]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valarith.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "value.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "target.h"
30 #include "language.h"
31 #include "gdb_string.h"
32 #include "doublest.h"
33 #include <math.h>
34 #include "infcall.h"
35
36 /* Define whether or not the C operator '/' truncates towards zero for
37 differently signed operands (truncation direction is undefined in C). */
38
39 #ifndef TRUNCATION_TOWARDS_ZERO
40 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
41 #endif
42
43 static struct value *value_subscripted_rvalue (struct value *, struct value *, int);
44
45 void _initialize_valarith (void);
46 \f
47
48 /* Given a pointer, return the size of its target.
49 If the pointer type is void *, then return 1.
50 If the target type is incomplete, then error out.
51 This isn't a general purpose function, but just a
52 helper for value_sub & value_add.
53 */
54
55 static LONGEST
56 find_size_for_pointer_math (struct type *ptr_type)
57 {
58 LONGEST sz = -1;
59 struct type *ptr_target;
60
61 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
62
63 sz = TYPE_LENGTH (ptr_target);
64 if (sz == 0)
65 {
66 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
67 sz = 1;
68 else
69 {
70 char *name;
71
72 name = TYPE_NAME (ptr_target);
73 if (name == NULL)
74 name = TYPE_TAG_NAME (ptr_target);
75 if (name == NULL)
76 error (_("Cannot perform pointer math on incomplete types, "
77 "try casting to a known type, or void *."));
78 else
79 error (_("Cannot perform pointer math on incomplete type \"%s\", "
80 "try casting to a known type, or void *."), name);
81 }
82 }
83 return sz;
84 }
85
86 struct value *
87 value_add (struct value *arg1, struct value *arg2)
88 {
89 struct value *valint;
90 struct value *valptr;
91 LONGEST sz;
92 struct type *type1, *type2, *valptrtype;
93
94 arg1 = coerce_array (arg1);
95 arg2 = coerce_array (arg2);
96 type1 = check_typedef (value_type (arg1));
97 type2 = check_typedef (value_type (arg2));
98
99 if ((TYPE_CODE (type1) == TYPE_CODE_PTR
100 || TYPE_CODE (type2) == TYPE_CODE_PTR)
101 &&
102 (is_integral_type (type1) || is_integral_type (type2)))
103 /* Exactly one argument is a pointer, and one is an integer. */
104 {
105 struct value *retval;
106
107 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
108 {
109 valptr = arg1;
110 valint = arg2;
111 valptrtype = type1;
112 }
113 else
114 {
115 valptr = arg2;
116 valint = arg1;
117 valptrtype = type2;
118 }
119
120 sz = find_size_for_pointer_math (valptrtype);
121
122 retval = value_from_pointer (valptrtype,
123 value_as_address (valptr)
124 + (sz * value_as_long (valint)));
125 return retval;
126 }
127
128 return value_binop (arg1, arg2, BINOP_ADD);
129 }
130
131 struct value *
132 value_sub (struct value *arg1, struct value *arg2)
133 {
134 struct type *type1, *type2;
135 arg1 = coerce_array (arg1);
136 arg2 = coerce_array (arg2);
137 type1 = check_typedef (value_type (arg1));
138 type2 = check_typedef (value_type (arg2));
139
140 if (TYPE_CODE (type1) == TYPE_CODE_PTR)
141 {
142 if (is_integral_type (type2))
143 {
144 /* pointer - integer. */
145 LONGEST sz = find_size_for_pointer_math (type1);
146
147 return value_from_pointer (type1,
148 (value_as_address (arg1)
149 - (sz * value_as_long (arg2))));
150 }
151 else if (TYPE_CODE (type2) == TYPE_CODE_PTR
152 && TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
153 == TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
154 {
155 /* pointer to <type x> - pointer to <type x>. */
156 LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
157 return value_from_longest
158 (builtin_type_long, /* FIXME -- should be ptrdiff_t */
159 (value_as_long (arg1) - value_as_long (arg2)) / sz);
160 }
161 else
162 {
163 error (_("\
164 First argument of `-' is a pointer and second argument is neither\n\
165 an integer nor a pointer of the same type."));
166 }
167 }
168
169 return value_binop (arg1, arg2, BINOP_SUB);
170 }
171
172 /* Return the value of ARRAY[IDX].
173 See comments in value_coerce_array() for rationale for reason for
174 doing lower bounds adjustment here rather than there.
175 FIXME: Perhaps we should validate that the index is valid and if
176 verbosity is set, warn about invalid indices (but still use them). */
177
178 struct value *
179 value_subscript (struct value *array, struct value *idx)
180 {
181 struct value *bound;
182 int c_style = current_language->c_style_arrays;
183 struct type *tarray;
184
185 array = coerce_ref (array);
186 tarray = check_typedef (value_type (array));
187
188 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
189 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
190 {
191 struct type *range_type = TYPE_INDEX_TYPE (tarray);
192 LONGEST lowerbound, upperbound;
193 get_discrete_bounds (range_type, &lowerbound, &upperbound);
194
195 if (VALUE_LVAL (array) != lval_memory)
196 return value_subscripted_rvalue (array, idx, lowerbound);
197
198 if (c_style == 0)
199 {
200 LONGEST index = value_as_long (idx);
201 if (index >= lowerbound && index <= upperbound)
202 return value_subscripted_rvalue (array, idx, lowerbound);
203 /* Emit warning unless we have an array of unknown size.
