]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/tic6x-tdep.c
Remove regcache_cooked_write
[thirdparty/binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2018 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "glibc-tdep.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "tramp-frame.h"
43 #include "linux-tdep.h"
44 #include "solib.h"
45 #include "objfiles.h"
46 #include "osabi.h"
47 #include "tic6x-tdep.h"
48 #include "language.h"
49 #include "target-descriptions.h"
50 #include <algorithm>
51
52 #define TIC6X_OPCODE_SIZE 4
53 #define TIC6X_FETCH_PACKET_SIZE 32
54
55 #define INST_S_BIT(INST) ((INST >> 1) & 1)
56 #define INST_X_BIT(INST) ((INST >> 12) & 1)
57
58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
61 struct tic6x_unwind_cache
62 {
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79 };
80
81
82 /* Name of TI C6x core registers. */
83 static const char *const tic6x_register_names[] =
84 {
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94 };
95
96 /* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100 /* This is the implementation of gdbarch method register_name. */
101
102 static const char *
103 tic6x_register_name (struct gdbarch *gdbarch, int regno)
104 {
105 if (regno < 0)
106 return NULL;
107
108 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
109 return tdesc_register_name (gdbarch, regno);
110 else if (regno >= ARRAY_SIZE (tic6x_register_names))
111 return "";
112 else
113 return tic6x_register_names[regno];
114 }
115
116 /* This is the implementation of gdbarch method register_type. */
117
118 static struct type *
119 tic6x_register_type (struct gdbarch *gdbarch, int regno)
120 {
121
122 if (regno == TIC6X_PC_REGNUM)
123 return builtin_type (gdbarch)->builtin_func_ptr;
124 else
125 return builtin_type (gdbarch)->builtin_uint32;
126 }
127
128 static void
129 tic6x_setup_default (struct tic6x_unwind_cache *cache)
130 {
131 int i;
132
133 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
134 cache->reg_saved[i] = -1;
135 }
136
137 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
138 static int tic6x_register_number (int reg, int side, int crosspath);
139
140 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
141 Bail out early if CURRENT_PC is reached. Returns the address of the first
142 instruction after the prologue. */
143
144 static CORE_ADDR
145 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
146 const CORE_ADDR current_pc,
147 struct tic6x_unwind_cache *cache,
148 struct frame_info *this_frame)
149 {
150 unsigned long inst;
151 unsigned int src_reg, base_reg, dst_reg;
152 int i;
153 CORE_ADDR pc = start_pc;
154 CORE_ADDR return_pc = start_pc;
155 int frame_base_offset_to_sp = 0;
156 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
157 int non_stw_insn_counter = 0;
158
159 if (start_pc >= current_pc)
160 return_pc = current_pc;
161
162 cache->base = 0;
163
164 /* The landmarks in prologue is one or two SUB instructions to SP.
165 Instructions on setting up dsbt are in the last part of prologue, if
166 needed. In maxim, prologue can be divided to three parts by two
167 `sub sp, xx, sp' insns. */
168
169 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
170 2nd one is optional. */
171 while (pc < current_pc)
172 {
173 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
174
175 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
176 || (inst & 0x0ffc) == 0x9c0)
177 {
178 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
179 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
180 INST_S_BIT (inst), 0);
181 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
182 INST_S_BIT (inst), 0);
183
184 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
185 {
186 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
187 offset. The constant offset is decoded in bit 13-17 in all
188 these three kinds of instructions. */
189 unsigned int ucst5 = (inst >> 13) & 0x1f;
190
191 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
192 frame_base_offset_to_sp += ucst5 << 2;
193 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
194 frame_base_offset_to_sp += ucst5 << 1;
195 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
196 frame_base_offset_to_sp += ucst5;
197 else
198 gdb_assert_not_reached ("unexpected instruction");
199
200 return_pc = pc + 4;
201 }
202 }
203 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
204 {
205 /* The y bit determines which file base is read from. */
206 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
207 (inst >> 7) & 1, 0);
208
209 if (base_reg == TIC6X_SP_REGNUM)
210 {
211 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
212 INST_S_BIT (inst), 0);
213
