]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
gdb: remove TYPE_LENGTH
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 gdb_printf (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (sym.symbol->aclass () != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = sym.symbol->objfile ();
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = msymbol.value_address ();
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2) + value_embedded_offset (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (type1->target_type ());
301 struct type *t2 = check_typedef (type2->target_type ());
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (value_contents (value), type_byte_order (type),
355 type->is_unsigned ());
356 mpq_set_z (result.val, vz.val);
357
358 if (is_fixed_point_type (type))
359 mpq_mul (result.val, result.val,
360 type->fixed_point_scaling_factor ().val);
361 }
362
363 return result;
364 }
365
366 /* Assuming that TO_TYPE is a fixed point type, return a value
367 corresponding to the cast of FROM_VAL to that type. */
368
369 static struct value *
370 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
371 {
372 struct type *from_type = value_type (from_val);
373
374 if (from_type == to_type)
375 return from_val;
376
377 if (!is_floating_type (from_type)
378 && !is_integral_type (from_type)
379 && !is_fixed_point_type (from_type))
380 error (_("Invalid conversion from type %s to fixed point type %s"),
381 from_type->name (), to_type->name ());
382
383 gdb_mpq vq = value_to_gdb_mpq (from_val);
384
385 /* Divide that value by the scaling factor to obtain the unscaled
386 value, first in rational form, and then in integer form. */
387
388 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
389 gdb_mpz unscaled = vq.get_rounded ();
390
391 /* Finally, create the result value, and pack the unscaled value
392 in it. */
393 struct value *result = allocate_value (to_type);
394 unscaled.write (value_contents_raw (result),
395 type_byte_order (to_type),
396 to_type->is_unsigned ());
397
398 return result;
399 }
400
401 /* Cast value ARG2 to type TYPE and return as a value.
402 More general than a C cast: accepts any two types of the same length,
403 and if ARG2 is an lvalue it can be cast into anything at all. */
404 /* In C++, casts may change pointer or object representations. */
405
406 struct value *
407 value_cast (struct type *type, struct value *arg2)
408 {
409 enum type_code code1;
410 enum type_code code2;
411 int scalar;
412 struct type *type2;
413
414 int convert_to_boolean = 0;
415
416 /* TYPE might be equal in meaning to the existing type of ARG2, but for
417 many reasons, might be a different type object (e.g. TYPE might be a
418 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
419 type).
420
421 In this case we want to preserve the LVAL of ARG2 as this allows the
422 resulting value to be used in more places. We do this by calling
423 VALUE_COPY if appropriate. */
424 if (types_deeply_equal (value_type (arg2), type))
425 {
426 /* If the types are exactly equal then we can avoid creating a new
427 value completely. */
428 if (value_type (arg2) != type)
429 {
430 arg2 = value_copy (arg2);
431 deprecated_set_value_type (arg2, type);
432 }
433 return arg2;
434 }
435
436 if (is_fixed_point_type (type))
437 return value_cast_to_fixed_point (type, arg2);
438
439 /* Check if we are casting struct reference to struct reference. */
440 if (TYPE_IS_REFERENCE (check_typedef (type)))
441 {
442 /* We dereference type; then we recurse and finally
443 we generate value of the given reference. Nothing wrong with
444 that. */
445 struct type *t1 = check_typedef (type);
446 struct type *dereftype = check_typedef (t1->target_type ());
447 struct value *val = value_cast (dereftype, arg2);
448
449 return value_ref (val, t1->code ());
450 }
451
452 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
453 /* We deref the value and then do the cast. */
454 return value_cast (type, coerce_ref (arg2));
455
456 /* Strip typedefs / resolve stubs in order to get at the type's
457 code/length, but remember the original type, to use as the
458 resulting type of the cast, in case it was a typedef. */
459 struct type *to_type = type;
460
461 type = check_typedef (type);
462 code1 = type->code ();
463 arg2 = coerce_ref (arg2);
464 type2 = check_typedef (value_type (arg2));
465
466 /* You can't cast to a reference type. See value_cast_pointers