204 An array of unknown size has lowerbound 0 and upperbound -1. */
205 if (upperbound > -1)
206 warning (_("array or string index out of range"));
207 /* fall doing C stuff */
208 c_style = 1;
209 }
210
211 if (lowerbound != 0)
212 {
213 bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
214 idx = value_sub (idx, bound);
215 }
216
217 array = value_coerce_array (array);
218 }
219
220 if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
221 {
222 struct type *range_type = TYPE_INDEX_TYPE (tarray);
223 LONGEST index = value_as_long (idx);
224 struct value *v;
225 int offset, byte, bit_index;
226 LONGEST lowerbound, upperbound;
227 get_discrete_bounds (range_type, &lowerbound, &upperbound);
228 if (index < lowerbound || index > upperbound)
229 error (_("bitstring index out of range"));
230 index -= lowerbound;
231 offset = index / TARGET_CHAR_BIT;
232 byte = *((char *) value_contents (array) + offset);
233 bit_index = index % TARGET_CHAR_BIT;
234 byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
235 v = value_from_longest (LA_BOOL_TYPE, byte & 1);
236 set_value_bitpos (v, bit_index);
237 set_value_bitsize (v, 1);
238 VALUE_LVAL (v) = VALUE_LVAL (array);
239 if (VALUE_LVAL (array) == lval_internalvar)
240 VALUE_LVAL (v) = lval_internalvar_component;
241 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
242 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
243 set_value_offset (v, offset + value_offset (array));
244 return v;
245 }
246
247 if (c_style)
248 return value_ind (value_add (array, idx));
249 else
250 error (_("not an array or string"));
251 }
252
253 /* Return the value of EXPR[IDX], expr an aggregate rvalue
254 (eg, a vector register). This routine used to promote floats
255 to doubles, but no longer does. */
256
257 static struct value *
258 value_subscripted_rvalue (struct value *array, struct value *idx, int lowerbound)
259 {
260 struct type *array_type = check_typedef (value_type (array));
261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
262 unsigned int elt_size = TYPE_LENGTH (elt_type);
263 LONGEST index = value_as_long (idx);
264 unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
265 struct value *v;
266
267 if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
268 error (_("no such vector element"));
269
270 v = allocate_value (elt_type);
271 if (value_lazy (array))
272 set_value_lazy (v, 1);
273 else
274 memcpy (value_contents_writeable (v),
275 value_contents (array) + elt_offs, elt_size);
276
277 if (VALUE_LVAL (array) == lval_internalvar)
278 VALUE_LVAL (v) = lval_internalvar_component;
279 else
280 VALUE_LVAL (v) = VALUE_LVAL (array);
281 VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
282 VALUE_REGNUM (v) = VALUE_REGNUM (array);
283 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
284 set_value_offset (v, value_offset (array) + elt_offs);
285 return v;
286 }
287 \f
288 /* Check to see if either argument is a structure, or a reference to
289 one. This is called so we know whether to go ahead with the normal
290 binop or look for a user defined function instead.
291
292 For now, we do not overload the `=' operator. */
293
294 int
295 binop_user_defined_p (enum exp_opcode op, struct value *arg1, struct value *arg2)
296 {
297 struct type *type1, *type2;
298 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
299 return 0;
300
301 type1 = check_typedef (value_type (arg1));
302 if (TYPE_CODE (type1) == TYPE_CODE_REF)
303 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
304
305 type2 = check_typedef (value_type (arg2));
306 if (TYPE_CODE (type2) == TYPE_CODE_REF)
307 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
308
309 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
311 }
312
313 /* Check to see if argument is a structure. This is called so
314 we know whether to go ahead with the normal unop or look for a
315 user defined function instead.
316
317 For now, we do not overload the `&' operator. */
318
319 int
320 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
321 {
322 struct type *type1;
323 if (op == UNOP_ADDR)
324 return 0;
325 type1 = check_typedef (value_type (arg1));
326 for (;;)
327 {
328 if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
329 return 1;
330 else if (TYPE_CODE (type1) == TYPE_CODE_REF)
331 type1 = TYPE_TARGET_TYPE (type1);
332 else
333 return 0;
334 }
335 }
336
337 /* We know either arg1 or arg2 is a structure, so try to find the right
338 user defined function. Create an argument vector that calls
339 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
340 binary operator which is legal for GNU C++).
