]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
Revise signal mapping function in GDB interface for RX sim.
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include <string.h>
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 extern unsigned int overload_debug;
47 /* Local functions. */
48
49 static int typecmp (int staticp, int varargs, int nargs,
50 struct field t1[], struct value *t2[]);
51
52 static struct value *search_struct_field (const char *, struct value *,
53 int, struct type *, int);
54
55 static struct value *search_struct_method (const char *, struct value **,
56 struct value **,
57 int, int *, struct type *);
58
59 static int find_oload_champ_namespace (struct value **, int,
60 const char *, const char *,
61 struct symbol ***,
62 struct badness_vector **,
63 const int no_adl);
64
65 static
66 int find_oload_champ_namespace_loop (struct value **, int,
67 const char *, const char *,
68 int, struct symbol ***,
69 struct badness_vector **, int *,
70 const int no_adl);
71
72 static int find_oload_champ (struct value **, int, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
75
76 static int oload_method_static (int, struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum
81 oload_classification classify_oload_match (struct badness_vector *,
82 int, int);
83
84 static struct value *value_struct_elt_for_reference (struct type *,
85 int, struct type *,
86 char *,
87 struct type *,
88 int, enum noside);
89
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
92
93 static struct value *value_maybe_namespace_elt (const struct type *,
94 char *, int,
95 enum noside);
96
97 static CORE_ADDR allocate_space_in_inferior (int);
98
99 static struct value *cast_into_complex (struct type *, struct value *);
100
101 static struct fn_field *find_method_list (struct value **, const char *,
102 int, struct type *, int *,
103 struct type **, int *);
104
105 void _initialize_valops (void);
106
107 #if 0
108 /* Flag for whether we want to abandon failed expression evals by
109 default. */
110
111 static int auto_abandon = 0;
112 #endif
113
114 int overload_resolution = 0;
115 static void
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Overload resolution in evaluating "
121 "C++ functions is %s.\n"),
122 value);
123 }
124
125 /* Find the address of function name NAME in the inferior. If OBJF_P
126 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
127 is defined. */
128
129 struct value *
130 find_function_in_inferior (const char *name, struct objfile **objf_p)
131 {
132 struct symbol *sym;
133
134 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
135 if (sym != NULL)
136 {
137 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
138 {
139 error (_("\"%s\" exists in this program but is not a function."),
140 name);
141 }
142
143 if (objf_p)
144 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
145
146 return value_of_variable (sym, NULL);
147 }
148 else
149 {
150 struct bound_minimal_symbol msymbol =
151 lookup_bound_minimal_symbol (name);
152
153 if (msymbol.minsym != NULL)
154 {
155 struct objfile *objfile = msymbol.objfile;
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
157
158 struct type *type;
159 CORE_ADDR maddr;
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
164
165 if (objf_p)
166 *objf_p = objfile;
167
168 return value_from_pointer (type, maddr);
169 }
170 else
171 {
172 if (!target_has_execution)
173 error (_("evaluation of this expression "
174 "requires the target program to be active"));
175 else
176 error (_("evaluation of this expression requires the "
177 "program to have a function \"%s\"."),
178 name);
179 }
180 }
181 }
182
183 /* Allocate NBYTES of space in the inferior using the inferior's
184 malloc and return a value that is a pointer to the allocated
185 space. */
186
187 struct value *
188 value_allocate_space_in_inferior (int len)
189 {
190 struct objfile *objf;
191 struct value *val = find_function_in_inferior ("malloc", &objf);
192 struct gdbarch *gdbarch = get_objfile_arch (objf);
193 struct value *blocklen;
194
195 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
196 val = call_function_by_hand (val, 1, &blocklen);
197 if (value_logical_not (val))
198 {
199 if (!target_has_execution)
200 error (_("No memory available to program now: "
201 "you need to start the target first"));
202 else
203 error (_("No memory available to program: call to malloc failed"));
204 }
205 return val;
206 }
207
208 static CORE_ADDR
209 allocate_space_in_inferior (int len)
210 {
211 return value_as_long (value_allocate_space_in_inferior (len));
212 }
213
214 /* Cast struct value VAL to type TYPE and return as a value.
215 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
216 for this to work. Typedef to one of the codes is permitted.
217 Returns NULL if the cast is neither an upcast nor a downcast. */
218
219 static struct value *
220 value_cast_structs (struct type *type, struct value *v2)
221 {
222 struct type *t1;
223 struct type *t2;
224 struct value *v;
225
226 gdb_assert (type != NULL && v2 != NULL);
227
228 t1 = check_typedef (type);
229 t2 = check_typedef (value_type (v2));
230
231 /* Check preconditions. */
232 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t1) == TYPE_CODE_UNION)
234 && !!"Precondition is that type is of STRUCT or UNION kind.");
235 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t2) == TYPE_CODE_UNION)
237 && !!"Precondition is that value is of STRUCT or UNION kind");
238
239 if (TYPE_NAME (t1) != NULL
240 && TYPE_NAME (t2) != NULL
241 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
242 return NULL;
243
244 /* Upcasting: look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type. */
247 if (TYPE_NAME (t1) != NULL)
248 {
249 v = search_struct_field (type_name_no_tag (t1),
250 v2, 0, t2, 1);
251 if (v)
252 return v;
253 }
254
255 /* Downcasting: look in the type of the target to see if it contains the
256 type of the source as a superclass. If so, we'll need to
257 offset the pointer rather than just change its type. */
258 if (TYPE_NAME (t2) != NULL)
259 {
260 /* Try downcasting using the run-time type of the value. */
261 int full, top, using_enc;
262 struct type *real_type;
263
264 real_type = value_rtti_type (v2, &full, &top, &using_enc);
265 if (real_type)
266 {
267 v = value_full_object (v2, real_type, full, top, using_enc);
268 v = value_at_lazy (real_type, value_address (v));
269
270 /* We might be trying to cast to the outermost enclosing
271 type, in which case search_struct_field won't work. */
272 if (TYPE_NAME (real_type) != NULL
273 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
274 return v;
275
276 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
277 if (v)
278 return v;
279 }
280
281 /* Try downcasting using information from the destination type
282 T2. This wouldn't work properly for classes with virtual
283 bases, but those were handled above. */
284 v = search_struct_field (type_name_no_tag (t2),
285 value_zero (t1, not_lval), 0, t1, 1);
286 if (v)
287 {
288 /* Downcasting is possible (t1 is superclass of v2). */
289 CORE_ADDR addr2 = value_address (v2);
290
291 addr2 -= value_address (v) + value_embedded_offset (v);
292 return value_at (type, addr2);
293 }
294 }
295
296 return NULL;
297 }
298
299 /* Cast one pointer or reference type to another. Both TYPE and
300 the type of ARG2 should be pointer types, or else both should be
301 reference types. If SUBCLASS_CHECK is non-zero, this will force a
302 check to see whether TYPE is a superclass of ARG2's type. If
303 SUBCLASS_CHECK is zero, then the subclass check is done only when
304 ARG2 is itself non-zero. Returns the new pointer or reference. */
305
306 struct value *
307 value_cast_pointers (struct type *type, struct value *arg2,
308 int subclass_check)
309 {
310 struct type *type1 = check_typedef (type);
311 struct type *type2 = check_typedef (value_type (arg2));
312 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
313 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
314
315 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
316 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
317 && (subclass_check || !value_logical_not (arg2)))
318 {
319 struct value *v2;
320
321 if (TYPE_CODE (type2) == TYPE_CODE_REF)
322 v2 = coerce_ref (arg2);
323 else
324 v2 = value_ind (arg2);
325 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
326 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
327 v2 = value_cast_structs (t1, v2);
328 /* At this point we have what we can have, un-dereference if needed. */
329 if (v2)
330 {
331 struct value *v = value_addr (v2);
332
333 deprecated_set_value_type (v, type);
334 return v;
335 }
336 }
337
338 /* No superclass found, just change the pointer type. */
339 arg2 = value_copy (arg2);
340 deprecated_set_value_type (arg2, type);
341 set_value_enclosing_type (arg2, type);
342 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
343 return arg2;
344 }
345
346 /* Cast value ARG2 to type TYPE and return as a value.
347 More general than a C cast: accepts any two types of the same length,
348 and if ARG2 is an lvalue it can be cast into anything at all. */
349 /* In C++, casts may change pointer or object representations. */
350
351 struct value *
352 value_cast (struct type *type, struct value *arg2)
353 {
354 enum type_code code1;
355 enum type_code code2;
356 int scalar;
357 struct type *type2;
358
359 int convert_to_boolean = 0;
360
361 if (value_type (arg2) == type)
362 return arg2;
363
364 code1 = TYPE_CODE (check_typedef (type));
365
366 /* Check if we are casting struct reference to struct reference. */
367 if (code1 == TYPE_CODE_REF)
368 {
369 /* We dereference type; then we recurse and finally
370 we generate value of the given reference. Nothing wrong with
371 that. */
372 struct type *t1 = check_typedef (type);
373 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
374 struct value *val = value_cast (dereftype, arg2);
375
376 return value_ref (val);
377 }
378
379 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
380
381 if (code2 == TYPE_CODE_REF)
382 /* We deref the value and then do the cast. */
383 return value_cast (type, coerce_ref (arg2));
384
385 CHECK_TYPEDEF (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (code1 != TYPE_CODE_REF);
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (code1 == TYPE_CODE_FLT && scalar)
466 return value_from_double (type, value_as_double (arg2));
467 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
470 int dec_len = TYPE_LENGTH (type);
471 gdb_byte dec[16];
472
473 if (code2 == TYPE_CODE_FLT)
474 decimal_from_floating (arg2, dec, dec_len, byte_order);
475 else if (code2 == TYPE_CODE_DECFLOAT)
476 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
477 byte_order, dec, dec_len, byte_order);
478 else
479 /* The only option left is an integral type. */
480 decimal_from_integral (arg2, dec, dec_len, byte_order);
481
482 return value_from_decfloat (type, dec);
483 }
484 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
485 || code1 == TYPE_CODE_RANGE)
486 && (scalar || code2 == TYPE_CODE_PTR
487 || code2 == TYPE_CODE_MEMBERPTR))
488 {
489 LONGEST longest;
490
491 /* When we cast pointers to integers, we mustn't use
492 gdbarch_pointer_to_address to find the address the pointer
493 represents, as value_as_long would. GDB should evaluate
494 expressions just as the compiler would --- and the compiler
495 sees a cast as a simple reinterpretation of the pointer's
496 bits. */
497 if (code2 == TYPE_CODE_PTR)
498 longest = extract_unsigned_integer
499 (value_contents (arg2), TYPE_LENGTH (type2),
500 gdbarch_byte_order (get_type_arch (type2)));
501 else
502 longest = value_as_long (arg2);
503 return value_from_longest (type, convert_to_boolean ?
504 (LONGEST) (longest ? 1 : 0) : longest);
505 }
506 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
507 || code2 == TYPE_CODE_ENUM
508 || code2 == TYPE_CODE_RANGE))
509 {
510 /* TYPE_LENGTH (type) is the length of a pointer, but we really
511 want the length of an address! -- we are really dealing with
512 addresses (i.e., gdb representations) not pointers (i.e.,
513 target representations) here.
