]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/v850-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "frame-unwind.h"
28 #include "dwarf2-frame.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
33 #include "gdbcore.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "dis-asm.h"
37 #include "osabi.h"
38
39 enum
40 {
41 E_R0_REGNUM,
42 E_R1_REGNUM,
43 E_R2_REGNUM,
44 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
45 E_R4_REGNUM,
46 E_R5_REGNUM,
47 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
48 E_R7_REGNUM,
49 E_R8_REGNUM,
50 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
51 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
52 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
53 E_R12_REGNUM,
54 E_R13_REGNUM,
55 E_R14_REGNUM,
56 E_R15_REGNUM,
57 E_R16_REGNUM,
58 E_R17_REGNUM,
59 E_R18_REGNUM,
60 E_R19_REGNUM,
61 E_R20_REGNUM,
62 E_R21_REGNUM,
63 E_R22_REGNUM,
64 E_R23_REGNUM,
65 E_R24_REGNUM,
66 E_R25_REGNUM,
67 E_R26_REGNUM,
68 E_R27_REGNUM,
69 E_R28_REGNUM,
70 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
71 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
72 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
73 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
74 E_R33_REGNUM,
75 E_R34_REGNUM,
76 E_R35_REGNUM,
77 E_R36_REGNUM,
78 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
79 E_R38_REGNUM,
80 E_R39_REGNUM,
81 E_R40_REGNUM,
82 E_R41_REGNUM,
83 E_R42_REGNUM,
84 E_R43_REGNUM,
85 E_R44_REGNUM,
86 E_R45_REGNUM,
87 E_R46_REGNUM,
88 E_R47_REGNUM,
89 E_R48_REGNUM,
90 E_R49_REGNUM,
91 E_R50_REGNUM,
92 E_R51_REGNUM,
93 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
94 E_R53_REGNUM,
95 E_R54_REGNUM,
96 E_R55_REGNUM,
97 E_R56_REGNUM,
98 E_R57_REGNUM,
99 E_R58_REGNUM,
100 E_R59_REGNUM,
101 E_R60_REGNUM,
102 E_R61_REGNUM,
103 E_R62_REGNUM,
104 E_R63_REGNUM,
105 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
106 E_R65_REGNUM,
107 E_NUM_REGS
108 };
109
110 enum
111 {
112 v850_reg_size = 4
113 };
114
115 /* Size of return datatype which fits into all return registers. */
116 enum
117 {
118 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
119 };
120
121 struct v850_frame_cache
122 {
123 /* Base address. */
124 CORE_ADDR base;
125 LONGEST sp_offset;
126 CORE_ADDR pc;
127
128 /* Flag showing that a frame has been created in the prologue code. */
129 int uses_fp;
130
131 /* Saved registers. */
132 struct trad_frame_saved_reg *saved_regs;
133 };
134
135 /* Info gleaned from scanning a function's prologue. */
136 struct pifsr /* Info about one saved register. */
137 {
138 int offset; /* Offset from sp or fp. */
139 int cur_frameoffset; /* Current frameoffset. */
140 int reg; /* Saved register number. */
141 };
142
143 static const char *
144 v850_register_name (int regnum)
145 {
146 static const char *v850_reg_names[] =
147 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
150 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
151 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
152 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
153 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
154 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
155 "pc", "fp"
156 };
157 if (regnum < 0 || regnum >= E_NUM_REGS)
158 return NULL;
159 return v850_reg_names[regnum];
160 }
161
162 static const char *
163 v850e_register_name (int regnum)
164 {
165 static const char *v850e_reg_names[] =
166 {
167 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
168 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
169 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
170 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
171 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
172 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