341
342 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
343 is the opcode saying how to modify it. Otherwise, OTHEROP is
344 unused. */
345
346 struct value *
347 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
348 enum exp_opcode otherop, enum noside noside)
349 {
350 struct value **argvec;
351 char *ptr;
352 char tstr[13];
353 int static_memfuncp;
354
355 arg1 = coerce_ref (arg1);
356 arg2 = coerce_ref (arg2);
357 arg1 = coerce_enum (arg1);
358 arg2 = coerce_enum (arg2);
359
360 /* now we know that what we have to do is construct our
361 arg vector and find the right function to call it with. */
362
363 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
364 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
365
366 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
367 argvec[1] = value_addr (arg1);
368 argvec[2] = arg2;
369 argvec[3] = 0;
370
371 /* make the right function name up */
372 strcpy (tstr, "operator__");
373 ptr = tstr + 8;
374 switch (op)
375 {
376 case BINOP_ADD:
377 strcpy (ptr, "+");
378 break;
379 case BINOP_SUB:
380 strcpy (ptr, "-");
381 break;
382 case BINOP_MUL:
383 strcpy (ptr, "*");
384 break;
385 case BINOP_DIV:
386 strcpy (ptr, "/");
387 break;
388 case BINOP_REM:
389 strcpy (ptr, "%");
390 break;
391 case BINOP_LSH:
392 strcpy (ptr, "<<");
393 break;
394 case BINOP_RSH:
395 strcpy (ptr, ">>");
396 break;
397 case BINOP_BITWISE_AND:
398 strcpy (ptr, "&");
399 break;
400 case BINOP_BITWISE_IOR:
401 strcpy (ptr, "|");
402 break;
403 case BINOP_BITWISE_XOR:
404 strcpy (ptr, "^");
405 break;
406 case BINOP_LOGICAL_AND:
407 strcpy (ptr, "&&");
408 break;
409 case BINOP_LOGICAL_OR:
410 strcpy (ptr, "||");
411 break;
412 case BINOP_MIN:
413 strcpy (ptr, "<?");
414 break;
415 case BINOP_MAX:
416 strcpy (ptr, ">?");
417 break;
418 case BINOP_ASSIGN:
419 strcpy (ptr, "=");
420 break;
421 case BINOP_ASSIGN_MODIFY:
422 switch (otherop)
423 {
424 case BINOP_ADD:
425 strcpy (ptr, "+=");
426 break;
427 case BINOP_SUB:
428 strcpy (ptr, "-=");
429 break;
430 case BINOP_MUL:
431 strcpy (ptr, "*=");
432 break;
433 case BINOP_DIV:
434 strcpy (ptr, "/=");
435 break;
436 case BINOP_REM:
437 strcpy (ptr, "%=");
438 break;
439 case BINOP_BITWISE_AND:
440 strcpy (ptr, "&=");
441 break;
442 case BINOP_BITWISE_IOR:
443 strcpy (ptr, "|=");
444 break;
445 case BINOP_BITWISE_XOR:
446 strcpy (ptr, "^=");
447 break;
448 case BINOP_MOD: /* invalid */
449 default:
450 error (_("Invalid binary operation specified."));
451 }
452 break;
453 case BINOP_SUBSCRIPT:
454 strcpy (ptr, "[]");
455 break;
456 case BINOP_EQUAL:
457 strcpy (ptr, "==");
458 break;
459 case BINOP_NOTEQUAL:
460 strcpy (ptr, "!=");
461 break;
462 case BINOP_LESS:
463 strcpy (ptr, "<");
464 break;
465 case BINOP_GTR:
466 strcpy (ptr, ">");
467 break;
468 case BINOP_GEQ:
469 strcpy (ptr, ">=");
470 break;
471 case BINOP_LEQ:
472 strcpy (ptr, "<=");
473 break;
474 case BINOP_MOD: /* invalid */
475 default:
476 error (_("Invalid binary operation specified."));
477 }
478
479 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
480
481 if (argvec[0])
482 {
483 if (static_memfuncp)
484 {
485 argvec[1] = argvec[0];
486 argvec++;
487 }
488 if (noside == EVAL_AVOID_SIDE_EFFECTS)
489 {
490 struct type *return_type;
491 return_type
492 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
493 return value_zero (return_type, VALUE_LVAL (arg1));
494 }
495 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
496 }
497 error (_("member function %s not found"), tstr);
498 #ifdef lint
499 return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
500 #endif
501 }
502
503 /* We know that arg1 is a structure, so try to find a unary user
504 defined operator that matches the operator in question.
505 Create an argument vector that calls arg1.operator @ (arg1)
506 and return that value (where '@' is (almost) any unary operator which
507 is legal for GNU C++). */
508
509 struct value *
510 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
511 {
512 struct value **argvec;
513 char *ptr, *mangle_ptr;
514 char tstr[13], mangle_tstr[13];
515 int static_memfuncp, nargs;
516
517 arg1 = coerce_ref (arg1);
518 arg1 = coerce_enum (arg1);
519
520 /* now we know that what we have to do is construct our
521 arg vector and find the right function to call it with. */
522
523 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
524 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
525
526 argvec = (struct value **) alloca (sizeof (struct value *) * 4);
527 argvec[1] = value_addr (arg1);
528 argvec[2] = 0;
529
530 nargs = 1;
531
532 /* make the right function name up */
533 strcpy (tstr, "operator__");
534 ptr = tstr + 8;
535 strcpy (mangle_tstr, "__");
536 mangle_ptr = mangle_tstr + 2;
537 switch (op)
538 {
539 case UNOP_PREINCREMENT:
540 strcpy (ptr, "++");
541 break;
542 case UNOP_PREDECREMENT:
543 strcpy (ptr, "--");
544 break;
545 case UNOP_POSTINCREMENT:
546 strcpy (ptr, "++");
547 argvec[2] = value_from_longest (builtin_type_int, 0);
548 argvec[3] = 0;
549 nargs ++;
550 break;
551 case UNOP_POSTDECREMENT:
552 strcpy (ptr, "--");
553 argvec[2] = value_from_longest (builtin_type_int, 0);
554 argvec[3] = 0;
555 nargs ++;
556 break;
557 case UNOP_LOGICAL_NOT:
558 strcpy (ptr, "!");
559 break;
560 case UNOP_COMPLEMENT:
561 strcpy (ptr, "~");
562 break;
563 case UNOP_NEG:
564 strcpy (ptr, "-");
565 break;
566 case UNOP_PLUS:
567 strcpy (ptr, "+");
568 break;
569 case UNOP_IND:
570 strcpy (ptr, "*");
571 break;
572 default:
573 error (_("Invalid unary operation specified."));
574 }
575
576 argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
577
578 if (argvec[0])
579 {
580 if (static_memfuncp)
581 {
582 argvec[1] = argvec[0];
583 nargs --;
584 argvec++;
585 }
586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
587 {
588 struct type *return_type;
589 return_type
590 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
591 return value_zero (return_type, VALUE_LVAL (arg1));
592 }
593 return call_function_by_hand (argvec[0], nargs, argvec + 1);
594 }
595 error (_("member function %s not found"), tstr);
596 return 0; /* For lint -- never reached */
597 }
598 \f
599
600 /* Concatenate two values with the following conditions:
601
602 (1) Both values must be either bitstring values or character string
603 values and the resulting value consists of the concatenation of
604 ARG1 followed by ARG2.
605
606 or
607
608 One value must be an integer value and the other value must be
609 either a bitstring value or character string value, which is
610 to be repeated by the number of times specified by the integer
611 value.
612
613
614 (2) Boolean values are also allowed and are treated as bit string
615 values of length 1.
616
617 (3) Character values are also allowed and are treated as character
618 string values of length 1.
619 */
620
621 struct value *
622 value_concat (struct value *arg1, struct value *arg2)
623 {
624 struct value *inval1;
625 struct value *inval2;
626 struct value *outval = NULL;
627 int inval1len, inval2len;
628 int count, idx;
629 char *ptr;
630 char inchar;
631 struct type *type1 = check_typedef (value_type (arg1));
632 struct type *type2 = check_typedef (value_type (arg2));
633
634 /* First figure out if we are dealing with two values to be concatenated
635 or a repeat count and a value to be repeated. INVAL1 is set to the
636 first of two concatenated values, or the repeat count. INVAL2 is set
637 to the second of the two concatenated values or the value to be
638 repeated. */
639
640 if (TYPE_CODE (type2) == TYPE_CODE_INT)
641 {
642 struct type *tmp = type1;
643 type1 = tmp;
644 tmp = type2;
645 inval1 = arg2;
646 inval2 = arg1;
647 }
648 else
649 {
650 inval1 = arg1;
651 inval2 = arg2;
652 }
653
654 /* Now process the input values. */
655
656 if (TYPE_CODE (type1) == TYPE_CODE_INT)
657 {
658 /* We have a repeat count. Validate the second value and then
659 construct a value repeated that many times. */
660 if (TYPE_CODE (type2) == TYPE_CODE_STRING
661 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
662 {
663 count = longest_to_int (value_as_long (inval1));
664 inval2len = TYPE_LENGTH (type2);
665 ptr = (char *) alloca (count * inval2len);
666 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
667 {
668 inchar = (char) unpack_long (type2,
669 value_contents (inval2));
670 for (idx = 0; idx < count; idx++)
671 {
672 *(ptr + idx) = inchar;
673 }
674 }
675 else
676 {
677 for (idx = 0; idx < count; idx++)
678 {
679 memcpy (ptr + (idx * inval2len), value_contents (inval2),
680 inval2len);
681 }
682 }
683 outval = value_string (ptr, count * inval2len);
684 }
685 else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
686 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
687 {
688 error (_("unimplemented support for bitstring/boolean repeats"));
689 }
690 else
691 {
692 error (_("can't repeat values of that type"));
693 }
694 }
695 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
696 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
697 {
698 /* We have two character strings to concatenate. */
699 if (TYPE_CODE (type2) != TYPE_CODE_STRING
700 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
701 {
702 error (_("Strings can only be concatenated with other strings."));
703 }
704 inval1len = TYPE_LENGTH (type1);
705 inval2len = TYPE_LENGTH (type2);
706 ptr = (char *) alloca (inval1len + inval2len);
707 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
708 {
709 *ptr = (char) unpack_long (type1, value_contents (inval1));
710 }
711 else
712 {
713 memcpy (ptr, value_contents (inval1), inval1len);
714 }
715 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
716 {
717 *(ptr + inval1len) =
718 (char) unpack_long (type2, value_contents (inval2));
719 }
720 else
721 {
722 memcpy (ptr + inval1len, value_contents (inval2), inval2len);
723 }
724 outval = value_string (ptr, inval1len + inval2len);
725 }
726 else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
727 || TYPE_CODE (type1) == TYPE_CODE_BOOL)
728 {
729 /* We have two bitstrings to concatenate. */
730 if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
731 && TYPE_CODE (type2) != TYPE_CODE_BOOL)
732 {
733 error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
734 }
735 error (_("unimplemented support for bitstring/boolean concatenation."));
736 }
737 else
738 {
739 /* We don't know how to concatenate these operands. */
740 error (_("illegal operands for concatenation."));
741 }
742 return (outval);
743 }
744 \f
745
746
747 /* Perform a binary operation on two operands which have reasonable
748 representations as integers or floats. This includes booleans,
749 characters, integers, or floats.