514
515 This allows things like "print *(int *)0x01000234" to work
516 without printing a misleading message -- which would
517 otherwise occur when dealing with a target having two byte
518 pointers and four byte addresses. */
519
520 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
521 LONGEST longest = value_as_long (arg2);
522
523 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
524 {
525 if (longest >= ((LONGEST) 1 << addr_bit)
526 || longest <= -((LONGEST) 1 << addr_bit))
527 warning (_("value truncated"));
528 }
529 return value_from_longest (type, longest);
530 }
531 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
532 && value_as_long (arg2) == 0)
533 {
534 struct value *result = allocate_value (type);
535
536 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
537 return result;
538 }
539 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
540 && value_as_long (arg2) == 0)
541 {
542 /* The Itanium C++ ABI represents NULL pointers to members as
543 minus one, instead of biasing the normal case. */
544 return value_from_longest (type, -1);
545 }
546 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
547 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("Cannot convert between vector values of different sizes"));
550 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
551 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
552 error (_("can only cast scalar to vector of same size"));
553 else if (code1 == TYPE_CODE_VOID)
554 {
555 return value_zero (type, not_lval);
556 }
557 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
558 {
559 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
560 return value_cast_pointers (type, arg2, 0);
561
562 arg2 = value_copy (arg2);
563 deprecated_set_value_type (arg2, type);
564 set_value_enclosing_type (arg2, type);
565 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
566 return arg2;
567 }
568 else if (VALUE_LVAL (arg2) == lval_memory)
569 return value_at_lazy (type, value_address (arg2));
570 else
571 {
572 error (_("Invalid cast."));
573 return 0;
574 }
575 }
576
577 /* The C++ reinterpret_cast operator. */
578
579 struct value *
580 value_reinterpret_cast (struct type *type, struct value *arg)
581 {
582 struct value *result;
583 struct type *real_type = check_typedef (type);
584 struct type *arg_type, *dest_type;
585 int is_ref = 0;
586 enum type_code dest_code, arg_code;
587
588 /* Do reference, function, and array conversion. */
589 arg = coerce_array (arg);
590
591 /* Attempt to preserve the type the user asked for. */
592 dest_type = type;
593
594 /* If we are casting to a reference type, transform
595 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
596 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
597 {
598 is_ref = 1;
599 arg = value_addr (arg);
600 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
601 real_type = lookup_pointer_type (real_type);
602 }
603
604 arg_type = value_type (arg);
605
606 dest_code = TYPE_CODE (real_type);
607 arg_code = TYPE_CODE (arg_type);
608
609 /* We can convert pointer types, or any pointer type to int, or int
610 type to pointer. */
611 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
612 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
613 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
615 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
617 || (dest_code == arg_code
618 && (dest_code == TYPE_CODE_PTR
619 || dest_code == TYPE_CODE_METHODPTR
620 || dest_code == TYPE_CODE_MEMBERPTR)))
621 result = value_cast (dest_type, arg);
622 else
623 error (_("Invalid reinterpret_cast"));
624
625 if (is_ref)
626 result = value_cast (type, value_ref (value_ind (result)));
627
628 return result;
629 }
630
631 /* A helper for value_dynamic_cast. This implements the first of two
632 runtime checks: we iterate over all the base classes of the value's
633 class which are equal to the desired class; if only one of these
634 holds the value, then it is the answer. */
635
636 static int
637 dynamic_cast_check_1 (struct type *desired_type,
638 const gdb_byte *valaddr,
639 int embedded_offset,
640 CORE_ADDR address,
641 struct value *val,
642 struct type *search_type,
643 CORE_ADDR arg_addr,
644 struct type *arg_type,
645 struct value **result)
646 {
647 int i, result_count = 0;
648
649 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
650 {
651 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
652 address, val);
653
654 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
655 {
656 if (address + embedded_offset + offset >= arg_addr
657 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
658 {
659 ++result_count;
660 if (!*result)
661 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
662 address + embedded_offset + offset);
663 }
664 }
665 else
666 result_count += dynamic_cast_check_1 (desired_type,
667 valaddr,
668 embedded_offset + offset,
669 address, val,
670 TYPE_BASECLASS (search_type, i),
671 arg_addr,
672 arg_type,
673 result);
674 }
675
676 return result_count;
677 }
678
679 /* A helper for value_dynamic_cast. This implements the second of two
680 runtime checks: we look for a unique public sibling class of the
681 argument's declared class. */
682
683 static int
684 dynamic_cast_check_2 (struct type *desired_type,
685 const gdb_byte *valaddr,
686 int embedded_offset,
687 CORE_ADDR address,
688 struct value *val,
689 struct type *search_type,
690 struct value **result)
691 {
692 int i, result_count = 0;
693
694 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
695 {
696 int offset;
697
698 if (! BASETYPE_VIA_PUBLIC (search_type, i))
699 continue;
700
701 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
702 address, val);
703 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
704 {
705 ++result_count;
706 if (*result == NULL)
707 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
708 address + embedded_offset + offset);
709 }
710 else
711 result_count += dynamic_cast_check_2 (desired_type,
712 valaddr,
713 embedded_offset + offset,
714 address, val,
715 TYPE_BASECLASS (search_type, i),
716 result);
717 }
718
719 return result_count;
720 }
721
722 /* The C++ dynamic_cast operator. */
723
724 struct value *
725 value_dynamic_cast (struct type *type, struct value *arg)
726 {
727 int full, top, using_enc;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
732 CORE_ADDR addr;
733 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
734
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
741
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
744 {
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
750 {
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
755 }
756
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
760
761 arg = value_ind (arg);
762 }
763 else
764 {
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does not have class type"));
767 }
768
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
772
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
776 {
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
780 }
781
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
783 if (! rtti_type)
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
785
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
788 if (full)
789 {
790 /* Done. */
791 }
792 else if (using_enc)
793 addr += top;
794 else
795 addr += top + value_embedded_offset (arg);
796
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
802
803 tem = value_at (type, addr);
804
805 /* The first dynamic check specified in 5.2.7. */
806 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
807 {
808 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
809 return tem;
810 result = NULL;
811 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
812 value_contents_for_printing (tem),
813 value_embedded_offset (tem),
814 value_address (tem), tem,
815 rtti_type, addr,
816 arg_type,
817 &result) == 1)
818 return value_cast (type,
819 is_ref ? value_ref (result) : value_addr (result));
820 }
821
822 /* The second dynamic check specified in 5.2.7. */
823 result = NULL;
824 if (is_public_ancestor (arg_type, rtti_type)
825 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
826 value_contents_for_printing (tem),
827 value_embedded_offset (tem),
828 value_address (tem), tem,
829 rtti_type, &result) == 1)
830 return value_cast (type,
831 is_ref ? value_ref (result) : value_addr (result));
832
833 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
834 return value_zero (type, not_lval);
835
836 error (_("dynamic_cast failed"));
837 }
838
839 /* Create a value of type TYPE that is zero, and return it. */
840
841 struct value *
842 value_zero (struct type *type, enum lval_type lv)
843 {
844 struct value *val = allocate_value (type);
845
846 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
847 return val;
848 }
849
850 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
851
852 struct value *
853 value_one (struct type *type)
854 {
855 struct type *type1 = check_typedef (type);
856 struct value *val;
857
858 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
859 {
860 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
861 gdb_byte v[16];
862
863 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
864 val = value_from_decfloat (type, v);
865 }
866 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
867 {
868 val = value_from_double (type, (DOUBLEST) 1);
869 }
870 else if (is_integral_type (type1))
871 {
872 val = value_from_longest (type, (LONGEST) 1);
873 }
874 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
875 {
876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
877 int i;
878 LONGEST low_bound, high_bound;
879 struct value *tmp;
880
881 if (!get_array_bounds (type1, &low_bound, &high_bound))
882 error (_("Could not determine the vector bounds"));
883
884 val = allocate_value (type);
885 for (i = 0; i < high_bound - low_bound + 1; i++)
886 {
887 tmp = value_one (eltype);
888 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
889 value_contents_all (tmp), TYPE_LENGTH (eltype));
890 }
891 }
892 else
893 {
894 error (_("Not a numeric type."));
895 }
896
897 /* value_one result is never used for assignments to. */
898 gdb_assert (VALUE_LVAL (val) == not_lval);
899
900 return val;
901 }
902
903 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
904
905 static struct value *
906 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
907 {
908 struct value *val;
909
910 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
911 error (_("Attempt to dereference a generic pointer."));
912
913 val = value_from_contents_and_address (type, NULL, addr);
914
915 if (!lazy)
916 value_fetch_lazy (val);
917
918 return val;
919 }
920
921 /* Return a value with type TYPE located at ADDR.
922
923 Call value_at only if the data needs to be fetched immediately;
924 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
925 value_at_lazy instead. value_at_lazy simply records the address of
926 the data and sets the lazy-evaluation-required flag. The lazy flag
927 is tested in the value_contents macro, which is used if and when
928 the contents are actually required.
929
930 Note: value_at does *NOT* handle embedded offsets; perform such
931 adjustments before or after calling it. */
932
933 struct value *
934 value_at (struct type *type, CORE_ADDR addr)
935 {
936 return get_value_at (type, addr, 0);
937 }
938
939 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
940
941 struct value *
942 value_at_lazy (struct type *type, CORE_ADDR addr)
943 {
944 return get_value_at (type, addr, 1);
945 }
946
947 void
948 read_value_memory (struct value *val, int embedded_offset,
949 int stack, CORE_ADDR memaddr,
950 gdb_byte *buffer, size_t length)
951 {
952 if (length)
953 {
954 VEC(mem_range_s) *available_memory;
955
956 if (!traceframe_available_memory (&available_memory, memaddr, length))
957 {
958 if (stack)
959 read_stack (memaddr, buffer, length);
960 else
961 read_memory (memaddr, buffer, length);
962 }
963 else
964 {
965 struct target_section_table *table;
966 struct cleanup *old_chain;
967 CORE_ADDR unavail;
968 mem_range_s *r;
969 int i;
970
971 /* Fallback to reading from read-only sections. */
972 table = target_get_section_table (&exec_ops);
973 available_memory =
974 section_table_available_memory (available_memory,
975 memaddr, length,
976 table->sections,
977 table->sections_end);
978
979 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
980 &available_memory);
981
982 normalize_mem_ranges (available_memory);
983
984 /* Mark which bytes are unavailable, and read those which
985 are available. */
986
987 unavail = memaddr;
988
989 for (i = 0;
990 VEC_iterate (mem_range_s, available_memory, i, r);
991 i++)
992 {
993 if (mem_ranges_overlap (r->start, r->length,
994 memaddr, length))
995 {
996 CORE_ADDR lo1, hi1, lo2, hi2;
997 CORE_ADDR start, end;
998
999 /* Get the intersection window. */
1000 lo1 = memaddr;
1001 hi1 = memaddr + length;
1002 lo2 = r->start;
1003 hi2 = r->start + r->length;
1004 start = max (lo1, lo2);
1005 end = min (hi1, hi2);
1006
1007 gdb_assert (end - memaddr <= length);
1008
1009 if (start > unavail)
1010 mark_value_bytes_unavailable (val,
1011 (embedded_offset
1012 + unavail - memaddr),
1013 start - unavail);
1014 unavail = end;
1015
1016 read_memory (start, buffer + start - memaddr, end - start);
1017 }
1018 }
1019
1020 if (unavail != memaddr + length)
1021 mark_value_bytes_unavailable (val,
1022 embedded_offset + unavail - memaddr,
1023 (memaddr + length) - unavail);
1024
1025 do_cleanups (old_chain);
1026 }
1027 }
1028 }
1029
1030 /* Store the contents of FROMVAL into the location of TOVAL.
1031 Return a new value with the location of TOVAL and contents of FROMVAL. */
1032
1033 struct value *
1034 value_assign (struct value *toval, struct value *fromval)
1035 {
1036 struct type *type;
1037 struct value *val;
1038 struct frame_id old_frame;
1039
1040 if (!deprecated_value_modifiable (toval))
1041 error (_("Left operand of assignment is not a modifiable lvalue."));
1042
1043 toval = coerce_ref (toval);
1044
1045 type = value_type (toval);
1046 if (VALUE_LVAL (toval) != lval_internalvar)
1047 fromval = value_cast (type, fromval);
1048 else
1049 {
1050 /* Coerce arrays and functions to pointers, except for arrays
1051 which only live in GDB's storage. */
1052 if (!value_must_coerce_to_target (fromval))
1053 fromval = coerce_array (fromval);
1054 }
1055
1056 CHECK_TYPEDEF (type);
1057
1058 /* Since modifying a register can trash the frame chain, and
1059 modifying memory can trash the frame cache, we save the old frame
1060 and then restore the new frame afterwards. */
1061 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1062
1063 switch (VALUE_LVAL (toval))
1064 {
1065 case lval_internalvar:
1066 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1067 return value_of_internalvar (get_type_arch (type),
1068 VALUE_INTERNALVAR (toval));
1069
1070 case lval_internalvar_component:
1071 {
1072 int offset = value_offset (toval);
1073
1074 /* Are we dealing with a bitfield?