467 instead. */
468 gdb_assert (!TYPE_IS_REFERENCE (type));
469
470 /* A cast to an undetermined-length array_type, such as
471 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
472 where N is sizeof(OBJECT)/sizeof(TYPE). */
473 if (code1 == TYPE_CODE_ARRAY)
474 {
475 struct type *element_type = type->target_type ();
476 unsigned element_length = check_typedef (element_type)->length ();
477
478 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
479 {
480 struct type *range_type = type->index_type ();
481 int val_length = type2->length ();
482 LONGEST low_bound, high_bound, new_length;
483
484 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
485 low_bound = 0, high_bound = 0;
486 new_length = val_length / element_length;
487 if (val_length % element_length != 0)
488 warning (_("array element type size does not "
489 "divide object size in cast"));
490 /* FIXME-type-allocation: need a way to free this type when
491 we are done with it. */
492 range_type = create_static_range_type (NULL,
493 range_type->target_type (),
494 low_bound,
495 new_length + low_bound - 1);
496 deprecated_set_value_type (arg2,
497 create_array_type (NULL,
498 element_type,
499 range_type));
500 return arg2;
501 }
502 }
503
504 if (current_language->c_style_arrays_p ()
505 && type2->code () == TYPE_CODE_ARRAY
506 && !type2->is_vector ())
507 arg2 = value_coerce_array (arg2);
508
509 if (type2->code () == TYPE_CODE_FUNC)
510 arg2 = value_coerce_function (arg2);
511
512 type2 = check_typedef (value_type (arg2));
513 code2 = type2->code ();
514
515 if (code1 == TYPE_CODE_COMPLEX)
516 return cast_into_complex (to_type, arg2);
517 if (code1 == TYPE_CODE_BOOL)
518 {
519 code1 = TYPE_CODE_INT;
520 convert_to_boolean = 1;
521 }
522 if (code1 == TYPE_CODE_CHAR)
523 code1 = TYPE_CODE_INT;
524 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
525 code2 = TYPE_CODE_INT;
526
527 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
528 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
529 || code2 == TYPE_CODE_RANGE
530 || is_fixed_point_type (type2));
531
532 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
533 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
534 && type->name () != 0)
535 {
536 struct value *v = value_cast_structs (to_type, arg2);
537
538 if (v)
539 return v;
540 }
541
542 if (is_floating_type (type) && scalar)
543 {
544 if (is_floating_value (arg2))
545 {
546 struct value *v = allocate_value (to_type);
547 target_float_convert (value_contents (arg2).data (), type2,
548 value_contents_raw (v).data (), type);
549 return v;
550 }
551 else if (is_fixed_point_type (type2))
552 {
553 gdb_mpq fp_val;
554
555 fp_val.read_fixed_point (value_contents (arg2),
556 type_byte_order (type2),
557 type2->is_unsigned (),
558 type2->fixed_point_scaling_factor ());
559
560 struct value *v = allocate_value (to_type);
561 target_float_from_host_double (value_contents_raw (v).data (),
562 to_type, mpq_get_d (fp_val.val));
563 return v;
564 }
565
566 /* The only option left is an integral type. */
567 if (type2->is_unsigned ())
568 return value_from_ulongest (to_type, value_as_long (arg2));
569 else
570 return value_from_longest (to_type, value_as_long (arg2));
571 }
572 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
573 || code1 == TYPE_CODE_RANGE)
574 && (scalar || code2 == TYPE_CODE_PTR
575 || code2 == TYPE_CODE_MEMBERPTR))
576 {
577 LONGEST longest;
578
579 /* When we cast pointers to integers, we mustn't use
580 gdbarch_pointer_to_address to find the address the pointer
581 represents, as value_as_long would. GDB should evaluate
582 expressions just as the compiler would --- and the compiler
583 sees a cast as a simple reinterpretation of the pointer's
584 bits. */
585 if (code2 == TYPE_CODE_PTR)
586 longest = extract_unsigned_integer
587 (value_contents (arg2), type_byte_order (type2));
588 else
589 longest = value_as_long (arg2);
590 return value_from_longest (to_type, convert_to_boolean ?
591 (LONGEST) (longest ? 1 : 0) : longest);
592 }
593 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
594 || code2 == TYPE_CODE_ENUM
595 || code2 == TYPE_CODE_RANGE))
596 {
597 /* type->length () is the length of a pointer, but we really
598 want the length of an address! -- we are really dealing with
599 addresses (i.e., gdb representations) not pointers (i.e.,
600 target representations) here.
