]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valarith.c
2005-02-07 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "value.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "target.h"
30 #include "language.h"
31 #include "gdb_string.h"
32 #include "doublest.h"
33 #include <math.h>
34 #include "infcall.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
44
45 void _initialize_valarith (void);
46 \f
47
48 /* Given a pointer, return the size of its target.
49 If the pointer type is void *, then return 1.
50 If the target type is incomplete, then error out.
51 This isn't a general purpose function, but just a
52 helper for value_sub & value_add.
53 */
54
55 static LONGEST
56 find_size_for_pointer_math (struct type *ptr_type)
57 {
58 LONGEST sz = -1;
59 struct type *ptr_target;
60
61 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
62
63 sz = TYPE_LENGTH (ptr_target);
64 if (sz == 0)
65 {
66 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
67 sz = 1;
68 else
69 {
70 char *name;
71
72 name = TYPE_NAME (ptr_target);
73 if (name == NULL)
74 name = TYPE_TAG_NAME (ptr_target);
75 if (name == NULL)
76 error ("Cannot perform pointer math on incomplete types, "
77 "try casting to a known type, or void *.");
78 else
79 error ("Cannot perform pointer math on incomplete type \"%s\", "
80 "try casting to a known type, or void *.", name);
81 }
82 }
83 return sz;
84 }
85
86 struct value *
87 value_add (struct value *arg1, struct value *arg2)
88 {
89 struct value *valint;
90 struct value *valptr;
91 LONGEST sz;
92 struct type *type1, *type2, *valptrtype;
93
94 arg1 = coerce_array (arg1);
95 arg2 = coerce_array (arg2);
96 type1 = check_typedef (value_type (arg1));
97 type2 = check_typedef (value_type (arg2));
98
99 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
100 || TYPE_CODE (type2) == TYPE_CODE_PTR)
101 &&
102 (is_integral_type (type1) || is_integral_type (type2)))
103 /* Exactly one argument is a pointer, and one is an integer. */
104 {
105 struct value *retval;
106
107 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
108 {
109 valptr = arg1;
110 valint = arg2;
111 valptrtype = type1;
112 }
113 else
114 {
115 valptr = arg2;
116 valint = arg1;
117 valptrtype = type2;
118 }
119
120 sz = find_size_for_pointer_math (valptrtype);
121
122 retval = value_from_pointer (valptrtype,
123 value_as_address (valptr)
124 + (sz * value_as_long (valint)));
125 return retval;
126 }
127
128 return value_binop (arg1, arg2, BINOP_ADD);
129 }
130
131 struct value *
132 value_sub (struct value *arg1, struct value *arg2)
133 {
134 struct type *type1, *type2;
135 arg1 = coerce_array (arg1);
136 arg2 = coerce_array (arg2);
137 type1 = check_typedef (value_type (arg1));
138 type2 = check_typedef (value_type (arg2));
139
140 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
141 {
142 if (is_integral_type (type2))
143 {
144 /* pointer - integer. */
145 LONGEST sz = find_size_for_pointer_math (type1);
146
147 return value_from_pointer (type1,
148 (value_as_address (arg1)
149 - (sz * value_as_long (arg2))));
150 }
151 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
152 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
153 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
154 {
155 /* pointer to <type x> - pointer to <type x>. */
156 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
157 return value_from_longest
158 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
159 (value_as_long (arg1) - value_as_long (arg2)) / sz);
160 }
161 else
162 {
163 error ("\
164 First argument of `-' is a pointer and second argument is neither\n\
165 an integer nor a pointer of the same type.");
166 }
167 }
168
169 return value_binop (arg1, arg2, BINOP_SUB);
170 }
171
172 /* Return the value of ARRAY[IDX].
173 See comments in value_coerce_array() for rationale for reason for
174 doing lower bounds adjustment here rather than there.
175 FIXME: Perhaps we should validate that the index is valid and if
176 verbosity is set, warn about invalid indices (but still use them). */
177
178 struct value *
179 value_subscript (struct value *array, struct value *idx)
180 {
181 struct value *bound;
182 int c_style = current_language->c_style_arrays;
183 struct type *tarray;
184
185 array = coerce_ref (array);
186 tarray = check_typedef (value_type (array));
187
188 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
189 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (tarray);
192 LONGEST lowerbound, upperbound;
193 get_discrete_bounds (range_type, &lowerbound, &upperbound);
194
195 if (VALUE_LVAL (array) != lval_memory)
196 return value_subscripted_rvalue (array, idx, lowerbound);
197
198 if (c_style == 0)
199 {
200 LONGEST index = value_as_long (idx);
201 if (index >= lowerbound && index <= upperbound)
202 return value_subscripted_rvalue (array, idx, lowerbound);
203 /* Emit warning unless we have an array of unknown size.