1075
1076 It is important to mention that `value_parent (toval)' is
1077 non-NULL iff `value_bitsize (toval)' is non-zero. */
1078 if (value_bitsize (toval))
1079 {
1080 /* VALUE_INTERNALVAR below refers to the parent value, while
1081 the offset is relative to this parent value. */
1082 gdb_assert (value_parent (value_parent (toval)) == NULL);
1083 offset += value_offset (value_parent (toval));
1084 }
1085
1086 set_internalvar_component (VALUE_INTERNALVAR (toval),
1087 offset,
1088 value_bitpos (toval),
1089 value_bitsize (toval),
1090 fromval);
1091 }
1092 break;
1093
1094 case lval_memory:
1095 {
1096 const gdb_byte *dest_buffer;
1097 CORE_ADDR changed_addr;
1098 int changed_len;
1099 gdb_byte buffer[sizeof (LONGEST)];
1100
1101 if (value_bitsize (toval))
1102 {
1103 struct value *parent = value_parent (toval);
1104
1105 changed_addr = value_address (parent) + value_offset (toval);
1106 changed_len = (value_bitpos (toval)
1107 + value_bitsize (toval)
1108 + HOST_CHAR_BIT - 1)
1109 / HOST_CHAR_BIT;
1110
1111 /* If we can read-modify-write exactly the size of the
1112 containing type (e.g. short or int) then do so. This
1113 is safer for volatile bitfields mapped to hardware
1114 registers. */
1115 if (changed_len < TYPE_LENGTH (type)
1116 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1117 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1118 changed_len = TYPE_LENGTH (type);
1119
1120 if (changed_len > (int) sizeof (LONGEST))
1121 error (_("Can't handle bitfields which "
1122 "don't fit in a %d bit word."),
1123 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1124
1125 read_memory (changed_addr, buffer, changed_len);
1126 modify_field (type, buffer, value_as_long (fromval),
1127 value_bitpos (toval), value_bitsize (toval));
1128 dest_buffer = buffer;
1129 }
1130 else
1131 {
1132 changed_addr = value_address (toval);
1133 changed_len = TYPE_LENGTH (type);
1134 dest_buffer = value_contents (fromval);
1135 }
1136
1137 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1138 }
1139 break;
1140
1141 case lval_register:
1142 {
1143 struct frame_info *frame;
1144 struct gdbarch *gdbarch;
1145 int value_reg;
1146
1147 /* Figure out which frame this is in currently. */
1148 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1149 value_reg = VALUE_REGNUM (toval);
1150
1151 if (!frame)
1152 error (_("Value being assigned to is no longer active."));
1153
1154 gdbarch = get_frame_arch (frame);
1155 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1156 {
1157 /* If TOVAL is a special machine register requiring
1158 conversion of program values to a special raw
1159 format. */
1160 gdbarch_value_to_register (gdbarch, frame,
1161 VALUE_REGNUM (toval), type,
1162 value_contents (fromval));
1163 }
1164 else
1165 {
1166 if (value_bitsize (toval))
1167 {
1168 struct value *parent = value_parent (toval);
1169 int offset = value_offset (parent) + value_offset (toval);
1170 int changed_len;
1171 gdb_byte buffer[sizeof (LONGEST)];
1172 int optim, unavail;
1173
1174 changed_len = (value_bitpos (toval)
1175 + value_bitsize (toval)
1176 + HOST_CHAR_BIT - 1)
1177 / HOST_CHAR_BIT;
1178
1179 if (changed_len > (int) sizeof (LONGEST))
1180 error (_("Can't handle bitfields which "
1181 "don't fit in a %d bit word."),
1182 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1183
1184 if (!get_frame_register_bytes (frame, value_reg, offset,
1185 changed_len, buffer,
1186 &optim, &unavail))
1187 {
1188 if (optim)
1189 throw_error (OPTIMIZED_OUT_ERROR,
1190 _("value has been optimized out"));
1191 if (unavail)
1192 throw_error (NOT_AVAILABLE_ERROR,
1193 _("value is not available"));
1194 }
1195
1196 modify_field (type, buffer, value_as_long (fromval),
1197 value_bitpos (toval), value_bitsize (toval));
1198
1199 put_frame_register_bytes (frame, value_reg, offset,
1200 changed_len, buffer);
1201 }
1202 else
1203 {
1204 put_frame_register_bytes (frame, value_reg,
1205 value_offset (toval),
1206 TYPE_LENGTH (type),
1207 value_contents (fromval));
1208 }
1209 }
1210
1211 if (deprecated_register_changed_hook)
1212 deprecated_register_changed_hook (-1);
1213 break;
1214 }
1215
1216 case lval_computed:
1217 {
1218 const struct lval_funcs *funcs = value_computed_funcs (toval);
1219
1220 if (funcs->write != NULL)
1221 {
1222 funcs->write (toval, fromval);
1223 break;
1224 }
1225 }
1226 /* Fall through. */
1227
1228 default:
1229 error (_("Left operand of assignment is not an lvalue."));
1230 }
1231
1232 /* Assigning to the stack pointer, frame pointer, and other
1233 (architecture and calling convention specific) registers may
1234 cause the frame cache and regcache to be out of date. Assigning to memory
1235 also can. We just do this on all assignments to registers or
1236 memory, for simplicity's sake; I doubt the slowdown matters. */
1237 switch (VALUE_LVAL (toval))
1238 {
1239 case lval_memory:
1240 case lval_register:
1241 case lval_computed:
1242
1243 observer_notify_target_changed (&current_target);
1244
1245 /* Having destroyed the frame cache, restore the selected
1246 frame. */
1247
1248 /* FIXME: cagney/2002-11-02: There has to be a better way of
1249 doing this. Instead of constantly saving/restoring the
1250 frame. Why not create a get_selected_frame() function that,
1251 having saved the selected frame's ID can automatically
1252 re-find the previously selected frame automatically. */
1253
1254 {
1255 struct frame_info *fi = frame_find_by_id (old_frame);
1256
1257 if (fi != NULL)
1258 select_frame (fi);
1259 }
1260
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 /* If the field does not entirely fill a LONGEST, then zero the sign
1267 bits. If the field is signed, and is negative, then sign
1268 extend. */
1269 if ((value_bitsize (toval) > 0)
1270 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1271 {
1272 LONGEST fieldval = value_as_long (fromval);
1273 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1274
1275 fieldval &= valmask;
1276 if (!TYPE_UNSIGNED (type)
1277 && (fieldval & (valmask ^ (valmask >> 1))))
1278 fieldval |= ~valmask;
1279
1280 fromval = value_from_longest (type, fieldval);
1281 }
1282
1283 /* The return value is a copy of TOVAL so it shares its location
1284 information, but its contents are updated from FROMVAL. This
1285 implies the returned value is not lazy, even if TOVAL was. */
1286 val = value_copy (toval);
1287 set_value_lazy (val, 0);
1288 memcpy (value_contents_raw (val), value_contents (fromval),
1289 TYPE_LENGTH (type));
1290
1291 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1292 in the case of pointer types. For object types, the enclosing type
1293 and embedded offset must *not* be copied: the target object refered
1294 to by TOVAL retains its original dynamic type after assignment. */
1295 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1296 {
1297 set_value_enclosing_type (val, value_enclosing_type (fromval));
1298 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1299 }
1300
1301 return val;
1302 }
1303
1304 /* Extend a value VAL to COUNT repetitions of its type. */
1305
1306 struct value *
1307 value_repeat (struct value *arg1, int count)
1308 {
1309 struct value *val;
1310
1311 if (VALUE_LVAL (arg1) != lval_memory)
1312 error (_("Only values in memory can be extended with '@'."));
1313 if (count < 1)
1314 error (_("Invalid number %d of repetitions."), count);
1315
1316 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1317
1318 VALUE_LVAL (val) = lval_memory;
1319 set_value_address (val, value_address (arg1));
1320
1321 read_value_memory (val, 0, value_stack (val), value_address (val),
1322 value_contents_all_raw (val),
1323 TYPE_LENGTH (value_enclosing_type (val)));
1324
1325 return val;
1326 }
1327
1328 struct value *
1329 value_of_variable (struct symbol *var, const struct block *b)
1330 {
1331 struct frame_info *frame;
1332
1333 if (!symbol_read_needs_frame (var))
1334 frame = NULL;
1335 else if (!b)
1336 frame = get_selected_frame (_("No frame selected."));
1337 else
1338 {
1339 frame = block_innermost_frame (b);
1340 if (!frame)
1341 {
1342 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1343 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1344 error (_("No frame is currently executing in block %s."),
1345 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1346 else
1347 error (_("No frame is currently executing in specified block"));
1348 }
1349 }
1350
1351 return read_var_value (var, frame);
1352 }
1353
1354 struct value *
1355 address_of_variable (struct symbol *var, const struct block *b)
1356 {
1357 struct type *type = SYMBOL_TYPE (var);
1358 struct value *val;
1359
1360 /* Evaluate it first; if the result is a memory address, we're fine.
1361 Lazy evaluation pays off here. */
1362
1363 val = value_of_variable (var, b);
1364
1365 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1366 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1367 {
1368 CORE_ADDR addr = value_address (val);
1369
1370 return value_from_pointer (lookup_pointer_type (type), addr);
1371 }
1372
1373 /* Not a memory address; check what the problem was. */
1374 switch (VALUE_LVAL (val))
1375 {
1376 case lval_register:
1377 {
1378 struct frame_info *frame;
1379 const char *regname;
1380
1381 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1382 gdb_assert (frame);
1383
1384 regname = gdbarch_register_name (get_frame_arch (frame),
1385 VALUE_REGNUM (val));
1386 gdb_assert (regname && *regname);
1387
1388 error (_("Address requested for identifier "
1389 "\"%s\" which is in register $%s"),
1390 SYMBOL_PRINT_NAME (var), regname);
1391 break;
1392 }
1393
1394 default:
1395 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1396 SYMBOL_PRINT_NAME (var));
1397 break;
1398 }
1399
1400 return val;
1401 }
1402
1403 /* Return one if VAL does not live in target memory, but should in order
1404 to operate on it. Otherwise return zero. */
1405
1406 int
1407 value_must_coerce_to_target (struct value *val)
1408 {
1409 struct type *valtype;
1410
1411 /* The only lval kinds which do not live in target memory. */
1412 if (VALUE_LVAL (val) != not_lval
1413 && VALUE_LVAL (val) != lval_internalvar)
1414 return 0;
1415
1416 valtype = check_typedef (value_type (val));
1417
1418 switch (TYPE_CODE (valtype))
1419 {
1420 case TYPE_CODE_ARRAY:
1421 return TYPE_VECTOR (valtype) ? 0 : 1;
1422 case TYPE_CODE_STRING:
1423 return 1;
1424 default:
1425 return 0;
1426 }
1427 }
1428
1429 /* Make sure that VAL lives in target memory if it's supposed to. For
1430 instance, strings are constructed as character arrays in GDB's
1431 storage, and this function copies them to the target. */
1432
1433 struct value *
1434 value_coerce_to_target (struct value *val)
1435 {
1436 LONGEST length;
1437 CORE_ADDR addr;
1438
1439 if (!value_must_coerce_to_target (val))
1440 return val;
1441
1442 length = TYPE_LENGTH (check_typedef (value_type (val)));
1443 addr = allocate_space_in_inferior (length);
1444 write_memory (addr, value_contents (val), length);
1445 return value_at_lazy (value_type (val), addr);
1446 }
1447
1448 /* Given a value which is an array, return a value which is a pointer
1449 to its first element, regardless of whether or not the array has a
1450 nonzero lower bound.
1451
1452 FIXME: A previous comment here indicated that this routine should
1453 be substracting the array's lower bound. It's not clear to me that
1454 this is correct. Given an array subscripting operation, it would
1455 certainly work to do the adjustment here, essentially computing:
1456
1457 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1458
1459 However I believe a more appropriate and logical place to account
1460 for the lower bound is to do so in value_subscript, essentially
1461 computing:
1462
1463 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1464
1465 As further evidence consider what would happen with operations
1466 other than array subscripting, where the caller would get back a
1467 value that had an address somewhere before the actual first element
1468 of the array, and the information about the lower bound would be
1469 lost because of the coercion to pointer type. */
1470
1471 struct value *
1472 value_coerce_array (struct value *arg1)
1473 {
1474 struct type *type = check_typedef (value_type (arg1));
1475
1476 /* If the user tries to do something requiring a pointer with an
1477 array that has not yet been pushed to the target, then this would
1478 be a good time to do so. */
1479 arg1 = value_coerce_to_target (arg1);
1480
1481 if (VALUE_LVAL (arg1) != lval_memory)
1482 error (_("Attempt to take address of value not located in memory."));
1483
1484 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1485 value_address (arg1));
1486 }
1487
1488 /* Given a value which is a function, return a value which is a pointer
1489 to it. */
1490
1491 struct value *
1492 value_coerce_function (struct value *arg1)
1493 {
1494 struct value *retval;
1495
1496 if (VALUE_LVAL (arg1) != lval_memory)
1497 error (_("Attempt to take address of value not located in memory."));
1498
1499 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1500 value_address (arg1));
1501 return retval;
1502 }
1503
1504 /* Return a pointer value for the object for which ARG1 is the
1505 contents. */
1506
1507 struct value *
1508 value_addr (struct value *arg1)
1509 {
1510 struct value *arg2;
1511 struct type *type = check_typedef (value_type (arg1));
1512
1513 if (TYPE_CODE (type) == TYPE_CODE_REF)
1514 {
1515 /* Copy the value, but change the type from (T&) to (T*). We
1516 keep the same location information, which is efficient, and
1517 allows &(&X) to get the location containing the reference. */
1518 arg2 = value_copy (arg1);
1519 deprecated_set_value_type (arg2,
1520 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1521 return arg2;
1522 }
1523 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1524 return value_coerce_function (arg1);
1525
1526 /* If this is an array that has not yet been pushed to the target,
1527 then this would be a good time to force it to memory. */
1528 arg1 = value_coerce_to_target (arg1);
1529
1530 if (VALUE_LVAL (arg1) != lval_memory)
1531 error (_("Attempt to take address of value not located in memory."));
1532
1533 /* Get target memory address. */
1534 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1535 (value_address (arg1)
1536 + value_embedded_offset (arg1)));
1537
1538 /* This may be a pointer to a base subobject; so remember the
1539 full derived object's type ... */
1540 set_value_enclosing_type (arg2,
1541 lookup_pointer_type (value_enclosing_type (arg1)));
1542 /* ... and also the relative position of the subobject in the full
1543 object. */
1544 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1545 return arg2;
1546 }
1547
1548 /* Return a reference value for the object for which ARG1 is the
1549 contents. */
1550
1551 struct value *
1552 value_ref (struct value *arg1)
1553 {
1554 struct value *arg2;
1555 struct type *type = check_typedef (value_type (arg1));
1556
1557 if (TYPE_CODE (type) == TYPE_CODE_REF)
1558 return arg1;
1559
1560 arg2 = value_addr (arg1);
1561 deprecated_set_value_type (arg2, lookup_reference_type (type));
1562 return arg2;
1563 }
1564
1565 /* Given a value of a pointer type, apply the C unary * operator to
1566 it. */
1567
1568 struct value *
1569 value_ind (struct value *arg1)
1570 {
1571 struct type *base_type;
1572 struct value *arg2;
1573
1574 arg1 = coerce_array (arg1);
1575
1576 base_type = check_typedef (value_type (arg1));
1577
1578 if (VALUE_LVAL (arg1) == lval_computed)
1579 {
1580 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1581
1582 if (funcs->indirect)
1583 {
1584 struct value *result = funcs->indirect (arg1);
1585
1586 if (result)
1587 return result;
1588 }
1589 }
1590
1591 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1592 {
1593 struct type *enc_type;
1594
1595 /* We may be pointing to something embedded in a larger object.