601
602 This allows things like "print *(int *)0x01000234" to work
603 without printing a misleading message -- which would
604 otherwise occur when dealing with a target having two byte
605 pointers and four byte addresses. */
606
607 int addr_bit = gdbarch_addr_bit (type2->arch ());
608 LONGEST longest = value_as_long (arg2);
609
610 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
611 {
612 if (longest >= ((LONGEST) 1 << addr_bit)
613 || longest <= -((LONGEST) 1 << addr_bit))
614 warning (_("value truncated"));
615 }
616 return value_from_longest (to_type, longest);
617 }
618 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
619 && value_as_long (arg2) == 0)
620 {
621 struct value *result = allocate_value (to_type);
622
623 cplus_make_method_ptr (to_type,
624 value_contents_writeable (result).data (), 0, 0);
625 return result;
626 }
627 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
628 && value_as_long (arg2) == 0)
629 {
630 /* The Itanium C++ ABI represents NULL pointers to members as
631 minus one, instead of biasing the normal case. */
632 return value_from_longest (to_type, -1);
633 }
634 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
635 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
636 && type->length () != type2->length ())
637 error (_("Cannot convert between vector values of different sizes"));
638 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
639 && type->length () != type2->length ())
640 error (_("can only cast scalar to vector of same size"));
641 else if (code1 == TYPE_CODE_VOID)
642 {
643 return value_zero (to_type, not_lval);
644 }
645 else if (type->length () == type2->length ())
646 {
647 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
648 return value_cast_pointers (to_type, arg2, 0);
649
650 arg2 = value_copy (arg2);
651 deprecated_set_value_type (arg2, to_type);
652 set_value_enclosing_type (arg2, to_type);
653 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
654 return arg2;
655 }
656 else if (VALUE_LVAL (arg2) == lval_memory)
657 return value_at_lazy (to_type, value_address (arg2));
658 else
659 {
660 if (current_language->la_language == language_ada)
661 error (_("Invalid type conversion."));
662 error (_("Invalid cast."));
663 }
664 }
665
666 /* The C++ reinterpret_cast operator. */
667
668 struct value *
669 value_reinterpret_cast (struct type *type, struct value *arg)
670 {
671 struct value *result;
672 struct type *real_type = check_typedef (type);
673 struct type *arg_type, *dest_type;
674 int is_ref = 0;
675 enum type_code dest_code, arg_code;
676
677 /* Do reference, function, and array conversion. */
678 arg = coerce_array (arg);
679
680 /* Attempt to preserve the type the user asked for. */
681 dest_type = type;
682
683 /* If we are casting to a reference type, transform
684 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
685 if (TYPE_IS_REFERENCE (real_type))
686 {
687 is_ref = 1;
688 arg = value_addr (arg);
689 dest_type = lookup_pointer_type (dest_type->target_type ());
690 real_type = lookup_pointer_type (real_type);
691 }
692
693 arg_type = value_type (arg);
694
695 dest_code = real_type->code ();
696 arg_code = arg_type->code ();
697
698 /* We can convert pointer types, or any pointer type to int, or int
699 type to pointer. */
700 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
701 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
702 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
703 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
704 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
706 || (dest_code == arg_code
707 && (dest_code == TYPE_CODE_PTR
708 || dest_code == TYPE_CODE_METHODPTR
709 || dest_code == TYPE_CODE_MEMBERPTR)))
710 result = value_cast (dest_type, arg);
711 else
712 error (_("Invalid reinterpret_cast"));
713
714 if (is_ref)
715 result = value_cast (type, value_ref (value_ind (result),
716 type->code ()));
717
718 return result;
719 }
720
721 /* A helper for value_dynamic_cast. This implements the first of two
722 runtime checks: we iterate over all the base classes of the value's
723 class which are equal to the desired class; if only one of these
724 holds the value, then it is the answer. */
725
726 static int
727 dynamic_cast_check_1 (struct type *desired_type,
728 const gdb_byte *valaddr,
729 LONGEST embedded_offset,
730 CORE_ADDR address,
731 struct value *val,
732 struct type *search_type,
733 CORE_ADDR arg_addr,
734 struct type *arg_type,
735 struct value **result)
736 {
737 int i, result_count = 0;
738
739 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
740 {
741 LONGEST offset = baseclass_offset (search_type, i, valaddr,
742 embedded_offset,
743 address, val);
744
745 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
746 {
747 if (address + embedded_offset + offset >= arg_addr
748 && address + embedded_offset + offset < arg_addr + arg_type->length ())
749 {
750 ++result_count;
751 if (!*result)
752 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
753 address + embedded_offset + offset);
754 }
755 }
756 else
757 result_count += dynamic_cast_check_1 (desired_type,
758 valaddr,
759 embedded_offset + offset,
760 address, val,
761 TYPE_BASECLASS (search_type, i),
762 arg_addr,
763 arg_type,
764 result);
765 }
766
767 return result_count;
768 }
769
770 /* A helper for value_dynamic_cast. This implements the second of two
771 runtime checks: we look for a unique public sibling class of the
772 argument's declared class. */
773
774 static int
775 dynamic_cast_check_2 (struct type *desired_type,
776 const gdb_byte *valaddr,
777 LONGEST embedded_offset,
778 CORE_ADDR address,
779 struct value *val,
780 struct type *search_type,
781 struct value **result)
782 {
783 int i, result_count = 0;
784