173 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
174 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
175 "pc", "fp"
176 };
177 if (regnum < 0 || regnum >= E_NUM_REGS)
178 return NULL;
179 return v850e_reg_names[regnum];
180 }
181
182 /* Returns the default type for register N. */
183
184 static struct type *
185 v850_register_type (struct gdbarch *gdbarch, int regnum)
186 {
187 if (regnum == E_PC_REGNUM)
188 return builtin_type_void_func_ptr;
189 return builtin_type_int32;
190 }
191
192 static int
193 v850_type_is_scalar (struct type *t)
194 {
195 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
196 && TYPE_CODE (t) != TYPE_CODE_UNION
197 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
198 }
199
200 /* Should call_function allocate stack space for a struct return? */
201 static int
202 v850_use_struct_convention (struct type *type)
203 {
204 int i;
205 struct type *fld_type, *tgt_type;
206
207 /* 1. The value is greater than 8 bytes -> returned by copying. */
208 if (TYPE_LENGTH (type) > 8)
209 return 1;
210
211 /* 2. The value is a single basic type -> returned in register. */
212 if (v850_type_is_scalar (type))
213 return 0;
214
215 /* The value is a structure or union with a single element and that
216 element is either a single basic type or an array of a single basic
217 type whose size is greater than or equal to 4 -> returned in register. */
218 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
219 || TYPE_CODE (type) == TYPE_CODE_UNION)
220 && TYPE_NFIELDS (type) == 1)
221 {
222 fld_type = TYPE_FIELD_TYPE (type, 0);
223 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
224 return 0;
225
226 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
227 {
228 tgt_type = TYPE_TARGET_TYPE (fld_type);
229 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
230 return 0;
231 }
232 }
233
234 /* The value is a structure whose first element is an integer or a float,
235 and which contains no arrays of more than two elements -> returned in
236 register. */
237 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
238 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
239 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
240 {
241 for (i = 1; i < TYPE_NFIELDS (type); ++i)
242 {
243 fld_type = TYPE_FIELD_TYPE (type, 0);
244 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
245 {
246 tgt_type = TYPE_TARGET_TYPE (fld_type);
247 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
248 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
249 return 1;
250 }
251 }
252 return 0;
253 }
254
255 /* The value is a union which contains at least one field which would be
256 returned in registers according to these rules -> returned in register. */
257 if (TYPE_CODE (type) == TYPE_CODE_UNION)
258 {
259 for (i = 0; i < TYPE_NFIELDS (type); ++i)
260 {
261 fld_type = TYPE_FIELD_TYPE (type, 0);
262 if (!v850_use_struct_convention (fld_type))
263 return 0;
264 }
265 }
266
267 return 1;
268 }
269
270 /* Structure for mapping bits in register lists to register numbers. */
271 struct reg_list
272 {
273 long mask;
274 int regno;
275 };
276
277 /* Helper function for v850_scan_prologue to handle prepare instruction. */
278
279 static void
280 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
281 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
282 {
283 CORE_ADDR current_pc = *current_pc_ptr;
284 struct pifsr *pifsr = *pifsr_ptr;
285 long next = insn2 & 0xffff;
286 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
287 long offset = (insn & 0x3e) << 1;
288 static struct reg_list reg_table[] =
289 {
290 {0x00800, 20}, /* r20 */
291 {0x00400, 21}, /* r21 */
292 {0x00200, 22}, /* r22 */
293 {0x00100, 23}, /* r23 */
294 {0x08000, 24}, /* r24 */
295 {0x04000, 25}, /* r25 */
296 {0x02000, 26}, /* r26 */
297 {0x01000, 27}, /* r27 */