1596 Get the real type of the enclosing object. */
1597 enc_type = check_typedef (value_enclosing_type (arg1));
1598 enc_type = TYPE_TARGET_TYPE (enc_type);
1599
1600 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1601 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1602 /* For functions, go through find_function_addr, which knows
1603 how to handle function descriptors. */
1604 arg2 = value_at_lazy (enc_type,
1605 find_function_addr (arg1, NULL));
1606 else
1607 /* Retrieve the enclosing object pointed to. */
1608 arg2 = value_at_lazy (enc_type,
1609 (value_as_address (arg1)
1610 - value_pointed_to_offset (arg1)));
1611
1612 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1613 }
1614
1615 error (_("Attempt to take contents of a non-pointer value."));
1616 return 0; /* For lint -- never reached. */
1617 }
1618 \f
1619 /* Create a value for an array by allocating space in GDB, copying the
1620 data into that space, and then setting up an array value.
1621
1622 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1623 is populated from the values passed in ELEMVEC.
1624
1625 The element type of the array is inherited from the type of the
1626 first element, and all elements must have the same size (though we
1627 don't currently enforce any restriction on their types). */
1628
1629 struct value *
1630 value_array (int lowbound, int highbound, struct value **elemvec)
1631 {
1632 int nelem;
1633 int idx;
1634 unsigned int typelength;
1635 struct value *val;
1636 struct type *arraytype;
1637
1638 /* Validate that the bounds are reasonable and that each of the
1639 elements have the same size. */
1640
1641 nelem = highbound - lowbound + 1;
1642 if (nelem <= 0)
1643 {
1644 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1645 }
1646 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1647 for (idx = 1; idx < nelem; idx++)
1648 {
1649 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1650 {
1651 error (_("array elements must all be the same size"));
1652 }
1653 }
1654
1655 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1656 lowbound, highbound);
1657
1658 if (!current_language->c_style_arrays)
1659 {
1660 val = allocate_value (arraytype);
1661 for (idx = 0; idx < nelem; idx++)
1662 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1663 typelength);
1664 return val;
1665 }
1666
1667 /* Allocate space to store the array, and then initialize it by
1668 copying in each element. */
1669
1670 val = allocate_value (arraytype);
1671 for (idx = 0; idx < nelem; idx++)
1672 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1673 return val;
1674 }
1675
1676 struct value *
1677 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1678 {
1679 struct value *val;
1680 int lowbound = current_language->string_lower_bound;
1681 ssize_t highbound = len / TYPE_LENGTH (char_type);
1682 struct type *stringtype
1683 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1684
1685 val = allocate_value (stringtype);
1686 memcpy (value_contents_raw (val), ptr, len);
1687 return val;
1688 }
1689
1690 /* Create a value for a string constant by allocating space in the
1691 inferior, copying the data into that space, and returning the
1692 address with type TYPE_CODE_STRING. PTR points to the string
1693 constant data; LEN is number of characters.
1694
1695 Note that string types are like array of char types with a lower
1696 bound of zero and an upper bound of LEN - 1. Also note that the
1697 string may contain embedded null bytes. */
1698
1699 struct value *
1700 value_string (char *ptr, ssize_t len, struct type *char_type)
1701 {
1702 struct value *val;
1703 int lowbound = current_language->string_lower_bound;
1704 ssize_t highbound = len / TYPE_LENGTH (char_type);
1705 struct type *stringtype
1706 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1707
1708 val = allocate_value (stringtype);
1709 memcpy (value_contents_raw (val), ptr, len);
1710 return val;
1711 }
1712
1713 \f
1714 /* See if we can pass arguments in T2 to a function which takes
1715 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1716 a NULL-terminated vector. If some arguments need coercion of some
1717 sort, then the coerced values are written into T2. Return value is
1718 0 if the arguments could be matched, or the position at which they
1719 differ if not.
1720
1721 STATICP is nonzero if the T1 argument list came from a static
1722 member function. T2 will still include the ``this'' pointer, but
1723 it will be skipped.
1724
1725 For non-static member functions, we ignore the first argument,
1726 which is the type of the instance variable. This is because we
1727 want to handle calls with objects from derived classes. This is
1728 not entirely correct: we should actually check to make sure that a
1729 requested operation is type secure, shouldn't we? FIXME. */
1730
1731 static int
1732 typecmp (int staticp, int varargs, int nargs,
1733 struct field t1[], struct value *t2[])
1734 {
1735 int i;
1736
1737 if (t2 == 0)
1738 internal_error (__FILE__, __LINE__,
1739 _("typecmp: no argument list"));
1740
1741 /* Skip ``this'' argument if applicable. T2 will always include
1742 THIS. */
1743 if (staticp)
1744 t2 ++;
1745
1746 for (i = 0;
1747 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1748 i++)
1749 {
1750 struct type *tt1, *tt2;
1751
1752 if (!t2[i])
1753 return i + 1;
1754
1755 tt1 = check_typedef (t1[i].type);
1756 tt2 = check_typedef (value_type (t2[i]));
1757
1758 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1759 /* We should be doing hairy argument matching, as below. */
1760 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1761 == TYPE_CODE (tt2)))
1762 {
1763 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1764 t2[i] = value_coerce_array (t2[i]);
1765 else
1766 t2[i] = value_ref (t2[i]);
1767 continue;
1768 }
1769
1770 /* djb - 20000715 - Until the new type structure is in the
1771 place, and we can attempt things like implicit conversions,
1772 we need to do this so you can take something like a map<const
1773 char *>, and properly access map["hello"], because the
1774 argument to [] will be a reference to a pointer to a char,
1775 and the argument will be a pointer to a char. */
1776 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1777 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1778 {
1779 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1780 }
1781 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1782 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1783 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1784 {
1785 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1786 }
1787 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1788 continue;
1789 /* Array to pointer is a `trivial conversion' according to the
1790 ARM. */
1791
1792 /* We should be doing much hairier argument matching (see
1793 section 13.2 of the ARM), but as a quick kludge, just check
1794 for the same type code. */
1795 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1796 return i + 1;
1797 }
1798 if (varargs || t2[i] == NULL)
1799 return 0;
1800 return i + 1;
1801 }
1802
1803 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1804 and *LAST_BOFFSET, and possibly throws an exception if the field
1805 search has yielded ambiguous results. */
1806
1807 static void
1808 update_search_result (struct value **result_ptr, struct value *v,
1809 int *last_boffset, int boffset,
1810 const char *name, struct type *type)
1811 {
1812 if (v != NULL)
1813 {
1814 if (*result_ptr != NULL
1815 /* The result is not ambiguous if all the classes that are
1816 found occupy the same space. */
1817 && *last_boffset != boffset)
1818 error (_("base class '%s' is ambiguous in type '%s'"),
1819 name, TYPE_SAFE_NAME (type));
1820 *result_ptr = v;
1821 *last_boffset = boffset;
1822 }
1823 }
1824
1825 /* A helper for search_struct_field. This does all the work; most
1826 arguments are as passed to search_struct_field. The result is
1827 stored in *RESULT_PTR, which must be initialized to NULL.
1828 OUTERMOST_TYPE is the type of the initial type passed to
1829 search_struct_field; this is used for error reporting when the
1830 lookup is ambiguous. */
1831
1832 static void
1833 do_search_struct_field (const char *name, struct value *arg1, int offset,
1834 struct type *type, int looking_for_baseclass,
1835 struct value **result_ptr,
1836 int *last_boffset,
1837 struct type *outermost_type)
1838 {
1839 int i;
1840 int nbases;
1841
1842 CHECK_TYPEDEF (type);
1843 nbases = TYPE_N_BASECLASSES (type);
1844
1845 if (!looking_for_baseclass)
1846 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1847 {
1848 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1849
1850 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1851 {
1852 struct value *v;
1853
1854 if (field_is_static (&TYPE_FIELD (type, i)))
1855 v = value_static_field (type, i);
1856 else
1857 v = value_primitive_field (arg1, offset, i, type);
1858 *result_ptr = v;
1859 return;
1860 }
1861
1862 if (t_field_name
1863 && (t_field_name[0] == '\0'
1864 || (TYPE_CODE (type) == TYPE_CODE_UNION
1865 && (strcmp_iw (t_field_name, "else") == 0))))
1866 {
1867 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1868
1869 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1870 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1871 {
1872 /* Look for a match through the fields of an anonymous
1873 union, or anonymous struct. C++ provides anonymous
1874 unions.
1875
1876 In the GNU Chill (now deleted from GDB)
1877 implementation of variant record types, each
1878 <alternative field> has an (anonymous) union type,
1879 each member of the union represents a <variant
1880 alternative>. Each <variant alternative> is
1881 represented as a struct, with a member for each
1882 <variant field>. */
1883
1884 struct value *v = NULL;
1885 int new_offset = offset;
1886
1887 /* This is pretty gross. In G++, the offset in an
1888 anonymous union is relative to the beginning of the
1889 enclosing struct. In the GNU Chill (now deleted
1890 from GDB) implementation of variant records, the
1891 bitpos is zero in an anonymous union field, so we
1892 have to add the offset of the union here. */
1893 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1894 || (TYPE_NFIELDS (field_type) > 0
1895 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1896 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1897
1898 do_search_struct_field (name, arg1, new_offset,
1899 field_type,
1900 looking_for_baseclass, &v,
1901 last_boffset,
1902 outermost_type);
1903 if (v)
1904 {
1905 *result_ptr = v;
1906 return;
1907 }
1908 }
1909 }
1910 }
1911
1912 for (i = 0; i < nbases; i++)
1913 {
1914 struct value *v = NULL;
1915 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1916 /* If we are looking for baseclasses, this is what we get when
1917 we hit them. But it could happen that the base part's member
1918 name is not yet filled in. */
1919 int found_baseclass = (looking_for_baseclass
1920 && TYPE_BASECLASS_NAME (type, i) != NULL
1921 && (strcmp_iw (name,
1922 TYPE_BASECLASS_NAME (type,
1923 i)) == 0));
1924 int boffset = value_embedded_offset (arg1) + offset;
1925
1926 if (BASETYPE_VIA_VIRTUAL (type, i))
1927 {
1928 struct value *v2;
1929
1930 boffset = baseclass_offset (type, i,
1931 value_contents_for_printing (arg1),
1932 value_embedded_offset (arg1) + offset,
1933 value_address (arg1),
1934 arg1);
1935
1936 /* The virtual base class pointer might have been clobbered
1937 by the user program. Make sure that it still points to a
1938 valid memory location. */
1939
1940 boffset += value_embedded_offset (arg1) + offset;
1941 if (boffset < 0
1942 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1943 {
1944 CORE_ADDR base_addr;
1945
1946 base_addr = value_address (arg1) + boffset;
1947 v2 = value_at_lazy (basetype, base_addr);
1948 if (target_read_memory (base_addr,
1949 value_contents_raw (v2),
1950 TYPE_LENGTH (value_type (v2))) != 0)
1951 error (_("virtual baseclass botch"));
1952 }
1953 else
1954 {
1955 v2 = value_copy (arg1);
1956 deprecated_set_value_type (v2, basetype);
1957 set_value_embedded_offset (v2, boffset);
1958 }
1959
1960 if (found_baseclass)
1961 v = v2;
1962 else
1963 {
1964 do_search_struct_field (name, v2, 0,
1965 TYPE_BASECLASS (type, i),
1966 looking_for_baseclass,
1967 result_ptr, last_boffset,
1968 outermost_type);
1969 }
1970 }
1971 else if (found_baseclass)
1972 v = value_primitive_field (arg1, offset, i, type);
1973 else
1974 {
1975 do_search_struct_field (name, arg1,
1976 offset + TYPE_BASECLASS_BITPOS (type,
1977 i) / 8,
1978 basetype, looking_for_baseclass,
1979 result_ptr, last_boffset,
1980 outermost_type);
1981 }
1982
1983 update_search_result (result_ptr, v, last_boffset,
1984 boffset, name, outermost_type);
1985 }
1986 }
1987
1988 /* Helper function used by value_struct_elt to recurse through
1989 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1990 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1991 TYPE. If found, return value, else return NULL.
