]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "byte-vector.h"
43
44 extern unsigned int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (struct value **, int,
58 const char *, const char *,
59 struct symbol ***,
60 struct badness_vector **,
61 const int no_adl);
62
63 static
64 int find_oload_champ_namespace_loop (struct value **, int,
65 const char *, const char *,
66 int, struct symbol ***,
67 struct badness_vector **, int *,
68 const int no_adl);
69
70 static int find_oload_champ (struct value **, int, int,
71 struct fn_field *, VEC (xmethod_worker_ptr) *,
72 struct symbol **, struct badness_vector **);
73
74 static int oload_method_static_p (struct fn_field *, int);
75
76 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
77
78 static enum
79 oload_classification classify_oload_match (struct badness_vector *,
80 int, int);
81
82 static struct value *value_struct_elt_for_reference (struct type *,
83 int, struct type *,
84 const char *,
85 struct type *,
86 int, enum noside);
87
88 static struct value *value_namespace_elt (const struct type *,
89 const char *, int , enum noside);
90
91 static struct value *value_maybe_namespace_elt (const struct type *,
92 const char *, int,
93 enum noside);
94
95 static CORE_ADDR allocate_space_in_inferior (int);
96
97 static struct value *cast_into_complex (struct type *, struct value *);
98
99 static void find_method_list (struct value **, const char *,
100 LONGEST, struct type *, struct fn_field **, int *,
101 VEC (xmethod_worker_ptr) **,
102 struct type **, LONGEST *);
103
104 #if 0
105 /* Flag for whether we want to abandon failed expression evals by
106 default. */
107
108 static int auto_abandon = 0;
109 #endif
110
111 int overload_resolution = 0;
112 static void
113 show_overload_resolution (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c,
115 const char *value)
116 {
117 fprintf_filtered (file, _("Overload resolution in evaluating "
118 "C++ functions is %s.\n"),
119 value);
120 }
121
122 /* Find the address of function name NAME in the inferior. If OBJF_P
123 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
124 is defined. */
125
126 struct value *
127 find_function_in_inferior (const char *name, struct objfile **objf_p)
128 {
129 struct block_symbol sym;
130
131 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
132 if (sym.symbol != NULL)
133 {
134 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
135 {
136 error (_("\"%s\" exists in this program but is not a function."),
137 name);
138 }
139
140 if (objf_p)
141 *objf_p = symbol_objfile (sym.symbol);
142
143 return value_of_variable (sym.symbol, sym.block);
144 }
145 else
146 {
147 struct bound_minimal_symbol msymbol =
148 lookup_bound_minimal_symbol (name);
149
150 if (msymbol.minsym != NULL)
151 {
152 struct objfile *objfile = msymbol.objfile;
153 struct gdbarch *gdbarch = get_objfile_arch (objfile);
154
155 struct type *type;
156 CORE_ADDR maddr;
157 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
158 type = lookup_function_type (type);
159 type = lookup_pointer_type (type);
160 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
161
162 if (objf_p)
163 *objf_p = objfile;
164
165 return value_from_pointer (type, maddr);
166 }
167 else
168 {
169 if (!target_has_execution)
170 error (_("evaluation of this expression "
171 "requires the target program to be active"));
172 else
173 error (_("evaluation of this expression requires the "
174 "program to have a function \"%s\"."),
175 name);
176 }
177 }
178 }
179
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
182 space. */
183
184 struct value *
185 value_allocate_space_in_inferior (int len)
186 {
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
191
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, NULL, 1, &blocklen);
194 if (value_logical_not (val))
195 {
196 if (!target_has_execution)
197 error (_("No memory available to program now: "
198 "you need to start the target first"));
199 else
200 error (_("No memory available to program: call to malloc failed"));
201 }
202 return val;
203 }
204
205 static CORE_ADDR
206 allocate_space_in_inferior (int len)
207 {
208 return value_as_long (value_allocate_space_in_inferior (len));
209 }
210
211 /* Cast struct value VAL to type TYPE and return as a value.
212 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
213 for this to work. Typedef to one of the codes is permitted.
214 Returns NULL if the cast is neither an upcast nor a downcast. */
215
216 static struct value *
217 value_cast_structs (struct type *type, struct value *v2)
218 {
219 struct type *t1;
220 struct type *t2;
221 struct value *v;
222
223 gdb_assert (type != NULL && v2 != NULL);
224
225 t1 = check_typedef (type);
226 t2 = check_typedef (value_type (v2));
227
228 /* Check preconditions. */
229 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
230 || TYPE_CODE (t1) == TYPE_CODE_UNION)
231 && !!"Precondition is that type is of STRUCT or UNION kind.");
232 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
233 || TYPE_CODE (t2) == TYPE_CODE_UNION)
234 && !!"Precondition is that value is of STRUCT or UNION kind");
235
236 if (TYPE_NAME (t1) != NULL
237 && TYPE_NAME (t2) != NULL
238 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
239 return NULL;
240
241 /* Upcasting: look in the type of the source to see if it contains the
242 type of the target as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (TYPE_NAME (t1) != NULL)
245 {
246 v = search_struct_field (type_name_no_tag (t1),
247 v2, t2, 1);
248 if (v)
249 return v;
250 }
251
252 /* Downcasting: look in the type of the target to see if it contains the
253 type of the source as a superclass. If so, we'll need to
254 offset the pointer rather than just change its type. */
255 if (TYPE_NAME (t2) != NULL)
256 {
257 /* Try downcasting using the run-time type of the value. */
258 int full, using_enc;
259 LONGEST top;
260 struct type *real_type;
261
262 real_type = value_rtti_type (v2, &full, &top, &using_enc);
263 if (real_type)
264 {
265 v = value_full_object (v2, real_type, full, top, using_enc);
266 v = value_at_lazy (real_type, value_address (v));
267 real_type = value_type (v);
268
269 /* We might be trying to cast to the outermost enclosing
270 type, in which case search_struct_field won't work. */
271 if (TYPE_NAME (real_type) != NULL
272 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
273 return v;
274
275 v = search_struct_field (type_name_no_tag (t2), v, real_type, 1);
276 if (v)
277 return v;
278 }
279
280 /* Try downcasting using information from the destination type
281 T2. This wouldn't work properly for classes with virtual
282 bases, but those were handled above. */
283 v = search_struct_field (type_name_no_tag (t2),
284 value_zero (t1, not_lval), t1, 1);
285 if (v)
286 {
287 /* Downcasting is possible (t1 is superclass of v2). */
288 CORE_ADDR addr2 = value_address (v2);
289
290 addr2 -= value_address (v) + value_embedded_offset (v);
291 return value_at (type, addr2);
292 }
293 }
294
295 return NULL;
296 }
297
298 /* Cast one pointer or reference type to another. Both TYPE and
299 the type of ARG2 should be pointer types, or else both should be
300 reference types. If SUBCLASS_CHECK is non-zero, this will force a
301 check to see whether TYPE is a superclass of ARG2's type. If
302 SUBCLASS_CHECK is zero, then the subclass check is done only when
303 ARG2 is itself non-zero. Returns the new pointer or reference. */
304
305 struct value *
306 value_cast_pointers (struct type *type, struct value *arg2,
307 int subclass_check)
308 {
309 struct type *type1 = check_typedef (type);
310 struct type *type2 = check_typedef (value_type (arg2));
311 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
312 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
313
314 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
315 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
316 && (subclass_check || !value_logical_not (arg2)))
317 {
318 struct value *v2;
319
320 if (TYPE_IS_REFERENCE (type2))
321 v2 = coerce_ref (arg2);
322 else
323 v2 = value_ind (arg2);
324 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
325 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
326 v2 = value_cast_structs (t1, v2);
327 /* At this point we have what we can have, un-dereference if needed. */
328 if (v2)
329 {
330 struct value *v = value_addr (v2);
331
332 deprecated_set_value_type (v, type);
333 return v;
334 }
335 }
336
337 /* No superclass found, just change the pointer type. */
338 arg2 = value_copy (arg2);
339 deprecated_set_value_type (arg2, type);
340 set_value_enclosing_type (arg2, type);
341 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
342 return arg2;
343 }
344
345 /* Cast value ARG2 to type TYPE and return as a value.
346 More general than a C cast: accepts any two types of the same length,
347 and if ARG2 is an lvalue it can be cast into anything at all. */
348 /* In C++, casts may change pointer or object representations. */
349
350 struct value *
351 value_cast (struct type *type, struct value *arg2)
352 {
353 enum type_code code1;
354 enum type_code code2;
355 int scalar;
356 struct type *type2;
357
358 int convert_to_boolean = 0;
359
360 if (value_type (arg2) == type)
361 return arg2;
362
363 /* Check if we are casting struct reference to struct reference. */
364 if (TYPE_IS_REFERENCE (check_typedef (type)))
365 {
366 /* We dereference type; then we recurse and finally
367 we generate value of the given reference. Nothing wrong with
368 that. */
369 struct type *t1 = check_typedef (type);
370 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
371 struct value *val = value_cast (dereftype, arg2);
372
373 return value_ref (val, TYPE_CODE (t1));
374 }
375
376 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
377 /* We deref the value and then do the cast. */
378 return value_cast (type, coerce_ref (arg2));
379
380 /* Strip typedefs / resolve stubs in order to get at the type's
381 code/length, but remember the original type, to use as the
382 resulting type of the cast, in case it was a typedef. */
383 struct type *to_type = type;
384
385 type = check_typedef (type);
386 code1 = TYPE_CODE (type);
387 arg2 = coerce_ref (arg2);
388 type2 = check_typedef (value_type (arg2));
389
390 /* You can't cast to a reference type. See value_cast_pointers
391 instead. */
392 gdb_assert (!TYPE_IS_REFERENCE (type));
393
394 /* A cast to an undetermined-length array_type, such as
395 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
396 where N is sizeof(OBJECT)/sizeof(TYPE). */
397 if (code1 == TYPE_CODE_ARRAY)
398 {
399 struct type *element_type = TYPE_TARGET_TYPE (type);
400 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
401
402 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
403 {
404 struct type *range_type = TYPE_INDEX_TYPE (type);
405 int val_length = TYPE_LENGTH (type2);
406 LONGEST low_bound, high_bound, new_length;
407
408 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
409 low_bound = 0, high_bound = 0;
410 new_length = val_length / element_length;
411 if (val_length % element_length != 0)
412 warning (_("array element type size does not "
413 "divide object size in cast"));
414 /* FIXME-type-allocation: need a way to free this type when
415 we are done with it. */
416 range_type = create_static_range_type ((struct type *) NULL,
417 TYPE_TARGET_TYPE (range_type),
418 low_bound,
419 new_length + low_bound - 1);
420 deprecated_set_value_type (arg2,
421 create_array_type ((struct type *) NULL,
422 element_type,
423 range_type));
424 return arg2;
425 }
426 }
427
428 if (current_language->c_style_arrays
429 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
430 && !TYPE_VECTOR (type2))
431 arg2 = value_coerce_array (arg2);
432
433 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
434 arg2 = value_coerce_function (arg2);
435
436 type2 = check_typedef (value_type (arg2));
437 code2 = TYPE_CODE (type2);
438
439 if (code1 == TYPE_CODE_COMPLEX)
440 return cast_into_complex (to_type, arg2);
441 if (code1 == TYPE_CODE_BOOL)
442 {
443 code1 = TYPE_CODE_INT;
444 convert_to_boolean = 1;
445 }
446 if (code1 == TYPE_CODE_CHAR)
447 code1 = TYPE_CODE_INT;
448 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
449 code2 = TYPE_CODE_INT;
450
451 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
452 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
453 || code2 == TYPE_CODE_RANGE);
454
455 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
456 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
457 && TYPE_NAME (type) != 0)
458 {
459 struct value *v = value_cast_structs (to_type, arg2);
460
461 if (v)
462 return v;
463 }
464
465 if (is_floating_type (type) && scalar)
466 {
467 if (is_floating_value (arg2))
468 {
469 struct value *v = allocate_value (to_type);
470 target_float_convert (value_contents (arg2), type2,
471 value_contents_raw (v), type);
472 return v;
473 }
474
475 /* The only option left is an integral type. */
476 if (TYPE_UNSIGNED (type2))
477 return value_from_ulongest (to_type, value_as_long (arg2));
478 else
479 return value_from_longest (to_type, value_as_long (arg2));
480 }
481 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
482 || code1 == TYPE_CODE_RANGE)
483 && (scalar || code2 == TYPE_CODE_PTR
484 || code2 == TYPE_CODE_MEMBERPTR))
485 {
486 LONGEST longest;
487
488 /* When we cast pointers to integers, we mustn't use
489 gdbarch_pointer_to_address to find the address the pointer
490 represents, as value_as_long would. GDB should evaluate
491 expressions just as the compiler would --- and the compiler
492 sees a cast as a simple reinterpretation of the pointer's
493 bits. */
494 if (code2 == TYPE_CODE_PTR)
495 longest = extract_unsigned_integer
496 (value_contents (arg2), TYPE_LENGTH (type2),
497 gdbarch_byte_order (get_type_arch (type2)));
498 else
499 longest = value_as_long (arg2);
500 return value_from_longest (to_type, convert_to_boolean ?
501 (LONGEST) (longest ? 1 : 0) : longest);
502 }
503 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
504 || code2 == TYPE_CODE_ENUM
505 || code2 == TYPE_CODE_RANGE))
506 {
507 /* TYPE_LENGTH (type) is the length of a pointer, but we really
508 want the length of an address! -- we are really dealing with
509 addresses (i.e., gdb representations) not pointers (i.e.,
510 target representations) here.