214 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
215
216 return_pc = pc + 4;
217 }
218 non_stw_insn_counter = 0;
219 }
220 else
221 {
222 non_stw_insn_counter++;
223 /* Following instruction sequence may be emitted in prologue:
224
225 <+0>: subah .D2 b15,28,b15
226 <+4>: or .L2X 0,a4,b0
227 <+8>: || stw .D2T2 b14,*+b15(56)
228 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
229 <+16>:|| stw .D2T1 a10,*+b15(48)
230 <+20>:stw .D2T2 b3,*+b15(52)
231 <+24>:stw .D2T1 a4,*+b15(40)
232
233 we should look forward for next instruction instead of breaking loop
234 here. So far, we allow almost two sequential non-stw instructions
235 in prologue. */
236 if (non_stw_insn_counter >= 2)
237 break;
238 }
239
240
241 pc += 4;
242 }
243 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
244 ldw .D2T2 *+b14(0),b14 */
245 inst = tic6x_fetch_instruction (gdbarch, pc);
246 /* The s bit determines which file dst will be loaded into, same effect as
247 other places. */
248 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
249 /* The y bit (bit 7), instead of s bit, determines which file base be
250 used. */
251 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
252
253 if ((inst & 0x164) == 0x64 /* ldw */
254 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
255 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
256 {
257 return_pc = pc + 4;
258 }
259
260 if (this_frame)
261 {
262 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
263
264 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
265 {
266 /* If the FP now holds an offset from the CFA then this is a frame
267 which uses the frame pointer. */
268
269 cache->cfa = get_frame_register_unsigned (this_frame,
270 TIC6X_FP_REGNUM);
271 }
272 else
273 {
274 /* FP doesn't hold an offset from the CFA. If SP still holds an
275 offset from the CFA then we might be in a function which omits
276 the frame pointer. */
277
278 cache->cfa = cache->base + frame_base_offset_to_sp;
279 }
280 }
281
282 /* Adjust all the saved registers such that they contain addresses
283 instead of offsets. */
284 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
285 if (cache->reg_saved[i] != -1)
286 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
287
288 return return_pc;
289 }
290
291 /* This is the implementation of gdbarch method skip_prologue. */
292
293 static CORE_ADDR
294 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
295 {
296 CORE_ADDR func_addr;
297 struct tic6x_unwind_cache cache;
298
299 /* See if we can determine the end of the prologue via the symbol table.
300 If so, then return either PC, or the PC after the prologue, whichever is
301 greater. */
302 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
303 {
304 CORE_ADDR post_prologue_pc
305 = skip_prologue_using_sal (gdbarch, func_addr);
306 if (post_prologue_pc != 0)
307 return std::max (start_pc, post_prologue_pc);
308 }
309
310 /* Can't determine prologue from the symbol table, need to examine
311 instructions. */
312 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
313 NULL);
314 }
315
316 /* Implement the breakpoint_kind_from_pc gdbarch method. */
317
318 static int
319 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
320 {
321 return 4;
322 }
323
324 /* Implement the sw_breakpoint_from_kind gdbarch method. */
325
326 static const gdb_byte *
327 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
328 {
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330
331 *size = kind;
332
333 if (tdep == NULL || tdep->breakpoint == NULL)
334 {
335 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
336 return tic6x_bkpt_illegal_opcode_be;
337 else
338 return tic6x_bkpt_illegal_opcode_le;
339 }
340 else
341 return tdep->breakpoint;
342 }
343
344 static void
345 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
346 struct dwarf2_frame_state_reg *reg,
347 struct frame_info *this_frame)
348 {
349 /* Mark the PC as the destination for the return address. */
350 if (regnum == gdbarch_pc_regnum (gdbarch))
351 reg->how = DWARF2_FRAME_REG_RA;
352
353 /* Mark the stack pointer as the call frame address. */
354 else if (regnum == gdbarch_sp_regnum (gdbarch))
355 reg->how = DWARF2_FRAME_REG_CFA;
356
357 /* The above was taken from the default init_reg in dwarf2-frame.c
358 while the below is c6x specific. */
359
360 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
361 callee-save. */
362 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
363 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
364 else
365 /* All other registers are caller-save. */
366 reg->how = DWARF2_FRAME_REG_UNDEFINED;
367 }
368
369 /* This is the implementation of gdbarch method unwind_pc. */
370