298 {0x00080, 28}, /* r28 */
299 {0x00040, 29}, /* r29 */
300 {0x10000, 30}, /* ep */
301 {0x00020, 31}, /* lp */
302 {0, 0} /* end of table */
303 };
304 int i;
305
306 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
307 current_pc += 2;
308 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
309 current_pc += 2;
310 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
311 current_pc += 4;
312
313 /* Calculate the total size of the saved registers, and add it to the
314 immediate value used to adjust SP. */
315 for (i = 0; reg_table[i].mask != 0; i++)
316 if (list12 & reg_table[i].mask)
317 offset += v850_reg_size;
318 pi->sp_offset -= offset;
319
320 /* Calculate the offsets of the registers relative to the value the SP
321 will have after the registers have been pushed and the imm5 value has
322 been subtracted from it. */
323 if (pifsr)
324 {
325 for (i = 0; reg_table[i].mask != 0; i++)
326 {
327 if (list12 & reg_table[i].mask)
328 {
329 int reg = reg_table[i].regno;
330 offset -= v850_reg_size;
331 pifsr->reg = reg;
332 pifsr->offset = offset;
333 pifsr->cur_frameoffset = pi->sp_offset;
334 pifsr++;
335 }
336 }
337 }
338
339 /* Set result parameters. */
340 *current_pc_ptr = current_pc;
341 *pifsr_ptr = pifsr;
342 }
343
344
345 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
346 The SR bit of the register list is not supported. gcc does not generate
347 this bit. */
348
349 static void
350 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
351 struct pifsr **pifsr_ptr)
352 {
353 struct pifsr *pifsr = *pifsr_ptr;
354 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
355 long offset = 0;
356 static struct reg_list pushml_reg_table[] =
357 {
358 {0x80000, E_PS_REGNUM}, /* PSW */
359 {0x40000, 1}, /* r1 */
360 {0x20000, 2}, /* r2 */
361 {0x10000, 3}, /* r3 */
362 {0x00800, 4}, /* r4 */
363 {0x00400, 5}, /* r5 */
364 {0x00200, 6}, /* r6 */
365 {0x00100, 7}, /* r7 */
366 {0x08000, 8}, /* r8 */
367 {0x04000, 9}, /* r9 */
368 {0x02000, 10}, /* r10 */
369 {0x01000, 11}, /* r11 */
370 {0x00080, 12}, /* r12 */
371 {0x00040, 13}, /* r13 */
372 {0x00020, 14}, /* r14 */
373 {0x00010, 15}, /* r15 */
374 {0, 0} /* end of table */
375 };
376 static struct reg_list pushmh_reg_table[] =
377 {
378 {0x80000, 16}, /* r16 */
379 {0x40000, 17}, /* r17 */
380 {0x20000, 18}, /* r18 */
381 {0x10000, 19}, /* r19 */
382 {0x00800, 20}, /* r20 */
383 {0x00400, 21}, /* r21 */
384 {0x00200, 22}, /* r22 */
385 {0x00100, 23}, /* r23 */
386 {0x08000, 24}, /* r24 */
387 {0x04000, 25}, /* r25 */
388 {0x02000, 26}, /* r26 */
389 {0x01000, 27}, /* r27 */
390 {0x00080, 28}, /* r28 */
391 {0x00040, 29}, /* r29 */
392 {0x00010, 30}, /* r30 */
393 {0x00020, 31}, /* r31 */
394 {0, 0} /* end of table */
395 };
396 struct reg_list *reg_table;
397 int i;
398
399 /* Is this a pushml or a pushmh? */
400 if ((insn2 & 7) == 1)
401 reg_table = pushml_reg_table;
402 else
403 reg_table = pushmh_reg_table;
404
405 /* Calculate the total size of the saved registers, and add it it to the
406 immediate value used to adjust SP. */
407 for (i = 0; reg_table[i].mask != 0; i++)
408 if (list12 & reg_table[i].mask)
409 offset += v850_reg_size;
410 pi->sp_offset -= offset;
411
412 /* Calculate the offsets of the registers relative to the value the SP
413 will have after the registers have been pushed and the imm5 value is
414 subtracted from it. */
415 if (pifsr)
416 {
417 for (i = 0; reg_table[i].mask != 0; i++)
418 {
419 if (list12 & reg_table[i].mask)
420 {
421 int reg = reg_table[i].regno;
422 offset -= v850_reg_size;
423 pifsr->reg = reg;
424 pifsr->offset = offset;
425 pifsr->cur_frameoffset = pi->sp_offset;
426 pifsr++;
427 }
428 }
429 }
430
431 /* Set result parameters. */
432 *pifsr_ptr = pifsr;
433 }
434
435 /* Helper function to evaluate if register is one of the "save" registers.
