]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/tm-rs6000.h
Many changes, most related to creating entry point information on a per-objfile
[thirdparty/binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* A successful ptrace(continue) might return errno != 0 in this particular port
23 of rs6000. I am not sure why. We will use this kludge and ignore it until
24 we figure out the real problem. */
25
26 #define AIX_BUGGY_PTRACE_CONTINUE \
27 { \
28 int ret = ptrace (PT_CONTINUE, inferior_pid, (int *)1, signal, 0); \
29 if (errno) { \
30 /* printf ("ret: %d, errno: %d, signal: %d\n", ret, errno, signal); */ \
31 errno = 0; } \
32 }
33
34 extern int symtab_relocated;
35
36 /* Minimum possible text address in AIX */
37
38 #define TEXT_SEGMENT_BASE 0x10000000
39
40
41 /* text addresses in a core file does not necessarily match to symbol table,
42 if symbol table relocation wasn't done yet. */
43
44 #define CORE_NEEDS_RELOCATION(PC) \
45 if (!symtab_relocated && !inferior_pid && (PC) > TEXT_SEGMENT_BASE) \
46 (PC) -= ( TEXT_SEGMENT_BASE + text_adjustment (exec_bfd));
47
48 /* Conversion between a register number in stab string to actual register num. */
49
50 #define STAB_REG_TO_REGNUM(value) (value)
51
52 /* return true if a given `pc' value is in `call dummy' function. */
53
54 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
55 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
56
57 /* For each symtab, we keep track of which BFD it came from. */
58 #define EXTRA_SYMTAB_INFO \
59 unsigned nonreloc:1; /* TRUE if non relocatable */
60
61 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
62 symtab->nonreloc = 0; \
63
64 extern unsigned int text_start, data_start;
65 extern int inferior_pid;
66 extern char *corefile;
67
68 /* setpgrp() messes up controling terminal. The other version of it
69 requires libbsd.a. */
70 #define setpgrp(XX,YY) setpgid (XX, YY)
71
72 /* We are missing register descriptions in the system header files. Sigh! */
73
74 struct regs {
75 int gregs [32]; /* general purpose registers */
76 int pc; /* program conter */
77 int ps; /* processor status, or machine state */
78 };
79
80 struct fp_status {
81 double fpregs [32]; /* floating GP registers */
82 };
83
84
85 /* To be used by function_frame_info. */
86
87 struct aix_framedata {
88 int offset; /* # of bytes in gpr's and fpr's are saved */
89 int saved_gpr; /* smallest # of saved gpr */
90 int saved_fpr; /* smallest # of saved fpr */
91 int alloca_reg; /* alloca register number (frame ptr) */
92 char frameless; /* true if frameless functions. */
93 };
94
95
96 /* Define the byte order of the machine. */
97
98 #define TARGET_BYTE_ORDER BIG_ENDIAN
99
100 /* Define this if the C compiler puts an underscore at the front
101 of external names before giving them to the linker. */
102
103 #undef NAMES_HAVE_UNDERSCORE
104
105 /* Offset from address of function to start of its code.
106 Zero on most machines. */
107
108 #define FUNCTION_START_OFFSET 0
109
110 /* Advance PC across any function entry prologue instructions
111 to reach some "real" code. */
112
113 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
114
115 /* If PC is in some function-call trampoline code, return the PC
116 where the function itself actually starts. If not, return NULL. */
117
118 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
119
120 /* When a child process is just starting, we sneak in and relocate
121 the symbol table (and other stuff) after the dynamic linker has
122 figured out where they go. But we want to do this relocation just
123 once. */
124
125 extern int aix_loadInfoTextIndex;
126
127 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
128 do { \
129 if (aix_loadInfoTextIndex == 0) \
130 aixcoff_relocate_symtab (PID); \
131 } while (0)
132
133
134 /* In aix, number of the trap signals we need to skip over once the
135 inferior process starts running is different in version 3.1 and 3.2.
136 This will be 2 for version 3.1x, 3 for version 3.2x. */
137
138 #define START_INFERIOR_TRAPS_EXPECTED aix_starting_inferior_traps ()
139
140 /* In aixcoff, we cannot process line numbers when we see them. This is
141 mainly because we don't know the boundaries of the include files. So,
142 we postpone that, and then enter and sort(?) the whole line table at
143 once, when we are closing the current symbol table in end_symtab(). */
144
145 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
146
147
148 /* When a target process or core-file has been attached, we sneak in
149 and figure out where the shared libraries have got to. In case there
150 is no inferior_process exists (e.g. bringing up a core file), we can't
151 attemtp to relocate symbol table, since we don't have information about
152 load segments. */
153
154 #define SOLIB_ADD(a, b, c) \
155 if (inferior_pid) aixcoff_relocate_symtab (inferior_pid)
156
157 /* Immediately after a function call, return the saved pc.