785 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
786 {
787 LONGEST offset;
788
789 if (! BASETYPE_VIA_PUBLIC (search_type, i))
790 continue;
791
792 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
793 address, val);
794 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
795 {
796 ++result_count;
797 if (*result == NULL)
798 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
799 address + embedded_offset + offset);
800 }
801 else
802 result_count += dynamic_cast_check_2 (desired_type,
803 valaddr,
804 embedded_offset + offset,
805 address, val,
806 TYPE_BASECLASS (search_type, i),
807 result);
808 }
809
810 return result_count;
811 }
812
813 /* The C++ dynamic_cast operator. */
814
815 struct value *
816 value_dynamic_cast (struct type *type, struct value *arg)
817 {
818 int full, using_enc;
819 LONGEST top;
820 struct type *resolved_type = check_typedef (type);
821 struct type *arg_type = check_typedef (value_type (arg));
822 struct type *class_type, *rtti_type;
823 struct value *result, *tem, *original_arg = arg;
824 CORE_ADDR addr;
825 int is_ref = TYPE_IS_REFERENCE (resolved_type);
826
827 if (resolved_type->code () != TYPE_CODE_PTR
828 && !TYPE_IS_REFERENCE (resolved_type))
829 error (_("Argument to dynamic_cast must be a pointer or reference type"));
830 if (resolved_type->target_type ()->code () != TYPE_CODE_VOID
831 && resolved_type->target_type ()->code () != TYPE_CODE_STRUCT)
832 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
833
834 class_type = check_typedef (resolved_type->target_type ());
835 if (resolved_type->code () == TYPE_CODE_PTR)
836 {
837 if (arg_type->code () != TYPE_CODE_PTR
838 && ! (arg_type->code () == TYPE_CODE_INT
839 && value_as_long (arg) == 0))
840 error (_("Argument to dynamic_cast does not have pointer type"));
841 if (arg_type->code () == TYPE_CODE_PTR)
842 {
843 arg_type = check_typedef (arg_type->target_type ());
844 if (arg_type->code () != TYPE_CODE_STRUCT)
845 error (_("Argument to dynamic_cast does "
846 "not have pointer to class type"));
847 }
848
849 /* Handle NULL pointers. */
850 if (value_as_long (arg) == 0)
851 return value_zero (type, not_lval);
852
853 arg = value_ind (arg);
854 }
855 else
856 {
857 if (arg_type->code () != TYPE_CODE_STRUCT)
858 error (_("Argument to dynamic_cast does not have class type"));
859 }
860
861 /* If the classes are the same, just return the argument. */
862 if (class_types_same_p (class_type, arg_type))
863 return value_cast (type, arg);
864
865 /* If the target type is a unique base class of the argument's
866 declared type, just cast it. */
867 if (is_ancestor (class_type, arg_type))
868 {
869 if (is_unique_ancestor (class_type, arg))
870 return value_cast (type, original_arg);
871 error (_("Ambiguous dynamic_cast"));
872 }
873
874 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
875 if (! rtti_type)
876 error (_("Couldn't determine value's most derived type for dynamic_cast"));
877
878 /* Compute the most derived object's address. */
879 addr = value_address (arg);
880 if (full)
881 {
882 /* Done. */
883 }
884 else if (using_enc)
885 addr += top;
886 else
887 addr += top + value_embedded_offset (arg);
888
889 /* dynamic_cast<void *> means to return a pointer to the
890 most-derived object. */
891 if (resolved_type->code () == TYPE_CODE_PTR
892 && resolved_type->target_type ()->code () == TYPE_CODE_VOID)
893 return value_at_lazy (type, addr);
894
895 tem = value_at (type, addr);
896 type = value_type (tem);
897
898 /* The first dynamic check specified in 5.2.7. */
899 if (is_public_ancestor (arg_type, resolved_type->target_type ()))
900 {
901 if (class_types_same_p (rtti_type, resolved_type->target_type ()))
902 return tem;
903 result = NULL;
904 if (dynamic_cast_check_1 (resolved_type->target_type (),
905 value_contents_for_printing (tem).data (),
906 value_embedded_offset (tem),
907 value_address (tem), tem,
908 rtti_type, addr,
909 arg_type,
910 &result) == 1)
911 return value_cast (type,
912 is_ref
913 ? value_ref (result, resolved_type->code ())
914 : value_addr (result));
915 }
916
917 /* The second dynamic check specified in 5.2.7. */
918 result = NULL;
919 if (is_public_ancestor (arg_type, rtti_type)
920 && dynamic_cast_check_2 (resolved_type->target_type (),
921 value_contents_for_printing (tem).data (),
922 value_embedded_offset (tem),
923 value_address (tem), tem,
924 rtti_type, &result) == 1)
925 return value_cast (type,
926 is_ref
927 ? value_ref (result, resolved_type->code ())
928 : value_addr (result));
929
930 if (resolved_type->code () == TYPE_CODE_PTR)
931 return value_zero (type, not_lval);
932
933 error (_("dynamic_cast failed"));
934 }
935
936 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
937
938 struct value *
939 value_one (struct type *type)
940 {
941 struct type *type1 = check_typedef (type);
942 struct value *val;
943
944 if (is_integral_type (type1) || is_floating_type (type1))
945 {
946 val = value_from_longest (type, (LONGEST) 1);
947 }
948 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
949 {
950 struct type *eltype = check_typedef (type1->target_type ());
951 int i;
952 LONGEST low_bound, high_bound;
953
954 if (!get_array_bounds (type1, &low_bound, &high_bound))
955 error (_("Could not determine the vector bounds"));
956
957 val = allocate_value (type);
958 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
959 int elt_len = eltype->length ();
960
961 for (i = 0; i < high_bound - low_bound + 1; i++)
962 {
963 value *tmp = value_one (eltype);
964 copy (value_contents_all (tmp),
965 val_contents.slice (i * elt_len, elt_len));
966 }
967 }
968 else
969 {
970 error (_("Not a numeric type."));
971 }
972
973 /* value_one result is never used for assignments to. */
974 gdb_assert (VALUE_LVAL (val) == not_lval);
975
976 return val;