1992
1993 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1994 fields, look for a baseclass named NAME. */
1995
1996 static struct value *
1997 search_struct_field (const char *name, struct value *arg1, int offset,
1998 struct type *type, int looking_for_baseclass)
1999 {
2000 struct value *result = NULL;
2001 int boffset = 0;
2002
2003 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2004 &result, &boffset, type);
2005 return result;
2006 }
2007
2008 /* Helper function used by value_struct_elt to recurse through
2009 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2010 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2011 TYPE.
2012
2013 If found, return value, else if name matched and args not return
2014 (value) -1, else return NULL. */
2015
2016 static struct value *
2017 search_struct_method (const char *name, struct value **arg1p,
2018 struct value **args, int offset,
2019 int *static_memfuncp, struct type *type)
2020 {
2021 int i;
2022 struct value *v;
2023 int name_matched = 0;
2024 char dem_opname[64];
2025
2026 CHECK_TYPEDEF (type);
2027 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2028 {
2029 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2030
2031 /* FIXME! May need to check for ARM demangling here. */
2032 if (strncmp (t_field_name, "__", 2) == 0 ||
2033 strncmp (t_field_name, "op", 2) == 0 ||
2034 strncmp (t_field_name, "type", 4) == 0)
2035 {
2036 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2037 t_field_name = dem_opname;
2038 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2039 t_field_name = dem_opname;
2040 }
2041 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2042 {
2043 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2044 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2045
2046 name_matched = 1;
2047 check_stub_method_group (type, i);
2048 if (j > 0 && args == 0)
2049 error (_("cannot resolve overloaded method "
2050 "`%s': no arguments supplied"), name);
2051 else if (j == 0 && args == 0)
2052 {
2053 v = value_fn_field (arg1p, f, j, type, offset);
2054 if (v != NULL)
2055 return v;
2056 }
2057 else
2058 while (j >= 0)
2059 {
2060 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2061 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2062 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2063 TYPE_FN_FIELD_ARGS (f, j), args))
2064 {
2065 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2066 return value_virtual_fn_field (arg1p, f, j,
2067 type, offset);
2068 if (TYPE_FN_FIELD_STATIC_P (f, j)
2069 && static_memfuncp)
2070 *static_memfuncp = 1;
2071 v = value_fn_field (arg1p, f, j, type, offset);
2072 if (v != NULL)
2073 return v;
2074 }
2075 j--;
2076 }
2077 }
2078 }
2079
2080 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2081 {
2082 int base_offset;
2083 int this_offset;
2084
2085 if (BASETYPE_VIA_VIRTUAL (type, i))
2086 {
2087 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2088 struct value *base_val;
2089 const gdb_byte *base_valaddr;
2090
2091 /* The virtual base class pointer might have been
2092 clobbered by the user program. Make sure that it
2093 still points to a valid memory location. */
2094
2095 if (offset < 0 || offset >= TYPE_LENGTH (type))
2096 {
2097 gdb_byte *tmp;
2098 struct cleanup *back_to;
2099 CORE_ADDR address;
2100
2101 tmp = xmalloc (TYPE_LENGTH (baseclass));
2102 back_to = make_cleanup (xfree, tmp);
2103 address = value_address (*arg1p);
2104
2105 if (target_read_memory (address + offset,
2106 tmp, TYPE_LENGTH (baseclass)) != 0)
2107 error (_("virtual baseclass botch"));
2108
2109 base_val = value_from_contents_and_address (baseclass,
2110 tmp,
2111 address + offset);
2112 base_valaddr = value_contents_for_printing (base_val);
2113 this_offset = 0;
2114 do_cleanups (back_to);
2115 }
2116 else
2117 {
2118 base_val = *arg1p;
2119 base_valaddr = value_contents_for_printing (*arg1p);
2120 this_offset = offset;
2121 }
2122
2123 base_offset = baseclass_offset (type, i, base_valaddr,
2124 this_offset, value_address (base_val),
2125 base_val);
2126 }
2127 else
2128 {
2129 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2130 }
2131 v = search_struct_method (name, arg1p, args, base_offset + offset,
2132 static_memfuncp, TYPE_BASECLASS (type, i));
2133 if (v == (struct value *) - 1)
2134 {
2135 name_matched = 1;
2136 }
2137 else if (v)
2138 {
2139 /* FIXME-bothner: Why is this commented out? Why is it here? */
2140 /* *arg1p = arg1_tmp; */
2141 return v;
2142 }
2143 }
2144 if (name_matched)
2145 return (struct value *) - 1;
2146 else
2147 return NULL;
2148 }
2149
2150 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2151 extract the component named NAME from the ultimate target
2152 structure/union and return it as a value with its appropriate type.
2153 ERR is used in the error message if *ARGP's type is wrong.
2154
2155 C++: ARGS is a list of argument types to aid in the selection of
2156 an appropriate method. Also, handle derived types.
2157
2158 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2159 where the truthvalue of whether the function that was resolved was
2160 a static member function or not is stored.
2161
2162 ERR is an error message to be printed in case the field is not
2163 found. */
2164
2165 struct value *
2166 value_struct_elt (struct value **argp, struct value **args,
2167 const char *name, int *static_memfuncp, const char *err)
2168 {
2169 struct type *t;
2170 struct value *v;
2171
2172 *argp = coerce_array (*argp);
2173
2174 t = check_typedef (value_type (*argp));
2175
2176 /* Follow pointers until we get to a non-pointer. */
2177
2178 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2179 {
2180 *argp = value_ind (*argp);
2181 /* Don't coerce fn pointer to fn and then back again! */
2182 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2183 *argp = coerce_array (*argp);
2184 t = check_typedef (value_type (*argp));
2185 }
2186
2187 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2188 && TYPE_CODE (t) != TYPE_CODE_UNION)
2189 error (_("Attempt to extract a component of a value that is not a %s."),
2190 err);
2191
2192 /* Assume it's not, unless we see that it is. */
2193 if (static_memfuncp)
2194 *static_memfuncp = 0;
2195
2196 if (!args)
2197 {
2198 /* if there are no arguments ...do this... */
2199
2200 /* Try as a field first, because if we succeed, there is less
2201 work to be done. */
2202 v = search_struct_field (name, *argp, 0, t, 0);
2203 if (v)
2204 return v;
2205
2206 /* C++: If it was not found as a data field, then try to
2207 return it as a pointer to a method. */
2208 v = search_struct_method (name, argp, args, 0,
2209 static_memfuncp, t);
2210
2211 if (v == (struct value *) - 1)
2212 error (_("Cannot take address of method %s."), name);
2213 else if (v == 0)
2214 {
2215 if (TYPE_NFN_FIELDS (t))
2216 error (_("There is no member or method named %s."), name);
2217 else
2218 error (_("There is no member named %s."), name);
2219 }
2220 return v;
2221 }
2222
2223 v = search_struct_method (name, argp, args, 0,
2224 static_memfuncp, t);
2225
2226 if (v == (struct value *) - 1)
2227 {
2228 error (_("One of the arguments you tried to pass to %s could not "
2229 "be converted to what the function wants."), name);
2230 }
2231 else if (v == 0)
2232 {
2233 /* See if user tried to invoke data as function. If so, hand it
2234 back. If it's not callable (i.e., a pointer to function),
2235 gdb should give an error. */
2236 v = search_struct_field (name, *argp, 0, t, 0);
2237 /* If we found an ordinary field, then it is not a method call.
2238 So, treat it as if it were a static member function. */
2239 if (v && static_memfuncp)
2240 *static_memfuncp = 1;
2241 }
2242
2243 if (!v)
2244 throw_error (NOT_FOUND_ERROR,
2245 _("Structure has no component named %s."), name);
2246 return v;
2247 }
2248
2249 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2250 to a structure or union, extract and return its component (field) of
2251 type FTYPE at the specified BITPOS.
2252 Throw an exception on error. */
2253
2254 struct value *
2255 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2256 const char *err)
2257 {
2258 struct type *t;
2259 struct value *v;
2260 int i;
2261 int nbases;
2262
2263 *argp = coerce_array (*argp);
2264
2265 t = check_typedef (value_type (*argp));
2266
2267 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2268 {
2269 *argp = value_ind (*argp);
2270 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2271 *argp = coerce_array (*argp);
2272 t = check_typedef (value_type (*argp));
2273 }
2274
2275 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2276 && TYPE_CODE (t) != TYPE_CODE_UNION)
2277 error (_("Attempt to extract a component of a value that is not a %s."),
2278 err);
2279
2280 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2281 {
2282 if (!field_is_static (&TYPE_FIELD (t, i))
2283 && bitpos == TYPE_FIELD_BITPOS (t, i)
2284 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2285 return value_primitive_field (*argp, 0, i, t);
2286 }
2287
2288 error (_("No field with matching bitpos and type."));
2289
2290 /* Never hit. */
2291 return NULL;
2292 }
2293
2294 /* Search through the methods of an object (and its bases) to find a
2295 specified method. Return the pointer to the fn_field list of
2296 overloaded instances.
2297
2298 Helper function for value_find_oload_list.
2299 ARGP is a pointer to a pointer to a value (the object).
2300 METHOD is a string containing the method name.
2301 OFFSET is the offset within the value.
2302 TYPE is the assumed type of the object.
2303 NUM_FNS is the number of overloaded instances.
2304 BASETYPE is set to the actual type of the subobject where the
2305 method is found.
2306 BOFFSET is the offset of the base subobject where the method is found. */
2307
2308 static struct fn_field *
2309 find_method_list (struct value **argp, const char *method,
2310 int offset, struct type *type, int *num_fns,
2311 struct type **basetype, int *boffset)
2312 {
2313 int i;
2314 struct fn_field *f;
2315 CHECK_TYPEDEF (type);
2316
2317 *num_fns = 0;
2318
2319 /* First check in object itself. */
2320 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2321 {
2322 /* pai: FIXME What about operators and type conversions? */
2323 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2324
2325 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2326 {
2327 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2328 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2329
2330 *num_fns = len;
2331 *basetype = type;
2332 *boffset = offset;
2333
2334 /* Resolve any stub methods. */
2335 check_stub_method_group (type, i);
2336
2337 return f;
2338 }
2339 }
2340
2341 /* Not found in object, check in base subobjects. */
2342 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2343 {
2344 int base_offset;
2345
2346 if (BASETYPE_VIA_VIRTUAL (type, i))
2347 {
2348 base_offset = baseclass_offset (type, i,
2349 value_contents_for_printing (*argp),
2350 value_offset (*argp) + offset,
2351 value_address (*argp), *argp);
2352 }
2353 else /* Non-virtual base, simply use bit position from debug
2354 info. */
2355 {
2356 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2357 }
2358 f = find_method_list (argp, method, base_offset + offset,
2359 TYPE_BASECLASS (type, i), num_fns,
2360 basetype, boffset);
2361 if (f)
2362 return f;
2363 }
2364 return NULL;
2365 }
2366
2367 /* Return the list of overloaded methods of a specified name.
2368
2369 ARGP is a pointer to a pointer to a value (the object).
2370 METHOD is the method name.
2371 OFFSET is the offset within the value contents.
2372 NUM_FNS is the number of overloaded instances.
2373 BASETYPE is set to the type of the base subobject that defines the
2374 method.
2375 BOFFSET is the offset of the base subobject which defines the method. */
2376
2377 static struct fn_field *
2378 value_find_oload_method_list (struct value **argp, const char *method,
2379 int offset, int *num_fns,
2380 struct type **basetype, int *boffset)
2381 {
2382 struct type *t;
2383
2384 t = check_typedef (value_type (*argp));
2385
2386 /* Code snarfed from value_struct_elt. */
2387 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2388 {
2389 *argp = value_ind (*argp);
2390 /* Don't coerce fn pointer to fn and then back again! */
2391 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2392 *argp = coerce_array (*argp);
2393 t = check_typedef (value_type (*argp));
2394 }
2395
2396 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2397 && TYPE_CODE (t) != TYPE_CODE_UNION)
2398 error (_("Attempt to extract a component of a "
2399 "value that is not a struct or union"));
2400
2401 return find_method_list (argp, method, 0, t, num_fns,
2402 basetype, boffset);
2403 }
2404
2405 /* Given an array of arguments (ARGS) (which includes an
2406 entry for "this" in the case of C++ methods), the number of
2407 arguments NARGS, the NAME of a function, and whether it's a method or
2408 not (METHOD), find the best function that matches on the argument types
2409 according to the overload resolution rules.
2410
2411 METHOD can be one of three values:
2412 NON_METHOD for non-member functions.
2413 METHOD: for member functions.
2414 BOTH: used for overload resolution of operators where the
2415 candidates are expected to be either member or non member
2416 functions. In this case the first argument ARGTYPES
2417 (representing 'this') is expected to be a reference to the
2418 target object, and will be dereferenced when attempting the
2419 non-member search.
2420
2421 In the case of class methods, the parameter OBJ is an object value
2422 in which to search for overloaded methods.
2423
2424 In the case of non-method functions, the parameter FSYM is a symbol
2425 corresponding to one of the overloaded functions.