750 Does not support addition and subtraction on pointers;
751 use value_add or value_sub if you want to handle those possibilities. */
752
753 struct value *
754 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
755 {
756 struct value *val;
757 struct type *type1, *type2;
758
759 arg1 = coerce_ref (arg1);
760 arg2 = coerce_ref (arg2);
761 type1 = check_typedef (value_type (arg1));
762 type2 = check_typedef (value_type (arg2));
763
764 if ((TYPE_CODE (type1) != TYPE_CODE_FLT && !is_integral_type (type1))
765 ||
766 (TYPE_CODE (type2) != TYPE_CODE_FLT && !is_integral_type (type2)))
767 error (_("Argument to arithmetic operation not a number or boolean."));
768
769 if (TYPE_CODE (type1) == TYPE_CODE_FLT
770 ||
771 TYPE_CODE (type2) == TYPE_CODE_FLT)
772 {
773 /* FIXME-if-picky-about-floating-accuracy: Should be doing this
774 in target format. real.c in GCC probably has the necessary
775 code. */
776 DOUBLEST v1, v2, v = 0;
777 v1 = value_as_double (arg1);
778 v2 = value_as_double (arg2);
779 switch (op)
780 {
781 case BINOP_ADD:
782 v = v1 + v2;
783 break;
784
785 case BINOP_SUB:
786 v = v1 - v2;
787 break;
788
789 case BINOP_MUL:
790 v = v1 * v2;
791 break;
792
793 case BINOP_DIV:
794 v = v1 / v2;
795 break;
796
797 case BINOP_EXP:
798 errno = 0;
799 v = pow (v1, v2);
800 if (errno)
801 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
802 break;
803
804 default:
805 error (_("Integer-only operation on floating point number."));
806 }
807
808 /* If either arg was long double, make sure that value is also long
809 double. */
810
811 if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
812 || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
813 val = allocate_value (builtin_type_long_double);
814 else
815 val = allocate_value (builtin_type_double);
816
817 store_typed_floating (value_contents_raw (val), value_type (val), v);
818 }
819 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
820 &&
821 TYPE_CODE (type2) == TYPE_CODE_BOOL)
822 {
823 LONGEST v1, v2, v = 0;
824 v1 = value_as_long (arg1);
825 v2 = value_as_long (arg2);
826
827 switch (op)
828 {
829 case BINOP_BITWISE_AND:
830 v = v1 & v2;
831 break;
832
833 case BINOP_BITWISE_IOR:
834 v = v1 | v2;
835 break;
836
837 case BINOP_BITWISE_XOR:
838 v = v1 ^ v2;
839 break;
840
841 case BINOP_EQUAL:
842 v = v1 == v2;
843 break;
844
845 case BINOP_NOTEQUAL:
846 v = v1 != v2;
847 break;
848
849 default:
850 error (_("Invalid operation on booleans."));
851 }
852
853 val = allocate_value (type1);
854 store_signed_integer (value_contents_raw (val),
855 TYPE_LENGTH (type1),
856 v);
857 }
858 else
859 /* Integral operations here. */
860 /* FIXME: Also mixed integral/booleans, with result an integer. */
861 /* FIXME: This implements ANSI C rules (also correct for C++).
862 What about FORTRAN and (the deleted) chill ? */
863 {
864 unsigned int promoted_len1 = TYPE_LENGTH (type1);
865 unsigned int promoted_len2 = TYPE_LENGTH (type2);
866 int is_unsigned1 = TYPE_UNSIGNED (type1);
867 int is_unsigned2 = TYPE_UNSIGNED (type2);
868 unsigned int result_len;
869 int unsigned_operation;
870
871 /* Determine type length and signedness after promotion for
872 both operands. */
873 if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
874 {
875 is_unsigned1 = 0;
876 promoted_len1 = TYPE_LENGTH (builtin_type_int);
877 }
878 if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
879 {
880 is_unsigned2 = 0;
881 promoted_len2 = TYPE_LENGTH (builtin_type_int);
882 }
883
884 /* Determine type length of the result, and if the operation should
885 be done unsigned.