977 }
978
979 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
980 The type of the created value may differ from the passed type TYPE.
981 Make sure to retrieve the returned values's new type after this call
982 e.g. in case the type is a variable length array. */
983
984 static struct value *
985 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
986 {
987 struct value *val;
988
989 if (check_typedef (type)->code () == TYPE_CODE_VOID)
990 error (_("Attempt to dereference a generic pointer."));
991
992 val = value_from_contents_and_address (type, NULL, addr);
993
994 if (!lazy)
995 value_fetch_lazy (val);
996
997 return val;
998 }
999
1000 /* Return a value with type TYPE located at ADDR.
1001
1002 Call value_at only if the data needs to be fetched immediately;
1003 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1004 value_at_lazy instead. value_at_lazy simply records the address of
1005 the data and sets the lazy-evaluation-required flag. The lazy flag
1006 is tested in the value_contents macro, which is used if and when
1007 the contents are actually required. The type of the created value
1008 may differ from the passed type TYPE. Make sure to retrieve the
1009 returned values's new type after this call e.g. in case the type
1010 is a variable length array.
1011
1012 Note: value_at does *NOT* handle embedded offsets; perform such
1013 adjustments before or after calling it. */
1014
1015 struct value *
1016 value_at (struct type *type, CORE_ADDR addr)
1017 {
1018 return get_value_at (type, addr, 0);
1019 }
1020
1021 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1022 The type of the created value may differ from the passed type TYPE.
1023 Make sure to retrieve the returned values's new type after this call
1024 e.g. in case the type is a variable length array. */
1025
1026 struct value *
1027 value_at_lazy (struct type *type, CORE_ADDR addr)
1028 {
1029 return get_value_at (type, addr, 1);
1030 }
1031
1032 void
1033 read_value_memory (struct value *val, LONGEST bit_offset,
1034 int stack, CORE_ADDR memaddr,
1035 gdb_byte *buffer, size_t length)
1036 {
1037 ULONGEST xfered_total = 0;
1038 struct gdbarch *arch = get_value_arch (val);
1039 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1040 enum target_object object;
1041
1042 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1043
1044 while (xfered_total < length)
1045 {
1046 enum target_xfer_status status;
1047 ULONGEST xfered_partial;
1048
1049 status = target_xfer_partial (current_inferior ()->top_target (),
1050 object, NULL,
1051 buffer + xfered_total * unit_size, NULL,
1052 memaddr + xfered_total,
1053 length - xfered_total,
1054 &xfered_partial);
1055
1056 if (status == TARGET_XFER_OK)
1057 /* nothing */;
1058 else if (status == TARGET_XFER_UNAVAILABLE)
1059 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1060 + bit_offset),
1061 xfered_partial * HOST_CHAR_BIT);
1062 else if (status == TARGET_XFER_EOF)
1063 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1064 else
1065 memory_error (status, memaddr + xfered_total);
1066
1067 xfered_total += xfered_partial;
1068 QUIT;
1069 }
1070 }
1071
1072 /* Store the contents of FROMVAL into the location of TOVAL.
1073 Return a new value with the location of TOVAL and contents of FROMVAL. */
1074
1075 struct value *
1076 value_assign (struct value *toval, struct value *fromval)
1077 {
1078 struct type *type;
1079 struct value *val;
1080 struct frame_id old_frame;
1081
1082 if (!deprecated_value_modifiable (toval))
1083 error (_("Left operand of assignment is not a modifiable lvalue."));
1084
1085 toval = coerce_ref (toval);
1086
1087 type = value_type (toval);
1088 if (VALUE_LVAL (toval) != lval_internalvar)
1089 fromval = value_cast (type, fromval);
1090 else
1091 {
1092 /* Coerce arrays and functions to pointers, except for arrays
1093 which only live in GDB's storage. */
1094 if (!value_must_coerce_to_target (fromval))
1095 fromval = coerce_array (fromval);
1096 }
1097
1098 type = check_typedef (type);
1099
1100 /* Since modifying a register can trash the frame chain, and
1101 modifying memory can trash the frame cache, we save the old frame
1102 and then restore the new frame afterwards. */
1103 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1104
1105 switch (VALUE_LVAL (toval))
1106 {
1107 case lval_internalvar:
1108 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1109 return value_of_internalvar (type->arch (),
1110 VALUE_INTERNALVAR (toval));
1111
1112 case lval_internalvar_component:
1113 {
1114 LONGEST offset = value_offset (toval);
1115
1116 /* Are we dealing with a bitfield?