204 An array of unknown size has lowerbound 0 and upperbound -1. */
205 if (upperbound > -1)
206 warning ("array or string index out of range");
207 /* fall doing C stuff */
208 c_style = 1;
209 }
210
211 if (lowerbound != 0)
212 {
213 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
214 idx = value_sub (idx, bound);
215 }
216
217 array = value_coerce_array (array);
218 }
219
220 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
221 {
222 struct type *range_type = TYPE_INDEX_TYPE (tarray);
223 LONGEST index = value_as_long (idx);
224 struct value *v;
225 int offset, byte, bit_index;
226 LONGEST lowerbound, upperbound;
227 get_discrete_bounds (range_type, &lowerbound, &upperbound);
228 if (index < lowerbound || index > upperbound)
229 error ("bitstring index out of range");
230 index -= lowerbound;
231 offset = index / TARGET_CHAR_BIT;
232 byte = *((char *) value_contents (array) + offset);
233 bit_index = index % TARGET_CHAR_BIT;
234 byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
235 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
236 v->bitpos = bit_index;
237 v->bitsize = 1;
238 VALUE_LVAL (v) = VALUE_LVAL (array);
239 if (VALUE_LVAL (array) == lval_internalvar)
240 VALUE_LVAL (v) = lval_internalvar_component;
241 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
242 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
243 set_value_offset (v, offset + value_offset (array));
244 return v;
245 }
246
247 if (c_style)
248 return value_ind (value_add (array, idx));
249 else
250 error ("not an array or string");
251 }
252
253 /* Return the value of EXPR[IDX], expr an aggregate rvalue
254 (eg, a vector register). This routine used to promote floats
255 to doubles, but no longer does. */
256
257 static struct value *
258 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
259 {
260 struct type *array_type = check_typedef (value_type (array));
261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
262 unsigned int elt_size = TYPE_LENGTH (elt_type);
263 LONGEST index = value_as_long (idx);
264 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
265 struct value *v;
266
267 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
268 error ("no such vector element");
269
270 v = allocate_value (elt_type);
271 if (value_lazy (array))
272 set_value_lazy (v, 1);
273 else
274 memcpy (value_contents_writeable (v),
275 value_contents (array) + elt_offs, elt_size);
276
277 if (VALUE_LVAL (array) == lval_internalvar)
278 VALUE_LVAL (v) = lval_internalvar_component;
279 else
280 VALUE_LVAL (v) = VALUE_LVAL (array);
281 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
282 VALUE_REGNUM (v) = VALUE_REGNUM (array);
283 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
284 set_value_offset (v, value_offset (array) + elt_offs);
285 return v;
286 }
287 \f
288 /* Check to see if either argument is a structure. This is called so
289 we know whether to go ahead with the normal binop or look for a
290 user defined function instead.
291
292 For now, we do not overload the `=' operator. */
293
294 int
295 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
296 {
297 struct type *type1, *type2;
298 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
299 return 0;
300 type1 = check_typedef (value_type (arg1));
301 type2 = check_typedef (value_type (arg2));
302 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
303 || TYPE_CODE (type2) == TYPE_CODE_STRUCT
304 || (TYPE_CODE (type1) == TYPE_CODE_REF
305 && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
306 || (TYPE_CODE (type2) == TYPE_CODE_REF
307 && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
308 }
309
310 /* Check to see if argument is a structure. This is called so
311 we know whether to go ahead with the normal unop or look for a
312 user defined function instead.
313
314 For now, we do not overload the `&' operator. */
315
316 int
317 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
318 {
319 struct type *type1;
320 if (op == UNOP_ADDR)
321 return 0;
322 type1 = check_typedef (value_type (arg1));
323 for (;;)
324 {
325 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
326 return 1;
327 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
328 type1 = TYPE_TARGET_TYPE (type1);
329 else
330 return 0;
331 }
332 }
333
334 /* We know either arg1 or arg2 is a structure, so try to find the right
335 user defined function. Create an argument vector that calls
336 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
337 binary operator which is legal for GNU C++).