511
512 This allows things like "print *(int *)0x01000234" to work
513 without printing a misleading message -- which would
514 otherwise occur when dealing with a target having two byte
515 pointers and four byte addresses. */
516
517 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
518 LONGEST longest = value_as_long (arg2);
519
520 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
521 {
522 if (longest >= ((LONGEST) 1 << addr_bit)
523 || longest <= -((LONGEST) 1 << addr_bit))
524 warning (_("value truncated"));
525 }
526 return value_from_longest (to_type, longest);
527 }
528 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
529 && value_as_long (arg2) == 0)
530 {
531 struct value *result = allocate_value (to_type);
532
533 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
534 return result;
535 }
536 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
537 && value_as_long (arg2) == 0)
538 {
539 /* The Itanium C++ ABI represents NULL pointers to members as
540 minus one, instead of biasing the normal case. */
541 return value_from_longest (to_type, -1);
542 }
543 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
544 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
545 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
546 error (_("Cannot convert between vector values of different sizes"));
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
548 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
549 error (_("can only cast scalar to vector of same size"));
550 else if (code1 == TYPE_CODE_VOID)
551 {
552 return value_zero (to_type, not_lval);
553 }
554 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
555 {
556 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
557 return value_cast_pointers (to_type, arg2, 0);
558
559 arg2 = value_copy (arg2);
560 deprecated_set_value_type (arg2, to_type);
561 set_value_enclosing_type (arg2, to_type);
562 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
563 return arg2;
564 }
565 else if (VALUE_LVAL (arg2) == lval_memory)
566 return value_at_lazy (to_type, value_address (arg2));
567 else
568 {
569 error (_("Invalid cast."));
570 return 0;
571 }
572 }
573
574 /* The C++ reinterpret_cast operator. */
575
576 struct value *
577 value_reinterpret_cast (struct type *type, struct value *arg)
578 {
579 struct value *result;
580 struct type *real_type = check_typedef (type);
581 struct type *arg_type, *dest_type;
582 int is_ref = 0;
583 enum type_code dest_code, arg_code;
584
585 /* Do reference, function, and array conversion. */
586 arg = coerce_array (arg);
587
588 /* Attempt to preserve the type the user asked for. */
589 dest_type = type;
590
591 /* If we are casting to a reference type, transform
592 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
593 if (TYPE_IS_REFERENCE (real_type))
594 {
595 is_ref = 1;
596 arg = value_addr (arg);
597 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
598 real_type = lookup_pointer_type (real_type);
599 }
600
601 arg_type = value_type (arg);
602
603 dest_code = TYPE_CODE (real_type);
604 arg_code = TYPE_CODE (arg_type);
605
606 /* We can convert pointer types, or any pointer type to int, or int
607 type to pointer. */
608 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
609 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
610 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
611 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
612 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
613 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
614 || (dest_code == arg_code
615 && (dest_code == TYPE_CODE_PTR
616 || dest_code == TYPE_CODE_METHODPTR
617 || dest_code == TYPE_CODE_MEMBERPTR)))
618 result = value_cast (dest_type, arg);
619 else
620 error (_("Invalid reinterpret_cast"));
621
622 if (is_ref)
623 result = value_cast (type, value_ref (value_ind (result),
624 TYPE_CODE (type)));
625
626 return result;
627 }
628
629 /* A helper for value_dynamic_cast. This implements the first of two
630 runtime checks: we iterate over all the base classes of the value's
631 class which are equal to the desired class; if only one of these
632 holds the value, then it is the answer. */
633
634 static int
635 dynamic_cast_check_1 (struct type *desired_type,
636 const gdb_byte *valaddr,
637 LONGEST embedded_offset,
638 CORE_ADDR address,
639 struct value *val,
640 struct type *search_type,
641 CORE_ADDR arg_addr,
642 struct type *arg_type,
643 struct value **result)
644 {
645 int i, result_count = 0;
646
647 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
648 {
649 LONGEST offset = baseclass_offset (search_type, i, valaddr,
650 embedded_offset,
651 address, val);
652
653 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
654 {
655 if (address + embedded_offset + offset >= arg_addr
656 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
657 {
658 ++result_count;
659 if (!*result)
660 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
661 address + embedded_offset + offset);
662 }
663 }
664 else
665 result_count += dynamic_cast_check_1 (desired_type,
666 valaddr,
667 embedded_offset + offset,
668 address, val,
669 TYPE_BASECLASS (search_type, i),
670 arg_addr,
671 arg_type,
672 result);
673 }
674
675 return result_count;
676 }
677
678 /* A helper for value_dynamic_cast. This implements the second of two
679 runtime checks: we look for a unique public sibling class of the
680 argument's declared class. */
681
682 static int
683 dynamic_cast_check_2 (struct type *desired_type,
684 const gdb_byte *valaddr,
685 LONGEST embedded_offset,
686 CORE_ADDR address,
687 struct value *val,
688 struct type *search_type,
689 struct value **result)
690 {
691 int i, result_count = 0;
692
693 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
694 {
695 LONGEST offset;
696
697 if (! BASETYPE_VIA_PUBLIC (search_type, i))
698 continue;
699
700 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
701 address, val);
702 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
703 {
704 ++result_count;
705 if (*result == NULL)
706 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
707 address + embedded_offset + offset);
708 }
709 else
710 result_count += dynamic_cast_check_2 (desired_type,
711 valaddr,
712 embedded_offset + offset,
713 address, val,
714 TYPE_BASECLASS (search_type, i),
715 result);
716 }
717
718 return result_count;
719 }
720
721 /* The C++ dynamic_cast operator. */
722
723 struct value *
724 value_dynamic_cast (struct type *type, struct value *arg)
725 {
726 int full, using_enc;
727 LONGEST top;
728 struct type *resolved_type = check_typedef (type);
729 struct type *arg_type = check_typedef (value_type (arg));
730 struct type *class_type, *rtti_type;
731 struct value *result, *tem, *original_arg = arg;
732 CORE_ADDR addr;
733 int is_ref = TYPE_IS_REFERENCE (resolved_type);
734
735 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
736 && !TYPE_IS_REFERENCE (resolved_type))
737 error (_("Argument to dynamic_cast must be a pointer or reference type"));
738 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
739 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
740 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
741
742 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
743 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
744 {
745 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
746 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
747 && value_as_long (arg) == 0))
748 error (_("Argument to dynamic_cast does not have pointer type"));
749 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
750 {
751 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
752 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
753 error (_("Argument to dynamic_cast does "
754 "not have pointer to class type"));
755 }
756
757 /* Handle NULL pointers. */
758 if (value_as_long (arg) == 0)
759 return value_zero (type, not_lval);
760
761 arg = value_ind (arg);
762 }
763 else
764 {
765 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
766 error (_("Argument to dynamic_cast does not have class type"));
767 }
768
769 /* If the classes are the same, just return the argument. */
770 if (class_types_same_p (class_type, arg_type))
771 return value_cast (type, arg);
772
773 /* If the target type is a unique base class of the argument's
774 declared type, just cast it. */
775 if (is_ancestor (class_type, arg_type))
776 {
777 if (is_unique_ancestor (class_type, arg))
778 return value_cast (type, original_arg);
779 error (_("Ambiguous dynamic_cast"));
780 }
781
782 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
783 if (! rtti_type)
784 error (_("Couldn't determine value's most derived type for dynamic_cast"));
785
786 /* Compute the most derived object's address. */
787 addr = value_address (arg);
788 if (full)
789 {
790 /* Done. */
791 }
792 else if (using_enc)
793 addr += top;
794 else
795 addr += top + value_embedded_offset (arg);
796
797 /* dynamic_cast<void *> means to return a pointer to the
798 most-derived object. */
799 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
800 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
801 return value_at_lazy (type, addr);
802
803 tem = value_at (type, addr);
804 type = value_type (tem);
805
806 /* The first dynamic check specified in 5.2.7. */
807 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
808 {
809 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
810 return tem;
811 result = NULL;
812 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
813 value_contents_for_printing (tem),
814 value_embedded_offset (tem),
815 value_address (tem), tem,
816 rtti_type, addr,
817 arg_type,
818 &result) == 1)
819 return value_cast (type,
820 is_ref
821 ? value_ref (result, TYPE_CODE (resolved_type))
822 : value_addr (result));
823 }
824
825 /* The second dynamic check specified in 5.2.7. */
826 result = NULL;
827 if (is_public_ancestor (arg_type, rtti_type)
828 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
829 value_contents_for_printing (tem),
830 value_embedded_offset (tem),
831 value_address (tem), tem,
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref
835 ? value_ref (result, TYPE_CODE (resolved_type))
836 : value_addr (result));
837
838 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
839 return value_zero (type, not_lval);
840
841 error (_("dynamic_cast failed"));
842 }
843
844 /* Create a value of type TYPE that is zero, and return it. */
845
846 struct value *
847 value_zero (struct type *type, enum lval_type lv)
848 {
849 struct value *val = allocate_value (type);
850
851 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
852 return val;
853 }
854
855 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
856
857 struct value *
858 value_one (struct type *type)
859 {
860 struct type *type1 = check_typedef (type);
861 struct value *val;
862
863 if (is_integral_type (type1) || is_floating_type (type1))
864 {
865 val = value_from_longest (type, (LONGEST) 1);
866 }
867 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
868 {
869 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
870 int i;
871 LONGEST low_bound, high_bound;
872 struct value *tmp;
873
874 if (!get_array_bounds (type1, &low_bound, &high_bound))
875 error (_("Could not determine the vector bounds"));
876
877 val = allocate_value (type);
878 for (i = 0; i < high_bound - low_bound + 1; i++)
879 {
880 tmp = value_one (eltype);
881 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
882 value_contents_all (tmp), TYPE_LENGTH (eltype));
883 }
884 }
885 else
886 {
887 error (_("Not a numeric type."));
888 }
889
890 /* value_one result is never used for assignments to. */
891 gdb_assert (VALUE_LVAL (val) == not_lval);
892
893 return val;
894 }
895
896 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
897 The type of the created value may differ from the passed type TYPE.
898 Make sure to retrieve the returned values's new type after this call
899 e.g. in case the type is a variable length array. */
900
901 static struct value *
902 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
903 {
904 struct value *val;
905
906 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
907 error (_("Attempt to dereference a generic pointer."));
908
909 val = value_from_contents_and_address (type, NULL, addr);
910
911 if (!lazy)
912 value_fetch_lazy (val);
913
914 return val;
915 }
916
917 /* Return a value with type TYPE located at ADDR.
918
919 Call value_at only if the data needs to be fetched immediately;
920 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
921 value_at_lazy instead. value_at_lazy simply records the address of
922 the data and sets the lazy-evaluation-required flag. The lazy flag
923 is tested in the value_contents macro, which is used if and when
924 the contents are actually required. The type of the created value
925 may differ from the passed type TYPE. Make sure to retrieve the
926 returned values's new type after this call e.g. in case the type
927 is a variable length array.
928
929 Note: value_at does *NOT* handle embedded offsets; perform such
930 adjustments before or after calling it. */
931
932 struct value *
933 value_at (struct type *type, CORE_ADDR addr)
934 {
935 return get_value_at (type, addr, 0);
936 }
937
938 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
939 The type of the created value may differ from the passed type TYPE.
940 Make sure to retrieve the returned values's new type after this call
941 e.g. in case the type is a variable length array. */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, LONGEST bit_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 ULONGEST xfered_total = 0;
955 struct gdbarch *arch = get_value_arch (val);
956 int unit_size = gdbarch_addressable_memory_unit_size (arch);
957 enum target_object object;
958
959 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
960
961 while (xfered_total < length)
962 {
963 enum target_xfer_status status;
964 ULONGEST xfered_partial;
965
966 status = target_xfer_partial (current_target.beneath,
967 object, NULL,
968 buffer + xfered_total * unit_size, NULL,
969 memaddr + xfered_total,
970 length - xfered_total,
971 &xfered_partial);
972
973 if (status == TARGET_XFER_OK)
974 /* nothing */;
975 else if (status == TARGET_XFER_UNAVAILABLE)
976 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
977 + bit_offset),
978 xfered_partial * HOST_CHAR_BIT);
979 else if (status == TARGET_XFER_EOF)
980 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
981 else
982 memory_error (status, memaddr + xfered_total);
983
984 xfered_total += xfered_partial;
985 QUIT;
986 }
987 }
988
989 /* Store the contents of FROMVAL into the location of TOVAL.
990 Return a new value with the location of TOVAL and contents of FROMVAL. */
991
992 struct value *
993 value_assign (struct value *toval, struct value *fromval)
994 {
995 struct type *type;
996 struct value *val;
997 struct frame_id old_frame;
998
999 if (!deprecated_value_modifiable (toval))
1000 error (_("Left operand of assignment is not a modifiable lvalue."));
1001
1002 toval = coerce_ref (toval);
1003
1004 type = value_type (toval);
1005 if (VALUE_LVAL (toval) != lval_internalvar)
1006 fromval = value_cast (type, fromval);
1007 else
1008 {
1009 /* Coerce arrays and functions to pointers, except for arrays
1010 which only live in GDB's storage. */
1011 if (!value_must_coerce_to_target (fromval))
1012 fromval = coerce_array (fromval);
1013 }
1014
1015 type = check_typedef (type);
1016
1017 /* Since modifying a register can trash the frame chain, and
1018 modifying memory can trash the frame cache, we save the old frame
1019 and then restore the new frame afterwards. */
1020 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1021
1022 switch (VALUE_LVAL (toval))
1023 {
1024 case lval_internalvar:
1025 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1026 return value_of_internalvar (get_type_arch (type),
1027 VALUE_INTERNALVAR (toval));
1028
1029 case lval_internalvar_component:
1030 {
1031 LONGEST offset = value_offset (toval);
1032
1033 /* Are we dealing with a bitfield?
1034
1035 It is important to mention that `value_parent (toval)' is
1036 non-NULL iff `value_bitsize (toval)' is non-zero. */
1037 if (value_bitsize (toval))
1038 {
1039 /* VALUE_INTERNALVAR below refers to the parent value, while
1040 the offset is relative to this parent value. */
1041 gdb_assert (value_parent (value_parent (toval)) == NULL);
1042 offset += value_offset (value_parent (toval));
1043 }
1044
1045 set_internalvar_component (VALUE_INTERNALVAR (toval),
1046 offset,
1047 value_bitpos (toval),
1048 value_bitsize (toval),
1049 fromval);
1050 }
1051 break;
1052
1053 case lval_memory:
1054 {
1055 const gdb_byte *dest_buffer;
1056 CORE_ADDR changed_addr;
1057 int changed_len;
1058 gdb_byte buffer[sizeof (LONGEST)];
1059
1060 if (value_bitsize (toval))
1061 {
1062 struct value *parent = value_parent (toval);
1063
1064 changed_addr = value_address (parent) + value_offset (toval);
1065 changed_len = (value_bitpos (toval)
1066 + value_bitsize (toval)
1067 + HOST_CHAR_BIT - 1)
1068 / HOST_CHAR_BIT;
1069
1070 /* If we can read-modify-write exactly the size of the
1071 containing type (e.g. short or int) then do so. This
1072 is safer for volatile bitfields mapped to hardware
1073 registers. */
1074 if (changed_len < TYPE_LENGTH (type)
1075 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1076 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1077 changed_len = TYPE_LENGTH (type);
1078
1079 if (changed_len > (int) sizeof (LONGEST))
1080 error (_("Can't handle bitfields which "
1081 "don't fit in a %d bit word."),
1082 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1083
1084 read_memory (changed_addr, buffer, changed_len);
1085 modify_field (type, buffer, value_as_long (fromval),
1086 value_bitpos (toval), value_bitsize (toval));
1087 dest_buffer = buffer;
1088 }
1089 else
1090 {
1091 changed_addr = value_address (toval);
1092 changed_len = type_length_units (type);
1093 dest_buffer = value_contents (fromval);
1094 }
1095
1096 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1097 }
1098 break;
1099
1100 case lval_register:
1101 {
1102 struct frame_info *frame;
1103 struct gdbarch *gdbarch;
1104 int value_reg;
1105
1106 /* Figure out which frame this is in currently.