1117
1118 It is important to mention that `value_parent (toval)' is
1119 non-NULL iff `value_bitsize (toval)' is non-zero. */
1120 if (value_bitsize (toval))
1121 {
1122 /* VALUE_INTERNALVAR below refers to the parent value, while
1123 the offset is relative to this parent value. */
1124 gdb_assert (value_parent (value_parent (toval)) == NULL);
1125 offset += value_offset (value_parent (toval));
1126 }
1127
1128 set_internalvar_component (VALUE_INTERNALVAR (toval),
1129 offset,
1130 value_bitpos (toval),
1131 value_bitsize (toval),
1132 fromval);
1133 }
1134 break;
1135
1136 case lval_memory:
1137 {
1138 const gdb_byte *dest_buffer;
1139 CORE_ADDR changed_addr;
1140 int changed_len;
1141 gdb_byte buffer[sizeof (LONGEST)];
1142
1143 if (value_bitsize (toval))
1144 {
1145 struct value *parent = value_parent (toval);
1146
1147 changed_addr = value_address (parent) + value_offset (toval);
1148 changed_len = (value_bitpos (toval)
1149 + value_bitsize (toval)
1150 + HOST_CHAR_BIT - 1)
1151 / HOST_CHAR_BIT;
1152
1153 /* If we can read-modify-write exactly the size of the
1154 containing type (e.g. short or int) then do so. This
1155 is safer for volatile bitfields mapped to hardware
1156 registers. */
1157 if (changed_len < type->length ()
1158 && type->length () <= (int) sizeof (LONGEST)
1159 && ((LONGEST) changed_addr % type->length ()) == 0)
1160 changed_len = type->length ();
1161
1162 if (changed_len > (int) sizeof (LONGEST))
1163 error (_("Can't handle bitfields which "
1164 "don't fit in a %d bit word."),
1165 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1166
1167 read_memory (changed_addr, buffer, changed_len);
1168 modify_field (type, buffer, value_as_long (fromval),
1169 value_bitpos (toval), value_bitsize (toval));
1170 dest_buffer = buffer;
1171 }
1172 else
1173 {
1174 changed_addr = value_address (toval);
1175 changed_len = type_length_units (type);
1176 dest_buffer = value_contents (fromval).data ();
1177 }
1178
1179 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1180 }
1181 break;
1182
1183 case lval_register:
1184 {
1185 struct frame_info *frame;
1186 struct gdbarch *gdbarch;
1187 int value_reg;
1188
1189 /* Figure out which frame this register value is in. The value
1190 holds the frame_id for the next frame, that is the frame this
1191 register value was unwound from.
1192
1193 Below we will call put_frame_register_bytes which requires that
1194 we pass it the actual frame in which the register value is
1195 valid, i.e. not the next frame. */
1196 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1197 frame = get_prev_frame_always (frame);
1198
1199 value_reg = VALUE_REGNUM (toval);
1200
1201 if (!frame)
1202 error (_("Value being assigned to is no longer active."));
1203
1204 gdbarch = get_frame_arch (frame);
1205
1206 if (value_bitsize (toval))
1207 {
1208 struct value *parent = value_parent (toval);
1209 LONGEST offset = value_offset (parent) + value_offset (toval);
1210 size_t changed_len;
1211 gdb_byte buffer[sizeof (LONGEST)];
1212 int optim, unavail;
1213
1214 changed_len = (value_bitpos (toval)
1215 + value_bitsize (toval)
1216 + HOST_CHAR_BIT - 1)
1217 / HOST_CHAR_BIT;
1218
1219 if (changed_len > sizeof (LONGEST))
1220 error (_("Can't handle bitfields which "
1221 "don't fit in a %d bit word."),
1222 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1223
1224 if (!get_frame_register_bytes (frame, value_reg, offset,
1225 {buffer, changed_len},
1226 &optim, &unavail))
1227 {
1228 if (optim)
1229 throw_error (OPTIMIZED_OUT_ERROR,
1230 _("value has been optimized out"));
1231 if (unavail)
1232 throw_error (NOT_AVAILABLE_ERROR,
1233 _("value is not available"));
1234 }
1235
1236 modify_field (type, buffer, value_as_long (fromval),
1237 value_bitpos (toval), value_bitsize (toval));
1238
1239 put_frame_register_bytes (frame, value_reg, offset,
1240 {buffer, changed_len});
1241 }
1242 else
1243 {
1244 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1245 type))
1246 {
1247 /* If TOVAL is a special machine register requiring
1248 conversion of program values to a special raw
1249 format. */
1250 gdbarch_value_to_register (gdbarch, frame,
1251 VALUE_REGNUM (toval), type,
1252 value_contents (fromval).data ());
1253 }
1254 else
1255 put_frame_register_bytes (frame, value_reg,
