509 }
510
511 static void
512 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
513 struct frame_id *this_id)
514 {
515 struct tic6x_unwind_cache *cache;
516
517 if (*this_cache == NULL)
518 *this_cache = tic6x_make_stub_cache (this_frame);
519 cache = *this_cache;
520
521 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
522 }
523
524 static int
525 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
526 struct frame_info *this_frame,
527 void **this_prologue_cache)
528 {
529 CORE_ADDR addr_in_block;
530
531 addr_in_block = get_frame_address_in_block (this_frame);
532 if (in_plt_section (addr_in_block))
533 return 1;
534
535 return 0;
536 }
537
538 static const struct frame_unwind tic6x_stub_unwind =
539 {
540 NORMAL_FRAME,
541 default_frame_unwind_stop_reason,
542 tic6x_stub_this_id,
543 tic6x_frame_prev_register,
544 NULL,
545 tic6x_stub_unwind_sniffer
546 };
547
548 /* Return the instruction on address PC. */
549
550 static unsigned long
551 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
552 {
553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
555 }
556
557 /* Compute the condition of INST if it is a conditional instruction. Always
558 return 1 if INST is not a conditional instruction. */
559
560 static int
561 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
562 {
563 int register_number;
564 int register_value;
565 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
566
567 register_number = register_numbers[(inst >> 29) & 7];
568 if (register_number == -1)
569 return 1;
570
571 register_value = get_frame_register_signed (frame, register_number);
572 if ((inst & 0x10000000) != 0)
573 return register_value == 0;
574 return register_value != 0;
575 }
576
577 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
578 instruction. */
579
580 static int
581 tic6x_register_number (int reg, int side, int crosspath)
582 {
583 int r = (reg & 15) | ((crosspath ^ side) << 4);
584 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
585 r += 37;
586 return r;
587 }
588
589 static int
590 tic6x_extract_signed_field (int value, int low_bit, int bits)
591 {
592 int mask = (1 << bits) - 1;
593 int r = (value >> low_bit) & mask;
594 if ((r & (1 << (bits - 1))) != 0)
595 r -= mask + 1;
596 return r;
597 }
598
599 /* Determine where to set a single step breakpoint. */
600
601 static CORE_ADDR
602 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
603 {
604 struct gdbarch *gdbarch = get_frame_arch (frame);
605 unsigned long inst;
606 int register_number;
607 int last = 0;
608
609 do
610 {
611 inst = tic6x_fetch_instruction (gdbarch, pc);
612
613 last = !(inst & 1);
614
615 if (inst == TIC6X_INST_SWE)
616 {
617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
618
619 if (tdep->syscall_next_pc != NULL)
620 return tdep->syscall_next_pc (frame);
621 }
622
623 if (tic6x_condition_true (frame, inst))
624 {
625 if ((inst & 0x0000007c) == 0x00000010)
626 {
627 /* B with displacement */
628 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
629 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
630 break;
631 }
632 if ((inst & 0x0f83effc) == 0x00000360)
633 {
634 /* B with register */
635
636 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
637 INST_S_BIT (inst),
638 INST_X_BIT (inst));
639 pc = get_frame_register_unsigned (frame, register_number);
640 break;
641 }
642 if ((inst & 0x00001ffc) == 0x00001020)
643 {
644 /* BDEC */
645 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
646 INST_S_BIT (inst), 0);
647 if (get_frame_register_signed (frame, register_number) >= 0)
648 {
649 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
650 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
651 }
652 break;
653 }
654 if ((inst & 0x00001ffc) == 0x00000120)
655 {
656 /* BNOP with displacement */
657 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
658 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
659 break;
660 }
661 if ((inst & 0x0f830ffe) == 0x00800362)
662 {
663 /* BNOP with register */
664 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
665 1, INST_X_BIT (inst));
666 pc = get_frame_register_unsigned (frame, register_number);
667 break;
668 }
669 if ((inst & 0x00001ffc) == 0x00000020)
670 {
671 /* BPOS */
672 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
673 INST_S_BIT (inst), 0);
674 if (get_frame_register_signed (frame, register_number) >= 0)
675 {
676 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
677 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
678 }
679 break;
680 }
681 if ((inst & 0xf000007c) == 0x10000010)
682 {
683 /* CALLP */
684 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
685 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
686 break;
687 }
688 }
689 pc += TIC6X_OPCODE_SIZE;
690 }
691 while (!last);
692 return pc;
693 }
694
695 /* This is the implementation of gdbarch method software_single_step. */
696
697 static int
698 tic6x_software_single_step (struct frame_info *frame)
699 {
700 struct gdbarch *gdbarch = get_frame_arch (frame);
701 struct address_space *aspace = get_frame_address_space (frame);
702 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
703
704 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
705
706 return 1;
707 }
708
709 /* This is the implementation of gdbarch method frame_align. */
710
711 static CORE_ADDR
712 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
713 {
714 return align_down (addr, 8);
715 }
716
717 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
718 value into VALBUF. */
719
720 static void
721 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
722 enum bfd_endian byte_order, gdb_byte *valbuf)
723 {
724 int len = TYPE_LENGTH (valtype);
725
726 /* pointer types are returned in register A4,
727 up to 32-bit types in A4
728 up to 64-bit types in A5:A4 */
729 if (len <= 4)
730 {
731 /* In big-endian,
732 - one-byte structure or union occupies the LSB of single even register.