338
339 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
340 is the opcode saying how to modify it. Otherwise, OTHEROP is
341 unused. */
342
343 struct value *
344 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
345 enum exp_opcode otherop, enum noside noside)
346 {
347 struct value **argvec;
348 char *ptr;
349 char tstr[13];
350 int static_memfuncp;
351
352 arg1 = coerce_ref (arg1);
353 arg2 = coerce_ref (arg2);
354 arg1 = coerce_enum (arg1);
355 arg2 = coerce_enum (arg2);
356
357 /* now we know that what we have to do is construct our
358 arg vector and find the right function to call it with. */
359
360 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
361 error ("Can't do that binary op on that type"); /* FIXME be explicit */
362
363 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
364 argvec[1] = value_addr (arg1);
365 argvec[2] = arg2;
366 argvec[3] = 0;
367
368 /* make the right function name up */
369 strcpy (tstr, "operator__");
370 ptr = tstr + 8;
371 switch (op)
372 {
373 case BINOP_ADD:
374 strcpy (ptr, "+");
375 break;
376 case BINOP_SUB:
377 strcpy (ptr, "-");
378 break;
379 case BINOP_MUL:
380 strcpy (ptr, "*");
381 break;
382 case BINOP_DIV:
383 strcpy (ptr, "/");
384 break;
385 case BINOP_REM:
386 strcpy (ptr, "%");
387 break;
388 case BINOP_LSH:
389 strcpy (ptr, "<<");
390 break;
391 case BINOP_RSH:
392 strcpy (ptr, ">>");
393 break;
394 case BINOP_BITWISE_AND:
395 strcpy (ptr, "&");
396 break;
397 case BINOP_BITWISE_IOR:
398 strcpy (ptr, "|");
399 break;
400 case BINOP_BITWISE_XOR:
401 strcpy (ptr, "^");
402 break;
403 case BINOP_LOGICAL_AND:
404 strcpy (ptr, "&&");
405 break;
406 case BINOP_LOGICAL_OR:
407 strcpy (ptr, "||");
408 break;
409 case BINOP_MIN:
410 strcpy (ptr, "<?");
411 break;
412 case BINOP_MAX:
413 strcpy (ptr, ">?");
414 break;
415 case BINOP_ASSIGN:
416 strcpy (ptr, "=");
417 break;
418 case BINOP_ASSIGN_MODIFY:
419 switch (otherop)
420 {
421 case BINOP_ADD:
422 strcpy (ptr, "+=");
423 break;
424 case BINOP_SUB:
425 strcpy (ptr, "-=");
426 break;
427 case BINOP_MUL:
428 strcpy (ptr, "*=");
429 break;
430 case BINOP_DIV:
431 strcpy (ptr, "/=");
432 break;
433 case BINOP_REM:
434 strcpy (ptr, "%=");
435 break;
436 case BINOP_BITWISE_AND:
437 strcpy (ptr, "&=");
438 break;
439 case BINOP_BITWISE_IOR:
440 strcpy (ptr, "|=");
441 break;
442 case BINOP_BITWISE_XOR:
443 strcpy (ptr, "^=");
444 break;
445 case BINOP_MOD: /* invalid */
446 default:
447 error ("Invalid binary operation specified.");
448 }
449 break;
450 case BINOP_SUBSCRIPT:
451 strcpy (ptr, "[]");
452 break;
453 case BINOP_EQUAL:
454 strcpy (ptr, "==");
455 break;
456 case BINOP_NOTEQUAL:
457 strcpy (ptr, "!=");
458 break;
459 case BINOP_LESS:
460 strcpy (ptr, "<");
461 break;
462 case BINOP_GTR:
463 strcpy (ptr, ">");
464 break;
465 case BINOP_GEQ:
466 strcpy (ptr, ">=");
467 break;
468 case BINOP_LEQ:
469 strcpy (ptr, "<=");
470 break;
471 case BINOP_MOD: /* invalid */
472 default:
473 error ("Invalid binary operation specified.");
474 }
475
476 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
477
478 if (argvec[0])
479 {
480 if (static_memfuncp)
481 {
482 argvec[1] = argvec[0];
483 argvec++;
484 }
485 if (noside == EVAL_AVOID_SIDE_EFFECTS)
486 {
487 struct type *return_type;
488 return_type
489 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
490 return value_zero (return_type, VALUE_LVAL (arg1));
491 }
492 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
493 }
494 error ("member function %s not found", tstr);
495 #ifdef lint
496 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
497 #endif
498 }
499
500 /* We know that arg1 is a structure, so try to find a unary user
501 defined operator that matches the operator in question.