886 Use the signedness of the operand with the greater length.
887 If both operands are of equal length, use unsigned operation
888 if one of the operands is unsigned. */
889 if (op == BINOP_RSH || op == BINOP_LSH)
890 {
891 /* In case of the shift operators the type of the result only
892 depends on the type of the left operand. */
893 unsigned_operation = is_unsigned1;
894 result_len = promoted_len1;
895 }
896 else if (promoted_len1 > promoted_len2)
897 {
898 unsigned_operation = is_unsigned1;
899 result_len = promoted_len1;
900 }
901 else if (promoted_len2 > promoted_len1)
902 {
903 unsigned_operation = is_unsigned2;
904 result_len = promoted_len2;
905 }
906 else
907 {
908 unsigned_operation = is_unsigned1 || is_unsigned2;
909 result_len = promoted_len1;
910 }
911
912 if (unsigned_operation)
913 {
914 ULONGEST v1, v2, v = 0;
915 v1 = (ULONGEST) value_as_long (arg1);
916 v2 = (ULONGEST) value_as_long (arg2);
917
918 /* Truncate values to the type length of the result. */
919 if (result_len < sizeof (ULONGEST))
920 {
921 v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
922 v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
923 }
924
925 switch (op)
926 {
927 case BINOP_ADD:
928 v = v1 + v2;
929 break;
930
931 case BINOP_SUB:
932 v = v1 - v2;
933 break;
934
935 case BINOP_MUL:
936 v = v1 * v2;
937 break;
938
939 case BINOP_DIV:
940 v = v1 / v2;
941 break;
942
943 case BINOP_EXP:
944 errno = 0;
945 v = pow (v1, v2);
946 if (errno)
947 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
948 break;
949
950 case BINOP_REM:
951 v = v1 % v2;
952 break;
953
954 case BINOP_MOD:
955 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
956 v1 mod 0 has a defined value, v1. */
957 if (v2 == 0)
958 {
959 v = v1;
960 }
961 else
962 {
963 v = v1 / v2;
964 /* Note floor(v1/v2) == v1/v2 for unsigned. */
965 v = v1 - (v2 * v);
966 }
967 break;
968
969 case BINOP_LSH:
970 v = v1 << v2;
971 break;
972
973 case BINOP_RSH:
974 v = v1 >> v2;
975 break;
976
977 case BINOP_BITWISE_AND:
978 v = v1 & v2;
979 break;
980
981 case BINOP_BITWISE_IOR:
982 v = v1 | v2;
983 break;
984
985 case BINOP_BITWISE_XOR:
986 v = v1 ^ v2;
987 break;
988
989 case BINOP_LOGICAL_AND:
990 v = v1 && v2;
991 break;
992
993 case BINOP_LOGICAL_OR:
994 v = v1 || v2;
995 break;
996
997 case BINOP_MIN:
998 v = v1 < v2 ? v1 : v2;
999 break;
1000
1001 case BINOP_MAX:
1002 v = v1 > v2 ? v1 : v2;
1003 break;
1004
1005 case BINOP_EQUAL:
1006 v = v1 == v2;
1007 break;
1008
1009 case BINOP_NOTEQUAL:
1010 v = v1 != v2;
1011 break;
1012
1013 case BINOP_LESS:
1014 v = v1 < v2;
1015 break;
1016
1017 default:
1018 error (_("Invalid binary operation on numbers."));
1019 }
1020
1021 /* This is a kludge to get around the fact that we don't
1022 know how to determine the result type from the types of
1023 the operands. (I'm not really sure how much we feel the
1024 need to duplicate the exact rules of the current
1025 language. They can get really hairy. But not to do so
1026 makes it hard to document just what we *do* do). */
1027
1028 /* Can't just call init_type because we wouldn't know what
1029 name to give the type. */
1030 val = allocate_value
1031 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1032 ? builtin_type_unsigned_long_long
1033 : builtin_type_unsigned_long);
1034 store_unsigned_integer (value_contents_raw (val),
1035 TYPE_LENGTH (value_type (val)),
1036 v);
1037 }
1038 else
1039 {
1040 LONGEST v1, v2, v = 0;
1041 v1 = value_as_long (arg1);
1042 v2 = value_as_long (arg2);
1043
1044 switch (op)
1045 {
1046 case BINOP_ADD:
1047 v = v1 + v2;
1048 break;
1049
1050 case BINOP_SUB:
1051 v = v1 - v2;
1052 break;
1053
1054 case BINOP_MUL:
1055 v = v1 * v2;
1056 break;
1057
1058 case BINOP_DIV:
1059 if (v2 != 0)
1060 v = v1 / v2;
1061 else
1062 error (_("Division by zero"));
1063 break;
1064
1065 case BINOP_EXP:
1066 errno = 0;
1067 v = pow (v1, v2);
1068 if (errno)
1069 error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
1070 break;
1071
1072 case BINOP_REM:
1073 if (v2 != 0)
1074 v = v1 % v2;
1075 else
1076 error (_("Division by zero"));
1077 break;
1078
1079 case BINOP_MOD:
1080 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1081 X mod 0 has a defined value, X. */
1082 if (v2 == 0)
1083 {
1084 v = v1;
1085 }
1086 else
1087 {
1088 v = v1 / v2;
1089 /* Compute floor. */
1090 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1091 {
1092 v--;
1093 }
1094 v = v1 - (v2 * v);
1095 }
1096 break;
1097
1098 case BINOP_LSH:
1099 v = v1 << v2;
1100 break;
1101
1102 case BINOP_RSH:
1103 v = v1 >> v2;
1104 break;
1105
1106 case BINOP_BITWISE_AND:
1107 v = v1 & v2;
1108 break;
1109
1110 case BINOP_BITWISE_IOR:
1111 v = v1 | v2;
1112 break;
1113
1114 case BINOP_BITWISE_XOR:
1115 v = v1 ^ v2;
1116 break;
1117
1118 case BINOP_LOGICAL_AND:
1119 v = v1 && v2;
1120 break;
1121
1122 case BINOP_LOGICAL_OR:
1123 v = v1 || v2;
1124 break;
1125
1126 case BINOP_MIN:
1127 v = v1 < v2 ? v1 : v2;
1128 break;
1129
1130 case BINOP_MAX:
1131 v = v1 > v2 ? v1 : v2;