158 Can't go through the frames for this because on some machines
159 the new frame is not set up until the new function executes
160 some instructions. */
161
162 extern char registers[];
163 extern char register_valid [];
164
165 #define SAVED_PC_AFTER_CALL(frame) \
166 (register_valid [LR_REGNUM] ? \
167 (*(int*)&registers[REGISTER_BYTE (LR_REGNUM)]) : \
168 read_register (LR_REGNUM))
169
170 /*#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame) */
171
172
173 /* Address of end of stack space. */
174
175 #define STACK_END_ADDR 0x2ff80000
176
177 /* Stack grows downward. */
178
179 #define INNER_THAN <
180
181 #if 0
182 /* No, we shouldn't use this. push_arguments() should leave stack in a
183 proper alignment! */
184 /* Stack has strict alignment. */
185
186 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
187 #endif
188
189 /* This is how argumets pushed onto stack or passed in registers. */
190
191 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
192 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
193
194 /* Sequence of bytes for breakpoint instruction. */
195
196 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
197
198 /* Amount PC must be decremented by after a breakpoint.
199 This is often the number of bytes in BREAKPOINT
200 but not always. */
201
202 #define DECR_PC_AFTER_BREAK 0
203
204 /* Nonzero if instruction at PC is a return instruction. */
205 /* Allow any of the return instructions, including a trapv and a return
206 from interrupt. */
207
208 #define ABOUT_TO_RETURN(pc) \
209 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
210
211 /* Return 1 if P points to an invalid floating point value. */
212
213 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
214
215 /* Largest integer type */
216
217 #define LONGEST long
218
219 /* Name of the builtin type for the LONGEST type above. */
220
221 #define BUILTIN_TYPE_LONGEST builtin_type_long
222
223 /* Say how long (ordinary) registers are. */
224
225 #define REGISTER_TYPE long
226
227 /* Number of machine registers */
228
229 #define NUM_REGS 71
230
231 /* Initializer for an array of names of registers.
232 There should be NUM_REGS strings in this initializer. */
233
234 #define REGISTER_NAMES \
235 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
236 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
237 "r16","r17","r18","r19","r20","r21","r22","r23", \
238 "r24","r25","r26","r27","r28","r29","r30","r31", \
239 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
240 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
241 "f16","f17","f18","f19","f20","f21","f22","f23", \
242 "f24","f25","f26","f27","f28","f29","f30","f31", \
243 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
244
245 /* Register numbers of various important registers.
246 Note that some of these values are "real" register numbers,
247 and correspond to the general registers of the machine,
248 and some are "phony" register numbers which are too large
249 to be actual register numbers as far as the user is concerned
250 but do serve to get the desired values when passed to read_register. */
251
252 #define FP_REGNUM 1 /* Contains address of executing stack frame */
253 #define SP_REGNUM 1 /* Contains address of top of stack */
254 #define TOC_REGNUM 2 /* TOC register */
255 #define FP0_REGNUM 32 /* Floating point register 0 */
256 #define GP0_REGNUM 0 /* GPR register 0 */
257 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
258 #define FPLAST_REGNUM 63 /* Last floating point register */
259
260 /* Special purpose registers... */
261 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
262 easier processing */
263
264 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
265 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
266 #define CR_REGNUM 66 /* Condition register */
267 #define LR_REGNUM 67 /* Link register */
268 #define CTR_REGNUM 68 /* Count register */
269 #define XER_REGNUM 69 /* Fixed point exception registers */
270 #define MQ_REGNUM 70 /* Multiply/quotient register */
271
272 #define FIRST_SP_REGNUM 64 /* first special register number */
273 #define LAST_SP_REGNUM 70 /* last special register number */
274
275 /* Total amount of space needed to store our copies of the machine's
276 register state, the array `registers'.