436 This allows to simplify conditionals in v850_analyze_prologue a lot. */
437
438 static int
439 v850_is_save_register (int reg)
440 {
441 /* The caller-save registers are R2, R20 - R29 and R31. All other
442 registers are either special purpose (PC, SP), argument registers,
443 or just considered free for use in the caller. */
444 return reg == E_R2_REGNUM
445 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
446 || reg == E_R31_REGNUM;
447 }
448
449 /* Scan the prologue of the function that contains PC, and record what
450 we find in PI. Returns the pc after the prologue. Note that the
451 addresses saved in frame->saved_regs are just frame relative (negative
452 offsets from the frame pointer). This is because we don't know the
453 actual value of the frame pointer yet. In some circumstances, the
454 frame pointer can't be determined till after we have scanned the
455 prologue. */
456
457 static CORE_ADDR
458 v850_analyze_prologue (CORE_ADDR func_addr, CORE_ADDR pc,
459 struct v850_frame_cache *pi)
460 {
461 CORE_ADDR prologue_end, current_pc;
462 struct pifsr pifsrs[E_NUM_REGS + 1];
463 struct pifsr *pifsr, *pifsr_tmp;
464 int fp_used;
465 int ep_used;
466 int reg;
467 CORE_ADDR save_pc, save_end;
468 int regsave_func_p;
469 int r12_tmp;
470
471 memset (&pifsrs, 0, sizeof pifsrs);
472 pifsr = &pifsrs[0];
473
474 prologue_end = pc;
475
476 /* Now, search the prologue looking for instructions that setup fp, save
477 rp, adjust sp and such. We also record the frame offset of any saved
478 registers. */
479
480 pi->sp_offset = 0;
481 pi->uses_fp = 0;
482 ep_used = 0;
483 regsave_func_p = 0;
484 save_pc = 0;
485 save_end = 0;
486 r12_tmp = 0;
487
488 for (current_pc = func_addr; current_pc < prologue_end;)
489 {
490 int insn;
491 int insn2 = -1; /* dummy value */
492
493 insn = read_memory_integer (current_pc, 2);
494 current_pc += 2;
495 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
496 {
497 insn2 = read_memory_integer (current_pc, 2);
498 current_pc += 2;
499 }
500
501 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
502 { /* jarl <func>,10 */
503 long low_disp = insn2 & ~(long) 1;
504 long disp = (((((insn & 0x3f) << 16) + low_disp)
505 & ~(long) 1) ^ 0x00200000) - 0x00200000;
506
507 save_pc = current_pc;
508 save_end = prologue_end;
509 regsave_func_p = 1;
510 current_pc += disp - 4;
511 prologue_end = (current_pc
512 + (2 * 3) /* moves to/from ep */
513 + 4 /* addi <const>,sp,sp */
514 + 2 /* jmp [r10] */
515 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
516 + 20); /* slop area */
517 }
518 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
519 { /* callt <imm6> */
520 long ctbp = read_register (E_CTBP_REGNUM);
521 long adr = ctbp + ((insn & 0x3f) << 1);
522
523 save_pc = current_pc;
524 save_end = prologue_end;
525 regsave_func_p = 1;
526 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
527 prologue_end = (current_pc
528 + (2 * 3) /* prepare list2,imm5,sp/imm */
529 + 4 /* ctret */
530 + 20); /* slop area */
531 continue;
532 }
533 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
534 {
535 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
536 continue;
537 }
538 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
539 { /* ctret after processing register save. */
540 current_pc = save_pc;
541 prologue_end = save_end;
542 regsave_func_p = 0;
543 continue;
544 }
545 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
546 { /* pushml, pushmh */
547 v850_handle_pushm (insn, insn2, pi, &pifsr);
548 continue;
549 }
550 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
551 { /* jmp after processing register save. */
552 current_pc = save_pc;
553 prologue_end = save_end;
554 regsave_func_p = 0;
555 continue;
556 }
557 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
558 || (insn & 0xffe0) == 0x0060 /* jmp */
559 || (insn & 0x0780) == 0x0580) /* branch */
560 {
561 break; /* Ran into end of prologue */
562 }
563
564 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
565 /* add <imm>,sp */
566 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
567 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
568 /* addi <imm>,sp,sp */
569 pi->sp_offset += insn2;
570 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
571 /* mov sp,fp */
572 pi->uses_fp = 1;
573 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
574 /* movhi hi(const),r0,r12 */
575 r12_tmp = insn2 << 16;
576 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
577 /* movea lo(const),r12,r12 */
578 r12_tmp += insn2;
579 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
580 /* add r12,sp */