1132 break;
1133
1134 case BINOP_EQUAL:
1135 v = v1 == v2;
1136 break;
1137
1138 case BINOP_LESS:
1139 v = v1 < v2;
1140 break;
1141
1142 default:
1143 error (_("Invalid binary operation on numbers."));
1144 }
1145
1146 /* This is a kludge to get around the fact that we don't
1147 know how to determine the result type from the types of
1148 the operands. (I'm not really sure how much we feel the
1149 need to duplicate the exact rules of the current
1150 language. They can get really hairy. But not to do so
1151 makes it hard to document just what we *do* do). */
1152
1153 /* Can't just call init_type because we wouldn't know what
1154 name to give the type. */
1155 val = allocate_value
1156 (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
1157 ? builtin_type_long_long
1158 : builtin_type_long);
1159 store_signed_integer (value_contents_raw (val),
1160 TYPE_LENGTH (value_type (val)),
1161 v);
1162 }
1163 }
1164
1165 return val;
1166 }
1167 \f
1168 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1169
1170 int
1171 value_logical_not (struct value *arg1)
1172 {
1173 int len;
1174 const gdb_byte *p;
1175 struct type *type1;
1176
1177 arg1 = coerce_number (arg1);
1178 type1 = check_typedef (value_type (arg1));
1179
1180 if (TYPE_CODE (type1) == TYPE_CODE_FLT)
1181 return 0 == value_as_double (arg1);
1182
1183 len = TYPE_LENGTH (type1);
1184 p = value_contents (arg1);
1185
1186 while (--len >= 0)
1187 {
1188 if (*p++)
1189 break;
1190 }
1191
1192 return len < 0;
1193 }
1194
1195 /* Perform a comparison on two string values (whose content are not
1196 necessarily null terminated) based on their length */
1197
1198 static int
1199 value_strcmp (struct value *arg1, struct value *arg2)
1200 {
1201 int len1 = TYPE_LENGTH (value_type (arg1));
1202 int len2 = TYPE_LENGTH (value_type (arg2));
1203 const gdb_byte *s1 = value_contents (arg1);
1204 const gdb_byte *s2 = value_contents (arg2);
1205 int i, len = len1 < len2 ? len1 : len2;
1206
1207 for (i = 0; i < len; i++)
1208 {
1209 if (s1[i] < s2[i])
1210 return -1;
1211 else if (s1[i] > s2[i])
1212 return 1;
1213 else
1214 continue;
1215 }
1216
1217 if (len1 < len2)
1218 return -1;
1219 else if (len1 > len2)
1220 return 1;
1221 else
1222 return 0;
1223 }
1224
1225 /* Simulate the C operator == by returning a 1
1226 iff ARG1 and ARG2 have equal contents. */
1227
1228 int
1229 value_equal (struct value *arg1, struct value *arg2)
1230 {
1231 int len;
1232 const gdb_byte *p1;
1233 const gdb_byte *p2;
1234 struct type *type1, *type2;
1235 enum type_code code1;
1236 enum type_code code2;
1237 int is_int1, is_int2;
1238
1239 arg1 = coerce_array (arg1);
1240 arg2 = coerce_array (arg2);
1241
1242 type1 = check_typedef (value_type (arg1));
1243 type2 = check_typedef (value_type (arg2));
1244 code1 = TYPE_CODE (type1);
1245 code2 = TYPE_CODE (type2);
1246 is_int1 = is_integral_type (type1);
1247 is_int2 = is_integral_type (type2);
1248
1249 if (is_int1 && is_int2)
1250 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1251 BINOP_EQUAL)));
1252 else if ((code1 == TYPE_CODE_FLT || is_int1)
1253 && (code2 == TYPE_CODE_FLT || is_int2))
1254 {
1255 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1256 `long double' values are returned in static storage (m68k). */
1257 DOUBLEST d = value_as_double (arg1);
1258 return d == value_as_double (arg2);
1259 }
1260
1261 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1262 is bigger. */
1263 else if (code1 == TYPE_CODE_PTR && is_int2)
1264 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1265 else if (code2 == TYPE_CODE_PTR && is_int1)
1266 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1267
1268 else if (code1 == code2
1269 && ((len = (int) TYPE_LENGTH (type1))
1270 == (int) TYPE_LENGTH (type2)))
1271 {
1272 p1 = value_contents (arg1);
1273 p2 = value_contents (arg2);
1274 while (--len >= 0)
1275 {
1276 if (*p1++ != *p2++)
1277 break;
1278 }
1279 return len < 0;
1280 }
1281 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1282 {
1283 return value_strcmp (arg1, arg2) == 0;
1284 }
1285 else
1286 {
1287 error (_("Invalid type combination in equality test."));
1288 return 0; /* For lint -- never reached */
1289 }
1290 }
1291
1292 /* Simulate the C operator < by returning 1
1293 iff ARG1's contents are less than ARG2's. */
1294
1295 int
1296 value_less (struct value *arg1, struct value *arg2)
1297 {
1298 enum type_code code1;
1299 enum type_code code2;
1300 struct type *type1, *type2;
1301 int is_int1, is_int2;
1302
1303 arg1 = coerce_array (arg1);
1304 arg2 = coerce_array (arg2);
1305
1306 type1 = check_typedef (value_type (arg1));
1307 type2 = check_typedef (value_type (arg2));
1308 code1 = TYPE_CODE (type1);
1309 code2 = TYPE_CODE (type2);
1310 is_int1 = is_integral_type (type1);
1311 is_int2 = is_integral_type (type2);
1312
1313 if (is_int1 && is_int2)
1314 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1315 BINOP_LESS)));
1316 else if ((code1 == TYPE_CODE_FLT || is_int1)
1317 && (code2 == TYPE_CODE_FLT || is_int2))