1256 value_offset (toval),
1257 value_contents (fromval));
1258 }
1259
1260 gdb::observers::register_changed.notify (frame, value_reg);
1261 break;
1262 }
1263
1264 case lval_computed:
1265 {
1266 const struct lval_funcs *funcs = value_computed_funcs (toval);
1267
1268 if (funcs->write != NULL)
1269 {
1270 funcs->write (toval, fromval);
1271 break;
1272 }
1273 }
1274 /* Fall through. */
1275
1276 default:
1277 error (_("Left operand of assignment is not an lvalue."));
1278 }
1279
1280 /* Assigning to the stack pointer, frame pointer, and other
1281 (architecture and calling convention specific) registers may
1282 cause the frame cache and regcache to be out of date. Assigning to memory
1283 also can. We just do this on all assignments to registers or
1284 memory, for simplicity's sake; I doubt the slowdown matters. */
1285 switch (VALUE_LVAL (toval))
1286 {
1287 case lval_memory:
1288 case lval_register:
1289 case lval_computed:
1290
1291 gdb::observers::target_changed.notify
1292 (current_inferior ()->top_target ());
1293
1294 /* Having destroyed the frame cache, restore the selected
1295 frame. */
1296
1297 /* FIXME: cagney/2002-11-02: There has to be a better way of
1298 doing this. Instead of constantly saving/restoring the
1299 frame. Why not create a get_selected_frame() function that,
1300 having saved the selected frame's ID can automatically
1301 re-find the previously selected frame automatically. */
1302
1303 {
1304 struct frame_info *fi = frame_find_by_id (old_frame);
1305
1306 if (fi != NULL)
1307 select_frame (fi);
1308 }
1309
1310 break;
1311 default:
1312 break;
1313 }
1314
1315 /* If the field does not entirely fill a LONGEST, then zero the sign
1316 bits. If the field is signed, and is negative, then sign
1317 extend. */
1318 if ((value_bitsize (toval) > 0)
1319 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1320 {
1321 LONGEST fieldval = value_as_long (fromval);
1322 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1323
1324 fieldval &= valmask;
1325 if (!type->is_unsigned ()
1326 && (fieldval & (valmask ^ (valmask >> 1))))
1327 fieldval |= ~valmask;
1328
1329 fromval = value_from_longest (type, fieldval);
1330 }
1331
1332 /* The return value is a copy of TOVAL so it shares its location
1333 information, but its contents are updated from FROMVAL. This
1334 implies the returned value is not lazy, even if TOVAL was. */
1335 val = value_copy (toval);
1336 set_value_lazy (val, 0);
1337 copy (value_contents (fromval), value_contents_raw (val));
1338
1339 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1340 in the case of pointer types. For object types, the enclosing type
1341 and embedded offset must *not* be copied: the target object refered
1342 to by TOVAL retains its original dynamic type after assignment. */
1343 if (type->code () == TYPE_CODE_PTR)
1344 {
1345 set_value_enclosing_type (val, value_enclosing_type (fromval));
1346 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1347 }
1348
1349 return val;
1350 }
1351
1352 /* Extend a value ARG1 to COUNT repetitions of its type. */
1353
1354 struct value *
1355 value_repeat (struct value *arg1, int count)
1356 {
1357 struct value *val;
1358
1359 if (VALUE_LVAL (arg1) != lval_memory)
1360 error (_("Only values in memory can be extended with '@'."));
1361 if (count < 1)
1362 error (_("Invalid number %d of repetitions."), count);
1363
1364 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1365
1366 VALUE_LVAL (val) = lval_memory;
1367 set_value_address (val, value_address (arg1));
1368
1369 read_value_memory (val, 0, value_stack (val), value_address (val),
1370 value_contents_all_raw (val).data (),
1371 type_length_units (value_enclosing_type (val)));
1372
1373 return val;
1374 }
1375
1376 struct value *
1377 value_of_variable (struct symbol *var, const struct block *b)
1378 {
1379 struct frame_info *frame = NULL;
1380
1381 if (symbol_read_needs_frame (var))
1382 frame = get_selected_frame (_("No frame selected."));
1383
1384 return read_var_value (var, b, frame);
1385 }
1386
1387 struct value *
1388 address_of_variable (struct symbol *var, const struct block *b)
1389 {
1390 struct type *type = var->type ();
1391 struct value *val;
1392
1393 /* Evaluate it first; if the result is a memory address, we're fine.