581 pi->sp_offset += r12_tmp;
582 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
583 /* mov sp,ep */
584 ep_used = 1;
585 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
586 /* mov r1,ep */
587 ep_used = 0;
588 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
589 || (pi->uses_fp
590 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
591 && pifsr
592 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
593 {
594 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
595 pifsr->reg = reg;
596 pifsr->offset = insn2 & ~1;
597 pifsr->cur_frameoffset = pi->sp_offset;
598 pifsr++;
599 }
600 else if (ep_used
601 && ((insn & 0x0781) == 0x0501)
602 && pifsr
603 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
604 {
605 /* sst.w <reg>,<offset>[ep] */
606 pifsr->reg = reg;
607 pifsr->offset = (insn & 0x007e) << 1;
608 pifsr->cur_frameoffset = pi->sp_offset;
609 pifsr++;
610 }
611 }
612
613 /* Fix up any offsets to the final offset. If a frame pointer was created,
614 use it instead of the stack pointer. */
615 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
616 {
617 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
618 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
619 }
620
621 return current_pc;
622 }
623
624 /* Return the address of the first code past the prologue of the function. */
625
626 static CORE_ADDR
627 v850_skip_prologue (CORE_ADDR pc)
628 {
629 CORE_ADDR func_addr, func_end;
630
631 /* See what the symbol table says */
632
633 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
634 {
635 struct symtab_and_line sal;
636
637 sal = find_pc_line (func_addr, 0);
638 if (sal.line != 0 && sal.end < func_end)
639 return sal.end;
640
641 /* Either there's no line info, or the line after the prologue is after
642 the end of the function. In this case, there probably isn't a
643 prologue. */
644 return pc;
645 }
646
647 /* We can't find the start of this function, so there's nothing we can do. */
648 return pc;
649 }
650
651 static CORE_ADDR
652 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
653 {
654 return sp & ~3;
655 }
656
657 /* Setup arguments and LP for a call to the target. First four args
658 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
659 are passed by reference. 64 bit quantities (doubles and long longs)
660 may be split between the regs and the stack. When calling a function
661 that returns a struct, a pointer to the struct is passed in as a secret
662 first argument (always in R6).
663
664 Stack space for the args has NOT been allocated: that job is up to us. */
665
666 static CORE_ADDR
667 v850_push_dummy_call (struct gdbarch *gdbarch,
668 struct value *function,
669 struct regcache *regcache,
670 CORE_ADDR bp_addr,
671 int nargs,
672 struct value **args,
673 CORE_ADDR sp,
674 int struct_return,
675 CORE_ADDR struct_addr)
676 {
677 int argreg;
678 int argnum;
679 int len = 0;
680 int stack_offset;
681
682 /* The offset onto the stack at which we will start copying parameters
683 (after the registers are used up) begins at 16 rather than at zero.
684 That's how the ABI is defined, though there's no indication that these
685 16 bytes are used for anything, not even for saving incoming
686 argument registers. */
687 stack_offset = 16;
688
689 /* Now make space on the stack for the args. */
690 for (argnum = 0; argnum < nargs; argnum++)
691 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
692 sp -= len + stack_offset;
693
694 argreg = E_ARG0_REGNUM;
695 /* The struct_return pointer occupies the first parameter register. */
696 if (struct_return)
697 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
698
699 /* Now load as many as possible of the first arguments into
700 registers, and push the rest onto the stack. There are 16 bytes
701 in four registers available. Loop thru args from first to last. */
702 for (argnum = 0; argnum < nargs; argnum++)
703 {
704 int len;
705 gdb_byte *val;
706 gdb_byte valbuf[v850_reg_size];
707
708 if (!v850_type_is_scalar (value_type (*args))
709 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
710 {
711 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (*args));
712 len = 4;
713 val = valbuf;
714 }
715 else
716 {
717 len = TYPE_LENGTH (value_type (*args));
718 val = (gdb_byte *) value_contents (*args);
719 }
720
721 while (len > 0)
722 if (argreg <= E_ARGLAST_REGNUM)
723 {
724 CORE_ADDR regval;
725
726 regval = extract_unsigned_integer (val, v850_reg_size);
727 regcache_cooked_write_unsigned (regcache, argreg, regval);
728
729 len -= v850_reg_size;
730 val += v850_reg_size;
731 argreg++;
732 }
733 else