1107
1108 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1109 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1110 put_frame_register_bytes() below. That function will (eventually)
1111 perform the necessary unwind operation by first obtaining the next
1112 frame. */
1113 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1114
1115 value_reg = VALUE_REGNUM (toval);
1116
1117 if (!frame)
1118 error (_("Value being assigned to is no longer active."));
1119
1120 gdbarch = get_frame_arch (frame);
1121
1122 if (value_bitsize (toval))
1123 {
1124 struct value *parent = value_parent (toval);
1125 LONGEST offset = value_offset (parent) + value_offset (toval);
1126 int changed_len;
1127 gdb_byte buffer[sizeof (LONGEST)];
1128 int optim, unavail;
1129
1130 changed_len = (value_bitpos (toval)
1131 + value_bitsize (toval)
1132 + HOST_CHAR_BIT - 1)
1133 / HOST_CHAR_BIT;
1134
1135 if (changed_len > (int) sizeof (LONGEST))
1136 error (_("Can't handle bitfields which "
1137 "don't fit in a %d bit word."),
1138 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1139
1140 if (!get_frame_register_bytes (frame, value_reg, offset,
1141 changed_len, buffer,
1142 &optim, &unavail))
1143 {
1144 if (optim)
1145 throw_error (OPTIMIZED_OUT_ERROR,
1146 _("value has been optimized out"));
1147 if (unavail)
1148 throw_error (NOT_AVAILABLE_ERROR,
1149 _("value is not available"));
1150 }
1151
1152 modify_field (type, buffer, value_as_long (fromval),
1153 value_bitpos (toval), value_bitsize (toval));
1154
1155 put_frame_register_bytes (frame, value_reg, offset,
1156 changed_len, buffer);
1157 }
1158 else
1159 {
1160 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1161 type))
1162 {
1163 /* If TOVAL is a special machine register requiring
1164 conversion of program values to a special raw
1165 format. */
1166 gdbarch_value_to_register (gdbarch, frame,
1167 VALUE_REGNUM (toval), type,
1168 value_contents (fromval));
1169 }
1170 else
1171 {
1172 put_frame_register_bytes (frame, value_reg,
1173 value_offset (toval),
1174 TYPE_LENGTH (type),
1175 value_contents (fromval));
1176 }
1177 }
1178
1179 observer_notify_register_changed (frame, value_reg);
1180 break;
1181 }
1182
1183 case lval_computed:
1184 {
1185 const struct lval_funcs *funcs = value_computed_funcs (toval);
1186
1187 if (funcs->write != NULL)
1188 {
1189 funcs->write (toval, fromval);
1190 break;
1191 }
1192 }
1193 /* Fall through. */
1194
1195 default:
1196 error (_("Left operand of assignment is not an lvalue."));
1197 }
1198
1199 /* Assigning to the stack pointer, frame pointer, and other
1200 (architecture and calling convention specific) registers may
1201 cause the frame cache and regcache to be out of date. Assigning to memory
1202 also can. We just do this on all assignments to registers or
1203 memory, for simplicity's sake; I doubt the slowdown matters. */
1204 switch (VALUE_LVAL (toval))
1205 {
1206 case lval_memory:
1207 case lval_register:
1208 case lval_computed:
1209
1210 observer_notify_target_changed (&current_target);
1211
1212 /* Having destroyed the frame cache, restore the selected
1213 frame. */
1214
1215 /* FIXME: cagney/2002-11-02: There has to be a better way of
1216 doing this. Instead of constantly saving/restoring the
1217 frame. Why not create a get_selected_frame() function that,
1218 having saved the selected frame's ID can automatically
1219 re-find the previously selected frame automatically. */
1220
1221 {
1222 struct frame_info *fi = frame_find_by_id (old_frame);
1223
1224 if (fi != NULL)
1225 select_frame (fi);
1226 }
1227
1228 break;
1229 default:
1230 break;
1231 }
1232
1233 /* If the field does not entirely fill a LONGEST, then zero the sign
1234 bits. If the field is signed, and is negative, then sign
1235 extend. */
1236 if ((value_bitsize (toval) > 0)
1237 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1238 {
1239 LONGEST fieldval = value_as_long (fromval);
1240 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1241
1242 fieldval &= valmask;
1243 if (!TYPE_UNSIGNED (type)
1244 && (fieldval & (valmask ^ (valmask >> 1))))
1245 fieldval |= ~valmask;
1246
1247 fromval = value_from_longest (type, fieldval);
1248 }
1249
1250 /* The return value is a copy of TOVAL so it shares its location
1251 information, but its contents are updated from FROMVAL. This
1252 implies the returned value is not lazy, even if TOVAL was. */
1253 val = value_copy (toval);
1254 set_value_lazy (val, 0);
1255 memcpy (value_contents_raw (val), value_contents (fromval),
1256 TYPE_LENGTH (type));
1257
1258 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1259 in the case of pointer types. For object types, the enclosing type
1260 and embedded offset must *not* be copied: the target object refered
1261 to by TOVAL retains its original dynamic type after assignment. */
1262 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1263 {
1264 set_value_enclosing_type (val, value_enclosing_type (fromval));
1265 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1266 }
1267
1268 return val;
1269 }
1270
1271 /* Extend a value VAL to COUNT repetitions of its type. */
1272
1273 struct value *
1274 value_repeat (struct value *arg1, int count)
1275 {
1276 struct value *val;
1277
1278 if (VALUE_LVAL (arg1) != lval_memory)
1279 error (_("Only values in memory can be extended with '@'."));
1280 if (count < 1)
1281 error (_("Invalid number %d of repetitions."), count);
1282
1283 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1284
1285 VALUE_LVAL (val) = lval_memory;
1286 set_value_address (val, value_address (arg1));
1287
1288 read_value_memory (val, 0, value_stack (val), value_address (val),
1289 value_contents_all_raw (val),
1290 type_length_units (value_enclosing_type (val)));
1291
1292 return val;
1293 }
1294
1295 struct value *
1296 value_of_variable (struct symbol *var, const struct block *b)
1297 {
1298 struct frame_info *frame = NULL;
1299
1300 if (symbol_read_needs_frame (var))
1301 frame = get_selected_frame (_("No frame selected."));
1302
1303 return read_var_value (var, b, frame);
1304 }
1305
1306 struct value *
1307 address_of_variable (struct symbol *var, const struct block *b)
1308 {
1309 struct type *type = SYMBOL_TYPE (var);
1310 struct value *val;
1311
1312 /* Evaluate it first; if the result is a memory address, we're fine.
1313 Lazy evaluation pays off here. */
1314
1315 val = value_of_variable (var, b);
1316 type = value_type (val);
1317
1318 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1319 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1320 {
1321 CORE_ADDR addr = value_address (val);
1322
1323 return value_from_pointer (lookup_pointer_type (type), addr);
1324 }
1325
1326 /* Not a memory address; check what the problem was. */
1327 switch (VALUE_LVAL (val))
1328 {
1329 case lval_register:
1330 {
1331 struct frame_info *frame;
1332 const char *regname;
1333
1334 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1335 gdb_assert (frame);
1336
1337 regname = gdbarch_register_name (get_frame_arch (frame),
1338 VALUE_REGNUM (val));
1339 gdb_assert (regname && *regname);
1340
1341 error (_("Address requested for identifier "
1342 "\"%s\" which is in register $%s"),
1343 SYMBOL_PRINT_NAME (var), regname);
1344 break;
1345 }
1346
1347 default:
1348 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1349 SYMBOL_PRINT_NAME (var));
1350 break;
1351 }
1352
1353 return val;
1354 }
1355
1356 /* Return one if VAL does not live in target memory, but should in order
1357 to operate on it. Otherwise return zero. */
1358
1359 int
1360 value_must_coerce_to_target (struct value *val)
1361 {
1362 struct type *valtype;
1363
1364 /* The only lval kinds which do not live in target memory. */
1365 if (VALUE_LVAL (val) != not_lval
1366 && VALUE_LVAL (val) != lval_internalvar
1367 && VALUE_LVAL (val) != lval_xcallable)
1368 return 0;
1369
1370 valtype = check_typedef (value_type (val));
1371
1372 switch (TYPE_CODE (valtype))
1373 {
1374 case TYPE_CODE_ARRAY:
1375 return TYPE_VECTOR (valtype) ? 0 : 1;
1376 case TYPE_CODE_STRING:
1377 return 1;
1378 default:
1379 return 0;
1380 }
1381 }
1382
1383 /* Make sure that VAL lives in target memory if it's supposed to. For
1384 instance, strings are constructed as character arrays in GDB's
1385 storage, and this function copies them to the target. */
1386
1387 struct value *
1388 value_coerce_to_target (struct value *val)
1389 {
1390 LONGEST length;
1391 CORE_ADDR addr;
1392
1393 if (!value_must_coerce_to_target (val))
1394 return val;
1395
1396 length = TYPE_LENGTH (check_typedef (value_type (val)));
1397 addr = allocate_space_in_inferior (length);
1398 write_memory (addr, value_contents (val), length);
1399 return value_at_lazy (value_type (val), addr);
1400 }
1401
1402 /* Given a value which is an array, return a value which is a pointer
1403 to its first element, regardless of whether or not the array has a
1404 nonzero lower bound.
1405
1406 FIXME: A previous comment here indicated that this routine should
1407 be substracting the array's lower bound. It's not clear to me that
1408 this is correct. Given an array subscripting operation, it would
1409 certainly work to do the adjustment here, essentially computing:
1410
1411 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1412
1413 However I believe a more appropriate and logical place to account
1414 for the lower bound is to do so in value_subscript, essentially
1415 computing:
1416
1417 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1418
1419 As further evidence consider what would happen with operations
1420 other than array subscripting, where the caller would get back a
1421 value that had an address somewhere before the actual first element
1422 of the array, and the information about the lower bound would be
1423 lost because of the coercion to pointer type. */
1424
1425 struct value *
1426 value_coerce_array (struct value *arg1)
1427 {
1428 struct type *type = check_typedef (value_type (arg1));
1429
1430 /* If the user tries to do something requiring a pointer with an
1431 array that has not yet been pushed to the target, then this would
1432 be a good time to do so. */
1433 arg1 = value_coerce_to_target (arg1);
1434
1435 if (VALUE_LVAL (arg1) != lval_memory)
1436 error (_("Attempt to take address of value not located in memory."));
1437
1438 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1439 value_address (arg1));
1440 }
1441
1442 /* Given a value which is a function, return a value which is a pointer
1443 to it. */
1444
1445 struct value *
1446 value_coerce_function (struct value *arg1)
1447 {
1448 struct value *retval;
1449
1450 if (VALUE_LVAL (arg1) != lval_memory)
1451 error (_("Attempt to take address of value not located in memory."));
1452
1453 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1454 value_address (arg1));
1455 return retval;
1456 }
1457
1458 /* Return a pointer value for the object for which ARG1 is the
1459 contents. */
1460
1461 struct value *
1462 value_addr (struct value *arg1)
1463 {
1464 struct value *arg2;
1465 struct type *type = check_typedef (value_type (arg1));
1466
1467 if (TYPE_IS_REFERENCE (type))
1468 {
1469 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1470 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1471 arg1 = coerce_ref (arg1);
1472 else
1473 {
1474 /* Copy the value, but change the type from (T&) to (T*). We
1475 keep the same location information, which is efficient, and
1476 allows &(&X) to get the location containing the reference.
1477 Do the same to its enclosing type for consistency. */
1478 struct type *type_ptr
1479 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1480 struct type *enclosing_type
1481 = check_typedef (value_enclosing_type (arg1));
1482 struct type *enclosing_type_ptr
1483 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1484
1485 arg2 = value_copy (arg1);
1486 deprecated_set_value_type (arg2, type_ptr);
1487 set_value_enclosing_type (arg2, enclosing_type_ptr);
1488
1489 return arg2;
1490 }
1491 }
1492 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1493 return value_coerce_function (arg1);
1494
1495 /* If this is an array that has not yet been pushed to the target,
1496 then this would be a good time to force it to memory. */
1497 arg1 = value_coerce_to_target (arg1);
1498
1499 if (VALUE_LVAL (arg1) != lval_memory)
1500 error (_("Attempt to take address of value not located in memory."));
1501
1502 /* Get target memory address. */
1503 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1504 (value_address (arg1)
1505 + value_embedded_offset (arg1)));
1506
1507 /* This may be a pointer to a base subobject; so remember the
1508 full derived object's type ... */
1509 set_value_enclosing_type (arg2,
1510 lookup_pointer_type (value_enclosing_type (arg1)));
1511 /* ... and also the relative position of the subobject in the full
1512 object. */
1513 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1514 return arg2;
1515 }
1516
1517 /* Return a reference value for the object for which ARG1 is the
1518 contents. */
1519
1520 struct value *
1521 value_ref (struct value *arg1, enum type_code refcode)
1522 {
1523 struct value *arg2;
1524 struct type *type = check_typedef (value_type (arg1));
1525
1526 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1527
1528 if ((TYPE_CODE (type) == TYPE_CODE_REF
1529 || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
1530 && TYPE_CODE (type) == refcode)
1531 return arg1;
1532
1533 arg2 = value_addr (arg1);
1534 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1535 return arg2;
1536 }
1537
1538 /* Given a value of a pointer type, apply the C unary * operator to
1539 it. */
1540
1541 struct value *
1542 value_ind (struct value *arg1)
1543 {
1544 struct type *base_type;
1545 struct value *arg2;
1546
1547 arg1 = coerce_array (arg1);
1548
1549 base_type = check_typedef (value_type (arg1));
1550
1551 if (VALUE_LVAL (arg1) == lval_computed)
1552 {
1553 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1554
1555 if (funcs->indirect)
1556 {
1557 struct value *result = funcs->indirect (arg1);
1558
1559 if (result)
1560 return result;
1561 }
1562 }
1563
1564 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1565 {
1566 struct type *enc_type;
1567
1568 /* We may be pointing to something embedded in a larger object.