277
278 32 4-byte gpr's
279 32 8-byte fpr's
280 7 4-byte special purpose registers,
281
282 total 416 bytes. Keep some extra space for now, in case to add more. */
283
284 #define REGISTER_BYTES 420
285
286
287 /* Index within `registers' of the first byte of the space for
288 register N. */
289
290 #define REGISTER_BYTE(N) \
291 ( \
292 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
293 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
294 :((N) * 4) )
295
296 /* Number of bytes of storage in the actual machine representation
297 for register N. */
298 /* Note that the unsigned cast here forces the result of the
299 subtractiion to very high positive values if N < FP0_REGNUM */
300
301 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
302
303 /* Number of bytes of storage in the program's representation
304 for register N. On the RS6000, all regs are 4 bytes
305 except the floating point regs which are 8-byte doubles. */
306
307 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
308
309 /* Largest value REGISTER_RAW_SIZE can have. */
310
311 #define MAX_REGISTER_RAW_SIZE 8
312
313 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
314
315 #define MAX_REGISTER_VIRTUAL_SIZE 8
316
317 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
318
319 #define STAB_REG_TO_REGNUM(value) (value)
320
321 /* Nonzero if register N requires conversion
322 from raw format to virtual format. */
323
324 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
325
326 /* Convert data from raw format for register REGNUM
327 to virtual format for register REGNUM. */
328
329 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
330 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
331
332 /* Convert data from virtual format for register REGNUM
333 to raw format for register REGNUM. */
334
335 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
336 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
337
338 /* Return the GDB type object for the "standard" data type
339 of data in register N. */
340
341 #define REGISTER_VIRTUAL_TYPE(N) \
342 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
343
344 /* Store the address of the place in which to copy the structure the
345 subroutine will return. This is called from call_function. */
346 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
347 In function return, callee is not responsible of returning this address back.
348 Since gdb needs to find it, we will store in a designated variable
349 `rs6000_struct_return_address'. */
350
351 extern unsigned int rs6000_struct_return_address;
352
353 #define STORE_STRUCT_RETURN(ADDR, SP) \
354 { write_register (3, (ADDR)); \
355 rs6000_struct_return_address = (unsigned int)(ADDR); }
356
357 /* Extract from an array REGBUF containing the (raw) register state
358 a function return value of type TYPE, and copy that, in virtual format,
359 into VALBUF. */
360
361 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
362 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
363
364 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
365 extract_return_value(TYPE,REGBUF,VALBUF)
366
367 /* Write into appropriate registers a function return value
368 of type TYPE, given in virtual format. */
369
370 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
371 { \
372 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
373 \
374 /* Floating point values are returned starting from FPR1 and up. \
375 Say a double_double_double type could be returned in \
376 FPR1/FPR2/FPR3 triple. */ \
377 \
378 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
379 TYPE_LENGTH (TYPE)); \
380 else \
381 /* Everything else is returned in GPR3 and up. */ \
382 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
383 TYPE_LENGTH (TYPE)); \
384 }
385
386
387 /* Extract from an array REGBUF containing the (raw) register state
388 the address in which a function should return its structure value,
389 as a CORE_ADDR (or an expression that can be used as one). */
390
391 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
392
393
394 /* Do implement the attach and detach commands. */
395
396 #define ATTACH_DETACH
397
398 /* infptrace.c requires those. */
399
400 #define PTRACE_ATTACH 30
401 #define PTRACE_DETACH 31
402
403 \f
404 /* Describe the pointer in each stack frame to the previous stack frame
405 (its caller). */
406
407 /* FRAME_CHAIN takes a frame's nominal address
408 and produces the frame's chain-pointer. */
409
410 /* In the case of the RS6000, the frame's nominal address
411 is the address of a 4-byte word containing the calling frame's address. */
412
413 #define FRAME_CHAIN(thisframe) \
414 (!inside_entry_file ((thisframe)->pc) ? \
415 read_memory_integer ((thisframe)->frame, 4) :\
416 0)
417
418 /* Define other aspects of the stack frame. */
419
420 /* A macro that tells us whether the function invocation represented
421 by FI does not have a frame on the stack associated with it. If it
422 does not, FRAMELESS is set to 1, else 0. */
423
424 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
425 FRAMELESS = frameless_function_invocation (FI)
426
427 /* Functions calling alloca() change the value of the stack pointer. We
428 need to use initial stack pointer (which is saved in r31 by gcc) in
429 such cases. If a compiler emits traceback table, then we should use the
430 alloca register specified in traceback table. FIXME. */
431 /* Also, it is a good idea to cache information about frame's saved registers
432 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
433
434 #define EXTRA_FRAME_INFO \
435 CORE_ADDR initial_sp; /* initial stack pointer. */ \
436 struct frame_saved_regs *cache_fsr; /* saved registers */
437
438 /* Frameless function invocation in IBM RS/6000 is half-done. It perfectly
439 sets up a new frame, e.g. a new frame (in fact stack) pointer, etc, but it
440 doesn't save the %pc. In the following, even though it is considered a
441 frameless invocation, we still need to walk one frame up. */
442
443 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
444 fi->initial_sp = 0; \
445 fi->cache_fsr = 0; \
446 if (fromleaf) { \
447 int tmp = 0; \
448 read_memory ((fi)->frame, &tmp, sizeof (int)); \
449 (fi)->frame = tmp; \
450 }
451
452 #define FRAME_SAVED_PC(FRAME) \
453 read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4)
454
455 #define FRAME_ARGS_ADDRESS(FI) \
456 (((struct frame_info*)(FI))->initial_sp ? \
457 ((struct frame_info*)(FI))->initial_sp : \
458 frame_initial_stack_address (FI))
459
460 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
461
462
463 /* Set VAL to the number of args passed to frame described by FI.