734 {
735 write_memory (sp + stack_offset, val, 4);
736
737 len -= 4;
738 val += 4;
739 stack_offset += 4;
740 }
741 args++;
742 }
743
744 /* Store return address. */
745 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
746
747 /* Update stack pointer. */
748 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
749
750 return sp;
751 }
752
753 static void
754 v850_extract_return_value (struct type *type, struct regcache *regcache,
755 gdb_byte *valbuf)
756 {
757 int len = TYPE_LENGTH (type);
758
759 if (len <= v850_reg_size)
760 {
761 ULONGEST val;
762
763 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
764 store_unsigned_integer (valbuf, len, val);
765 }
766 else if (len <= 2 * v850_reg_size)
767 {
768 int i, regnum = E_V0_REGNUM;
769 gdb_byte buf[v850_reg_size];
770 for (i = 0; len > 0; i += 4, len -= 4)
771 {
772 regcache_raw_read (regcache, regnum++, buf);
773 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
774 }
775 }
776 }
777
778 static void
779 v850_store_return_value (struct type *type, struct regcache *regcache,
780 const gdb_byte *valbuf)
781 {
782 int len = TYPE_LENGTH (type);
783
784 if (len <= v850_reg_size)
785 regcache_cooked_write_unsigned (regcache, E_V0_REGNUM,
786 extract_unsigned_integer (valbuf, len));
787 else if (len <= 2 * v850_reg_size)
788 {
789 int i, regnum = E_V0_REGNUM;
790 for (i = 0; i < len; i += 4)
791 regcache_raw_write (regcache, regnum++, valbuf + i);
792 }
793 }
794
795 static enum return_value_convention
796 v850_return_value (struct gdbarch *gdbarch, struct type *type,
797 struct regcache *regcache,
798 gdb_byte *readbuf, const gdb_byte *writebuf)
799 {
800 if (v850_use_struct_convention (type))
801 return RETURN_VALUE_STRUCT_CONVENTION;
802 if (writebuf)
803 v850_store_return_value (type, regcache, writebuf);
804 else if (readbuf)
805 v850_extract_return_value (type, regcache, readbuf);
806 return RETURN_VALUE_REGISTER_CONVENTION;
807 }
808
809 const static unsigned char *
810 v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
811 {
812 static unsigned char breakpoint[] = { 0x85, 0x05 };
813 *lenptr = sizeof (breakpoint);
814 return breakpoint;
815 }
816
817 static struct v850_frame_cache *
818 v850_alloc_frame_cache (struct frame_info *next_frame)
819 {
820 struct v850_frame_cache *cache;
821 int i;
822
823 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
824 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
825
826 /* Base address. */
827 cache->base = 0;
828 cache->sp_offset = 0;
829 cache->pc = 0;
830
831 /* Frameless until proven otherwise. */
832 cache->uses_fp = 0;
833
834 return cache;
835 }
836
837 static struct v850_frame_cache *
838 v850_frame_cache (struct frame_info *next_frame, void **this_cache)
839 {
840 struct v850_frame_cache *cache;
841 CORE_ADDR current_pc;
842 int i;
843
844 if (*this_cache)
845 return *this_cache;
846
847 cache = v850_alloc_frame_cache (next_frame);
848 *this_cache = cache;
849
850 /* In principle, for normal frames, fp holds the frame pointer,
851 which holds the base address for the current stack frame.
852 However, for functions that don't need it, the frame pointer is
853 optional. For these "frameless" functions the frame pointer is
854 actually the frame pointer of the calling frame. */
855 cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
856 if (cache->base == 0)
857 return cache;
858
859 cache->pc = frame_func_unwind (next_frame);
860 current_pc = frame_pc_unwind (next_frame);
861 if (cache->pc != 0)
862 v850_analyze_prologue (cache->pc, current_pc, cache);
863
864 if (!cache->uses_fp)
865 {
866 /* We didn't find a valid frame, which means that CACHE->base
867 currently holds the frame pointer for our calling frame. If
868 we're at the start of a function, or somewhere half-way its
869 prologue, the function's frame probably hasn't been fully
870 setup yet. Try to reconstruct the base address for the stack
871 frame by looking at the stack pointer. For truly "frameless"
872 functions this might work too. */
873 cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
874 }
875
876 /* Now that we have the base address for the stack frame we can
877 calculate the value of sp in the calling frame. */
878 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
879 cache->base - cache->sp_offset);
880
881 /* Adjust all the saved registers such that they contain addresses
882 instead of offsets. */
883 for (i = 0; i < E_NUM_REGS; i++)
884 if (trad_frame_addr_p (cache->saved_regs, i))
885 cache->saved_regs[i].addr += cache->base;
886
887 /* The call instruction moves the caller's PC in the callee's LP.