1569 Get the real type of the enclosing object. */
1570 enc_type = check_typedef (value_enclosing_type (arg1));
1571 enc_type = TYPE_TARGET_TYPE (enc_type);
1572
1573 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1574 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1575 /* For functions, go through find_function_addr, which knows
1576 how to handle function descriptors. */
1577 arg2 = value_at_lazy (enc_type,
1578 find_function_addr (arg1, NULL));
1579 else
1580 /* Retrieve the enclosing object pointed to. */
1581 arg2 = value_at_lazy (enc_type,
1582 (value_as_address (arg1)
1583 - value_pointed_to_offset (arg1)));
1584
1585 enc_type = value_type (arg2);
1586 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1587 }
1588
1589 error (_("Attempt to take contents of a non-pointer value."));
1590 return 0; /* For lint -- never reached. */
1591 }
1592 \f
1593 /* Create a value for an array by allocating space in GDB, copying the
1594 data into that space, and then setting up an array value.
1595
1596 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1597 is populated from the values passed in ELEMVEC.
1598
1599 The element type of the array is inherited from the type of the
1600 first element, and all elements must have the same size (though we
1601 don't currently enforce any restriction on their types). */
1602
1603 struct value *
1604 value_array (int lowbound, int highbound, struct value **elemvec)
1605 {
1606 int nelem;
1607 int idx;
1608 ULONGEST typelength;
1609 struct value *val;
1610 struct type *arraytype;
1611
1612 /* Validate that the bounds are reasonable and that each of the
1613 elements have the same size. */
1614
1615 nelem = highbound - lowbound + 1;
1616 if (nelem <= 0)
1617 {
1618 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1619 }
1620 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1621 for (idx = 1; idx < nelem; idx++)
1622 {
1623 if (type_length_units (value_enclosing_type (elemvec[idx]))
1624 != typelength)
1625 {
1626 error (_("array elements must all be the same size"));
1627 }
1628 }
1629
1630 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1631 lowbound, highbound);
1632
1633 if (!current_language->c_style_arrays)
1634 {
1635 val = allocate_value (arraytype);
1636 for (idx = 0; idx < nelem; idx++)
1637 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1638 typelength);
1639 return val;
1640 }
1641
1642 /* Allocate space to store the array, and then initialize it by
1643 copying in each element. */
1644
1645 val = allocate_value (arraytype);
1646 for (idx = 0; idx < nelem; idx++)
1647 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1648 return val;
1649 }
1650
1651 struct value *
1652 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1653 {
1654 struct value *val;
1655 int lowbound = current_language->string_lower_bound;
1656 ssize_t highbound = len / TYPE_LENGTH (char_type);
1657 struct type *stringtype
1658 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1659
1660 val = allocate_value (stringtype);
1661 memcpy (value_contents_raw (val), ptr, len);
1662 return val;
1663 }
1664
1665 /* Create a value for a string constant by allocating space in the
1666 inferior, copying the data into that space, and returning the
1667 address with type TYPE_CODE_STRING. PTR points to the string
1668 constant data; LEN is number of characters.
1669
1670 Note that string types are like array of char types with a lower
1671 bound of zero and an upper bound of LEN - 1. Also note that the
1672 string may contain embedded null bytes. */
1673
1674 struct value *
1675 value_string (const char *ptr, ssize_t len, struct type *char_type)
1676 {
1677 struct value *val;
1678 int lowbound = current_language->string_lower_bound;
1679 ssize_t highbound = len / TYPE_LENGTH (char_type);
1680 struct type *stringtype
1681 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1682
1683 val = allocate_value (stringtype);
1684 memcpy (value_contents_raw (val), ptr, len);
1685 return val;
1686 }
1687
1688 \f
1689 /* See if we can pass arguments in T2 to a function which takes
1690 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1691 a NULL-terminated vector. If some arguments need coercion of some
1692 sort, then the coerced values are written into T2. Return value is
1693 0 if the arguments could be matched, or the position at which they
1694 differ if not.
1695
1696 STATICP is nonzero if the T1 argument list came from a static
1697 member function. T2 will still include the ``this'' pointer, but
1698 it will be skipped.
1699
1700 For non-static member functions, we ignore the first argument,
1701 which is the type of the instance variable. This is because we
1702 want to handle calls with objects from derived classes. This is
1703 not entirely correct: we should actually check to make sure that a
1704 requested operation is type secure, shouldn't we? FIXME. */
1705
1706 static int
1707 typecmp (int staticp, int varargs, int nargs,
1708 struct field t1[], struct value *t2[])
1709 {
1710 int i;
1711
1712 if (t2 == 0)
1713 internal_error (__FILE__, __LINE__,
1714 _("typecmp: no argument list"));
1715
1716 /* Skip ``this'' argument if applicable. T2 will always include
1717 THIS. */
1718 if (staticp)
1719 t2 ++;
1720
1721 for (i = 0;
1722 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1723 i++)
1724 {
1725 struct type *tt1, *tt2;
1726
1727 if (!t2[i])
1728 return i + 1;
1729
1730 tt1 = check_typedef (t1[i].type);
1731 tt2 = check_typedef (value_type (t2[i]));
1732
1733 if (TYPE_IS_REFERENCE (tt1)
1734 /* We should be doing hairy argument matching, as below. */
1735 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1736 == TYPE_CODE (tt2)))
1737 {
1738 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1739 t2[i] = value_coerce_array (t2[i]);
1740 else
1741 t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
1742 continue;
1743 }
1744
1745 /* djb - 20000715 - Until the new type structure is in the
1746 place, and we can attempt things like implicit conversions,
1747 we need to do this so you can take something like a map<const
1748 char *>, and properly access map["hello"], because the
1749 argument to [] will be a reference to a pointer to a char,
1750 and the argument will be a pointer to a char. */
1751 while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1752 {
1753 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1754 }
1755 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1756 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1757 || TYPE_IS_REFERENCE (tt2))
1758 {
1759 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1760 }
1761 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1762 continue;
1763 /* Array to pointer is a `trivial conversion' according to the
1764 ARM. */
1765
1766 /* We should be doing much hairier argument matching (see
1767 section 13.2 of the ARM), but as a quick kludge, just check
1768 for the same type code. */
1769 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1770 return i + 1;
1771 }
1772 if (varargs || t2[i] == NULL)
1773 return 0;
1774 return i + 1;
1775 }
1776
1777 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1778 and *LAST_BOFFSET, and possibly throws an exception if the field
1779 search has yielded ambiguous results. */
1780
1781 static void
1782 update_search_result (struct value **result_ptr, struct value *v,
1783 LONGEST *last_boffset, LONGEST boffset,
1784 const char *name, struct type *type)
1785 {
1786 if (v != NULL)
1787 {
1788 if (*result_ptr != NULL
1789 /* The result is not ambiguous if all the classes that are
1790 found occupy the same space. */
1791 && *last_boffset != boffset)
1792 error (_("base class '%s' is ambiguous in type '%s'"),
1793 name, TYPE_SAFE_NAME (type));
1794 *result_ptr = v;
1795 *last_boffset = boffset;
1796 }
1797 }
1798
1799 /* A helper for search_struct_field. This does all the work; most
1800 arguments are as passed to search_struct_field. The result is
1801 stored in *RESULT_PTR, which must be initialized to NULL.
1802 OUTERMOST_TYPE is the type of the initial type passed to
1803 search_struct_field; this is used for error reporting when the
1804 lookup is ambiguous. */
1805
1806 static void
1807 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1808 struct type *type, int looking_for_baseclass,
1809 struct value **result_ptr,
1810 LONGEST *last_boffset,
1811 struct type *outermost_type)
1812 {
1813 int i;
1814 int nbases;
1815
1816 type = check_typedef (type);
1817 nbases = TYPE_N_BASECLASSES (type);
1818
1819 if (!looking_for_baseclass)
1820 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1821 {
1822 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1823
1824 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1825 {
1826 struct value *v;
1827
1828 if (field_is_static (&TYPE_FIELD (type, i)))
1829 v = value_static_field (type, i);
1830 else
1831 v = value_primitive_field (arg1, offset, i, type);
1832 *result_ptr = v;
1833 return;
1834 }
1835
1836 if (t_field_name
1837 && t_field_name[0] == '\0')
1838 {
1839 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1840
1841 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1842 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1843 {
1844 /* Look for a match through the fields of an anonymous
1845 union, or anonymous struct. C++ provides anonymous
1846 unions.
1847
1848 In the GNU Chill (now deleted from GDB)
1849 implementation of variant record types, each
1850 <alternative field> has an (anonymous) union type,
1851 each member of the union represents a <variant
1852 alternative>. Each <variant alternative> is
1853 represented as a struct, with a member for each
1854 <variant field>. */
1855
1856 struct value *v = NULL;
1857 LONGEST new_offset = offset;
1858
1859 /* This is pretty gross. In G++, the offset in an
1860 anonymous union is relative to the beginning of the
1861 enclosing struct. In the GNU Chill (now deleted
1862 from GDB) implementation of variant records, the
1863 bitpos is zero in an anonymous union field, so we
1864 have to add the offset of the union here. */
1865 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1866 || (TYPE_NFIELDS (field_type) > 0
1867 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1868 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1869
1870 do_search_struct_field (name, arg1, new_offset,
1871 field_type,
1872 looking_for_baseclass, &v,
1873 last_boffset,
1874 outermost_type);
1875 if (v)
1876 {
1877 *result_ptr = v;
1878 return;
1879 }
1880 }
1881 }
1882 }
1883
1884 for (i = 0; i < nbases; i++)
1885 {
1886 struct value *v = NULL;
1887 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1888 /* If we are looking for baseclasses, this is what we get when
1889 we hit them. But it could happen that the base part's member
1890 name is not yet filled in. */
1891 int found_baseclass = (looking_for_baseclass
1892 && TYPE_BASECLASS_NAME (type, i) != NULL
1893 && (strcmp_iw (name,
1894 TYPE_BASECLASS_NAME (type,
1895 i)) == 0));
1896 LONGEST boffset = value_embedded_offset (arg1) + offset;
1897
1898 if (BASETYPE_VIA_VIRTUAL (type, i))
1899 {
1900 struct value *v2;
1901
1902 boffset = baseclass_offset (type, i,
1903 value_contents_for_printing (arg1),
1904 value_embedded_offset (arg1) + offset,
1905 value_address (arg1),
1906 arg1);
1907
1908 /* The virtual base class pointer might have been clobbered
1909 by the user program. Make sure that it still points to a
1910 valid memory location. */
1911
1912 boffset += value_embedded_offset (arg1) + offset;
1913 if (boffset < 0
1914 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1915 {
1916 CORE_ADDR base_addr;
1917
1918 base_addr = value_address (arg1) + boffset;
1919 v2 = value_at_lazy (basetype, base_addr);
1920 if (target_read_memory (base_addr,
1921 value_contents_raw (v2),
1922 TYPE_LENGTH (value_type (v2))) != 0)
1923 error (_("virtual baseclass botch"));
1924 }
1925 else
1926 {
1927 v2 = value_copy (arg1);
1928 deprecated_set_value_type (v2, basetype);
1929 set_value_embedded_offset (v2, boffset);
1930 }
1931
1932 if (found_baseclass)
1933 v = v2;
1934 else
1935 {
1936 do_search_struct_field (name, v2, 0,
1937 TYPE_BASECLASS (type, i),
1938 looking_for_baseclass,
1939 result_ptr, last_boffset,
1940 outermost_type);
1941 }
1942 }
1943 else if (found_baseclass)
1944 v = value_primitive_field (arg1, offset, i, type);
1945 else
1946 {
1947 do_search_struct_field (name, arg1,
1948 offset + TYPE_BASECLASS_BITPOS (type,
1949 i) / 8,
1950 basetype, looking_for_baseclass,
1951 result_ptr, last_boffset,
1952 outermost_type);
1953 }
1954
1955 update_search_result (result_ptr, v, last_boffset,
1956 boffset, name, outermost_type);
1957 }
1958 }
1959
1960 /* Helper function used by value_struct_elt to recurse through
1961 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1962 it has (class) type TYPE. If found, return value, else return NULL.
1963
1964 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1965 fields, look for a baseclass named NAME. */
1966
1967 static struct value *
1968 search_struct_field (const char *name, struct value *arg1,
1969 struct type *type, int looking_for_baseclass)
1970 {
1971 struct value *result = NULL;
1972 LONGEST boffset = 0;
1973
1974 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1975 &result, &boffset, type);
1976 return result;
1977 }
1978
1979 /* Helper function used by value_struct_elt to recurse through
1980 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1981 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1982 TYPE.
1983
1984 If found, return value, else if name matched and args not return
1985 (value) -1, else return NULL. */
1986
1987 static struct value *
1988 search_struct_method (const char *name, struct value **arg1p,
1989 struct value **args, LONGEST offset,
1990 int *static_memfuncp, struct type *type)
1991 {
1992 int i;
1993 struct value *v;
1994 int name_matched = 0;
1995 char dem_opname[64];
1996
1997 type = check_typedef (type);
1998 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1999 {
2000 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2001
2002 /* FIXME! May need to check for ARM demangling here. */
2003 if (startswith (t_field_name, "__") ||
2004 startswith (t_field_name, "op") ||
2005 startswith (t_field_name, "type"))
2006 {
2007 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2008 t_field_name = dem_opname;
2009 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2010 t_field_name = dem_opname;
2011 }
2012 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2013 {
2014 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2015 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2016
2017 name_matched = 1;
2018 check_stub_method_group (type, i);
2019 if (j > 0 && args == 0)
2020 error (_("cannot resolve overloaded method "
2021 "`%s': no arguments supplied"), name);
2022 else if (j == 0 && args == 0)
2023 {
2024 v = value_fn_field (arg1p, f, j, type, offset);
2025 if (v != NULL)
2026 return v;
2027 }
2028 else
2029 while (j >= 0)
2030 {
2031 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2032 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2033 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2034 TYPE_FN_FIELD_ARGS (f, j), args))
2035 {
2036 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2037 return value_virtual_fn_field (arg1p, f, j,
2038 type, offset);
2039 if (TYPE_FN_FIELD_STATIC_P (f, j)
2040 && static_memfuncp)
2041 *static_memfuncp = 1;
2042 v = value_fn_field (arg1p, f, j, type, offset);
2043 if (v != NULL)
2044 return v;
2045 }
2046 j--;
2047 }
2048 }
2049 }
2050
2051 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2052 {
2053 LONGEST base_offset;
2054 LONGEST this_offset;
2055
2056 if (BASETYPE_VIA_VIRTUAL (type, i))
2057 {
2058 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2059 struct value *base_val;
2060 const gdb_byte *base_valaddr;
2061
2062 /* The virtual base class pointer might have been
2063 clobbered by the user program. Make sure that it
2064 still points to a valid memory location. */
2065
2066 if (offset < 0 || offset >= TYPE_LENGTH (type))
2067 {
2068 CORE_ADDR address;
2069
2070 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2071 address = value_address (*arg1p);
2072
2073 if (target_read_memory (address + offset,
2074 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2075 error (_("virtual baseclass botch"));
2076
2077 base_val = value_from_contents_and_address (baseclass,
2078 tmp.data (),
2079 address + offset);
2080 base_valaddr = value_contents_for_printing (base_val);
2081 this_offset = 0;
2082 }
2083 else
2084 {
2085 base_val = *arg1p;
2086 base_valaddr = value_contents_for_printing (*arg1p);
2087 this_offset = offset;
2088 }
2089
2090 base_offset = baseclass_offset (type, i, base_valaddr,
2091 this_offset, value_address (base_val),
2092 base_val);
2093 }
2094 else
2095 {
2096 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2097 }
2098 v = search_struct_method (name, arg1p, args, base_offset + offset,
2099 static_memfuncp, TYPE_BASECLASS (type, i));
2100 if (v == (struct value *) - 1)
2101 {
2102 name_matched = 1;
2103 }
2104 else if (v)
2105 {
2106 /* FIXME-bothner: Why is this commented out? Why is it here? */
2107 /* *arg1p = arg1_tmp; */
2108 return v;
2109 }
2110 }
2111 if (name_matched)
2112 return (struct value *) - 1;
2113 else
2114 return NULL;
2115 }
2116
2117 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2118 extract the component named NAME from the ultimate target
2119 structure/union and return it as a value with its appropriate type.