733 - for two-byte structure or union, the first byte occupies byte 1 of
734 register and the second byte occupies byte 0.
735 so, we read the contents in VAL from the LSBs of register. */
736 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
737 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
738 valbuf);
739 else
740 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
741 }
742 else if (len <= 8)
743 {
744 /* For a 5-8 byte structure or union in big-endian, the first byte
745 occupies byte 3 (the MSB) of the upper (odd) register and the
746 remaining bytes fill the decreasingly significant bytes. 5-7
747 byte structures or unions have padding in the LSBs of the
748 lower (even) register. */
749 if (byte_order == BFD_ENDIAN_BIG)
750 {
751 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
752 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
753 }
754 else
755 {
756 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
757 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
758 }
759 }
760 }
761
762 /* Write into appropriate registers a function return value
763 of type TYPE, given in virtual format. */
764
765 static void
766 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
767 enum bfd_endian byte_order, const gdb_byte *valbuf)
768 {
769 int len = TYPE_LENGTH (valtype);
770
771 /* return values of up to 8 bytes are returned in A5:A4 */
772
773 if (len <= 4)
774 {
775 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
776 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
777 valbuf);
778 else
779 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
780 }
781 else if (len <= 8)
782 {
783 if (byte_order == BFD_ENDIAN_BIG)
784 {
785 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
786 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
787 }
788 else
789 {
790 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
791 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
792 }
793 }
794 }
795
796 /* This is the implementation of gdbarch method return_value. */
797
798 static enum return_value_convention
799 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
800 struct type *type, struct regcache *regcache,
801 gdb_byte *readbuf, const gdb_byte *writebuf)
802 {
803 /* In C++, when function returns an object, even its size is small
804 enough, it stii has to be passed via reference, pointed by register
805 A3. */
806 if (current_language->la_language == language_cplus)
807 {
808 if (type != NULL)
809 {
810 CHECK_TYPEDEF (type);
811 if (language_pass_by_reference (type))
812 return RETURN_VALUE_STRUCT_CONVENTION;
813 }
814 }
815
816 if (TYPE_LENGTH (type) > 8)
817 return RETURN_VALUE_STRUCT_CONVENTION;
818
819 if (readbuf)
820 tic6x_extract_return_value (type, regcache,
821 gdbarch_byte_order (gdbarch), readbuf);
822 if (writebuf)
823 tic6x_store_return_value (type, regcache,
824 gdbarch_byte_order (gdbarch), writebuf);
825
826 return RETURN_VALUE_REGISTER_CONVENTION;
827 }
828
829 /* This is the implementation of gdbarch method dummy_id. */
830
831 static struct frame_id
832 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
833 {
834 return frame_id_build
835 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
836 get_frame_pc (this_frame));
837 }
838
839 /* Get the alignment requirement of TYPE. */
840
841 static int
842 tic6x_arg_type_alignment (struct type *type)
843 {
844 int len = TYPE_LENGTH (check_typedef (type));
845 enum type_code typecode = TYPE_CODE (check_typedef (type));
846
847 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
848 {
849 /* The stack alignment of a structure (and union) passed by value is the
850 smallest power of two greater than or equal to its size.