371 static CORE_ADDR
372 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
373 {
374 gdb_byte buf[8];
375
376 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
377 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
378 }
379
380 /* This is the implementation of gdbarch method unwind_sp. */
381
382 static CORE_ADDR
383 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
384 {
385 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
386 }
387
388
389 /* Frame base handling. */
390
391 static struct tic6x_unwind_cache*
392 tic6x_frame_unwind_cache (struct frame_info *this_frame,
393 void **this_prologue_cache)
394 {
395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
396 CORE_ADDR current_pc;
397 struct tic6x_unwind_cache *cache;
398
399 if (*this_prologue_cache)
400 return (struct tic6x_unwind_cache *) *this_prologue_cache;
401
402 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
403 (*this_prologue_cache) = cache;
404
405 cache->return_regnum = TIC6X_RA_REGNUM;
406
407 tic6x_setup_default (cache);
408
409 cache->pc = get_frame_func (this_frame);
410 current_pc = get_frame_pc (this_frame);
411
412 /* Prologue analysis does the rest... */
413 if (cache->pc != 0)
414 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
415
416 return cache;
417 }
418
419 static void
420 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
421 struct frame_id *this_id)
422 {
423 struct tic6x_unwind_cache *cache =
424 tic6x_frame_unwind_cache (this_frame, this_cache);
425
426 /* This marks the outermost frame. */
427 if (cache->base == 0)
428 return;
429
430 (*this_id) = frame_id_build (cache->cfa, cache->pc);
431 }
432
433 static struct value *
434 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
435 int regnum)
436 {
437 struct tic6x_unwind_cache *cache =
438 tic6x_frame_unwind_cache (this_frame, this_cache);
439
440 gdb_assert (regnum >= 0);
441
442 /* The PC of the previous frame is stored in the RA register of
443 the current frame. Frob regnum so that we pull the value from
444 the correct place. */
445 if (regnum == TIC6X_PC_REGNUM)
446 regnum = cache->return_regnum;
447
448 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
449 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
450
451 /* If we've worked out where a register is stored then load it from
452 there. */
453 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
454 return frame_unwind_got_memory (this_frame, regnum,
455 cache->reg_saved[regnum]);
456
457 return frame_unwind_got_register (this_frame, regnum, regnum);
458 }
459
460 static CORE_ADDR
461 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
462 {
463 struct tic6x_unwind_cache *info
464 = tic6x_frame_unwind_cache (this_frame, this_cache);
465 return info->base;
466 }
467
468 static const struct frame_unwind tic6x_frame_unwind =
469 {
470 NORMAL_FRAME,
471 default_frame_unwind_stop_reason,
472 tic6x_frame_this_id,
473 tic6x_frame_prev_register,
474 NULL,
475 default_frame_sniffer
476 };
477
478 static const struct frame_base tic6x_frame_base =
479 {
480 &tic6x_frame_unwind,
481 tic6x_frame_base_address,
482 tic6x_frame_base_address,
483 tic6x_frame_base_address
484 };
485
486
487 static struct tic6x_unwind_cache *
488 tic6x_make_stub_cache (struct frame_info *this_frame)
489 {
490 struct tic6x_unwind_cache *cache;
491
492 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
493
494 cache->return_regnum = TIC6X_RA_REGNUM;
495
496 tic6x_setup_default (cache);
497
498 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
499
500 return cache;
501 }
502
503 static void
504 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
505 struct frame_id *this_id)
506 {
507 struct tic6x_unwind_cache *cache;
508
509 if (*this_cache == NULL)
510 *this_cache = tic6x_make_stub_cache (this_frame);
511 cache = (struct tic6x_unwind_cache *) *this_cache;
512
513 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
514 }
515
516 static int
517 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
518 struct frame_info *this_frame,
519 void **this_prologue_cache)
520 {
521 CORE_ADDR addr_in_block;
522
523 addr_in_block = get_frame_address_in_block (this_frame);
524 if (in_plt_section (addr_in_block))
525 return 1;
526
527 return 0;
528 }
529
530 static const struct frame_unwind tic6x_stub_unwind =
531 {
532 NORMAL_FRAME,
533 default_frame_unwind_stop_reason,
534 tic6x_stub_this_id,
535 tic6x_frame_prev_register,
536 NULL,
537 tic6x_stub_unwind_sniffer
538 };
539
540 /* Return the instruction on address PC. */
541
542 static unsigned long
543 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
544 {
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
547 }
548