2120 ERR is used in the error message if *ARGP's type is wrong.
2121
2122 C++: ARGS is a list of argument types to aid in the selection of
2123 an appropriate method. Also, handle derived types.
2124
2125 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2126 where the truthvalue of whether the function that was resolved was
2127 a static member function or not is stored.
2128
2129 ERR is an error message to be printed in case the field is not
2130 found. */
2131
2132 struct value *
2133 value_struct_elt (struct value **argp, struct value **args,
2134 const char *name, int *static_memfuncp, const char *err)
2135 {
2136 struct type *t;
2137 struct value *v;
2138
2139 *argp = coerce_array (*argp);
2140
2141 t = check_typedef (value_type (*argp));
2142
2143 /* Follow pointers until we get to a non-pointer. */
2144
2145 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2146 {
2147 *argp = value_ind (*argp);
2148 /* Don't coerce fn pointer to fn and then back again! */
2149 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2150 *argp = coerce_array (*argp);
2151 t = check_typedef (value_type (*argp));
2152 }
2153
2154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2155 && TYPE_CODE (t) != TYPE_CODE_UNION)
2156 error (_("Attempt to extract a component of a value that is not a %s."),
2157 err);
2158
2159 /* Assume it's not, unless we see that it is. */
2160 if (static_memfuncp)
2161 *static_memfuncp = 0;
2162
2163 if (!args)
2164 {
2165 /* if there are no arguments ...do this... */
2166
2167 /* Try as a field first, because if we succeed, there is less
2168 work to be done. */
2169 v = search_struct_field (name, *argp, t, 0);
2170 if (v)
2171 return v;
2172
2173 /* C++: If it was not found as a data field, then try to
2174 return it as a pointer to a method. */
2175 v = search_struct_method (name, argp, args, 0,
2176 static_memfuncp, t);
2177
2178 if (v == (struct value *) - 1)
2179 error (_("Cannot take address of method %s."), name);
2180 else if (v == 0)
2181 {
2182 if (TYPE_NFN_FIELDS (t))
2183 error (_("There is no member or method named %s."), name);
2184 else
2185 error (_("There is no member named %s."), name);
2186 }
2187 return v;
2188 }
2189
2190 v = search_struct_method (name, argp, args, 0,
2191 static_memfuncp, t);
2192
2193 if (v == (struct value *) - 1)
2194 {
2195 error (_("One of the arguments you tried to pass to %s could not "
2196 "be converted to what the function wants."), name);
2197 }
2198 else if (v == 0)
2199 {
2200 /* See if user tried to invoke data as function. If so, hand it
2201 back. If it's not callable (i.e., a pointer to function),
2202 gdb should give an error. */
2203 v = search_struct_field (name, *argp, t, 0);
2204 /* If we found an ordinary field, then it is not a method call.
2205 So, treat it as if it were a static member function. */
2206 if (v && static_memfuncp)
2207 *static_memfuncp = 1;
2208 }
2209
2210 if (!v)
2211 throw_error (NOT_FOUND_ERROR,
2212 _("Structure has no component named %s."), name);
2213 return v;
2214 }
2215
2216 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2217 to a structure or union, extract and return its component (field) of
2218 type FTYPE at the specified BITPOS.
2219 Throw an exception on error. */
2220
2221 struct value *
2222 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2223 const char *err)
2224 {
2225 struct type *t;
2226 int i;
2227
2228 *argp = coerce_array (*argp);
2229
2230 t = check_typedef (value_type (*argp));
2231
2232 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2233 {
2234 *argp = value_ind (*argp);
2235 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2236 *argp = coerce_array (*argp);
2237 t = check_typedef (value_type (*argp));
2238 }
2239
2240 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2241 && TYPE_CODE (t) != TYPE_CODE_UNION)
2242 error (_("Attempt to extract a component of a value that is not a %s."),
2243 err);
2244
2245 for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
2246 {
2247 if (!field_is_static (&TYPE_FIELD (t, i))
2248 && bitpos == TYPE_FIELD_BITPOS (t, i)
2249 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2250 return value_primitive_field (*argp, 0, i, t);
2251 }
2252
2253 error (_("No field with matching bitpos and type."));
2254
2255 /* Never hit. */
2256 return NULL;
2257 }
2258
2259 /* Search through the methods of an object (and its bases) to find a
2260 specified method. Return the pointer to the fn_field list FN_LIST of
2261 overloaded instances defined in the source language. If available
2262 and matching, a vector of matching xmethods defined in extension
2263 languages are also returned in XM_WORKER_VEC
2264
2265 Helper function for value_find_oload_list.
2266 ARGP is a pointer to a pointer to a value (the object).
2267 METHOD is a string containing the method name.
2268 OFFSET is the offset within the value.
2269 TYPE is the assumed type of the object.
2270 FN_LIST is the pointer to matching overloaded instances defined in
2271 source language. Since this is a recursive function, *FN_LIST
2272 should be set to NULL when calling this function.
2273 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2274 0 when calling this function.
2275 XM_WORKER_VEC is the vector of matching xmethod workers. *XM_WORKER_VEC
2276 should also be set to NULL when calling this function.
2277 BASETYPE is set to the actual type of the subobject where the
2278 method is found.
2279 BOFFSET is the offset of the base subobject where the method is found. */
2280
2281 static void
2282 find_method_list (struct value **argp, const char *method,
2283 LONGEST offset, struct type *type,
2284 struct fn_field **fn_list, int *num_fns,
2285 VEC (xmethod_worker_ptr) **xm_worker_vec,
2286 struct type **basetype, LONGEST *boffset)
2287 {
2288 int i;
2289 struct fn_field *f = NULL;
2290 VEC (xmethod_worker_ptr) *worker_vec = NULL, *new_vec = NULL;
2291
2292 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2293 type = check_typedef (type);
2294
2295 /* First check in object itself.
2296 This function is called recursively to search through base classes.
2297 If there is a source method match found at some stage, then we need not
2298 look for source methods in consequent recursive calls. */
2299 if ((*fn_list) == NULL)
2300 {
2301 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2302 {
2303 /* pai: FIXME What about operators and type conversions? */
2304 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2305
2306 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2307 {
2308 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2309 f = TYPE_FN_FIELDLIST1 (type, i);
2310 *fn_list = f;
2311
2312 *num_fns = len;
2313 *basetype = type;
2314 *boffset = offset;
2315
2316 /* Resolve any stub methods. */
2317 check_stub_method_group (type, i);
2318
2319 break;
2320 }
2321 }
2322 }
2323
2324 /* Unlike source methods, xmethods can be accumulated over successive
2325 recursive calls. In other words, an xmethod named 'm' in a class
2326 will not hide an xmethod named 'm' in its base class(es). We want
2327 it to be this way because xmethods are after all convenience functions
2328 and hence there is no point restricting them with something like method
2329 hiding. Moreover, if hiding is done for xmethods as well, then we will
2330 have to provide a mechanism to un-hide (like the 'using' construct). */
2331 worker_vec = get_matching_xmethod_workers (type, method);
2332 new_vec = VEC_merge (xmethod_worker_ptr, *xm_worker_vec, worker_vec);
2333
2334 VEC_free (xmethod_worker_ptr, *xm_worker_vec);
2335 VEC_free (xmethod_worker_ptr, worker_vec);
2336 *xm_worker_vec = new_vec;
2337
2338 /* If source methods are not found in current class, look for them in the
2339 base classes. We also have to go through the base classes to gather
2340 extension methods. */
2341 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2342 {
2343 LONGEST base_offset;
2344
2345 if (BASETYPE_VIA_VIRTUAL (type, i))
2346 {
2347 base_offset = baseclass_offset (type, i,
2348 value_contents_for_printing (*argp),
2349 value_offset (*argp) + offset,
2350 value_address (*argp), *argp);
2351 }
2352 else /* Non-virtual base, simply use bit position from debug
2353 info. */
2354 {
2355 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2356 }
2357
2358 find_method_list (argp, method, base_offset + offset,
2359 TYPE_BASECLASS (type, i), fn_list, num_fns,
2360 xm_worker_vec, basetype, boffset);
2361 }
2362 }
2363
2364 /* Return the list of overloaded methods of a specified name. The methods
2365 could be those GDB finds in the binary, or xmethod. Methods found in
2366 the binary are returned in FN_LIST, and xmethods are returned in
2367 XM_WORKER_VEC.
2368
2369 ARGP is a pointer to a pointer to a value (the object).
2370 METHOD is the method name.
2371 OFFSET is the offset within the value contents.
2372 FN_LIST is the pointer to matching overloaded instances defined in
2373 source language.
2374 NUM_FNS is the number of overloaded instances.
2375 XM_WORKER_VEC is the vector of matching xmethod workers defined in
2376 extension languages.
2377 BASETYPE is set to the type of the base subobject that defines the
2378 method.
2379 BOFFSET is the offset of the base subobject which defines the method. */
2380
2381 static void
2382 value_find_oload_method_list (struct value **argp, const char *method,
2383 LONGEST offset, struct fn_field **fn_list,
2384 int *num_fns,
2385 VEC (xmethod_worker_ptr) **xm_worker_vec,
2386 struct type **basetype, LONGEST *boffset)
2387 {
2388 struct type *t;
2389
2390 t = check_typedef (value_type (*argp));
2391
2392 /* Code snarfed from value_struct_elt. */
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2398 *argp = coerce_array (*argp);
2399 t = check_typedef (value_type (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2403 && TYPE_CODE (t) != TYPE_CODE_UNION)
2404 error (_("Attempt to extract a component of a "
2405 "value that is not a struct or union"));
2406
2407 gdb_assert (fn_list != NULL && xm_worker_vec != NULL);
2408
2409 /* Clear the lists. */
2410 *fn_list = NULL;
2411 *num_fns = 0;
2412 *xm_worker_vec = NULL;
2413
2414 find_method_list (argp, method, 0, t, fn_list, num_fns, xm_worker_vec,
2415 basetype, boffset);
2416 }
2417
2418 /* Given an array of arguments (ARGS) (which includes an
2419 entry for "this" in the case of C++ methods), the number of
2420 arguments NARGS, the NAME of a function, and whether it's a method or
2421 not (METHOD), find the best function that matches on the argument types
2422 according to the overload resolution rules.
2423
2424 METHOD can be one of three values:
2425 NON_METHOD for non-member functions.
2426 METHOD: for member functions.
2427 BOTH: used for overload resolution of operators where the
2428 candidates are expected to be either member or non member
2429 functions. In this case the first argument ARGTYPES
2430 (representing 'this') is expected to be a reference to the
2431 target object, and will be dereferenced when attempting the
2432 non-member search.
2433
2434 In the case of class methods, the parameter OBJ is an object value
2435 in which to search for overloaded methods.
2436
2437 In the case of non-method functions, the parameter FSYM is a symbol
2438 corresponding to one of the overloaded functions.
2439
2440 Return value is an integer: 0 -> good match, 10 -> debugger applied
2441 non-standard coercions, 100 -> incompatible.
2442
2443 If a method is being searched for, VALP will hold the value.
2444 If a non-method is being searched for, SYMP will hold the symbol
2445 for it.
2446
2447 If a method is being searched for, and it is a static method,
2448 then STATICP will point to a non-zero value.
2449
2450 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2451 ADL overload candidates when performing overload resolution for a fully
2452 qualified name.
2453
2454 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2455 read while picking the best overload match (it may be all zeroes and thus
2456 not have a vtable pointer), in which case skip virtual function lookup.
2457 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2458 the result type.