851 This cannot exceed 8 bytes, which is the largest allowable size for
852 a structure passed by value. */
853
854 if (len <= 2)
855 return len;
856 else if (len <= 4)
857 return 4;
858 else if (len <= 8)
859 return 8;
860 else
861 gdb_assert_not_reached ("unexpected length of data");
862 }
863 else
864 {
865 if (len <= 4)
866 return 4;
867 else if (len == 8)
868 {
869 if (typecode == TYPE_CODE_COMPLEX)
870 return 4;
871 else
872 return 8;
873 }
874 else if (len == 16)
875 {
876 if (typecode == TYPE_CODE_COMPLEX)
877 return 8;
878 else
879 return 16;
880 }
881 else
882 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
883 len);
884 }
885 }
886
887 /* This is the implementation of gdbarch method push_dummy_call. */
888
889 static CORE_ADDR
890 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
891 struct regcache *regcache, CORE_ADDR bp_addr,
892 int nargs, struct value **args, CORE_ADDR sp,
893 int struct_return, CORE_ADDR struct_addr)
894 {
895 int argreg = 0;
896 int argnum;
897 int stack_offset = 4;
898 int references_offset = 4;
899 CORE_ADDR func_addr = find_function_addr (function, NULL);
900 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
901 struct type *func_type = value_type (function);
902 /* The first arg passed on stack. Mostly the first 10 args are passed by
903 registers. */
904 int first_arg_on_stack = 10;
905
906 /* Set the return address register to point to the entry point of
907 the program, where a breakpoint lies in wait. */
908 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
909
910 /* The caller must pass an argument in A3 containing a destination address
911 for the returned value. The callee returns the object by copying it to
912 the address in A3. */
913 if (struct_return)
914 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
915
916 /* Determine the type of this function. */
917 func_type = check_typedef (func_type);
918 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
919 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
920
921 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
922 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
923
924 /* For a variadic C function, the last explicitly declared argument and all
925 remaining arguments are passed on the stack. */
926 if (TYPE_VARARGS (func_type))
927 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
928
929 /* Now make space on the stack for the args. */
930 for (argnum = 0; argnum < nargs; argnum++)
931 {
932 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
933 if (argnum >= 10 - argreg)
934 references_offset += len;
935 stack_offset += len;
936 }
937 sp -= stack_offset;
938 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
939 Stack Alignment. */
940 sp = align_down (sp, 8);
941 stack_offset = 4;
942
943 /* Now load as many as possible of the first arguments into
944 registers, and push the rest onto the stack. Loop through args
945 from first to last. */
946 for (argnum = 0; argnum < nargs; argnum++)
947 {
948 const gdb_byte *val;
949 struct value *arg = args[argnum];
950 struct type *arg_type = check_typedef (value_type (arg));
951 int len = TYPE_LENGTH (arg_type);
952 enum type_code typecode = TYPE_CODE (arg_type);
953
954 val = value_contents (arg);
955
956 /* Copy the argument to general registers or the stack in
957 register-sized pieces. */
958 if (argreg < first_arg_on_stack)
959 {
960 if (len <= 4)
961 {
962 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
963 {
964 /* In big-endian,
965 - one-byte structure or union occupies the LSB of single
966 even register.
967 - for two-byte structure or union, the first byte
968 occupies byte 1 of register and the second byte occupies
969 byte 0.
970 so, we write the contents in VAL to the lsp of
971 register. */
972 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
973 regcache_cooked_write_part (regcache, arg_regs[argreg],
974 4 - len, len, val);
975 else
976 regcache_cooked_write (regcache, arg_regs[argreg], val);
977 }
978 else
979 {
980 /* The argument is being passed by value in a single
981 register. */
982 CORE_ADDR regval = extract_unsigned_integer (val, len,
983 byte_order);
984
985 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
986 regval);
987 }
988 }
989 else
990 {
991 if (len <= 8)
992 {
993 if (typecode == TYPE_CODE_STRUCT
994 || typecode == TYPE_CODE_UNION)
995 {
996 /* For a 5-8 byte structure or union in big-endian, the
997 first byte occupies byte 3 (the MSB) of the upper (odd)
998 register and the remaining bytes fill the decreasingly
999 significant bytes. 5-7 byte structures or unions have
1000 padding in the LSBs of the lower (even) register. */
1001 if (byte_order == BFD_ENDIAN_BIG)
1002 {
1003 regcache_cooked_write (regcache,
1004 arg_regs[argreg] + 1, val);
1005 regcache_cooked_write_part (regcache,
1006 arg_regs[argreg], 0,
1007 len - 4, val + 4);
1008 }
1009 else
1010 {
1011 regcache_cooked_write (regcache, arg_regs[argreg],
1012 val);
1013 regcache_cooked_write_part (regcache,
1014 arg_regs[argreg] + 1, 0,
1015 len - 4, val + 4);
1016 }
1017 }
1018 else
1019 {
1020 /* The argument is being passed by value in a pair of
1021 registers. */
1022 ULONGEST regval = extract_unsigned_integer (val, len,
1023 byte_order);
1024
1025 regcache_cooked_write_unsigned (regcache,
1026 arg_regs[argreg],
1027 regval);
1028 regcache_cooked_write_unsigned (regcache,
1029 arg_regs[argreg] + 1,
1030 regval >> 32);
1031 }
1032 }
1033 else
1034 {
1035 /* The argument is being passed by reference in a single
1036 register. */
1037 CORE_ADDR addr;
1038
1039 /* It is not necessary to adjust REFERENCES_OFFSET to
1040 8-byte aligned in some cases, in which 4-byte alignment
1041 is sufficient. For simplicity, we adjust
1042 REFERENCES_OFFSET to 8-byte aligned. */
1043 references_offset = align_up (references_offset, 8);
1044
1045 addr = sp + references_offset;
1046 write_memory (addr, val, len);
1047 references_offset += align_up (len, 4);
1048 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1049 addr);
1050 }
1051 }
1052 argreg++;
1053 }
1054 else
1055 {
1056 /* The argument is being passed on the stack. */
1057 CORE_ADDR addr;
1058
1059 /* There are six different cases of alignment, and these rules can
1060 be found in tic6x_arg_type_alignment:
1061
1062 1) 4-byte aligned if size is less than or equal to 4 byte, such
1063 as short, int, struct, union etc.