549 /* Compute the condition of INST if it is a conditional instruction. Always
550 return 1 if INST is not a conditional instruction. */
551
552 static int
553 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
554 {
555 int register_number;
556 int register_value;
557 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
558
559 register_number = register_numbers[(inst >> 29) & 7];
560 if (register_number == -1)
561 return 1;
562
563 register_value = regcache_raw_get_signed (regcache, register_number);
564 if ((inst & 0x10000000) != 0)
565 return register_value == 0;
566 return register_value != 0;
567 }
568
569 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
570 instruction. */
571
572 static int
573 tic6x_register_number (int reg, int side, int crosspath)
574 {
575 int r = (reg & 15) | ((crosspath ^ side) << 4);
576 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
577 r += 37;
578 return r;
579 }
580
581 static int
582 tic6x_extract_signed_field (int value, int low_bit, int bits)
583 {
584 int mask = (1 << bits) - 1;
585 int r = (value >> low_bit) & mask;
586 if ((r & (1 << (bits - 1))) != 0)
587 r -= mask + 1;
588 return r;
589 }
590
591 /* Determine where to set a single step breakpoint. */
592
593 static CORE_ADDR
594 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
595 {
596 struct gdbarch *gdbarch = regcache->arch ();
597 unsigned long inst;
598 int register_number;
599 int last = 0;
600
601 do
602 {
603 inst = tic6x_fetch_instruction (gdbarch, pc);
604
605 last = !(inst & 1);
606
607 if (inst == TIC6X_INST_SWE)
608 {
609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
610
611 if (tdep->syscall_next_pc != NULL)
612 return tdep->syscall_next_pc (get_current_frame ());
613 }
614
615 if (tic6x_condition_true (regcache, inst))
616 {
617 if ((inst & 0x0000007c) == 0x00000010)
618 {
619 /* B with displacement */
620 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
621 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
622 break;
623 }
624 if ((inst & 0x0f83effc) == 0x00000360)
625 {
626 /* B with register */
627
628 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
629 INST_S_BIT (inst),
630 INST_X_BIT (inst));
631 pc = regcache_raw_get_unsigned (regcache, register_number);
632 break;
633 }
634 if ((inst & 0x00001ffc) == 0x00001020)
635 {
636 /* BDEC */
637 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
638 INST_S_BIT (inst), 0);
639 if (regcache_raw_get_signed (regcache, register_number) >= 0)
640 {
641 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
642 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
643 }
644 break;
645 }
646 if ((inst & 0x00001ffc) == 0x00000120)
647 {
648 /* BNOP with displacement */
649 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
650 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
651 break;
652 }
653 if ((inst & 0x0f830ffe) == 0x00800362)
654 {
655 /* BNOP with register */
656 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
657 1, INST_X_BIT (inst));
658 pc = regcache_raw_get_unsigned (regcache, register_number);
659 break;
660 }
661 if ((inst & 0x00001ffc) == 0x00000020)
662 {
663 /* BPOS */
664 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
665 INST_S_BIT (inst), 0);
666 if (regcache_raw_get_signed (regcache, register_number) >= 0)
667 {
668 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
669 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
670 }
671 break;
672 }
673 if ((inst & 0xf000007c) == 0x10000010)
674 {
675 /* CALLP */
676 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
677 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
678 break;
679 }
680 }
681 pc += TIC6X_OPCODE_SIZE;
682 }
683 while (!last);
684 return pc;
685 }
686
687 /* This is the implementation of gdbarch method software_single_step. */
688
689 static std::vector<CORE_ADDR>
690 tic6x_software_single_step (struct regcache *regcache)
691 {
692 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
693
694 return {next_pc};
695 }
696
697 /* This is the implementation of gdbarch method frame_align. */
698
699 static CORE_ADDR
700 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
701 {
702 return align_down (addr, 8);
703 }
704
705 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
706 value into VALBUF. */
707
708 static void
709 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
710 enum bfd_endian byte_order, gdb_byte *valbuf)
711 {
712 int len = TYPE_LENGTH (valtype);
713
714 /* pointer types are returned in register A4,
715 up to 32-bit types in A4
716 up to 64-bit types in A5:A4 */
717 if (len <= 4)
718 {
719 /* In big-endian,
720 - one-byte structure or union occupies the LSB of single even register.