502 Create an argument vector that calls arg1.operator @ (arg1)
503 and return that value (where '@' is (almost) any unary operator which
504 is legal for GNU C++). */
505
506 struct value *
507 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
508 {
509 struct value **argvec;
510 char *ptr, *mangle_ptr;
511 char tstr[13], mangle_tstr[13];
512 int static_memfuncp, nargs;
513
514 arg1 = coerce_ref (arg1);
515 arg1 = coerce_enum (arg1);
516
517 /* now we know that what we have to do is construct our
518 arg vector and find the right function to call it with. */
519
520 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
521 error ("Can't do that unary op on that type"); /* FIXME be explicit */
522
523 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
524 argvec[1] = value_addr (arg1);
525 argvec[2] = 0;
526
527 nargs = 1;
528
529 /* make the right function name up */
530 strcpy (tstr, "operator__");
531 ptr = tstr + 8;
532 strcpy (mangle_tstr, "__");
533 mangle_ptr = mangle_tstr + 2;
534 switch (op)
535 {
536 case UNOP_PREINCREMENT:
537 strcpy (ptr, "++");
538 break;
539 case UNOP_PREDECREMENT:
540 strcpy (ptr, "--");
541 break;
542 case UNOP_POSTINCREMENT:
543 strcpy (ptr, "++");
544 argvec[2] = value_from_longest (builtin_type_int, 0);
545 argvec[3] = 0;
546 nargs ++;
547 break;
548 case UNOP_POSTDECREMENT:
549 strcpy (ptr, "--");
550 argvec[2] = value_from_longest (builtin_type_int, 0);
551 argvec[3] = 0;
552 nargs ++;
553 break;
554 case UNOP_LOGICAL_NOT:
555 strcpy (ptr, "!");
556 break;
557 case UNOP_COMPLEMENT:
558 strcpy (ptr, "~");
559 break;
560 case UNOP_NEG:
561 strcpy (ptr, "-");
562 break;
563 case UNOP_IND:
564 strcpy (ptr, "*");
565 break;
566 default:
567 error ("Invalid unary operation specified.");
568 }
569
570 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
571
572 if (argvec[0])
573 {
574 if (static_memfuncp)
575 {
576 argvec[1] = argvec[0];
577 nargs --;
578 argvec++;
579 }
580 if (noside == EVAL_AVOID_SIDE_EFFECTS)
581 {
582 struct type *return_type;
583 return_type
584 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
585 return value_zero (return_type, VALUE_LVAL (arg1));
586 }
587 return call_function_by_hand (argvec[0], nargs, argvec + 1);
588 }
589 error ("member function %s not found", tstr);
590 return 0; /* For lint -- never reached */
591 }
592 \f
593
594 /* Concatenate two values with the following conditions:
595
596 (1) Both values must be either bitstring values or character string
597 values and the resulting value consists of the concatenation of
598 ARG1 followed by ARG2.
599
600 or
601
602 One value must be an integer value and the other value must be
603 either a bitstring value or character string value, which is
604 to be repeated by the number of times specified by the integer
605 value.
606
607
608 (2) Boolean values are also allowed and are treated as bit string
609 values of length 1.
610
611 (3) Character values are also allowed and are treated as character
612 string values of length 1.
613 */
614
615 struct value *
616 value_concat (struct value *arg1, struct value *arg2)
617 {
618 struct value *inval1;
619 struct value *inval2;
620 struct value *outval = NULL;
621 int inval1len, inval2len;
622 int count, idx;
623 char *ptr;
624 char inchar;
625 struct type *type1 = check_typedef (value_type (arg1));
626 struct type *type2 = check_typedef (value_type (arg2));
627
628 /* First figure out if we are dealing with two values to be concatenated
629 or a repeat count and a value to be repeated. INVAL1 is set to the
630 first of two concatenated values, or the repeat count. INVAL2 is set
631 to the second of the two concatenated values or the value to be
632 repeated. */
633
634 if (TYPE_CODE (type2) == TYPE_CODE_INT)
635 {
636 struct type *tmp = type1;
637 type1 = tmp;
638 tmp = type2;
639 inval1 = arg2;
640 inval2 = arg1;
641 }
642 else
643 {
644 inval1 = arg1;
645 inval2 = arg2;
646 }
647
648 /* Now process the input values. */
649
650 if (TYPE_CODE (type1) == TYPE_CODE_INT)
651 {
652 /* We have a repeat count. Validate the second value and then
653 construct a value repeated that many times. */
654 if (TYPE_CODE (type2) == TYPE_CODE_STRING
655 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
656 {
657 count = longest_to_int (value_as_long (inval1));
658 inval2len = TYPE_LENGTH (type2);
659 ptr = (char *) alloca (count * inval2len);
660 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
661 {
662 inchar = (char) unpack_long (type2,
663 value_contents (inval2));
664 for (idx = 0; idx < count; idx++)
665 {
666 *(ptr + idx) = inchar;
667 }
668 }
669 else
670 {
671 for (idx = 0; idx < count; idx++)
672 {
673 memcpy (ptr + (idx * inval2len), value_contents (inval2),
674 inval2len);
675 }
676 }
677 outval = value_string (ptr, count * inval2len);
678 }
679 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
680 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
681 {
682 error ("unimplemented support for bitstring/boolean repeats");
683 }
684 else
685 {
686 error ("can't repeat values of that type");
687 }
688 }
689 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
690 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
691 {
692 /* We have two character strings to concatenate. */
693 if (TYPE_CODE (type2) != TYPE_CODE_STRING
694 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
695 {
696 error ("Strings can only be concatenated with other strings.");
697 }
698 inval1len = TYPE_LENGTH (type1);
699 inval2len = TYPE_LENGTH (type2);
700 ptr = (char *) alloca (inval1len + inval2len);
701 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
702 {
703 *ptr = (char) unpack_long (type1, value_contents (inval1));
704 }
705 else
706 {
707 memcpy (ptr, value_contents (inval1), inval1len);
708 }
709 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
710 {
711 *(ptr + inval1len) =
712 (char) unpack_long (type2, value_contents (inval2));
713 }
714 else
715 {
716 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
717 }
718 outval = value_string (ptr, inval1len + inval2len);
719 }
720 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
721 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
722 {
723 /* We have two bitstrings to concatenate. */
724 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
725 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
726 {
727 error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
728 }
729 error ("unimplemented support for bitstring/boolean concatenation.");
730 }
731 else
732 {
733 /* We don't know how to concatenate these operands. */
734 error ("illegal operands for concatenation.");
735 }
736 return (outval);
737 }
738 \f
739
740
741 /* Perform a binary operation on two operands which have reasonable
742 representations as integers or floats. This includes booleans,
743 characters, integers, or floats.