888 Since this is an unwind, do the reverse. Copy the location of LP
889 into PC (the address / regnum) so that a request for PC will be
890 converted into a request for the LP. */
891
892 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
893
894 return cache;
895 }
896
897
898 static void
899 v850_frame_prev_register (struct frame_info *next_frame, void **this_cache,
900 int regnum, int *optimizedp,
901 enum lval_type *lvalp, CORE_ADDR *addrp,
902 int *realnump, gdb_byte *valuep)
903 {
904 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
905
906 gdb_assert (regnum >= 0);
907
908 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
909 optimizedp, lvalp, addrp, realnump, valuep);
910 }
911
912 static void
913 v850_frame_this_id (struct frame_info *next_frame, void **this_cache,
914 struct frame_id *this_id)
915 {
916 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
917
918 /* This marks the outermost frame. */
919 if (cache->base == 0)
920 return;
921
922 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
923 }
924
925 static const struct frame_unwind v850_frame_unwind = {
926 NORMAL_FRAME,
927 v850_frame_this_id,
928 v850_frame_prev_register
929 };
930
931 static const struct frame_unwind *
932 v850_frame_sniffer (struct frame_info *next_frame)
933 {
934 return &v850_frame_unwind;
935 }
936
937 static CORE_ADDR
938 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
939 {
940 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
941 }
942
943 static CORE_ADDR
944 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
945 {
946 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
947 }
948
949 static struct frame_id
950 v850_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
951 {
952 return frame_id_build (v850_unwind_sp (gdbarch, next_frame),
953 frame_pc_unwind (next_frame));
954 }
955
956 static CORE_ADDR
957 v850_frame_base_address (struct frame_info *next_frame, void **this_cache)
958 {
959 struct v850_frame_cache *cache = v850_frame_cache (next_frame, this_cache);
960
961 return cache->base;
962 }
963
964 static const struct frame_base v850_frame_base = {
965 &v850_frame_unwind,
966 v850_frame_base_address,
967 v850_frame_base_address,
968 v850_frame_base_address
969 };
970
971 static struct gdbarch *
972 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
973 {
974 struct gdbarch *gdbarch;
975
976 /* Change the register names based on the current machine type. */
977 if (info.bfd_arch_info->arch != bfd_arch_v850)
978 return NULL;
979
980 gdbarch = gdbarch_alloc (&info, NULL);
981
982 switch (info.bfd_arch_info->mach)
983 {
984 case bfd_mach_v850:
985 set_gdbarch_register_name (gdbarch, v850_register_name);
986 break;
987 case bfd_mach_v850e:
988 case bfd_mach_v850e1:
989 set_gdbarch_register_name (gdbarch, v850e_register_name);
990 break;
991 }
992
993 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
994 set_gdbarch_num_pseudo_regs (gdbarch, 0);
995 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
996 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
997 set_gdbarch_fp0_regnum (gdbarch, -1);
998
999 set_gdbarch_register_type (gdbarch, v850_register_type);
1000
1001 set_gdbarch_char_signed (gdbarch, 0);
1002 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1003 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1004 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1005 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1006
1007 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1008 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1009 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1010
1011 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1012 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1013
1014 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1015 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1016
1017 set_gdbarch_return_value (gdbarch, v850_return_value);
1018 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1019 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1020
1021 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1022
1023 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1024 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1025 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1026 set_gdbarch_unwind_dummy_id (gdbarch, v850_unwind_dummy_id);
1027 frame_base_set_default (gdbarch, &v850_frame_base);
1028
1029 /* Hook in ABI-specific overrides, if they have been registered. */
1030 gdbarch_init_osabi (info, gdbarch);
1031
1032 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1033 frame_unwind_append_sniffer (gdbarch, v850_frame_sniffer);
1034
1035 return gdbarch;
1036 }
1037
1038 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1039
1040 void
1041 _initialize_v850_tdep (void)
1042 {
1043 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1044 }