721 - for two-byte structure or union, the first byte occupies byte 1 of
722 register and the second byte occupies byte 0.
723 so, we read the contents in VAL from the LSBs of register. */
724 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
725 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
726 valbuf);
727 else
728 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
729 }
730 else if (len <= 8)
731 {
732 /* For a 5-8 byte structure or union in big-endian, the first byte
733 occupies byte 3 (the MSB) of the upper (odd) register and the
734 remaining bytes fill the decreasingly significant bytes. 5-7
735 byte structures or unions have padding in the LSBs of the
736 lower (even) register. */
737 if (byte_order == BFD_ENDIAN_BIG)
738 {
739 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
740 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
741 }
742 else
743 {
744 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
745 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
746 }
747 }
748 }
749
750 /* Write into appropriate registers a function return value
751 of type TYPE, given in virtual format. */
752
753 static void
754 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
755 enum bfd_endian byte_order, const gdb_byte *valbuf)
756 {
757 int len = TYPE_LENGTH (valtype);
758
759 /* return values of up to 8 bytes are returned in A5:A4 */
760
761 if (len <= 4)
762 {
763 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
764 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
765 valbuf);
766 else
767 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
768 }
769 else if (len <= 8)
770 {
771 if (byte_order == BFD_ENDIAN_BIG)
772 {
773 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
774 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
775 }
776 else
777 {
778 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
779 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
780 }
781 }
782 }
783
784 /* This is the implementation of gdbarch method return_value. */
785
786 static enum return_value_convention
787 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
788 struct type *type, struct regcache *regcache,
789 gdb_byte *readbuf, const gdb_byte *writebuf)
790 {
791 /* In C++, when function returns an object, even its size is small
792 enough, it stii has to be passed via reference, pointed by register
793 A3. */
794 if (current_language->la_language == language_cplus)
795 {
796 if (type != NULL)
797 {
798 type = check_typedef (type);
799 if (language_pass_by_reference (type))
800 return RETURN_VALUE_STRUCT_CONVENTION;
801 }
802 }
803
804 if (TYPE_LENGTH (type) > 8)
805 return RETURN_VALUE_STRUCT_CONVENTION;
806
807 if (readbuf)
808 tic6x_extract_return_value (type, regcache,
809 gdbarch_byte_order (gdbarch), readbuf);
810 if (writebuf)
811 tic6x_store_return_value (type, regcache,
812 gdbarch_byte_order (gdbarch), writebuf);
813
814 return RETURN_VALUE_REGISTER_CONVENTION;
815 }
816
817 /* This is the implementation of gdbarch method dummy_id. */
818
819 static struct frame_id
820 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
821 {
822 return frame_id_build
823 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
824 get_frame_pc (this_frame));
825 }
826
827 /* Get the alignment requirement of TYPE. */
828
829 static int
830 tic6x_arg_type_alignment (struct type *type)
831 {
832 int len = TYPE_LENGTH (check_typedef (type));
833 enum type_code typecode = TYPE_CODE (check_typedef (type));
834
835 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
836 {
837 /* The stack alignment of a structure (and union) passed by value is the
838 smallest power of two greater than or equal to its size.