1318 {
1319 /* NOTE: kettenis/20050816: Avoid compiler bug on systems where
1320 `long double' values are returned in static storage (m68k). */
1321 DOUBLEST d = value_as_double (arg1);
1322 return d < value_as_double (arg2);
1323 }
1324 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1325 return value_as_address (arg1) < value_as_address (arg2);
1326
1327 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1328 is bigger. */
1329 else if (code1 == TYPE_CODE_PTR && is_int2)
1330 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1331 else if (code2 == TYPE_CODE_PTR && is_int1)
1332 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1333 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1334 return value_strcmp (arg1, arg2) < 0;
1335 else
1336 {
1337 error (_("Invalid type combination in ordering comparison."));
1338 return 0;
1339 }
1340 }
1341 \f
1342 /* The unary operators +, - and ~. They free the argument ARG1. */
1343
1344 struct value *
1345 value_pos (struct value *arg1)
1346 {
1347 struct type *type;
1348
1349 arg1 = coerce_ref (arg1);
1350
1351 type = check_typedef (value_type (arg1));
1352
1353 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1354 return value_from_double (type, value_as_double (arg1));
1355 else if (is_integral_type (type))
1356 {
1357 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1358 FORTRAN and (the deleted) chill ? */
1359 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1360 type = builtin_type_int;
1361
1362 return value_from_longest (type, value_as_long (arg1));
1363 }
1364 else
1365 {
1366 error ("Argument to positive operation not a number.");
1367 return 0; /* For lint -- never reached */
1368 }
1369 }
1370
1371 struct value *
1372 value_neg (struct value *arg1)
1373 {
1374 struct type *type;
1375 struct type *result_type = value_type (arg1);
1376
1377 arg1 = coerce_ref (arg1);
1378
1379 type = check_typedef (value_type (arg1));
1380
1381 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1382 return value_from_double (result_type, -value_as_double (arg1));
1383 else if (is_integral_type (type))
1384 {
1385 /* Perform integral promotion for ANSI C/C++. FIXME: What about
1386 FORTRAN and (the deleted) chill ? */
1387 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1388 result_type = builtin_type_int;
1389
1390 return value_from_longest (result_type, -value_as_long (arg1));
1391 }
1392 else
1393 {
1394 error (_("Argument to negate operation not a number."));
1395 return 0; /* For lint -- never reached */
1396 }
1397 }
1398
1399 struct value *
1400 value_complement (struct value *arg1)
1401 {
1402 struct type *type;
1403 struct type *result_type = value_type (arg1);
1404
1405 arg1 = coerce_ref (arg1);
1406
1407 type = check_typedef (value_type (arg1));
1408
1409 if (!is_integral_type (type))
1410 error (_("Argument to complement operation not an integer or boolean."));
1411
1412 /* Perform integral promotion for ANSI C/C++.
1413 FIXME: What about FORTRAN ? */
1414 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1415 result_type = builtin_type_int;
1416
1417 return value_from_longest (result_type, ~value_as_long (arg1));
1418 }
1419 \f
1420 /* The INDEX'th bit of SET value whose value_type is TYPE,
1421 and whose value_contents is valaddr.
1422 Return -1 if out of range, -2 other error. */
1423
1424 int
1425 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1426 {
1427 LONGEST low_bound, high_bound;
1428 LONGEST word;
1429 unsigned rel_index;
1430 struct type *range = TYPE_FIELD_TYPE (type, 0);
1431 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1432 return -2;
1433 if (index < low_bound || index > high_bound)
1434 return -1;
1435 rel_index = index - low_bound;
1436 word = unpack_long (builtin_type_unsigned_char,
1437 valaddr + (rel_index / TARGET_CHAR_BIT));
1438 rel_index %= TARGET_CHAR_BIT;
1439 if (BITS_BIG_ENDIAN)
1440 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1441 return (word >> rel_index) & 1;
1442 }
1443
1444 struct value *
1445 value_in (struct value *element, struct value *set)
1446 {
1447 int member;
1448 struct type *settype = check_typedef (value_type (set));
1449 struct type *eltype = check_typedef (value_type (element));
1450 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1451 eltype = TYPE_TARGET_TYPE (eltype);
1452 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1453 error (_("Second argument of 'IN' has wrong type"));
1454 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1455 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1456 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1457 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1458 error (_("First argument of 'IN' has wrong type"));
1459 member = value_bit_index (settype, value_contents (set),
1460 value_as_long (element));
1461 if (member < 0)
1462 error (_("First argument of 'IN' not in range"));
1463 return value_from_longest (LA_BOOL_TYPE, member);
1464 }
1465
1466 void
1467 _initialize_valarith (void)
1468 {
1469 }