1064 2) 8-byte aligned if size is less than or equal to 8-byte, such
1065 as double, long long,
1066 3) 4-byte aligned if it is of type _Complex float, even its size
1067 is 8-byte.
1068 4) 8-byte aligned if it is of type _Complex double or _Complex
1069 long double, even its size is 16-byte. Because, the address of
1070 variable is passed as reference.
1071 5) struct and union larger than 8-byte are passed by reference, so
1072 it is 4-byte aligned.
1073 6) struct and union of size between 4 byte and 8 byte varies.
1074 alignment of struct variable is the alignment of its first field,
1075 while alignment of union variable is the max of all its fields'
1076 alignment. */
1077
1078 if (len <= 4)
1079 ; /* Default is 4-byte aligned. Nothing to be done. */
1080 else if (len <= 8)
1081 stack_offset = align_up (stack_offset,
1082 tic6x_arg_type_alignment (arg_type));
1083 else if (len == 16)
1084 {
1085 /* _Complex double or _Complex long double */
1086 if (typecode == TYPE_CODE_COMPLEX)
1087 {
1088 /* The argument is being passed by reference on stack. */
1089 CORE_ADDR addr;
1090 references_offset = align_up (references_offset, 8);
1091
1092 addr = sp + references_offset;
1093 /* Store variable on stack. */
1094 write_memory (addr, val, len);
1095
1096 references_offset += align_up (len, 4);
1097
1098 /* Pass the address of variable on stack as reference. */
1099 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1100 addr);
1101 len = 4;
1102
1103 }
1104 else
1105 internal_error (__FILE__, __LINE__,
1106 _("unexpected type %d of arg %d"),
1107 typecode, argnum);
1108 }
1109 else
1110 internal_error (__FILE__, __LINE__,
1111 _("unexpected length %d of arg %d"), len, argnum);
1112
1113 addr = sp + stack_offset;
1114 write_memory (addr, val, len);
1115 stack_offset += align_up (len, 4);
1116 }
1117 }
1118
1119 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1120
1121 /* Return adjusted stack pointer. */
1122 return sp;
1123 }
1124
1125 /* This is the implementation of gdbarch method in_function_epilogue_p. */
1126
1127 static int
1128 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1129 {
1130 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1131 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1132 if ((inst & 0x0f83effc) == 0x360)
1133 {
1134 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1135 INST_S_BIT (inst),
1136 INST_X_BIT (inst));
1137 if (src2 == TIC6X_RA_REGNUM)
1138 return 1;
1139 }
1140
1141 return 0;
1142 }
1143
1144 /* This is the implementation of gdbarch method get_longjmp_target. */
1145
1146 static int
1147 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1148 {
1149 struct gdbarch *gdbarch = get_frame_arch (frame);
1150 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1151 CORE_ADDR jb_addr;
1152 gdb_byte buf[4];
1153
1154 /* JMP_BUF is passed by reference in A4. */
1155 jb_addr = get_frame_register_unsigned (frame, 4);
1156
1157 /* JMP_BUF contains 13 elements of type int, and return address is stored
1158 in the last slot. */
1159 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1160 return 0;
1161
1162 *pc = extract_unsigned_integer (buf, 4, byte_order);
1163
1164 return 1;
1165 }
1166
1167 /* This is the implementation of gdbarch method
1168 return_in_first_hidden_param_p. */
1169
1170 static int
1171 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1172 struct type *type)
1173 {
1174 return 0;
1175 }
1176
1177 static struct gdbarch *
1178 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1179 {
1180 struct gdbarch *gdbarch;
1181 struct gdbarch_tdep *tdep;
1182 struct tdesc_arch_data *tdesc_data = NULL;
1183 const struct target_desc *tdesc = info.target_desc;
1184 int has_gp = 0;
1185
1186 /* Check any target description for validity. */
1187 if (tdesc_has_registers (tdesc))
1188 {
1189 const struct tdesc_feature *feature;
1190 int valid_p, i;
1191
1192 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1193
1194 if (feature == NULL)
1195 return NULL;
1196
1197 tdesc_data = tdesc_data_alloc ();
1198
1199 valid_p = 1;
1200 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1201 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1202 tic6x_register_names[i]);
1203
1204 /* CSR */
1205 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1206 tic6x_register_names[TIC6X_CSR_REGNUM]);
1207 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1208 tic6x_register_names[TIC6X_PC_REGNUM]);