2459
2460 Note: This function does *not* check the value of
2461 overload_resolution. Caller must check it to see whether overload
2462 resolution is permitted. */
2463
2464 int
2465 find_overload_match (struct value **args, int nargs,
2466 const char *name, enum oload_search_type method,
2467 struct value **objp, struct symbol *fsym,
2468 struct value **valp, struct symbol **symp,
2469 int *staticp, const int no_adl,
2470 const enum noside noside)
2471 {
2472 struct value *obj = (objp ? *objp : NULL);
2473 struct type *obj_type = obj ? value_type (obj) : NULL;
2474 /* Index of best overloaded function. */
2475 int func_oload_champ = -1;
2476 int method_oload_champ = -1;
2477 int src_method_oload_champ = -1;
2478 int ext_method_oload_champ = -1;
2479
2480 /* The measure for the current best match. */
2481 struct badness_vector *method_badness = NULL;
2482 struct badness_vector *func_badness = NULL;
2483 struct badness_vector *ext_method_badness = NULL;
2484 struct badness_vector *src_method_badness = NULL;
2485
2486 struct value *temp = obj;
2487 /* For methods, the list of overloaded methods. */
2488 struct fn_field *fns_ptr = NULL;
2489 /* For non-methods, the list of overloaded function symbols. */
2490 struct symbol **oload_syms = NULL;
2491 /* For xmethods, the VEC of xmethod workers. */
2492 VEC (xmethod_worker_ptr) *xm_worker_vec = NULL;
2493 /* Number of overloaded instances being considered. */
2494 int num_fns = 0;
2495 struct type *basetype = NULL;
2496 LONGEST boffset;
2497
2498 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2499
2500 const char *obj_type_name = NULL;
2501 const char *func_name = NULL;
2502 enum oload_classification match_quality;
2503 enum oload_classification method_match_quality = INCOMPATIBLE;
2504 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2505 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2506 enum oload_classification func_match_quality = INCOMPATIBLE;
2507
2508 /* Get the list of overloaded methods or functions. */
2509 if (method == METHOD || method == BOTH)
2510 {
2511 gdb_assert (obj);
2512
2513 /* OBJ may be a pointer value rather than the object itself. */
2514 obj = coerce_ref (obj);
2515 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2516 obj = coerce_ref (value_ind (obj));
2517 obj_type_name = TYPE_NAME (value_type (obj));
2518
2519 /* First check whether this is a data member, e.g. a pointer to
2520 a function. */
2521 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2522 {
2523 *valp = search_struct_field (name, obj,
2524 check_typedef (value_type (obj)), 0);
2525 if (*valp)
2526 {
2527 *staticp = 1;
2528 do_cleanups (all_cleanups);
2529 return 0;
2530 }
2531 }
2532
2533 /* Retrieve the list of methods with the name NAME. */
2534 value_find_oload_method_list (&temp, name, 0, &fns_ptr, &num_fns,
2535 &xm_worker_vec, &basetype, &boffset);
2536 /* If this is a method only search, and no methods were found
2537 the search has faild. */
2538 if (method == METHOD && (!fns_ptr || !num_fns) && !xm_worker_vec)
2539 error (_("Couldn't find method %s%s%s"),
2540 obj_type_name,
2541 (obj_type_name && *obj_type_name) ? "::" : "",
2542 name);
2543 /* If we are dealing with stub method types, they should have
2544 been resolved by find_method_list via
2545 value_find_oload_method_list above. */
2546 if (fns_ptr)
2547 {
2548 gdb_assert (TYPE_SELF_TYPE (fns_ptr[0].type) != NULL);
2549
2550 src_method_oload_champ = find_oload_champ (args, nargs,
2551 num_fns, fns_ptr, NULL,
2552 NULL, &src_method_badness);
2553
2554 src_method_match_quality = classify_oload_match
2555 (src_method_badness, nargs,
2556 oload_method_static_p (fns_ptr, src_method_oload_champ));
2557
2558 make_cleanup (xfree, src_method_badness);
2559 }
2560
2561 if (VEC_length (xmethod_worker_ptr, xm_worker_vec) > 0)
2562 {
2563 ext_method_oload_champ = find_oload_champ (args, nargs,
2564 0, NULL, xm_worker_vec,
2565 NULL, &ext_method_badness);
2566 ext_method_match_quality = classify_oload_match (ext_method_badness,
2567 nargs, 0);
2568 make_cleanup (xfree, ext_method_badness);
2569 make_cleanup (free_xmethod_worker_vec, xm_worker_vec);
2570 }
2571
2572 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2573 {
2574 switch (compare_badness (ext_method_badness, src_method_badness))
2575 {
2576 case 0: /* Src method and xmethod are equally good. */
2577 /* If src method and xmethod are equally good, then
2578 xmethod should be the winner. Hence, fall through to the
2579 case where a xmethod is better than the source
2580 method, except when the xmethod match quality is
2581 non-standard. */
2582 /* FALLTHROUGH */
2583 case 1: /* Src method and ext method are incompatible. */
2584 /* If ext method match is not standard, then let source method
2585 win. Otherwise, fallthrough to let xmethod win. */
2586 if (ext_method_match_quality != STANDARD)
2587 {
2588 method_oload_champ = src_method_oload_champ;
2589 method_badness = src_method_badness;
2590 ext_method_oload_champ = -1;
2591 method_match_quality = src_method_match_quality;
2592 break;
2593 }
2594 /* FALLTHROUGH */
2595 case 2: /* Ext method is champion. */
2596 method_oload_champ = ext_method_oload_champ;
2597 method_badness = ext_method_badness;
2598 src_method_oload_champ = -1;
2599 method_match_quality = ext_method_match_quality;
2600 break;
2601 case 3: /* Src method is champion. */
2602 method_oload_champ = src_method_oload_champ;
2603 method_badness = src_method_badness;
2604 ext_method_oload_champ = -1;
2605 method_match_quality = src_method_match_quality;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("Unexpected overload comparison "
2609 "result");
2610 break;
2611 }
2612 }
2613 else if (src_method_oload_champ >= 0)
2614 {
2615 method_oload_champ = src_method_oload_champ;
2616 method_badness = src_method_badness;
2617 method_match_quality = src_method_match_quality;
2618 }
2619 else if (ext_method_oload_champ >= 0)
2620 {
2621 method_oload_champ = ext_method_oload_champ;
2622 method_badness = ext_method_badness;
2623 method_match_quality = ext_method_match_quality;
2624 }
2625 }
2626
2627 if (method == NON_METHOD || method == BOTH)
2628 {
2629 const char *qualified_name = NULL;
2630
2631 /* If the overload match is being search for both as a method
2632 and non member function, the first argument must now be
2633 dereferenced. */
2634 if (method == BOTH)
2635 args[0] = value_ind (args[0]);
2636
2637 if (fsym)
2638 {
2639 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2640
2641 /* If we have a function with a C++ name, try to extract just
2642 the function part. Do not try this for non-functions (e.g.
2643 function pointers). */
2644 if (qualified_name
2645 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2646 == TYPE_CODE_FUNC)
2647 {
2648 char *temp;
2649
2650 temp = cp_func_name (qualified_name);
2651
2652 /* If cp_func_name did not remove anything, the name of the
2653 symbol did not include scope or argument types - it was
2654 probably a C-style function. */
2655 if (temp)
2656 {
2657 make_cleanup (xfree, temp);
2658 if (strcmp (temp, qualified_name) == 0)
2659 func_name = NULL;
2660 else
2661 func_name = temp;
2662 }
2663 }
2664 }
2665 else
2666 {
2667 func_name = name;
2668 qualified_name = name;
2669 }
2670
2671 /* If there was no C++ name, this must be a C-style function or
2672 not a function at all. Just return the same symbol. Do the
2673 same if cp_func_name fails for some reason. */
2674 if (func_name == NULL)
2675 {
2676 *symp = fsym;
2677 do_cleanups (all_cleanups);
2678 return 0;
2679 }
2680
2681 func_oload_champ = find_oload_champ_namespace (args, nargs,
2682 func_name,
2683 qualified_name,
2684 &oload_syms,
2685 &func_badness,
2686 no_adl);
2687
2688 if (func_oload_champ >= 0)
2689 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2690
2691 make_cleanup (xfree, oload_syms);
2692 make_cleanup (xfree, func_badness);
2693 }
2694
2695 /* Did we find a match ? */
2696 if (method_oload_champ == -1 && func_oload_champ == -1)
2697 throw_error (NOT_FOUND_ERROR,
2698 _("No symbol \"%s\" in current context."),
2699 name);
2700
2701 /* If we have found both a method match and a function
2702 match, find out which one is better, and calculate match
2703 quality. */
2704 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2705 {
2706 switch (compare_badness (func_badness, method_badness))
2707 {
2708 case 0: /* Top two contenders are equally good. */
2709 /* FIXME: GDB does not support the general ambiguous case.
2710 All candidates should be collected and presented the
2711 user. */
2712 error (_("Ambiguous overload resolution"));
2713 break;
2714 case 1: /* Incomparable top contenders. */
2715 /* This is an error incompatible candidates
2716 should not have been proposed. */
2717 error (_("Internal error: incompatible "
2718 "overload candidates proposed"));
2719 break;
2720 case 2: /* Function champion. */
2721 method_oload_champ = -1;
2722 match_quality = func_match_quality;
2723 break;
2724 case 3: /* Method champion. */
2725 func_oload_champ = -1;
2726 match_quality = method_match_quality;
2727 break;
2728 default:
2729 error (_("Internal error: unexpected overload comparison result"));
2730 break;
2731 }
2732 }
2733 else
2734 {
2735 /* We have either a method match or a function match. */
2736 if (method_oload_champ >= 0)
2737 match_quality = method_match_quality;
2738 else
2739 match_quality = func_match_quality;
2740 }
2741
2742 if (match_quality == INCOMPATIBLE)
2743 {
2744 if (method == METHOD)
2745 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2746 obj_type_name,
2747 (obj_type_name && *obj_type_name) ? "::" : "",
2748 name);
2749 else
2750 error (_("Cannot resolve function %s to any overloaded instance"),
2751 func_name);
2752 }
2753 else if (match_quality == NON_STANDARD)
2754 {
2755 if (method == METHOD)
2756 warning (_("Using non-standard conversion to match "
2757 "method %s%s%s to supplied arguments"),
2758 obj_type_name,
2759 (obj_type_name && *obj_type_name) ? "::" : "",
2760 name);
2761 else
2762 warning (_("Using non-standard conversion to match "
2763 "function %s to supplied arguments"),
2764 func_name);
2765 }
2766
2767 if (staticp != NULL)
2768 *staticp = oload_method_static_p (fns_ptr, method_oload_champ);
2769
2770 if (method_oload_champ >= 0)
2771 {
2772 if (src_method_oload_champ >= 0)
2773 {
2774 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ)
2775 && noside != EVAL_AVOID_SIDE_EFFECTS)
2776 {
2777 *valp = value_virtual_fn_field (&temp, fns_ptr,
2778 method_oload_champ, basetype,
2779 boffset);
2780 }
2781 else
2782 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2783 basetype, boffset);
2784 }
2785 else
2786 {
2787 *valp = value_of_xmethod (clone_xmethod_worker
2788 (VEC_index (xmethod_worker_ptr, xm_worker_vec,
2789 ext_method_oload_champ)));
2790 }
2791 }
2792 else
2793 *symp = oload_syms[func_oload_champ];
2794
2795 if (objp)
2796 {
2797 struct type *temp_type = check_typedef (value_type (temp));
2798 struct type *objtype = check_typedef (obj_type);
2799
2800 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2801 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2802 || TYPE_IS_REFERENCE (objtype)))
2803 {
2804 temp = value_addr (temp);
2805 }
2806 *objp = temp;
2807 }
2808
2809 do_cleanups (all_cleanups);
2810
2811 switch (match_quality)
2812 {
2813 case INCOMPATIBLE:
2814 return 100;
2815 case NON_STANDARD:
2816 return 10;
2817 default: /* STANDARD */
2818 return 0;
2819 }
2820 }
2821
2822 /* Find the best overload match, searching for FUNC_NAME in namespaces
2823 contained in QUALIFIED_NAME until it either finds a good match or
2824 runs out of namespaces. It stores the overloaded functions in
2825 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2826 calling function is responsible for freeing *OLOAD_SYMS and
2827 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2828 performned. */
2829
2830 static int
2831 find_oload_champ_namespace (struct value **args, int nargs,
2832 const char *func_name,
2833 const char *qualified_name,
2834 struct symbol ***oload_syms,
2835 struct badness_vector **oload_champ_bv,
2836 const int no_adl)
2837 {
2838 int oload_champ;
2839
2840 find_oload_champ_namespace_loop (args, nargs,
2841 func_name,
2842 qualified_name, 0,
2843 oload_syms, oload_champ_bv,
2844 &oload_champ,
2845 no_adl);
2846
2847 return oload_champ;
2848 }
2849
2850 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2851 how deep we've looked for namespaces, and the champ is stored in
2852 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2853 if it isn't. Other arguments are the same as in
2854 find_oload_champ_namespace
2855
2856 It is the caller's responsibility to free *OLOAD_SYMS and
2857 *OLOAD_CHAMP_BV. */
2858
2859 static int
2860 find_oload_champ_namespace_loop (struct value **args, int nargs,
2861 const char *func_name,
2862 const char *qualified_name,
2863 int namespace_len,
2864 struct symbol ***oload_syms,
2865 struct badness_vector **oload_champ_bv,
2866 int *oload_champ,
2867 const int no_adl)
2868 {
2869 int next_namespace_len = namespace_len;
2870 int searched_deeper = 0;
2871 int num_fns = 0;
2872 struct cleanup *old_cleanups;
2873 int new_oload_champ;
2874 struct symbol **new_oload_syms;
2875 struct badness_vector *new_oload_champ_bv;
2876 char *new_namespace;
2877
2878 if (next_namespace_len != 0)
2879 {
2880 gdb_assert (qualified_name[next_namespace_len] == ':');
2881 next_namespace_len += 2;
2882 }
2883 next_namespace_len +=
2884 cp_find_first_component (qualified_name + next_namespace_len);
2885
2886 /* Initialize these to values that can safely be xfree'd. */
2887 *oload_syms = NULL;
2888 *oload_champ_bv = NULL;
2889
2890 /* First, see if we have a deeper namespace we can search in.