744 Does not support addition and subtraction on pointers;
745 use value_add or value_sub if you want to handle those possibilities. */
746
747 struct value *
748 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
749 {
750 struct value *val;
751 struct type *type1, *type2;
752
753 arg1 = coerce_ref (arg1);
754 arg2 = coerce_ref (arg2);
755 type1 = check_typedef (value_type (arg1));
756 type2 = check_typedef (value_type (arg2));
757
758 if ((TYPE_CODE (type1) != TYPE_CODE_FLT && !is_integral_type (type1))
759 ||
760 (TYPE_CODE (type2) != TYPE_CODE_FLT && !is_integral_type (type2)))
761 error ("Argument to arithmetic operation not a number or boolean.");
762
763 if (TYPE_CODE (type1) == TYPE_CODE_FLT
764 ||
765 TYPE_CODE (type2) == TYPE_CODE_FLT)
766 {
767 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
768 in target format. real.c in GCC probably has the necessary
769 code. */
770 DOUBLEST v1, v2, v = 0;
771 v1 = value_as_double (arg1);
772 v2 = value_as_double (arg2);
773 switch (op)
774 {
775 case BINOP_ADD:
776 v = v1 + v2;
777 break;
778
779 case BINOP_SUB:
780 v = v1 - v2;
781 break;
782
783 case BINOP_MUL:
784 v = v1 * v2;
785 break;
786
787 case BINOP_DIV:
788 v = v1 / v2;
789 break;
790
791 case BINOP_EXP:
792 v = pow (v1, v2);
793 if (errno)
794 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
795 break;
796
797 default:
798 error ("Integer-only operation on floating point number.");
799 }
800
801 /* If either arg was long double, make sure that value is also long
802 double. */
803
804 if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
805 || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
806 val = allocate_value (builtin_type_long_double);
807 else
808 val = allocate_value (builtin_type_double);
809
810 store_typed_floating (value_contents_raw (val), value_type (val), v);
811 }
812 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
813 &&
814 TYPE_CODE (type2) == TYPE_CODE_BOOL)
815 {
816 LONGEST v1, v2, v = 0;
817 v1 = value_as_long (arg1);
818 v2 = value_as_long (arg2);
819
820 switch (op)
821 {
822 case BINOP_BITWISE_AND:
823 v = v1 & v2;
824 break;
825
826 case BINOP_BITWISE_IOR:
827 v = v1 | v2;
828 break;
829
830 case BINOP_BITWISE_XOR:
831 v = v1 ^ v2;
832 break;
833
834 case BINOP_EQUAL:
835 v = v1 == v2;
836 break;
837
838 case BINOP_NOTEQUAL:
839 v = v1 != v2;
840 break;
841
842 default:
843 error ("Invalid operation on booleans.");
844 }
845
846 val = allocate_value (type1);
847 store_signed_integer (value_contents_raw (val),
848 TYPE_LENGTH (type1),
849 v);
850 }
851 else
852 /* Integral operations here. */
853 /* FIXME: Also mixed integral/booleans, with result an integer. */
854 /* FIXME: This implements ANSI C rules (also correct for C++).
855 What about FORTRAN and (the deleted) chill ? */
856 {
857 unsigned int promoted_len1 = TYPE_LENGTH (type1);
858 unsigned int promoted_len2 = TYPE_LENGTH (type2);
859 int is_unsigned1 = TYPE_UNSIGNED (type1);
860 int is_unsigned2 = TYPE_UNSIGNED (type2);
861 unsigned int result_len;
862 int unsigned_operation;
863
864 /* Determine type length and signedness after promotion for
865 both operands. */
866 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
867 {
868 is_unsigned1 = 0;
869 promoted_len1 = TYPE_LENGTH (builtin_type_int);
870 }
871 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
872 {
873 is_unsigned2 = 0;
874 promoted_len2 = TYPE_LENGTH (builtin_type_int);
875 }
876
877 /* Determine type length of the result, and if the operation should
878 be done unsigned.