839 This cannot exceed 8 bytes, which is the largest allowable size for
840 a structure passed by value. */
841
842 if (len <= 2)
843 return len;
844 else if (len <= 4)
845 return 4;
846 else if (len <= 8)
847 return 8;
848 else
849 gdb_assert_not_reached ("unexpected length of data");
850 }
851 else
852 {
853 if (len <= 4)
854 return 4;
855 else if (len == 8)
856 {
857 if (typecode == TYPE_CODE_COMPLEX)
858 return 4;
859 else
860 return 8;
861 }
862 else if (len == 16)
863 {
864 if (typecode == TYPE_CODE_COMPLEX)
865 return 8;
866 else
867 return 16;
868 }
869 else
870 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
871 len);
872 }
873 }
874
875 /* This is the implementation of gdbarch method push_dummy_call. */
876
877 static CORE_ADDR
878 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
879 struct regcache *regcache, CORE_ADDR bp_addr,
880 int nargs, struct value **args, CORE_ADDR sp,
881 int struct_return, CORE_ADDR struct_addr)
882 {
883 int argreg = 0;
884 int argnum;
885 int stack_offset = 4;
886 int references_offset = 4;
887 CORE_ADDR func_addr = find_function_addr (function, NULL);
888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
889 struct type *func_type = value_type (function);
890 /* The first arg passed on stack. Mostly the first 10 args are passed by
891 registers. */
892 int first_arg_on_stack = 10;
893
894 /* Set the return address register to point to the entry point of
895 the program, where a breakpoint lies in wait. */
896 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
897
898 /* The caller must pass an argument in A3 containing a destination address
899 for the returned value. The callee returns the object by copying it to
900 the address in A3. */
901 if (struct_return)
902 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
903
904 /* Determine the type of this function. */
905 func_type = check_typedef (func_type);
906 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
907 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
908
909 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
910 || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
911
912 /* For a variadic C function, the last explicitly declared argument and all
913 remaining arguments are passed on the stack. */
914 if (TYPE_VARARGS (func_type))
915 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
916
917 /* Now make space on the stack for the args. */
918 for (argnum = 0; argnum < nargs; argnum++)
919 {
920 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
921 if (argnum >= 10 - argreg)
922 references_offset += len;
923 stack_offset += len;
924 }
925 sp -= stack_offset;
926 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
927 Stack Alignment. */
928 sp = align_down (sp, 8);
929 stack_offset = 4;
930
931 /* Now load as many as possible of the first arguments into
932 registers, and push the rest onto the stack. Loop through args
933 from first to last. */
934 for (argnum = 0; argnum < nargs; argnum++)
935 {
936 const gdb_byte *val;
937 struct value *arg = args[argnum];
938 struct type *arg_type = check_typedef (value_type (arg));
939 int len = TYPE_LENGTH (arg_type);
940 enum type_code typecode = TYPE_CODE (arg_type);
941
942 val = value_contents (arg);
943
944 /* Copy the argument to general registers or the stack in
945 register-sized pieces. */
946 if (argreg < first_arg_on_stack)
947 {
948 if (len <= 4)
949 {
950 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
951 {
952 /* In big-endian,
953 - one-byte structure or union occupies the LSB of single
954 even register.
955 - for two-byte structure or union, the first byte
956 occupies byte 1 of register and the second byte occupies
957 byte 0.
958 so, we write the contents in VAL to the lsp of
959 register. */
960 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
961 regcache_cooked_write_part (regcache, arg_regs[argreg],
962 4 - len, len, val);
963 else
964 regcache->cooked_write (arg_regs[argreg], val);
965 }
966 else
967 {
968 /* The argument is being passed by value in a single
969 register. */
970 CORE_ADDR regval = extract_unsigned_integer (val, len,
971 byte_order);
972
973 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
974 regval);
975 }
976 }
977 else
978 {
979 if (len <= 8)
980 {
981 if (typecode == TYPE_CODE_STRUCT
982 || typecode == TYPE_CODE_UNION)
983 {
984 /* For a 5-8 byte structure or union in big-endian, the
985 first byte occupies byte 3 (the MSB) of the upper (odd)
986 register and the remaining bytes fill the decreasingly
987 significant bytes. 5-7 byte structures or unions have
988 padding in the LSBs of the lower (even) register. */
989 if (byte_order == BFD_ENDIAN_BIG)
990 {
991 regcache->cooked_write (arg_regs[argreg] + 1, val);
992 regcache_cooked_write_part (regcache,
993 arg_regs[argreg], 0,
994 len - 4, val + 4);
995 }
996 else
997 {
998 regcache->cooked_write (arg_regs[argreg], val);
999 regcache_cooked_write_part (regcache,
1000 arg_regs[argreg] + 1, 0,
1001 len - 4, val + 4);
1002 }
1003 }
1004 else
1005 {
1006 /* The argument is being passed by value in a pair of
1007 registers. */
1008 ULONGEST regval = extract_unsigned_integer (val, len,
1009 byte_order);
1010
1011 regcache_cooked_write_unsigned (regcache,
1012 arg_regs[argreg],
1013 regval);
1014 regcache_cooked_write_unsigned (regcache,
1015 arg_regs[argreg] + 1,
1016 regval >> 32);
1017 }
1018 }
1019 else
1020 {
1021 /* The argument is being passed by reference in a single
1022 register. */
1023 CORE_ADDR addr;
1024
1025 /* It is not necessary to adjust REFERENCES_OFFSET to
1026 8-byte aligned in some cases, in which 4-byte alignment
1027 is sufficient. For simplicity, we adjust
1028 REFERENCES_OFFSET to 8-byte aligned. */
1029 references_offset = align_up (references_offset, 8);
1030
1031 addr = sp + references_offset;
1032 write_memory (addr, val, len);
1033 references_offset += align_up (len, 4);
1034 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1035 addr);
1036 }
1037 }
1038 argreg++;
1039 }
1040 else
1041 {
1042 /* The argument is being passed on the stack. */
1043 CORE_ADDR addr;
1044
1045 /* There are six different cases of alignment, and these rules can
1046 be found in tic6x_arg_type_alignment:
1047
1048 1) 4-byte aligned if size is less than or equal to 4 byte, such
1049 as short, int, struct, union etc.