2891 If we get a good match there, use it. */
2892
2893 if (qualified_name[next_namespace_len] == ':')
2894 {
2895 searched_deeper = 1;
2896
2897 if (find_oload_champ_namespace_loop (args, nargs,
2898 func_name, qualified_name,
2899 next_namespace_len,
2900 oload_syms, oload_champ_bv,
2901 oload_champ, no_adl))
2902 {
2903 return 1;
2904 }
2905 };
2906
2907 /* If we reach here, either we're in the deepest namespace or we
2908 didn't find a good match in a deeper namespace. But, in the
2909 latter case, we still have a bad match in a deeper namespace;
2910 note that we might not find any match at all in the current
2911 namespace. (There's always a match in the deepest namespace,
2912 because this overload mechanism only gets called if there's a
2913 function symbol to start off with.) */
2914
2915 old_cleanups = make_cleanup (xfree, *oload_syms);
2916 make_cleanup (xfree, *oload_champ_bv);
2917 new_namespace = (char *) alloca (namespace_len + 1);
2918 strncpy (new_namespace, qualified_name, namespace_len);
2919 new_namespace[namespace_len] = '\0';
2920 new_oload_syms = make_symbol_overload_list (func_name,
2921 new_namespace);
2922
2923 /* If we have reached the deepest level perform argument
2924 determined lookup. */
2925 if (!searched_deeper && !no_adl)
2926 {
2927 int ix;
2928 struct type **arg_types;
2929
2930 /* Prepare list of argument types for overload resolution. */
2931 arg_types = (struct type **)
2932 alloca (nargs * (sizeof (struct type *)));
2933 for (ix = 0; ix < nargs; ix++)
2934 arg_types[ix] = value_type (args[ix]);
2935 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2936 }
2937
2938 while (new_oload_syms[num_fns])
2939 ++num_fns;
2940
2941 new_oload_champ = find_oload_champ (args, nargs, num_fns,
2942 NULL, NULL, new_oload_syms,
2943 &new_oload_champ_bv);
2944
2945 /* Case 1: We found a good match. Free earlier matches (if any),
2946 and return it. Case 2: We didn't find a good match, but we're
2947 not the deepest function. Then go with the bad match that the
2948 deeper function found. Case 3: We found a bad match, and we're
2949 the deepest function. Then return what we found, even though
2950 it's a bad match. */
2951
2952 if (new_oload_champ != -1
2953 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2954 {
2955 *oload_syms = new_oload_syms;
2956 *oload_champ = new_oload_champ;
2957 *oload_champ_bv = new_oload_champ_bv;
2958 do_cleanups (old_cleanups);
2959 return 1;
2960 }
2961 else if (searched_deeper)
2962 {
2963 xfree (new_oload_syms);
2964 xfree (new_oload_champ_bv);
2965 discard_cleanups (old_cleanups);
2966 return 0;
2967 }
2968 else
2969 {
2970 *oload_syms = new_oload_syms;
2971 *oload_champ = new_oload_champ;
2972 *oload_champ_bv = new_oload_champ_bv;
2973 do_cleanups (old_cleanups);
2974 return 0;
2975 }
2976 }
2977
2978 /* Look for a function to take NARGS args of ARGS. Find
2979 the best match from among the overloaded methods or functions
2980 given by FNS_PTR or OLOAD_SYMS or XM_WORKER_VEC, respectively.
2981 One, and only one of FNS_PTR, OLOAD_SYMS and XM_WORKER_VEC can be
2982 non-NULL.
2983
2984 If XM_WORKER_VEC is NULL, then the length of the arrays FNS_PTR
2985 or OLOAD_SYMS (whichever is non-NULL) is specified in NUM_FNS.
2986
2987 Return the index of the best match; store an indication of the
2988 quality of the match in OLOAD_CHAMP_BV.
2989
2990 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2991
2992 static int
2993 find_oload_champ (struct value **args, int nargs,
2994 int num_fns, struct fn_field *fns_ptr,
2995 VEC (xmethod_worker_ptr) *xm_worker_vec,
2996 struct symbol **oload_syms,
2997 struct badness_vector **oload_champ_bv)
2998 {
2999 int ix;
3000 int fn_count;
3001 /* A measure of how good an overloaded instance is. */
3002 struct badness_vector *bv;
3003 /* Index of best overloaded function. */
3004 int oload_champ = -1;
3005 /* Current ambiguity state for overload resolution. */
3006 int oload_ambiguous = 0;
3007 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3008
3009 /* A champion can be found among methods alone, or among functions
3010 alone, or in xmethods alone, but not in more than one of these
3011 groups. */
3012 gdb_assert ((fns_ptr != NULL) + (oload_syms != NULL) + (xm_worker_vec != NULL)
3013 == 1);
3014
3015 *oload_champ_bv = NULL;
3016
3017 fn_count = (xm_worker_vec != NULL
3018 ? VEC_length (xmethod_worker_ptr, xm_worker_vec)
3019 : num_fns);
3020 /* Consider each candidate in turn. */
3021 for (ix = 0; ix < fn_count; ix++)
3022 {
3023 int jj;
3024 int static_offset = 0;
3025 int nparms;
3026 struct type **parm_types;
3027 struct xmethod_worker *worker = NULL;
3028
3029 if (xm_worker_vec != NULL)
3030 {
3031 worker = VEC_index (xmethod_worker_ptr, xm_worker_vec, ix);
3032 parm_types = get_xmethod_arg_types (worker, &nparms);
3033 }
3034 else
3035 {
3036 if (fns_ptr != NULL)
3037 {
3038 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3039 static_offset = oload_method_static_p (fns_ptr, ix);
3040 }
3041 else
3042 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3043
3044 parm_types = XNEWVEC (struct type *, nparms);
3045 for (jj = 0; jj < nparms; jj++)
3046 parm_types[jj] = (fns_ptr != NULL
3047 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3048 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3049 jj));
3050 }
3051
3052 /* Compare parameter types to supplied argument types. Skip
3053 THIS for static methods. */
3054 bv = rank_function (parm_types, nparms,
3055 args + static_offset,
3056 nargs - static_offset);
3057
3058 if (!*oload_champ_bv)
3059 {
3060 *oload_champ_bv = bv;
3061 oload_champ = 0;
3062 }
3063 else /* See whether current candidate is better or worse than
3064 previous best. */
3065 switch (compare_badness (bv, *oload_champ_bv))
3066 {
3067 case 0: /* Top two contenders are equally good. */
3068 oload_ambiguous = 1;
3069 break;
3070 case 1: /* Incomparable top contenders. */
3071 oload_ambiguous = 2;
3072 break;
3073 case 2: /* New champion, record details. */
3074 *oload_champ_bv = bv;
3075 oload_ambiguous = 0;
3076 oload_champ = ix;
3077 break;
3078 case 3:
3079 default:
3080 break;
3081 }
3082 xfree (parm_types);
3083 if (overload_debug)
3084 {
3085 if (fns_ptr != NULL)
3086 fprintf_filtered (gdb_stderr,
3087 "Overloaded method instance %s, # of parms %d\n",
3088 fns_ptr[ix].physname, nparms);
3089 else if (xm_worker_vec != NULL)
3090 fprintf_filtered (gdb_stderr,
3091 "Xmethod worker, # of parms %d\n",
3092 nparms);
3093 else
3094 fprintf_filtered (gdb_stderr,
3095 "Overloaded function instance "
3096 "%s # of parms %d\n",
3097 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3098 nparms);
3099 for (jj = 0; jj < nargs - static_offset; jj++)
3100 fprintf_filtered (gdb_stderr,
3101 "...Badness @ %d : %d\n",
3102 jj, bv->rank[jj].rank);
3103 fprintf_filtered (gdb_stderr, "Overload resolution "
3104 "champion is %d, ambiguous? %d\n",
3105 oload_champ, oload_ambiguous);
3106 }
3107 }
3108
3109 return oload_champ;
3110 }
3111
3112 /* Return 1 if we're looking at a static method, 0 if we're looking at
3113 a non-static method or a function that isn't a method. */
3114
3115 static int
3116 oload_method_static_p (struct fn_field *fns_ptr, int index)
3117 {
3118 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3119 return 1;
3120 else
3121 return 0;
3122 }
3123
3124 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3125
3126 static enum oload_classification
3127 classify_oload_match (struct badness_vector *oload_champ_bv,
3128 int nargs,
3129 int static_offset)
3130 {
3131 int ix;
3132 enum oload_classification worst = STANDARD;
3133
3134 for (ix = 1; ix <= nargs - static_offset; ix++)
3135 {
3136 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3137 or worse return INCOMPATIBLE. */
3138 if (compare_ranks (oload_champ_bv->rank[ix],
3139 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3140 return INCOMPATIBLE; /* Truly mismatched types. */
3141 /* Otherwise If this conversion is as bad as
3142 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3143 else if (compare_ranks (oload_champ_bv->rank[ix],
3144 NS_POINTER_CONVERSION_BADNESS) <= 0)
3145 worst = NON_STANDARD; /* Non-standard type conversions
3146 needed. */
3147 }
3148
3149 /* If no INCOMPATIBLE classification was found, return the worst one
3150 that was found (if any). */
3151 return worst;
3152 }
3153
3154 /* C++: return 1 is NAME is a legitimate name for the destructor of
3155 type TYPE. If TYPE does not have a destructor, or if NAME is
3156 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3157 have CHECK_TYPEDEF applied, this function will apply it itself. */
3158
3159 int
3160 destructor_name_p (const char *name, struct type *type)
3161 {
3162 if (name[0] == '~')
3163 {
3164 const char *dname = type_name_no_tag_or_error (type);
3165 const char *cp = strchr (dname, '<');
3166 unsigned int len;
3167
3168 /* Do not compare the template part for template classes. */
3169 if (cp == NULL)
3170 len = strlen (dname);
3171 else
3172 len = cp - dname;
3173 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3174 error (_("name of destructor must equal name of class"));
3175 else
3176 return 1;
3177 }
3178 return 0;
3179 }
3180
3181 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3182 class". If the name is found, return a value representing it;
3183 otherwise throw an exception. */
3184
3185 static struct value *
3186 enum_constant_from_type (struct type *type, const char *name)
3187 {
3188 int i;
3189 int name_len = strlen (name);
3190
3191 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
3192 && TYPE_DECLARED_CLASS (type));
3193
3194 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
3195 {
3196 const char *fname = TYPE_FIELD_NAME (type, i);
3197 int len;
3198
3199 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3200 || fname == NULL)
3201 continue;
3202
3203 /* Look for the trailing "::NAME", since enum class constant
3204 names are qualified here. */
3205 len = strlen (fname);
3206 if (len + 2 >= name_len
3207 && fname[len - name_len - 2] == ':'
3208 && fname[len - name_len - 1] == ':'
3209 && strcmp (&fname[len - name_len], name) == 0)
3210 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3211 }
3212
3213 error (_("no constant named \"%s\" in enum \"%s\""),
3214 name, TYPE_TAG_NAME (type));
3215 }
3216
3217 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3218 return the appropriate member (or the address of the member, if
3219 WANT_ADDRESS). This function is used to resolve user expressions
3220 of the form "DOMAIN::NAME". For more details on what happens, see
3221 the comment before value_struct_elt_for_reference. */
3222
3223 struct value *
3224 value_aggregate_elt (struct type *curtype, const char *name,
3225 struct type *expect_type, int want_address,
3226 enum noside noside)
3227 {
3228 switch (TYPE_CODE (curtype))
3229 {
3230 case TYPE_CODE_STRUCT:
3231 case TYPE_CODE_UNION:
3232 return value_struct_elt_for_reference (curtype, 0, curtype,
3233 name, expect_type,
3234 want_address, noside);
3235 case TYPE_CODE_NAMESPACE:
3236 return value_namespace_elt (curtype, name,
3237 want_address, noside);
3238
3239 case TYPE_CODE_ENUM:
3240 return enum_constant_from_type (curtype, name);
3241
3242 default:
3243 internal_error (__FILE__, __LINE__,
3244 _("non-aggregate type in value_aggregate_elt"));
3245 }
3246 }
3247
3248 /* Compares the two method/function types T1 and T2 for "equality"
3249 with respect to the methods' parameters. If the types of the
3250 two parameter lists are the same, returns 1; 0 otherwise. This
3251 comparison may ignore any artificial parameters in T1 if
3252 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3253 the first artificial parameter in T1, assumed to be a 'this' pointer.
3254
3255 The type T2 is expected to have come from make_params (in eval.c). */
3256
3257 static int
3258 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3259 {
3260 int start = 0;
3261
3262 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3263 ++start;
3264
3265 /* If skipping artificial fields, find the first real field
3266 in T1. */
3267 if (skip_artificial)
3268 {
3269 while (start < TYPE_NFIELDS (t1)
3270 && TYPE_FIELD_ARTIFICIAL (t1, start))
3271 ++start;
3272 }
3273
3274 /* Now compare parameters. */
3275
3276 /* Special case: a method taking void. T1 will contain no
3277 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3278 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3279 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3280 return 1;
3281
3282 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3283 {
3284 int i;
3285
3286 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3287 {
3288 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3289 TYPE_FIELD_TYPE (t2, i), NULL),
3290 EXACT_MATCH_BADNESS) != 0)
3291 return 0;
3292 }
3293
3294 return 1;
3295 }
3296
3297 return 0;
3298 }
3299
3300 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3301 return the address of this member as a "pointer to member" type.
3302 If INTYPE is non-null, then it will be the type of the member we
3303 are looking for. This will help us resolve "pointers to member
3304 functions". This function is used to resolve user expressions of
3305 the form "DOMAIN::NAME". */
3306
3307 static struct value *
3308 value_struct_elt_for_reference (struct type *domain, int offset,
3309 struct type *curtype, const char *name,
3310 struct type *intype,
3311 int want_address,
3312 enum noside noside)
3313 {
3314 struct type *t = curtype;
3315 int i;
3316 struct value *v, *result;
3317
3318 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3319 && TYPE_CODE (t) != TYPE_CODE_UNION)
3320 error (_("Internal error: non-aggregate type "
3321 "to value_struct_elt_for_reference"));
3322
3323 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3324 {
3325 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3326
3327 if (t_field_name && strcmp (t_field_name, name) == 0)
3328 {
3329 if (field_is_static (&TYPE_FIELD (t, i)))
3330 {
3331 v = value_static_field (t, i);
3332 if (want_address)
3333 v = value_addr (v);
3334 return v;
3335 }
3336 if (TYPE_FIELD_PACKED (t, i))
3337 error (_("pointers to bitfield members not allowed"));
3338
3339 if (want_address)
3340 return value_from_longest
3341 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3342 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3343 else if (noside != EVAL_NORMAL)
3344 return allocate_value (TYPE_FIELD_TYPE (t, i));
3345 else
3346 {
3347 /* Try to evaluate NAME as a qualified name with implicit
3348 this pointer. In this case, attempt to return the
3349 equivalent to `this->*(&TYPE::NAME)'. */
3350 v = value_of_this_silent (current_language);
3351 if (v != NULL)
3352 {
3353 struct value *ptr;
3354 long mem_offset;
3355 struct type *type, *tmp;
3356
3357 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3358 type = check_typedef (value_type (ptr));
3359 gdb_assert (type != NULL
3360 && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
3361 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3362 v = value_cast_pointers (tmp, v, 1);
3363 mem_offset = value_as_long (ptr);
3364 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3365 result = value_from_pointer (tmp,
3366 value_as_long (v) + mem_offset);
3367 return value_ind (result);
3368 }
3369
3370 error (_("Cannot reference non-static field \"%s\""), name);
3371 }
3372 }
3373 }
3374
3375 /* C++: If it was not found as a data field, then try to return it
3376 as a pointer to a method. */
3377
3378 /* Perform all necessary dereferencing. */
3379 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3380 intype = TYPE_TARGET_TYPE (intype);
3381
3382 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3383 {
3384 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3385 char dem_opname[64];
3386
3387 if (startswith (t_field_name, "__")
3388 || startswith (t_field_name, "op")
3389 || startswith (t_field_name, "type"))
3390 {
3391 if (cplus_demangle_opname (t_field_name,
3392 dem_opname, DMGL_ANSI))
3393 t_field_name = dem_opname;
3394 else if (cplus_demangle_opname (t_field_name,
3395 dem_opname, 0))
3396 t_field_name = dem_opname;
3397 }
3398 if (t_field_name && strcmp (t_field_name, name) == 0)
3399 {
3400 int j;
3401 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3402 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3403
3404 check_stub_method_group (t, i);
3405
3406 if (intype)
3407 {
3408 for (j = 0; j < len; ++j)
3409 {
3410 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3411 continue;
3412 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3413 continue;
3414
3415 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3416 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3417 intype, 1))
3418 break;
3419 }
3420
3421 if (j == len)
3422 error (_("no member function matches "
3423 "that type instantiation"));
3424 }
3425 else
3426 {
3427 int ii;
3428
3429 j = -1;
3430 for (ii = 0; ii < len; ++ii)
3431 {
3432 /* Skip artificial methods. This is necessary if,
3433 for example, the user wants to "print
3434 subclass::subclass" with only one user-defined
3435 constructor. There is no ambiguity in this case.