879 Use the signedness of the operand with the greater length.
880 If both operands are of equal length, use unsigned operation
881 if one of the operands is unsigned. */
882 if (promoted_len1 > promoted_len2)
883 {
884 unsigned_operation = is_unsigned1;
885 result_len = promoted_len1;
886 }
887 else if (promoted_len2 > promoted_len1)
888 {
889 unsigned_operation = is_unsigned2;
890 result_len = promoted_len2;
891 }
892 else
893 {
894 unsigned_operation = is_unsigned1 || is_unsigned2;
895 result_len = promoted_len1;
896 }
897
898 if (unsigned_operation)
899 {
900 ULONGEST v1, v2, v = 0;
901 v1 = (ULONGEST) value_as_long (arg1);
902 v2 = (ULONGEST) value_as_long (arg2);
903
904 /* Truncate values to the type length of the result. */
905 if (result_len < sizeof (ULONGEST))
906 {
907 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
908 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
909 }
910
911 switch (op)
912 {
913 case BINOP_ADD:
914 v = v1 + v2;
915 break;
916
917 case BINOP_SUB:
918 v = v1 - v2;
919 break;
920
921 case BINOP_MUL:
922 v = v1 * v2;
923 break;
924
925 case BINOP_DIV:
926 v = v1 / v2;
927 break;
928
929 case BINOP_EXP:
930 v = pow (v1, v2);
931 if (errno)
932 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
933 break;
934
935 case BINOP_REM:
936 v = v1 % v2;
937 break;
938
939 case BINOP_MOD:
940 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
941 v1 mod 0 has a defined value, v1. */
942 if (v2 == 0)
943 {
944 v = v1;
945 }
946 else
947 {
948 v = v1 / v2;
949 /* Note floor(v1/v2) == v1/v2 for unsigned. */
950 v = v1 - (v2 * v);
951 }
952 break;
953
954 case BINOP_LSH:
955 v = v1 << v2;
956 break;
957
958 case BINOP_RSH:
959 v = v1 >> v2;
960 break;
961
962 case BINOP_BITWISE_AND:
963 v = v1 & v2;
964 break;
965
966 case BINOP_BITWISE_IOR:
967 v = v1 | v2;
968 break;
969
970 case BINOP_BITWISE_XOR:
971 v = v1 ^ v2;
972 break;
973
974 case BINOP_LOGICAL_AND:
975 v = v1 && v2;
976 break;
977
978 case BINOP_LOGICAL_OR:
979 v = v1 || v2;
980 break;
981
982 case BINOP_MIN:
983 v = v1 < v2 ? v1 : v2;
984 break;
985
986 case BINOP_MAX:
987 v = v1 > v2 ? v1 : v2;
988 break;
989
990 case BINOP_EQUAL:
991 v = v1 == v2;
992 break;
993
994 case BINOP_NOTEQUAL:
995 v = v1 != v2;
996 break;
997
998 case BINOP_LESS:
999 v = v1 < v2;
1000 break;
1001
1002 default:
1003 error ("Invalid binary operation on numbers.");
1004 }
1005
1006 /* This is a kludge to get around the fact that we don't
1007 know how to determine the result type from the types of
1008 the operands. (I'm not really sure how much we feel the
1009 need to duplicate the exact rules of the current
1010 language. They can get really hairy. But not to do so
1011 makes it hard to document just what we *do* do). */
1012
1013 /* Can't just call init_type because we wouldn't know what
1014 name to give the type. */
1015 val = allocate_value
1016 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1017 ? builtin_type_unsigned_long_long
1018 : builtin_type_unsigned_long);
1019 store_unsigned_integer (value_contents_raw (val),
1020 TYPE_LENGTH (value_type (val)),
1021 v);
1022 }
1023 else
1024 {
1025 LONGEST v1, v2, v = 0;
1026 v1 = value_as_long (arg1);
1027 v2 = value_as_long (arg2);
1028
1029 switch (op)
1030 {
1031 case BINOP_ADD:
1032 v = v1 + v2;
1033 break;
1034
1035 case BINOP_SUB:
1036 v = v1 - v2;
1037 break;
1038
1039 case BINOP_MUL:
1040 v = v1 * v2;
1041 break;
1042
1043 case BINOP_DIV:
1044 if (v2 != 0)
1045 v = v1 / v2;
1046 else
1047 error ("Division by zero");
1048 break;
1049
1050 case BINOP_EXP:
1051 v = pow (v1, v2);
1052 if (errno)
1053 error ("Cannot perform exponentiation: %s", safe_strerror (errno));
1054 break;
1055
1056 case BINOP_REM:
1057 if (v2 != 0)
1058 v = v1 % v2;
1059 else
1060 error ("Division by zero");
1061 break;
1062
1063 case BINOP_MOD:
1064 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1065 X mod 0 has a defined value, X. */
1066 if (v2 == 0)
1067 {
1068 v = v1;
1069 }
1070 else
1071 {
1072 v = v1 / v2;
1073 /* Compute floor. */
1074 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1075 {
1076 v--;
1077 }
1078 v = v1 - (v2 * v);
1079 }
1080 break;
1081
1082 case BINOP_LSH:
1083 v = v1 << v2;
1084 break;
1085
1086 case BINOP_RSH:
1087 v = v1 >> v2;
1088 break;
1089
1090 case BINOP_BITWISE_AND:
1091 v = v1 & v2;
1092 break;
1093
1094 case BINOP_BITWISE_IOR:
1095 v = v1 | v2;
1096 break;
1097
1098 case BINOP_BITWISE_XOR:
1099 v = v1 ^ v2;
1100 break;
1101
1102 case BINOP_LOGICAL_AND:
1103 v = v1 && v2;
1104 break;
1105
1106 case BINOP_LOGICAL_OR:
1107 v = v1 || v2;
1108 break;
1109
1110 case BINOP_MIN:
1111 v = v1 < v2 ? v1 : v2;
1112 break;
1113
1114 case BINOP_MAX:
1115 v = v1 > v2 ? v1 : v2;
1116 break;
1117
1118 case BINOP_EQUAL:
1119 v = v1 == v2;
1120 break;
1121
1122 case BINOP_LESS:
1123 v = v1 < v2;
1124 break;
1125
1126 default:
1127 error ("Invalid binary operation on numbers.");
1128 }
1129
1130 /* This is a kludge to get around the fact that we don't
1131 know how to determine the result type from the types of
1132 the operands. (I'm not really sure how much we feel the
1133 need to duplicate the exact rules of the current
1134 language. They can get really hairy. But not to do so
1135 makes it hard to document just what we *do* do). */
1136
1137 /* Can't just call init_type because we wouldn't know what
1138 name to give the type. */
1139 val = allocate_value
1140 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1141 ? builtin_type_long_long
1142 : builtin_type_long);
1143 store_signed_integer (value_contents_raw (val),
1144 TYPE_LENGTH (value_type (val)),
1145 v);
1146 }
1147 }
1148
1149 return val;
1150 }
1151 \f
1152 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1153
1154 int
1155 value_logical_not (struct value *arg1)
1156 {
1157 int len;
1158 const bfd_byte *p;
1159 struct type *type1;
1160
1161 arg1 = coerce_number (arg1);
1162 type1 = check_typedef (value_type (arg1));
1163
1164 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1165 return 0 == value_as_double (arg1);
1166
1167 len = TYPE_LENGTH (type1);
1168 p = value_contents (arg1);
1169
1170 while (--len >= 0)
1171 {
1172 if (*p++)
1173 break;
1174 }
1175
1176 return len < 0;
1177 }
1178
1179 /* Perform a comparison on two string values (whose content are not
1180 necessarily null terminated) based on their length */
1181
1182 static int
1183 value_strcmp (struct value *arg1, struct value *arg2)
1184 {
1185 int len1 = TYPE_LENGTH (value_type (arg1));
1186 int len2 = TYPE_LENGTH (value_type (arg2));
1187 const bfd_byte *s1 = value_contents (arg1);
1188 const bfd_byte *s2 = value_contents (arg2);
1189 int i, len = len1 < len2 ? len1 : len2;
1190
1191 for (i = 0; i < len; i++)
1192 {
1193 if (s1[i] < s2[i])
1194 return -1;
1195 else if (s1[i] > s2[i])
1196 return 1;
1197 else
1198 continue;
1199 }
1200
1201 if (len1 < len2)
1202 return -1;
1203 else if (len1 > len2)
1204 return 1;
1205 else
1206 return 0;
1207 }
1208
1209 /* Simulate the C operator == by returning a 1
1210 iff ARG1 and ARG2 have equal contents. */
1211
1212 int
1213 value_equal (struct value *arg1, struct value *arg2)
1214 {
1215 int len;
1216 const bfd_byte *p1;
1217 const bfd_byte *p2;
1218 struct type *type1, *type2;
1219 enum type_code code1;
1220 enum type_code code2;
1221 int is_int1, is_int2;
1222
1223 arg1 = coerce_array (arg1);
1224 arg2 = coerce_array (arg2);
1225
1226 type1 = check_typedef (value_type (arg1));
1227 type2 = check_typedef (value_type (arg2));
1228 code1 = TYPE_CODE (type1);
1229 code2 = TYPE_CODE (type2);
1230 is_int1 = is_integral_type (type1);
1231 is_int2 = is_integral_type (type2);
1232
1233 if (is_int1 && is_int2)
1234 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1235 BINOP_EQUAL)));
1236 else if ((code1 == TYPE_CODE_FLT || is_int1)
1237 && (code2 == TYPE_CODE_FLT || is_int2))
1238 return value_as_double (arg1) == value_as_double (arg2);
1239
1240 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1241 is bigger. */
1242 else if (code1 == TYPE_CODE_PTR && is_int2)
1243 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1244 else if (code2 == TYPE_CODE_PTR && is_int1)
1245 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1246
1247 else if (code1 == code2
1248 && ((len = (int) TYPE_LENGTH (type1))
1249 == (int) TYPE_LENGTH (type2)))
1250 {
1251 p1 = value_contents (arg1);
1252 p2 = value_contents (arg2);
1253 while (--len >= 0)
1254 {
1255 if (*p1++ != *p2++)
1256 break;
1257 }
1258 return len < 0;
1259 }
1260 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1261 {
1262 return value_strcmp (arg1, arg2) == 0;
1263 }
1264 else
1265 {
1266 error ("Invalid type combination in equality test.");
1267 return 0; /* For lint -- never reached */
1268 }
1269 }
1270
1271 /* Simulate the C operator < by returning 1
1272 iff ARG1's contents are less than ARG2's. */
1273
1274 int
1275 value_less (struct value *arg1, struct value *arg2)
1276 {
1277 enum type_code code1;
1278 enum type_code code2;
1279 struct type *type1, *type2;
1280 int is_int1, is_int2;
1281
1282 arg1 = coerce_array (arg1);