2426
2427 Return value is an integer: 0 -> good match, 10 -> debugger applied
2428 non-standard coercions, 100 -> incompatible.
2429
2430 If a method is being searched for, VALP will hold the value.
2431 If a non-method is being searched for, SYMP will hold the symbol
2432 for it.
2433
2434 If a method is being searched for, and it is a static method,
2435 then STATICP will point to a non-zero value.
2436
2437 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2438 ADL overload candidates when performing overload resolution for a fully
2439 qualified name.
2440
2441 Note: This function does *not* check the value of
2442 overload_resolution. Caller must check it to see whether overload
2443 resolution is permitted. */
2444
2445 int
2446 find_overload_match (struct value **args, int nargs,
2447 const char *name, enum oload_search_type method,
2448 struct value **objp, struct symbol *fsym,
2449 struct value **valp, struct symbol **symp,
2450 int *staticp, const int no_adl)
2451 {
2452 struct value *obj = (objp ? *objp : NULL);
2453 struct type *obj_type = obj ? value_type (obj) : NULL;
2454 /* Index of best overloaded function. */
2455 int func_oload_champ = -1;
2456 int method_oload_champ = -1;
2457
2458 /* The measure for the current best match. */
2459 struct badness_vector *method_badness = NULL;
2460 struct badness_vector *func_badness = NULL;
2461
2462 struct value *temp = obj;
2463 /* For methods, the list of overloaded methods. */
2464 struct fn_field *fns_ptr = NULL;
2465 /* For non-methods, the list of overloaded function symbols. */
2466 struct symbol **oload_syms = NULL;
2467 /* Number of overloaded instances being considered. */
2468 int num_fns = 0;
2469 struct type *basetype = NULL;
2470 int boffset;
2471
2472 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2473
2474 const char *obj_type_name = NULL;
2475 const char *func_name = NULL;
2476 enum oload_classification match_quality;
2477 enum oload_classification method_match_quality = INCOMPATIBLE;
2478 enum oload_classification func_match_quality = INCOMPATIBLE;
2479
2480 /* Get the list of overloaded methods or functions. */
2481 if (method == METHOD || method == BOTH)
2482 {
2483 gdb_assert (obj);
2484
2485 /* OBJ may be a pointer value rather than the object itself. */
2486 obj = coerce_ref (obj);
2487 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2488 obj = coerce_ref (value_ind (obj));
2489 obj_type_name = TYPE_NAME (value_type (obj));
2490
2491 /* First check whether this is a data member, e.g. a pointer to
2492 a function. */
2493 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2494 {
2495 *valp = search_struct_field (name, obj, 0,
2496 check_typedef (value_type (obj)), 0);
2497 if (*valp)
2498 {
2499 *staticp = 1;
2500 do_cleanups (all_cleanups);
2501 return 0;
2502 }
2503 }
2504
2505 /* Retrieve the list of methods with the name NAME. */
2506 fns_ptr = value_find_oload_method_list (&temp, name,
2507 0, &num_fns,
2508 &basetype, &boffset);
2509 /* If this is a method only search, and no methods were found
2510 the search has faild. */
2511 if (method == METHOD && (!fns_ptr || !num_fns))
2512 error (_("Couldn't find method %s%s%s"),
2513 obj_type_name,
2514 (obj_type_name && *obj_type_name) ? "::" : "",
2515 name);
2516 /* If we are dealing with stub method types, they should have
2517 been resolved by find_method_list via
2518 value_find_oload_method_list above. */
2519 if (fns_ptr)
2520 {
2521 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2522 method_oload_champ = find_oload_champ (args, nargs, method,
2523 num_fns, fns_ptr,
2524 oload_syms, &method_badness);
2525
2526 method_match_quality =
2527 classify_oload_match (method_badness, nargs,
2528 oload_method_static (method, fns_ptr,
2529 method_oload_champ));
2530
2531 make_cleanup (xfree, method_badness);
2532 }
2533
2534 }
2535
2536 if (method == NON_METHOD || method == BOTH)
2537 {
2538 const char *qualified_name = NULL;
2539
2540 /* If the overload match is being search for both as a method
2541 and non member function, the first argument must now be
2542 dereferenced. */
2543 if (method == BOTH)
2544 args[0] = value_ind (args[0]);
2545
2546 if (fsym)
2547 {
2548 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2549
2550 /* If we have a function with a C++ name, try to extract just
2551 the function part. Do not try this for non-functions (e.g.
2552 function pointers). */
2553 if (qualified_name
2554 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2555 == TYPE_CODE_FUNC)
2556 {
2557 char *temp;
2558
2559 temp = cp_func_name (qualified_name);
2560
2561 /* If cp_func_name did not remove anything, the name of the
2562 symbol did not include scope or argument types - it was
2563 probably a C-style function. */
2564 if (temp)
2565 {
2566 make_cleanup (xfree, temp);
2567 if (strcmp (temp, qualified_name) == 0)
2568 func_name = NULL;
2569 else
2570 func_name = temp;
2571 }
2572 }
2573 }
2574 else
2575 {
2576 func_name = name;
2577 qualified_name = name;
2578 }
2579
2580 /* If there was no C++ name, this must be a C-style function or
2581 not a function at all. Just return the same symbol. Do the
2582 same if cp_func_name fails for some reason. */
2583 if (func_name == NULL)
2584 {
2585 *symp = fsym;
2586 do_cleanups (all_cleanups);
2587 return 0;
2588 }
2589
2590 func_oload_champ = find_oload_champ_namespace (args, nargs,
2591 func_name,
2592 qualified_name,
2593 &oload_syms,
2594 &func_badness,
2595 no_adl);
2596
2597 if (func_oload_champ >= 0)
2598 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2599
2600 make_cleanup (xfree, oload_syms);
2601 make_cleanup (xfree, func_badness);
2602 }
2603
2604 /* Did we find a match ? */
2605 if (method_oload_champ == -1 && func_oload_champ == -1)
2606 throw_error (NOT_FOUND_ERROR,
2607 _("No symbol \"%s\" in current context."),
2608 name);
2609
2610 /* If we have found both a method match and a function
2611 match, find out which one is better, and calculate match
2612 quality. */
2613 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2614 {
2615 switch (compare_badness (func_badness, method_badness))
2616 {
2617 case 0: /* Top two contenders are equally good. */
2618 /* FIXME: GDB does not support the general ambiguous case.
2619 All candidates should be collected and presented the
2620 user. */
2621 error (_("Ambiguous overload resolution"));
2622 break;
2623 case 1: /* Incomparable top contenders. */
2624 /* This is an error incompatible candidates
2625 should not have been proposed. */
2626 error (_("Internal error: incompatible "
2627 "overload candidates proposed"));
2628 break;
2629 case 2: /* Function champion. */
2630 method_oload_champ = -1;
2631 match_quality = func_match_quality;
2632 break;
2633 case 3: /* Method champion. */
2634 func_oload_champ = -1;
2635 match_quality = method_match_quality;
2636 break;
2637 default:
2638 error (_("Internal error: unexpected overload comparison result"));
2639 break;
2640 }
2641 }
2642 else
2643 {
2644 /* We have either a method match or a function match. */
2645 if (method_oload_champ >= 0)
2646 match_quality = method_match_quality;
2647 else
2648 match_quality = func_match_quality;
2649 }
2650
2651 if (match_quality == INCOMPATIBLE)
2652 {
2653 if (method == METHOD)
2654 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2655 obj_type_name,
2656 (obj_type_name && *obj_type_name) ? "::" : "",
2657 name);
2658 else
2659 error (_("Cannot resolve function %s to any overloaded instance"),
2660 func_name);
2661 }
2662 else if (match_quality == NON_STANDARD)
2663 {
2664 if (method == METHOD)
2665 warning (_("Using non-standard conversion to match "
2666 "method %s%s%s to supplied arguments"),
2667 obj_type_name,
2668 (obj_type_name && *obj_type_name) ? "::" : "",
2669 name);
2670 else
2671 warning (_("Using non-standard conversion to match "
2672 "function %s to supplied arguments"),
2673 func_name);
2674 }
2675
2676 if (staticp != NULL)
2677 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2678
2679 if (method_oload_champ >= 0)
2680 {
2681 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2682 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2683 basetype, boffset);
2684 else
2685 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2686 basetype, boffset);
2687 }
2688 else
2689 *symp = oload_syms[func_oload_champ];
2690
2691 if (objp)
2692 {
2693 struct type *temp_type = check_typedef (value_type (temp));
2694 struct type *objtype = check_typedef (obj_type);
2695
2696 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2697 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2698 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2699 {
2700 temp = value_addr (temp);
2701 }
2702 *objp = temp;
2703 }
2704
2705 do_cleanups (all_cleanups);
2706
2707 switch (match_quality)
2708 {
2709 case INCOMPATIBLE:
2710 return 100;
2711 case NON_STANDARD:
2712 return 10;
2713 default: /* STANDARD */
2714 return 0;
2715 }
2716 }
2717
2718 /* Find the best overload match, searching for FUNC_NAME in namespaces
2719 contained in QUALIFIED_NAME until it either finds a good match or
2720 runs out of namespaces. It stores the overloaded functions in
2721 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2722 calling function is responsible for freeing *OLOAD_SYMS and
2723 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2724 performned. */
2725
2726 static int
2727 find_oload_champ_namespace (struct value **args, int nargs,
2728 const char *func_name,
2729 const char *qualified_name,
2730 struct symbol ***oload_syms,
2731 struct badness_vector **oload_champ_bv,
2732 const int no_adl)
2733 {
2734 int oload_champ;
2735
2736 find_oload_champ_namespace_loop (args, nargs,
2737 func_name,
2738 qualified_name, 0,
2739 oload_syms, oload_champ_bv,
2740 &oload_champ,
2741 no_adl);
2742
2743 return oload_champ;
2744 }
2745
2746 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2747 how deep we've looked for namespaces, and the champ is stored in
2748 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2749 if it isn't. Other arguments are the same as in
2750 find_oload_champ_namespace
2751
2752 It is the caller's responsibility to free *OLOAD_SYMS and
2753 *OLOAD_CHAMP_BV. */
2754
2755 static int
2756 find_oload_champ_namespace_loop (struct value **args, int nargs,
2757 const char *func_name,
2758 const char *qualified_name,
2759 int namespace_len,
2760 struct symbol ***oload_syms,
2761 struct badness_vector **oload_champ_bv,
2762 int *oload_champ,
2763 const int no_adl)
2764 {
2765 int next_namespace_len = namespace_len;
2766 int searched_deeper = 0;
2767 int num_fns = 0;
2768 struct cleanup *old_cleanups;
2769 int new_oload_champ;
2770 struct symbol **new_oload_syms;
2771 struct badness_vector *new_oload_champ_bv;
2772 char *new_namespace;
2773
2774 if (next_namespace_len != 0)
2775 {
2776 gdb_assert (qualified_name[next_namespace_len] == ':');
2777 next_namespace_len += 2;
2778 }
2779 next_namespace_len +=
2780 cp_find_first_component (qualified_name + next_namespace_len);
2781
2782 /* Initialize these to values that can safely be xfree'd. */
2783 *oload_syms = NULL;
2784 *oload_champ_bv = NULL;
2785
2786 /* First, see if we have a deeper namespace we can search in.
2787 If we get a good match there, use it. */
2788
2789 if (qualified_name[next_namespace_len] == ':')
2790 {
2791 searched_deeper = 1;
2792
2793 if (find_oload_champ_namespace_loop (args, nargs,
2794 func_name, qualified_name,
2795 next_namespace_len,
2796 oload_syms, oload_champ_bv,
2797 oload_champ, no_adl))
2798 {
2799 return 1;
2800 }
2801 };
2802
2803 /* If we reach here, either we're in the deepest namespace or we
2804 didn't find a good match in a deeper namespace. But, in the
2805 latter case, we still have a bad match in a deeper namespace;
2806 note that we might not find any match at all in the current
2807 namespace. (There's always a match in the deepest namespace,
2808 because this overload mechanism only gets called if there's a
2809 function symbol to start off with.) */
2810
2811 old_cleanups = make_cleanup (xfree, *oload_syms);
2812 make_cleanup (xfree, *oload_champ_bv);
2813 new_namespace = alloca (namespace_len + 1);
2814 strncpy (new_namespace, qualified_name, namespace_len);
2815 new_namespace[namespace_len] = '\0';
2816 new_oload_syms = make_symbol_overload_list (func_name,
2817 new_namespace);
2818
2819 /* If we have reached the deepest level perform argument
2820 determined lookup. */
2821 if (!searched_deeper && !no_adl)
2822 {
2823 int ix;
2824 struct type **arg_types;
2825
2826 /* Prepare list of argument types for overload resolution. */
2827 arg_types = (struct type **)
2828 alloca (nargs * (sizeof (struct type *)));
2829 for (ix = 0; ix < nargs; ix++)
2830 arg_types[ix] = value_type (args[ix]);
2831 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2832 }
2833
2834 while (new_oload_syms[num_fns])
2835 ++num_fns;
2836
2837 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2838 NULL, new_oload_syms,
2839 &new_oload_champ_bv);
2840
2841 /* Case 1: We found a good match. Free earlier matches (if any),
2842 and return it. Case 2: We didn't find a good match, but we're
2843 not the deepest function. Then go with the bad match that the
2844 deeper function found. Case 3: We found a bad match, and we're
2845 the deepest function. Then return what we found, even though
2846 it's a bad match. */
2847
2848 if (new_oload_champ != -1
2849 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2850 {
2851 *oload_syms = new_oload_syms;
2852 *oload_champ = new_oload_champ;
2853 *oload_champ_bv = new_oload_champ_bv;
2854 do_cleanups (old_cleanups);
2855 return 1;
2856 }
2857 else if (searched_deeper)
2858 {
2859 xfree (new_oload_syms);
2860 xfree (new_oload_champ_bv);
2861 discard_cleanups (old_cleanups);
2862 return 0;
2863 }
2864 else
2865 {
2866 *oload_syms = new_oload_syms;
2867 *oload_champ = new_oload_champ;
2868 *oload_champ_bv = new_oload_champ_bv;
2869 do_cleanups (old_cleanups);
2870 return 0;
2871 }
2872 }
2873
2874 /* Look for a function to take NARGS args of ARGS. Find
2875 the best match from among the overloaded methods or functions
2876 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2877 The number of methods/functions in the list is given by NUM_FNS.