3436 We are careful here to allow artificial methods
3437 if they are the unique result. */
3438 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3439 {
3440 if (j == -1)
3441 j = ii;
3442 continue;
3443 }
3444
3445 /* Desired method is ambiguous if more than one
3446 method is defined. */
3447 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3448 error (_("non-unique member `%s' requires "
3449 "type instantiation"), name);
3450
3451 j = ii;
3452 }
3453
3454 if (j == -1)
3455 error (_("no matching member function"));
3456 }
3457
3458 if (TYPE_FN_FIELD_STATIC_P (f, j))
3459 {
3460 struct symbol *s =
3461 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3462 0, VAR_DOMAIN, 0).symbol;
3463
3464 if (s == NULL)
3465 return NULL;
3466
3467 if (want_address)
3468 return value_addr (read_var_value (s, 0, 0));
3469 else
3470 return read_var_value (s, 0, 0);
3471 }
3472
3473 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3474 {
3475 if (want_address)
3476 {
3477 result = allocate_value
3478 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3479 cplus_make_method_ptr (value_type (result),
3480 value_contents_writeable (result),
3481 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3482 }
3483 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3484 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3485 else
3486 error (_("Cannot reference virtual member function \"%s\""),
3487 name);
3488 }
3489 else
3490 {
3491 struct symbol *s =
3492 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3493 0, VAR_DOMAIN, 0).symbol;
3494
3495 if (s == NULL)
3496 return NULL;
3497
3498 v = read_var_value (s, 0, 0);
3499 if (!want_address)
3500 result = v;
3501 else
3502 {
3503 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3504 cplus_make_method_ptr (value_type (result),
3505 value_contents_writeable (result),
3506 value_address (v), 0);
3507 }
3508 }
3509 return result;
3510 }
3511 }
3512 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3513 {
3514 struct value *v;
3515 int base_offset;
3516
3517 if (BASETYPE_VIA_VIRTUAL (t, i))
3518 base_offset = 0;
3519 else
3520 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3521 v = value_struct_elt_for_reference (domain,
3522 offset + base_offset,
3523 TYPE_BASECLASS (t, i),
3524 name, intype,
3525 want_address, noside);
3526 if (v)
3527 return v;
3528 }
3529
3530 /* As a last chance, pretend that CURTYPE is a namespace, and look
3531 it up that way; this (frequently) works for types nested inside
3532 classes. */
3533
3534 return value_maybe_namespace_elt (curtype, name,
3535 want_address, noside);
3536 }
3537
3538 /* C++: Return the member NAME of the namespace given by the type
3539 CURTYPE. */
3540
3541 static struct value *
3542 value_namespace_elt (const struct type *curtype,
3543 const char *name, int want_address,
3544 enum noside noside)
3545 {
3546 struct value *retval = value_maybe_namespace_elt (curtype, name,
3547 want_address,
3548 noside);
3549
3550 if (retval == NULL)
3551 error (_("No symbol \"%s\" in namespace \"%s\"."),
3552 name, TYPE_TAG_NAME (curtype));
3553
3554 return retval;
3555 }
3556
3557 /* A helper function used by value_namespace_elt and
3558 value_struct_elt_for_reference. It looks up NAME inside the
3559 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3560 is a class and NAME refers to a type in CURTYPE itself (as opposed
3561 to, say, some base class of CURTYPE). */
3562
3563 static struct value *
3564 value_maybe_namespace_elt (const struct type *curtype,
3565 const char *name, int want_address,
3566 enum noside noside)
3567 {
3568 const char *namespace_name = TYPE_TAG_NAME (curtype);
3569 struct block_symbol sym;
3570 struct value *result;
3571
3572 sym = cp_lookup_symbol_namespace (namespace_name, name,
3573 get_selected_block (0), VAR_DOMAIN);
3574
3575 if (sym.symbol == NULL)
3576 return NULL;
3577 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3578 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3579 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3580 else
3581 result = value_of_variable (sym.symbol, sym.block);
3582
3583 if (want_address)
3584 result = value_addr (result);
3585
3586 return result;
3587 }
3588
3589 /* Given a pointer or a reference value V, find its real (RTTI) type.
3590
3591 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3592 and refer to the values computed for the object pointed to. */
3593
3594 struct type *
3595 value_rtti_indirect_type (struct value *v, int *full,
3596 LONGEST *top, int *using_enc)
3597 {
3598 struct value *target = NULL;
3599 struct type *type, *real_type, *target_type;
3600
3601 type = value_type (v);
3602 type = check_typedef (type);
3603 if (TYPE_IS_REFERENCE (type))
3604 target = coerce_ref (v);
3605 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3606 {
3607
3608 TRY
3609 {
3610 target = value_ind (v);
3611 }
3612 CATCH (except, RETURN_MASK_ERROR)
3613 {
3614 if (except.error == MEMORY_ERROR)
3615 {
3616 /* value_ind threw a memory error. The pointer is NULL or
3617 contains an uninitialized value: we can't determine any
3618 type. */
3619 return NULL;
3620 }
3621 throw_exception (except);
3622 }
3623 END_CATCH
3624 }
3625 else
3626 return NULL;
3627
3628 real_type = value_rtti_type (target, full, top, using_enc);
3629
3630 if (real_type)
3631 {
3632 /* Copy qualifiers to the referenced object. */
3633 target_type = value_type (target);
3634 real_type = make_cv_type (TYPE_CONST (target_type),
3635 TYPE_VOLATILE (target_type), real_type, NULL);
3636 if (TYPE_IS_REFERENCE (type))
3637 real_type = lookup_reference_type (real_type, TYPE_CODE (type));
3638 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3639 real_type = lookup_pointer_type (real_type);
3640 else
3641 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3642
3643 /* Copy qualifiers to the pointer/reference. */
3644 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3645 real_type, NULL);
3646 }
3647
3648 return real_type;
3649 }
3650
3651 /* Given a value pointed to by ARGP, check its real run-time type, and
3652 if that is different from the enclosing type, create a new value
3653 using the real run-time type as the enclosing type (and of the same
3654 type as ARGP) and return it, with the embedded offset adjusted to
3655 be the correct offset to the enclosed object. RTYPE is the type,
3656 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3657 by value_rtti_type(). If these are available, they can be supplied
3658 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3659 NULL if they're not available. */
3660
3661 struct value *
3662 value_full_object (struct value *argp,
3663 struct type *rtype,
3664 int xfull, int xtop,
3665 int xusing_enc)
3666 {
3667 struct type *real_type;
3668 int full = 0;
3669 LONGEST top = -1;
3670 int using_enc = 0;
3671 struct value *new_val;
3672
3673 if (rtype)
3674 {
3675 real_type = rtype;
3676 full = xfull;
3677 top = xtop;
3678 using_enc = xusing_enc;
3679 }
3680 else
3681 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3682
3683 /* If no RTTI data, or if object is already complete, do nothing. */
3684 if (!real_type || real_type == value_enclosing_type (argp))
3685 return argp;
3686
3687 /* In a destructor we might see a real type that is a superclass of
3688 the object's type. In this case it is better to leave the object
3689 as-is. */
3690 if (full
3691 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3692 return argp;
3693
3694 /* If we have the full object, but for some reason the enclosing
3695 type is wrong, set it. */
3696 /* pai: FIXME -- sounds iffy */
3697 if (full)
3698 {
3699 argp = value_copy (argp);
3700 set_value_enclosing_type (argp, real_type);
3701 return argp;
3702 }
3703
3704 /* Check if object is in memory. */
3705 if (VALUE_LVAL (argp) != lval_memory)
3706 {
3707 warning (_("Couldn't retrieve complete object of RTTI "
3708 "type %s; object may be in register(s)."),
3709 TYPE_NAME (real_type));
3710
3711 return argp;
3712 }
3713
3714 /* All other cases -- retrieve the complete object. */
3715 /* Go back by the computed top_offset from the beginning of the
3716 object, adjusting for the embedded offset of argp if that's what
3717 value_rtti_type used for its computation. */
3718 new_val = value_at_lazy (real_type, value_address (argp) - top +
3719 (using_enc ? 0 : value_embedded_offset (argp)));
3720 deprecated_set_value_type (new_val, value_type (argp));
3721 set_value_embedded_offset (new_val, (using_enc
3722 ? top + value_embedded_offset (argp)
3723 : top));
3724 return new_val;
3725 }
3726
3727
3728 /* Return the value of the local variable, if one exists. Throw error
3729 otherwise, such as if the request is made in an inappropriate context. */
3730
3731 struct value *
3732 value_of_this (const struct language_defn *lang)
3733 {
3734 struct block_symbol sym;
3735 const struct block *b;
3736 struct frame_info *frame;
3737
3738 if (!lang->la_name_of_this)
3739 error (_("no `this' in current language"));
3740
3741 frame = get_selected_frame (_("no frame selected"));
3742
3743 b = get_frame_block (frame, NULL);
3744
3745 sym = lookup_language_this (lang, b);
3746 if (sym.symbol == NULL)
3747 error (_("current stack frame does not contain a variable named `%s'"),
3748 lang->la_name_of_this);
3749
3750 return read_var_value (sym.symbol, sym.block, frame);
3751 }
3752
3753 /* Return the value of the local variable, if one exists. Return NULL
3754 otherwise. Never throw error. */
3755
3756 struct value *
3757 value_of_this_silent (const struct language_defn *lang)
3758 {
3759 struct value *ret = NULL;
3760
3761 TRY
3762 {
3763 ret = value_of_this (lang);
3764 }
3765 CATCH (except, RETURN_MASK_ERROR)
3766 {
3767 }
3768 END_CATCH
3769
3770 return ret;
3771 }
3772
3773 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3774 elements long, starting at LOWBOUND. The result has the same lower
3775 bound as the original ARRAY. */
3776
3777 struct value *
3778 value_slice (struct value *array, int lowbound, int length)
3779 {
3780 struct type *slice_range_type, *slice_type, *range_type;
3781 LONGEST lowerbound, upperbound;
3782 struct value *slice;
3783 struct type *array_type;
3784
3785 array_type = check_typedef (value_type (array));
3786 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3787 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3788 error (_("cannot take slice of non-array"));
3789
3790 range_type = TYPE_INDEX_TYPE (array_type);
3791 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3792 error (_("slice from bad array or bitstring"));
3793
3794 if (lowbound < lowerbound || length < 0
3795 || lowbound + length - 1 > upperbound)
3796 error (_("slice out of range"));
3797
3798 /* FIXME-type-allocation: need a way to free this type when we are
3799 done with it. */
3800 slice_range_type = create_static_range_type ((struct type *) NULL,
3801 TYPE_TARGET_TYPE (range_type),
3802 lowbound,
3803 lowbound + length - 1);
3804
3805 {
3806 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3807 LONGEST offset
3808 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3809
3810 slice_type = create_array_type ((struct type *) NULL,
3811 element_type,
3812 slice_range_type);
3813 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3814
3815 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3816 slice = allocate_value_lazy (slice_type);
3817 else
3818 {
3819 slice = allocate_value (slice_type);
3820 value_contents_copy (slice, 0, array, offset,
3821 type_length_units (slice_type));
3822 }
3823
3824 set_value_component_location (slice, array);
3825 set_value_offset (slice, value_offset (array) + offset);
3826 }
3827
3828 return slice;
3829 }
3830
3831 /* Create a value for a FORTRAN complex number. Currently most of the
3832 time values are coerced to COMPLEX*16 (i.e. a complex number
3833 composed of 2 doubles. This really should be a smarter routine
3834 that figures out precision inteligently as opposed to assuming
3835 doubles. FIXME: fmb */
3836
3837 struct value *
3838 value_literal_complex (struct value *arg1,
3839 struct value *arg2,
3840 struct type *type)
3841 {
3842 struct value *val;
3843 struct type *real_type = TYPE_TARGET_TYPE (type);
3844
3845 val = allocate_value (type);
3846 arg1 = value_cast (real_type, arg1);
3847 arg2 = value_cast (real_type, arg2);
3848
3849 memcpy (value_contents_raw (val),
3850 value_contents (arg1), TYPE_LENGTH (real_type));
3851 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3852 value_contents (arg2), TYPE_LENGTH (real_type));
3853 return val;
3854 }
3855
3856 /* Cast a value into the appropriate complex data type. */
3857
3858 static struct value *
3859 cast_into_complex (struct type *type, struct value *val)
3860 {
3861 struct type *real_type = TYPE_TARGET_TYPE (type);
3862
3863 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3864 {
3865 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3866 struct value *re_val = allocate_value (val_real_type);
3867 struct value *im_val = allocate_value (val_real_type);
3868
3869 memcpy (value_contents_raw (re_val),
3870 value_contents (val), TYPE_LENGTH (val_real_type));
3871 memcpy (value_contents_raw (im_val),
3872 value_contents (val) + TYPE_LENGTH (val_real_type),
3873 TYPE_LENGTH (val_real_type));
3874
3875 return value_literal_complex (re_val, im_val, type);
3876 }
3877 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3878 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3879 return value_literal_complex (val,
3880 value_zero (real_type, not_lval),
3881 type);
3882 else
3883 error (_("cannot cast non-number to complex"));
3884 }
3885
3886 void
3887 _initialize_valops (void)
3888 {
3889 add_setshow_boolean_cmd ("overload-resolution", class_support,
3890 &overload_resolution, _("\
3891 Set overload resolution in evaluating C++ functions."), _("\
3892 Show overload resolution in evaluating C++ functions."),
3893 NULL, NULL,
3894 show_overload_resolution,
3895 &setlist, &showlist);
3896 overload_resolution = 1;
3897 }