464 Can set VAL to -1, meaning no way to tell. */
465
466 /* We can't tell how many args there are
467 now that the C compiler delays popping them. */
468
469 #define FRAME_NUM_ARGS(val,fi) (val = -1)
470
471 /* Return number of bytes at start of arglist that are not really args. */
472
473 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
474
475 /* Put here the code to store, into a struct frame_saved_regs,
476 the addresses of the saved registers of frame described by FRAME_INFO.
477 This includes special registers such as pc and fp saved in special
478 ways in the stack frame. sp is even more special:
479 the address we return for it IS the sp for the next frame. */
480 /* In the following implementation for RS6000, we did *not* save sp. I am
481 not sure if it will be needed. The following macro takes care of gpr's
482 and fpr's only. */
483
484 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
485 { \
486 int ii, frame_addr, func_start; \
487 struct aix_framedata fdata; \
488 \
489 /* find the start of the function and collect info about its frame. */ \
490 \
491 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET;\
492 function_frame_info (func_start, &fdata); \
493 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
494 \
495 /* if there were any saved registers, figure out parent's stack pointer. */ \
496 frame_addr = 0; \
497 /* the following is true only if the frame doesn't have a call to alloca(), \
498 FIXME. */ \
499 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
500 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
501 frame_addr = (FRAME_INFO)->prev->frame; \
502 else \
503 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
504 } \
505 \
506 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
507 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
508 starting from fp31 first. */ \
509 \
510 if (fdata.saved_fpr >= 0) { \
511 for (ii=31; ii >= fdata.saved_fpr; --ii) \
512 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
513 frame_addr -= (32 - fdata.saved_fpr) * 8; \
514 } \
515 \
516 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
517 from saved_gpr to gpr31 are saved right under saved fprs, starting \
518 from r31 first. */ \
519 \
520 if (fdata.saved_gpr >= 0) \
521 for (ii=31; ii >= fdata.saved_gpr; --ii) \
522 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
523 }
524
525 \f
526 /* Things needed for making the inferior call functions. */
527
528 /* Push an empty stack frame, to record the current PC, etc. */
529 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
530
531 #define PUSH_DUMMY_FRAME push_dummy_frame ()
532
533 /* Discard from the stack the innermost frame,
534 restoring all saved registers. */
535
536 #define POP_FRAME pop_frame ()
537
538 /* This sequence of words is the instructions:
539
540 mflr r0 // 0x7c0802a6
541 // save fpr's
542 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
543 // save gpr's
544 stm r0, num(r1) // 0xbc010000
545 stu r1, num(r1) // 0x94210000
546
547 // the function we want to branch might be in a different load
548 // segment. reset the toc register. Note that the actual toc address
549 // will be fix by fix_call_dummy () along with function address.
550
551 st r2, 0x14(r1) // 0x90410014 save toc register
552 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
553 oril r2, r2,0x5678 // 0x60425678
554
555 // load absolute address 0x12345678 to r0
556 liu r0, 0x1234 // 0x3c001234
557 oril r0, r0,0x5678 // 0x60005678
558 mtctr r0 // 0x7c0903a6 ctr <- r0
559 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
560 cror 0xf, 0xf, 0xf // 0x4def7b82
561 brpt // 0x7d821008, breakpoint
562 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
563
564
565 We actually start executing by saving the toc register first, since the pushing
566 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
567 the arguments for the function called by the `bctrl' would be pushed
568 between the `stu' and the `bctrl', and we could allow it to execute through.
569 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
570 and we cannot allow to push the registers again.
571 */
572
573 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
574 0x90410014, 0x3c401234, 0x60425678, \
575 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
576 0x4def7b82, 0x7d821008, 0x4def7b82 }
577
578
579 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
580 #define CALL_DUMMY_LENGTH 56
581
582 #define CALL_DUMMY_START_OFFSET 16
583
584 /* Insert the specified number of args and function address
585 into a call sequence of the above form stored at DUMMYNAME. */
586
587 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
588 fix_call_dummy(dummyname, pc, fun, nargs, type)
589
590 /* Flag for machine-specific stuff in shared files. FIXME */
591 #ifndef IBM6000
592 #define IBM6000
593 #endif