2878 Return the index of the best match; store an indication of the
2879 quality of the match in OLOAD_CHAMP_BV.
2880
2881 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2882
2883 static int
2884 find_oload_champ (struct value **args, int nargs, int method,
2885 int num_fns, struct fn_field *fns_ptr,
2886 struct symbol **oload_syms,
2887 struct badness_vector **oload_champ_bv)
2888 {
2889 int ix;
2890 /* A measure of how good an overloaded instance is. */
2891 struct badness_vector *bv;
2892 /* Index of best overloaded function. */
2893 int oload_champ = -1;
2894 /* Current ambiguity state for overload resolution. */
2895 int oload_ambiguous = 0;
2896 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2897
2898 *oload_champ_bv = NULL;
2899
2900 /* Consider each candidate in turn. */
2901 for (ix = 0; ix < num_fns; ix++)
2902 {
2903 int jj;
2904 int static_offset = oload_method_static (method, fns_ptr, ix);
2905 int nparms;
2906 struct type **parm_types;
2907
2908 if (method)
2909 {
2910 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2911 }
2912 else
2913 {
2914 /* If it's not a method, this is the proper place. */
2915 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2916 }
2917
2918 /* Prepare array of parameter types. */
2919 parm_types = (struct type **)
2920 xmalloc (nparms * (sizeof (struct type *)));
2921 for (jj = 0; jj < nparms; jj++)
2922 parm_types[jj] = (method
2923 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2924 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2925 jj));
2926
2927 /* Compare parameter types to supplied argument types. Skip
2928 THIS for static methods. */
2929 bv = rank_function (parm_types, nparms,
2930 args + static_offset,
2931 nargs - static_offset);
2932
2933 if (!*oload_champ_bv)
2934 {
2935 *oload_champ_bv = bv;
2936 oload_champ = 0;
2937 }
2938 else /* See whether current candidate is better or worse than
2939 previous best. */
2940 switch (compare_badness (bv, *oload_champ_bv))
2941 {
2942 case 0: /* Top two contenders are equally good. */
2943 oload_ambiguous = 1;
2944 break;
2945 case 1: /* Incomparable top contenders. */
2946 oload_ambiguous = 2;
2947 break;
2948 case 2: /* New champion, record details. */
2949 *oload_champ_bv = bv;
2950 oload_ambiguous = 0;
2951 oload_champ = ix;
2952 break;
2953 case 3:
2954 default:
2955 break;
2956 }
2957 xfree (parm_types);
2958 if (overload_debug)
2959 {
2960 if (method)
2961 fprintf_filtered (gdb_stderr,
2962 "Overloaded method instance %s, # of parms %d\n",
2963 fns_ptr[ix].physname, nparms);
2964 else
2965 fprintf_filtered (gdb_stderr,
2966 "Overloaded function instance "
2967 "%s # of parms %d\n",
2968 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2969 nparms);
2970 for (jj = 0; jj < nargs - static_offset; jj++)
2971 fprintf_filtered (gdb_stderr,
2972 "...Badness @ %d : %d\n",
2973 jj, bv->rank[jj].rank);
2974 fprintf_filtered (gdb_stderr, "Overload resolution "
2975 "champion is %d, ambiguous? %d\n",
2976 oload_champ, oload_ambiguous);
2977 }
2978 }
2979
2980 return oload_champ;
2981 }
2982
2983 /* Return 1 if we're looking at a static method, 0 if we're looking at
2984 a non-static method or a function that isn't a method. */
2985
2986 static int
2987 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2988 {
2989 if (method && fns_ptr && index >= 0
2990 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2991 return 1;
2992 else
2993 return 0;
2994 }
2995
2996 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2997
2998 static enum oload_classification
2999 classify_oload_match (struct badness_vector *oload_champ_bv,
3000 int nargs,
3001 int static_offset)
3002 {
3003 int ix;
3004 enum oload_classification worst = STANDARD;
3005
3006 for (ix = 1; ix <= nargs - static_offset; ix++)
3007 {
3008 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3009 or worse return INCOMPATIBLE. */
3010 if (compare_ranks (oload_champ_bv->rank[ix],
3011 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3012 return INCOMPATIBLE; /* Truly mismatched types. */
3013 /* Otherwise If this conversion is as bad as
3014 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3015 else if (compare_ranks (oload_champ_bv->rank[ix],
3016 NS_POINTER_CONVERSION_BADNESS) <= 0)
3017 worst = NON_STANDARD; /* Non-standard type conversions
3018 needed. */
3019 }
3020
3021 /* If no INCOMPATIBLE classification was found, return the worst one
3022 that was found (if any). */
3023 return worst;
3024 }
3025
3026 /* C++: return 1 is NAME is a legitimate name for the destructor of
3027 type TYPE. If TYPE does not have a destructor, or if NAME is
3028 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3029 have CHECK_TYPEDEF applied, this function will apply it itself. */
3030
3031 int
3032 destructor_name_p (const char *name, struct type *type)
3033 {
3034 if (name[0] == '~')
3035 {
3036 const char *dname = type_name_no_tag_or_error (type);
3037 const char *cp = strchr (dname, '<');
3038 unsigned int len;
3039
3040 /* Do not compare the template part for template classes. */
3041 if (cp == NULL)
3042 len = strlen (dname);
3043 else
3044 len = cp - dname;
3045 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3046 error (_("name of destructor must equal name of class"));
3047 else
3048 return 1;
3049 }
3050 return 0;
3051 }
3052
3053 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3054 return the appropriate member (or the address of the member, if
3055 WANT_ADDRESS). This function is used to resolve user expressions
3056 of the form "DOMAIN::NAME". For more details on what happens, see
3057 the comment before value_struct_elt_for_reference. */
3058
3059 struct value *
3060 value_aggregate_elt (struct type *curtype, char *name,
3061 struct type *expect_type, int want_address,
3062 enum noside noside)
3063 {
3064 switch (TYPE_CODE (curtype))
3065 {
3066 case TYPE_CODE_STRUCT:
3067 case TYPE_CODE_UNION:
3068 return value_struct_elt_for_reference (curtype, 0, curtype,
3069 name, expect_type,
3070 want_address, noside);
3071 case TYPE_CODE_NAMESPACE:
3072 return value_namespace_elt (curtype, name,
3073 want_address, noside);
3074 default:
3075 internal_error (__FILE__, __LINE__,
3076 _("non-aggregate type in value_aggregate_elt"));
3077 }
3078 }
3079
3080 /* Compares the two method/function types T1 and T2 for "equality"
3081 with respect to the methods' parameters. If the types of the
3082 two parameter lists are the same, returns 1; 0 otherwise. This
3083 comparison may ignore any artificial parameters in T1 if
3084 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3085 the first artificial parameter in T1, assumed to be a 'this' pointer.
3086
3087 The type T2 is expected to have come from make_params (in eval.c). */
3088
3089 static int
3090 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3091 {
3092 int start = 0;
3093
3094 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3095 ++start;
3096
3097 /* If skipping artificial fields, find the first real field
3098 in T1. */
3099 if (skip_artificial)
3100 {
3101 while (start < TYPE_NFIELDS (t1)
3102 && TYPE_FIELD_ARTIFICIAL (t1, start))
3103 ++start;
3104 }
3105
3106 /* Now compare parameters. */
3107
3108 /* Special case: a method taking void. T1 will contain no
3109 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3110 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3111 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3112 return 1;
3113
3114 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3115 {
3116 int i;
3117
3118 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3119 {
3120 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3121 TYPE_FIELD_TYPE (t2, i), NULL),
3122 EXACT_MATCH_BADNESS) != 0)
3123 return 0;
3124 }
3125
3126 return 1;
3127 }
3128
3129 return 0;
3130 }
3131
3132 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3133 return the address of this member as a "pointer to member" type.
3134 If INTYPE is non-null, then it will be the type of the member we
3135 are looking for. This will help us resolve "pointers to member
3136 functions". This function is used to resolve user expressions of
3137 the form "DOMAIN::NAME". */
3138
3139 static struct value *
3140 value_struct_elt_for_reference (struct type *domain, int offset,
3141 struct type *curtype, char *name,
3142 struct type *intype,
3143 int want_address,
3144 enum noside noside)
3145 {
3146 struct type *t = curtype;
3147 int i;
3148 struct value *v, *result;
3149
3150 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3151 && TYPE_CODE (t) != TYPE_CODE_UNION)
3152 error (_("Internal error: non-aggregate type "
3153 "to value_struct_elt_for_reference"));
3154
3155 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3156 {
3157 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3158
3159 if (t_field_name && strcmp (t_field_name, name) == 0)
3160 {
3161 if (field_is_static (&TYPE_FIELD (t, i)))
3162 {
3163 v = value_static_field (t, i);
3164 if (want_address)
3165 v = value_addr (v);
3166 return v;
3167 }
3168 if (TYPE_FIELD_PACKED (t, i))
3169 error (_("pointers to bitfield members not allowed"));
3170
3171 if (want_address)
3172 return value_from_longest
3173 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3174 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3175 else if (noside != EVAL_NORMAL)
3176 return allocate_value (TYPE_FIELD_TYPE (t, i));
3177 else
3178 {
3179 /* Try to evaluate NAME as a qualified name with implicit
3180 this pointer. In this case, attempt to return the
3181 equivalent to `this->*(&TYPE::NAME)'. */
3182 v = value_of_this_silent (current_language);
3183 if (v != NULL)
3184 {
3185 struct value *ptr;
3186 long mem_offset;
3187 struct type *type, *tmp;
3188
3189 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3190 type = check_typedef (value_type (ptr));
3191 gdb_assert (type != NULL
3192 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3193 tmp = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
3194 v = value_cast_pointers (tmp, v, 1);
3195 mem_offset = value_as_long (ptr);
3196 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3197 result = value_from_pointer (tmp,
3198 value_as_long (v) + mem_offset);
3199 return value_ind (result);
3200 }
3201
3202 error (_("Cannot reference non-static field \"%s\""), name);
3203 }
3204 }
3205 }
3206
3207 /* C++: If it was not found as a data field, then try to return it
3208 as a pointer to a method. */
3209
3210 /* Perform all necessary dereferencing. */
3211 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3212 intype = TYPE_TARGET_TYPE (intype);
3213
3214 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3215 {
3216 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3217 char dem_opname[64];
3218
3219 if (strncmp (t_field_name, "__", 2) == 0
3220 || strncmp (t_field_name, "op", 2) == 0
3221 || strncmp (t_field_name, "type", 4) == 0)
3222 {
3223 if (cplus_demangle_opname (t_field_name,
3224 dem_opname, DMGL_ANSI))
3225 t_field_name = dem_opname;
3226 else if (cplus_demangle_opname (t_field_name,
3227 dem_opname, 0))
3228 t_field_name = dem_opname;
3229 }
3230 if (t_field_name && strcmp (t_field_name, name) == 0)
3231 {
3232 int j;
3233 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3234 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3235
3236 check_stub_method_group (t, i);
3237
3238 if (intype)
3239 {
3240 for (j = 0; j < len; ++j)
3241 {
3242 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3243 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3244 intype, 1))
3245 break;
3246 }
3247
3248 if (j == len)
3249 error (_("no member function matches "
3250 "that type instantiation"));
3251 }
3252 else
3253 {
3254 int ii;
3255
3256 j = -1;
3257 for (ii = 0; ii < len; ++ii)
3258 {
3259 /* Skip artificial methods. This is necessary if,
3260 for example, the user wants to "print
3261 subclass::subclass" with only one user-defined
3262 constructor. There is no ambiguity in this case.