1283 arg2 = coerce_array (arg2);
1284
1285 type1 = check_typedef (value_type (arg1));
1286 type2 = check_typedef (value_type (arg2));
1287 code1 = TYPE_CODE (type1);
1288 code2 = TYPE_CODE (type2);
1289 is_int1 = is_integral_type (type1);
1290 is_int2 = is_integral_type (type2);
1291
1292 if (is_int1 && is_int2)
1293 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1294 BINOP_LESS)));
1295 else if ((code1 == TYPE_CODE_FLT || is_int1)
1296 && (code2 == TYPE_CODE_FLT || is_int2))
1297 return value_as_double (arg1) < value_as_double (arg2);
1298 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1299 return value_as_address (arg1) < value_as_address (arg2);
1300
1301 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1302 is bigger. */
1303 else if (code1 == TYPE_CODE_PTR && is_int2)
1304 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1305 else if (code2 == TYPE_CODE_PTR && is_int1)
1306 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1307 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1308 return value_strcmp (arg1, arg2) < 0;
1309 else
1310 {
1311 error ("Invalid type combination in ordering comparison.");
1312 return 0;
1313 }
1314 }
1315 \f
1316 /* The unary operators - and ~. Both free the argument ARG1. */
1317
1318 struct value *
1319 value_neg (struct value *arg1)
1320 {
1321 struct type *type;
1322 struct type *result_type = value_type (arg1);
1323
1324 arg1 = coerce_ref (arg1);
1325
1326 type = check_typedef (value_type (arg1));
1327
1328 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1329 return value_from_double (result_type, -value_as_double (arg1));
1330 else if (is_integral_type (type))
1331 {
1332 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1333 FORTRAN and (the deleted) chill ? */
1334 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1335 result_type = builtin_type_int;
1336
1337 return value_from_longest (result_type, -value_as_long (arg1));
1338 }
1339 else
1340 {
1341 error ("Argument to negate operation not a number.");
1342 return 0; /* For lint -- never reached */
1343 }
1344 }
1345
1346 struct value *
1347 value_complement (struct value *arg1)
1348 {
1349 struct type *type;
1350 struct type *result_type = value_type (arg1);
1351
1352 arg1 = coerce_ref (arg1);
1353
1354 type = check_typedef (value_type (arg1));
1355
1356 if (!is_integral_type (type))
1357 error ("Argument to complement operation not an integer or boolean.");
1358
1359 /* Perform integral promotion for ANSI C/C++.
1360 FIXME: What about FORTRAN ? */
1361 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1362 result_type = builtin_type_int;
1363
1364 return value_from_longest (result_type, ~value_as_long (arg1));
1365 }
1366 \f
1367 /* The INDEX'th bit of SET value whose value_type is TYPE,
1368 and whose value_contents is valaddr.
1369 Return -1 if out of range, -2 other error. */
1370
1371 int
1372 value_bit_index (struct type *type, const bfd_byte *valaddr, int index)
1373 {
1374 LONGEST low_bound, high_bound;
1375 LONGEST word;
1376 unsigned rel_index;
1377 struct type *range = TYPE_FIELD_TYPE (type, 0);
1378 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1379 return -2;
1380 if (index < low_bound || index > high_bound)
1381 return -1;
1382 rel_index = index - low_bound;
1383 word = unpack_long (builtin_type_unsigned_char,
1384 valaddr + (rel_index / TARGET_CHAR_BIT));
1385 rel_index %= TARGET_CHAR_BIT;
1386 if (BITS_BIG_ENDIAN)
1387 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1388 return (word >> rel_index) & 1;
1389 }
1390
1391 struct value *
1392 value_in (struct value *element, struct value *set)
1393 {
1394 int member;
1395 struct type *settype = check_typedef (value_type (set));
1396 struct type *eltype = check_typedef (value_type (element));
1397 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1398 eltype = TYPE_TARGET_TYPE (eltype);
1399 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1400 error ("Second argument of 'IN' has wrong type");
1401 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1402 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1403 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1404 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1405 error ("First argument of 'IN' has wrong type");
1406 member = value_bit_index (settype, value_contents (set),
1407 value_as_long (element));
1408 if (member < 0)
1409 error ("First argument of 'IN' not in range");
1410 return value_from_longest (LA_BOOL_TYPE, member);
1411 }
1412
1413 void
1414 _initialize_valarith (void)
1415 {
1416 }