1209
1210 if (!valid_p)
1211 {
1212 tdesc_data_cleanup (tdesc_data);
1213 return NULL;
1214 }
1215
1216 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1217 if (feature)
1218 {
1219 int j = 0;
1220 static const char *const gp[] =
1221 {
1222 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1223 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1224 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1225 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1226 };
1227
1228 has_gp = 1;
1229 valid_p = 1;
1230 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1231 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1232 gp[j]);
1233
1234 if (!valid_p)
1235 {
1236 tdesc_data_cleanup (tdesc_data);
1237 return NULL;
1238 }
1239 }
1240
1241 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1242 if (feature)
1243 {
1244 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1245 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1246 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1247
1248 if (!valid_p)
1249 {
1250 tdesc_data_cleanup (tdesc_data);
1251 return NULL;
1252 }
1253 }
1254
1255 }
1256
1257 /* Find a candidate among extant architectures. */
1258 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1259 arches != NULL;
1260 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1261 {
1262 tdep = gdbarch_tdep (arches->gdbarch);
1263
1264 if (has_gp != tdep->has_gp)
1265 continue;
1266
1267 if (tdep && tdep->breakpoint)
1268 return arches->gdbarch;
1269 }
1270
1271 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
1272
1273 tdep->has_gp = has_gp;
1274 gdbarch = gdbarch_alloc (&info, tdep);
1275
1276 /* Data type sizes. */
1277 set_gdbarch_ptr_bit (gdbarch, 32);
1278 set_gdbarch_addr_bit (gdbarch, 32);
1279 set_gdbarch_short_bit (gdbarch, 16);
1280 set_gdbarch_int_bit (gdbarch, 32);
1281 set_gdbarch_long_bit (gdbarch, 32);
1282 set_gdbarch_long_long_bit (gdbarch, 64);
1283 set_gdbarch_float_bit (gdbarch, 32);
1284 set_gdbarch_double_bit (gdbarch, 64);
1285
1286 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1287 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1288
1289 /* The register set. */
1290 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1291 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1292 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1293
1294 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1295 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1296
1297 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1298
1299 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1300 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1301
1302 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1303 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1304
1305 /* Unwinding. */
1306 dwarf2_append_unwinders (gdbarch);
1307
1308 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1309 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1310 frame_base_set_default (gdbarch, &tic6x_frame_base);
1311
1312 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1313
1314 /* Single stepping. */
1315 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1316
1317 set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1318
1319 /* Call dummy code. */
1320 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1321
1322 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1323
1324 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1325
1326 /* Enable inferior call support. */
1327 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1328
1329 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1330
1331 set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p);
1332
1333 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1334 tic6x_return_in_first_hidden_param_p);
1335
1336 /* Hook in ABI-specific overrides, if they have been registered. */
1337 gdbarch_init_osabi (info, gdbarch);
1338
1339 if (tdesc_data)
1340 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1341
1342 return gdbarch;
1343 }
1344
1345 /* -Wmissing-prototypes */
1346 extern initialize_file_ftype _initialize_tic6x_tdep;
1347
1348 void
1349 _initialize_tic6x_tdep (void)
1350 {
1351 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1352
1353 initialize_tdesc_tic6x_c64xp ();
1354 initialize_tdesc_tic6x_c64x ();
1355 initialize_tdesc_tic6x_c62x ();
1356 }