1050 2) 8-byte aligned if size is less than or equal to 8-byte, such
1051 as double, long long,
1052 3) 4-byte aligned if it is of type _Complex float, even its size
1053 is 8-byte.
1054 4) 8-byte aligned if it is of type _Complex double or _Complex
1055 long double, even its size is 16-byte. Because, the address of
1056 variable is passed as reference.
1057 5) struct and union larger than 8-byte are passed by reference, so
1058 it is 4-byte aligned.
1059 6) struct and union of size between 4 byte and 8 byte varies.
1060 alignment of struct variable is the alignment of its first field,
1061 while alignment of union variable is the max of all its fields'
1062 alignment. */
1063
1064 if (len <= 4)
1065 ; /* Default is 4-byte aligned. Nothing to be done. */
1066 else if (len <= 8)
1067 stack_offset = align_up (stack_offset,
1068 tic6x_arg_type_alignment (arg_type));
1069 else if (len == 16)
1070 {
1071 /* _Complex double or _Complex long double */
1072 if (typecode == TYPE_CODE_COMPLEX)
1073 {
1074 /* The argument is being passed by reference on stack. */
1075 CORE_ADDR addr;
1076 references_offset = align_up (references_offset, 8);
1077
1078 addr = sp + references_offset;
1079 /* Store variable on stack. */
1080 write_memory (addr, val, len);
1081
1082 references_offset += align_up (len, 4);
1083
1084 /* Pass the address of variable on stack as reference. */
1085 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1086 addr);
1087 len = 4;
1088
1089 }
1090 else
1091 internal_error (__FILE__, __LINE__,
1092 _("unexpected type %d of arg %d"),
1093 typecode, argnum);
1094 }
1095 else
1096 internal_error (__FILE__, __LINE__,
1097 _("unexpected length %d of arg %d"), len, argnum);
1098
1099 addr = sp + stack_offset;
1100 write_memory (addr, val, len);
1101 stack_offset += align_up (len, 4);
1102 }
1103 }
1104
1105 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1106
1107 /* Return adjusted stack pointer. */
1108 return sp;
1109 }
1110
1111 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1112
1113 static int
1114 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1117 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1118 if ((inst & 0x0f83effc) == 0x360)
1119 {
1120 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1121 INST_S_BIT (inst),
1122 INST_X_BIT (inst));
1123 if (src2 == TIC6X_RA_REGNUM)
1124 return 1;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /* This is the implementation of gdbarch method get_longjmp_target. */
1131
1132 static int
1133 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1134 {
1135 struct gdbarch *gdbarch = get_frame_arch (frame);
1136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1137 CORE_ADDR jb_addr;
1138 gdb_byte buf[4];
1139
1140 /* JMP_BUF is passed by reference in A4. */
1141 jb_addr = get_frame_register_unsigned (frame, 4);
1142
1143 /* JMP_BUF contains 13 elements of type int, and return address is stored
1144 in the last slot. */
1145 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1146 return 0;
1147
1148 *pc = extract_unsigned_integer (buf, 4, byte_order);
1149
1150 return 1;
1151 }
1152
1153 /* This is the implementation of gdbarch method
1154 return_in_first_hidden_param_p. */
1155
1156 static int
1157 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1158 struct type *type)
1159 {
1160 return 0;
1161 }
1162
1163 static struct gdbarch *
1164 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1165 {
1166 struct gdbarch *gdbarch;
1167 struct gdbarch_tdep *tdep;
1168 struct tdesc_arch_data *tdesc_data = NULL;
1169 const struct target_desc *tdesc = info.target_desc;
1170 int has_gp = 0;
1171
1172 /* Check any target description for validity. */
1173 if (tdesc_has_registers (tdesc))
1174 {
1175 const struct tdesc_feature *feature;
1176 int valid_p, i;
1177
1178 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1179
1180 if (feature == NULL)
1181 return NULL;
1182
1183 tdesc_data = tdesc_data_alloc ();
1184
1185 valid_p = 1;
1186 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1187 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1188 tic6x_register_names[i]);
1189
1190 /* CSR */
1191 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1192 tic6x_register_names[TIC6X_CSR_REGNUM]);