3263 We are careful here to allow artificial methods
3264 if they are the unique result. */
3265 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3266 {
3267 if (j == -1)
3268 j = ii;
3269 continue;
3270 }
3271
3272 /* Desired method is ambiguous if more than one
3273 method is defined. */
3274 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3275 error (_("non-unique member `%s' requires "
3276 "type instantiation"), name);
3277
3278 j = ii;
3279 }
3280
3281 if (j == -1)
3282 error (_("no matching member function"));
3283 }
3284
3285 if (TYPE_FN_FIELD_STATIC_P (f, j))
3286 {
3287 struct symbol *s =
3288 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3289 0, VAR_DOMAIN, 0);
3290
3291 if (s == NULL)
3292 return NULL;
3293
3294 if (want_address)
3295 return value_addr (read_var_value (s, 0));
3296 else
3297 return read_var_value (s, 0);
3298 }
3299
3300 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3301 {
3302 if (want_address)
3303 {
3304 result = allocate_value
3305 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3306 cplus_make_method_ptr (value_type (result),
3307 value_contents_writeable (result),
3308 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3309 }
3310 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3311 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3312 else
3313 error (_("Cannot reference virtual member function \"%s\""),
3314 name);
3315 }
3316 else
3317 {
3318 struct symbol *s =
3319 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3320 0, VAR_DOMAIN, 0);
3321
3322 if (s == NULL)
3323 return NULL;
3324
3325 v = read_var_value (s, 0);
3326 if (!want_address)
3327 result = v;
3328 else
3329 {
3330 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3331 cplus_make_method_ptr (value_type (result),
3332 value_contents_writeable (result),
3333 value_address (v), 0);
3334 }
3335 }
3336 return result;
3337 }
3338 }
3339 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3340 {
3341 struct value *v;
3342 int base_offset;
3343
3344 if (BASETYPE_VIA_VIRTUAL (t, i))
3345 base_offset = 0;
3346 else
3347 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3348 v = value_struct_elt_for_reference (domain,
3349 offset + base_offset,
3350 TYPE_BASECLASS (t, i),
3351 name, intype,
3352 want_address, noside);
3353 if (v)
3354 return v;
3355 }
3356
3357 /* As a last chance, pretend that CURTYPE is a namespace, and look
3358 it up that way; this (frequently) works for types nested inside
3359 classes. */
3360
3361 return value_maybe_namespace_elt (curtype, name,
3362 want_address, noside);
3363 }
3364
3365 /* C++: Return the member NAME of the namespace given by the type
3366 CURTYPE. */
3367
3368 static struct value *
3369 value_namespace_elt (const struct type *curtype,
3370 char *name, int want_address,
3371 enum noside noside)
3372 {
3373 struct value *retval = value_maybe_namespace_elt (curtype, name,
3374 want_address,
3375 noside);
3376
3377 if (retval == NULL)
3378 error (_("No symbol \"%s\" in namespace \"%s\"."),
3379 name, TYPE_TAG_NAME (curtype));
3380
3381 return retval;
3382 }
3383
3384 /* A helper function used by value_namespace_elt and
3385 value_struct_elt_for_reference. It looks up NAME inside the
3386 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3387 is a class and NAME refers to a type in CURTYPE itself (as opposed
3388 to, say, some base class of CURTYPE). */
3389
3390 static struct value *
3391 value_maybe_namespace_elt (const struct type *curtype,
3392 char *name, int want_address,
3393 enum noside noside)
3394 {
3395 const char *namespace_name = TYPE_TAG_NAME (curtype);
3396 struct symbol *sym;
3397 struct value *result;
3398
3399 sym = cp_lookup_symbol_namespace (namespace_name, name,
3400 get_selected_block (0), VAR_DOMAIN);
3401
3402 if (sym == NULL)
3403 {
3404 char *concatenated_name = alloca (strlen (namespace_name) + 2
3405 + strlen (name) + 1);
3406
3407 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3408 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3409 }
3410
3411 if (sym == NULL)
3412 return NULL;
3413 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3414 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3415 result = allocate_value (SYMBOL_TYPE (sym));
3416 else
3417 result = value_of_variable (sym, get_selected_block (0));
3418
3419 if (result && want_address)
3420 result = value_addr (result);
3421
3422 return result;
3423 }
3424
3425 /* Given a pointer or a reference value V, find its real (RTTI) type.
3426
3427 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3428 and refer to the values computed for the object pointed to. */
3429
3430 struct type *
3431 value_rtti_indirect_type (struct value *v, int *full,
3432 int *top, int *using_enc)
3433 {
3434 struct value *target;
3435 struct type *type, *real_type, *target_type;
3436
3437 type = value_type (v);
3438 type = check_typedef (type);
3439 if (TYPE_CODE (type) == TYPE_CODE_REF)
3440 target = coerce_ref (v);
3441 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3442 target = value_ind (v);
3443 else
3444 return NULL;
3445
3446 real_type = value_rtti_type (target, full, top, using_enc);
3447
3448 if (real_type)
3449 {
3450 /* Copy qualifiers to the referenced object. */
3451 target_type = value_type (target);
3452 real_type = make_cv_type (TYPE_CONST (target_type),
3453 TYPE_VOLATILE (target_type), real_type, NULL);
3454 if (TYPE_CODE (type) == TYPE_CODE_REF)
3455 real_type = lookup_reference_type (real_type);
3456 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3457 real_type = lookup_pointer_type (real_type);
3458 else
3459 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3460
3461 /* Copy qualifiers to the pointer/reference. */
3462 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3463 real_type, NULL);
3464 }
3465
3466 return real_type;
3467 }
3468
3469 /* Given a value pointed to by ARGP, check its real run-time type, and
3470 if that is different from the enclosing type, create a new value
3471 using the real run-time type as the enclosing type (and of the same
3472 type as ARGP) and return it, with the embedded offset adjusted to
3473 be the correct offset to the enclosed object. RTYPE is the type,
3474 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3475 by value_rtti_type(). If these are available, they can be supplied
3476 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3477 NULL if they're not available. */
3478
3479 struct value *
3480 value_full_object (struct value *argp,
3481 struct type *rtype,
3482 int xfull, int xtop,
3483 int xusing_enc)
3484 {
3485 struct type *real_type;
3486 int full = 0;
3487 int top = -1;
3488 int using_enc = 0;
3489 struct value *new_val;
3490
3491 if (rtype)
3492 {
3493 real_type = rtype;
3494 full = xfull;
3495 top = xtop;
3496 using_enc = xusing_enc;
3497 }
3498 else
3499 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3500
3501 /* If no RTTI data, or if object is already complete, do nothing. */
3502 if (!real_type || real_type == value_enclosing_type (argp))
3503 return argp;
3504
3505 /* In a destructor we might see a real type that is a superclass of
3506 the object's type. In this case it is better to leave the object
3507 as-is. */
3508 if (full
3509 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3510 return argp;
3511
3512 /* If we have the full object, but for some reason the enclosing
3513 type is wrong, set it. */
3514 /* pai: FIXME -- sounds iffy */
3515 if (full)
3516 {
3517 argp = value_copy (argp);
3518 set_value_enclosing_type (argp, real_type);
3519 return argp;
3520 }
3521
3522 /* Check if object is in memory. */
3523 if (VALUE_LVAL (argp) != lval_memory)
3524 {
3525 warning (_("Couldn't retrieve complete object of RTTI "
3526 "type %s; object may be in register(s)."),
3527 TYPE_NAME (real_type));
3528
3529 return argp;
3530 }
3531
3532 /* All other cases -- retrieve the complete object. */
3533 /* Go back by the computed top_offset from the beginning of the
3534 object, adjusting for the embedded offset of argp if that's what
3535 value_rtti_type used for its computation. */
3536 new_val = value_at_lazy (real_type, value_address (argp) - top +
3537 (using_enc ? 0 : value_embedded_offset (argp)));
3538 deprecated_set_value_type (new_val, value_type (argp));
3539 set_value_embedded_offset (new_val, (using_enc
3540 ? top + value_embedded_offset (argp)
3541 : top));
3542 return new_val;
3543 }
3544
3545
3546 /* Return the value of the local variable, if one exists. Throw error
3547 otherwise, such as if the request is made in an inappropriate context. */
3548
3549 struct value *
3550 value_of_this (const struct language_defn *lang)
3551 {
3552 struct symbol *sym;
3553 struct block *b;
3554 struct frame_info *frame;
3555
3556 if (!lang->la_name_of_this)
3557 error (_("no `this' in current language"));
3558
3559 frame = get_selected_frame (_("no frame selected"));
3560
3561 b = get_frame_block (frame, NULL);
3562
3563 sym = lookup_language_this (lang, b);
3564 if (sym == NULL)
3565 error (_("current stack frame does not contain a variable named `%s'"),
3566 lang->la_name_of_this);
3567
3568 return read_var_value (sym, frame);
3569 }
3570
3571 /* Return the value of the local variable, if one exists. Return NULL
3572 otherwise. Never throw error. */
3573
3574 struct value *
3575 value_of_this_silent (const struct language_defn *lang)
3576 {
3577 struct value *ret = NULL;
3578 volatile struct gdb_exception except;
3579
3580 TRY_CATCH (except, RETURN_MASK_ERROR)
3581 {
3582 ret = value_of_this (lang);
3583 }
3584
3585 return ret;
3586 }
3587
3588 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3589 elements long, starting at LOWBOUND. The result has the same lower
3590 bound as the original ARRAY. */
3591
3592 struct value *
3593 value_slice (struct value *array, int lowbound, int length)
3594 {
3595 struct type *slice_range_type, *slice_type, *range_type;
3596 LONGEST lowerbound, upperbound;
3597 struct value *slice;
3598 struct type *array_type;
3599
3600 array_type = check_typedef (value_type (array));
3601 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3602 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3603 error (_("cannot take slice of non-array"));
3604
3605 range_type = TYPE_INDEX_TYPE (array_type);
3606 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3607 error (_("slice from bad array or bitstring"));
3608
3609 if (lowbound < lowerbound || length < 0
3610 || lowbound + length - 1 > upperbound)
3611 error (_("slice out of range"));
3612
3613 /* FIXME-type-allocation: need a way to free this type when we are
3614 done with it. */
3615 slice_range_type = create_range_type ((struct type *) NULL,
3616 TYPE_TARGET_TYPE (range_type),
3617 lowbound,
3618 lowbound + length - 1);
3619
3620 {
3621 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3622 LONGEST offset
3623 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3624
3625 slice_type = create_array_type ((struct type *) NULL,
3626 element_type,
3627 slice_range_type);
3628 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3629
3630 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3631 slice = allocate_value_lazy (slice_type);
3632 else
3633 {
3634 slice = allocate_value (slice_type);
3635 value_contents_copy (slice, 0, array, offset,
3636 TYPE_LENGTH (slice_type));
3637 }
3638
3639 set_value_component_location (slice, array);
3640 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3641 set_value_offset (slice, value_offset (array) + offset);
3642 }
3643
3644 return slice;
3645 }
3646
3647 /* Create a value for a FORTRAN complex number. Currently most of the
3648 time values are coerced to COMPLEX*16 (i.e. a complex number
3649 composed of 2 doubles. This really should be a smarter routine
3650 that figures out precision inteligently as opposed to assuming
3651 doubles. FIXME: fmb */
3652
3653 struct value *
3654 value_literal_complex (struct value *arg1,
3655 struct value *arg2,
3656 struct type *type)
3657 {
3658 struct value *val;
3659 struct type *real_type = TYPE_TARGET_TYPE (type);
3660
3661 val = allocate_value (type);
3662 arg1 = value_cast (real_type, arg1);
3663 arg2 = value_cast (real_type, arg2);
3664
3665 memcpy (value_contents_raw (val),
3666 value_contents (arg1), TYPE_LENGTH (real_type));
3667 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3668 value_contents (arg2), TYPE_LENGTH (real_type));
3669 return val;
3670 }
3671
3672 /* Cast a value into the appropriate complex data type. */
3673
3674 static struct value *
3675 cast_into_complex (struct type *type, struct value *val)
3676 {
3677 struct type *real_type = TYPE_TARGET_TYPE (type);
3678
3679 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3680 {
3681 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3682 struct value *re_val = allocate_value (val_real_type);
3683 struct value *im_val = allocate_value (val_real_type);
3684
3685 memcpy (value_contents_raw (re_val),
3686 value_contents (val), TYPE_LENGTH (val_real_type));
3687 memcpy (value_contents_raw (im_val),
3688 value_contents (val) + TYPE_LENGTH (val_real_type),
3689 TYPE_LENGTH (val_real_type));
3690
3691 return value_literal_complex (re_val, im_val, type);
3692 }
3693 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3694 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3695 return value_literal_complex (val,
3696 value_zero (real_type, not_lval),
3697 type);
3698 else
3699 error (_("cannot cast non-number to complex"));
3700 }
3701
3702 void
3703 _initialize_valops (void)
3704 {
3705 add_setshow_boolean_cmd ("overload-resolution", class_support,
3706 &overload_resolution, _("\
3707 Set overload resolution in evaluating C++ functions."), _("\
3708 Show overload resolution in evaluating C++ functions."),
3709 NULL, NULL,
3710 show_overload_resolution,
3711 &setlist, &showlist);
3712 overload_resolution = 1;
3713 }