1193 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1194 tic6x_register_names[TIC6X_PC_REGNUM]);
1195
1196 if (!valid_p)
1197 {
1198 tdesc_data_cleanup (tdesc_data);
1199 return NULL;
1200 }
1201
1202 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1203 if (feature)
1204 {
1205 int j = 0;
1206 static const char *const gp[] =
1207 {
1208 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1209 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1210 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1211 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1212 };
1213
1214 has_gp = 1;
1215 valid_p = 1;
1216 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1217 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1218 gp[j]);
1219
1220 if (!valid_p)
1221 {
1222 tdesc_data_cleanup (tdesc_data);
1223 return NULL;
1224 }
1225 }
1226
1227 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1228 if (feature)
1229 {
1230 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1231 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1232 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1233
1234 if (!valid_p)
1235 {
1236 tdesc_data_cleanup (tdesc_data);
1237 return NULL;
1238 }
1239 }
1240
1241 }
1242
1243 /* Find a candidate among extant architectures. */
1244 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1245 arches != NULL;
1246 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1247 {
1248 tdep = gdbarch_tdep (arches->gdbarch);
1249
1250 if (has_gp != tdep->has_gp)
1251 continue;
1252
1253 if (tdep && tdep->breakpoint)
1254 return arches->gdbarch;
1255 }
1256
1257 tdep = XCNEW (struct gdbarch_tdep);
1258
1259 tdep->has_gp = has_gp;
1260 gdbarch = gdbarch_alloc (&info, tdep);
1261
1262 /* Data type sizes. */
1263 set_gdbarch_ptr_bit (gdbarch, 32);
1264 set_gdbarch_addr_bit (gdbarch, 32);
1265 set_gdbarch_short_bit (gdbarch, 16);
1266 set_gdbarch_int_bit (gdbarch, 32);
1267 set_gdbarch_long_bit (gdbarch, 32);
1268 set_gdbarch_long_long_bit (gdbarch, 64);
1269 set_gdbarch_float_bit (gdbarch, 32);
1270 set_gdbarch_double_bit (gdbarch, 64);
1271
1272 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1273 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1274
1275 /* The register set. */
1276 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1277 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1278 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1279
1280 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1281 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1282
1283 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1284
1285 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1286 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1287 tic6x_breakpoint_kind_from_pc);
1288 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1289 tic6x_sw_breakpoint_from_kind);
1290
1291 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1292 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1293
1294 /* Unwinding. */
1295 dwarf2_append_unwinders (gdbarch);
1296
1297 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1298 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1299 frame_base_set_default (gdbarch, &tic6x_frame_base);
1300
1301 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1302
1303 /* Single stepping. */
1304 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1305
1306 /* Call dummy code. */
1307 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1308
1309 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1310
1311 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1312
1313 /* Enable inferior call support. */
1314 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1315
1316 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1317
1318 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1319
1320 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1321 tic6x_return_in_first_hidden_param_p);
1322
1323 /* Hook in ABI-specific overrides, if they have been registered. */
1324 gdbarch_init_osabi (info, gdbarch);
1325
1326 if (tdesc_data)
1327 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1328
1329 return gdbarch;
1330 }
1331
1332 void
1333 _initialize_tic6x_tdep (void)
1334 {
1335 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1336 }