1394 Lazy evaluation pays off here. */
1395
1396 val = value_of_variable (var, b);
1397 type = value_type (val);
1398
1399 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1400 || type->code () == TYPE_CODE_FUNC)
1401 {
1402 CORE_ADDR addr = value_address (val);
1403
1404 return value_from_pointer (lookup_pointer_type (type), addr);
1405 }
1406
1407 /* Not a memory address; check what the problem was. */
1408 switch (VALUE_LVAL (val))
1409 {
1410 case lval_register:
1411 {
1412 struct frame_info *frame;
1413 const char *regname;
1414
1415 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1416 gdb_assert (frame);
1417
1418 regname = gdbarch_register_name (get_frame_arch (frame),
1419 VALUE_REGNUM (val));
1420 gdb_assert (regname && *regname);
1421
1422 error (_("Address requested for identifier "
1423 "\"%s\" which is in register $%s"),
1424 var->print_name (), regname);
1425 break;
1426 }
1427
1428 default:
1429 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1430 var->print_name ());
1431 break;
1432 }
1433
1434 return val;
1435 }
1436
1437 /* See value.h. */
1438
1439 bool
1440 value_must_coerce_to_target (struct value *val)
1441 {
1442 struct type *valtype;
1443
1444 /* The only lval kinds which do not live in target memory. */
1445 if (VALUE_LVAL (val) != not_lval
1446 && VALUE_LVAL (val) != lval_internalvar
1447 && VALUE_LVAL (val) != lval_xcallable)
1448 return false;
1449
1450 valtype = check_typedef (value_type (val));
1451
1452 switch (valtype->code ())
1453 {
1454 case TYPE_CODE_ARRAY:
1455 return valtype->is_vector () ? 0 : 1;
1456 case TYPE_CODE_STRING:
1457 return true;
1458 default:
1459 return false;
1460 }
1461 }
1462
1463 /* Make sure that VAL lives in target memory if it's supposed to. For
1464 instance, strings are constructed as character arrays in GDB's
1465 storage, and this function copies them to the target. */
1466
1467 struct value *
1468 value_coerce_to_target (struct value *val)
1469 {
1470 LONGEST length;
1471 CORE_ADDR addr;
1472
1473 if (!value_must_coerce_to_target (val))
1474 return val;
1475
1476 length = check_typedef (value_type (val))->length ();
1477 addr = allocate_space_in_inferior (length);
1478 write_memory (addr, value_contents (val).data (), length);
1479 return value_at_lazy (value_type (val), addr);
1480 }
1481
1482 /* Given a value which is an array, return a value which is a pointer
1483 to its first element, regardless of whether or not the array has a
1484 nonzero lower bound.
1485
1486 FIXME: A previous comment here indicated that this routine should
1487 be substracting the array's lower bound. It's not clear to me that
1488 this is correct. Given an array subscripting operation, it would
1489 certainly work to do the adjustment here, essentially computing:
1490
1491 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1492
1493 However I believe a more appropriate and logical place to account
1494 for the lower bound is to do so in value_subscript, essentially
1495 computing:
1496
1497 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1498
1499 As further evidence consider what would happen with operations
1500 other than array subscripting, where the caller would get back a
1501 value that had an address somewhere before the actual first element
1502 of the array, and the information about the lower bound would be
1503 lost because of the coercion to pointer type. */
1504
1505 struct value *
1506 value_coerce_array (struct value *arg1)
1507 {
1508 struct type *type = check_typedef (value_type (arg1));
1509
1510 /* If the user tries to do something requiring a pointer with an
1511 array that has not yet been pushed to the target, then this would
1512 be a good time to do so. */
1513 arg1 = value_coerce_to_target (arg1);
1514
1515 if (VALUE_LVAL (arg1) != lval_memory)
1516 error (_("Attempt to take address of value not located in memory."));
1517
1518 return value_from_pointer (lookup_pointer_type (type->target_type ()),
1519 value_address (arg1));
1520 }
1521
1522 /* Given a value which is a function, return a value which is a pointer
1523 to it. */
1524
1525 struct value *
1526 value_coerce_function (struct value *arg1)
1527 {
1528 struct value *retval;
1529
1530 if (VALUE_LVAL (arg1) != lval_memory)
1531 error (_("Attempt to take address of value not located in memory."));
1532
1533 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1534 value_address (arg1));
1535 return retval;
1536 }
1537
1538 /* Return a pointer value for the object for which ARG1 is the
1539 contents. */
1540
1541 struct value *
1542 value_addr (struct value *arg1)
1543 {
1544 struct value *arg2;
1545 struct type *type = check_typedef (value_type (arg1));
1546
1547 if (TYPE_IS_REFERENCE (type))
1548 {
1549 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1550 TARGET_CHAR_BIT * type->length ()))
1551 arg1 = coerce_ref (arg1);
1552 else
1553 {
1554 /* Copy the value, but change the type from (T&) to (T*). We
1555 keep the same location information, which is efficient, and
1556 allows &(&X) to get the location containing the reference.
1557 Do the same to its enclosing type for consistency. */
1558 struct type *type_ptr
1559 = lookup_pointer_type (type->target_type ());
1560 struct type *enclosing_type
1561 = check_typedef (value_enclosing_type (arg1));
1562 struct type *enclosing_type_ptr
1563 = lookup_pointer_type (enclosing_type->target_type ());
1564
1565 arg2 = value_copy (arg1);
1566 deprecated_set_value_type (arg2, type_ptr);
1567 set_value_enclosing_type (arg2, enclosing_type_ptr);
1568
1569 return arg2;
1570 }
1571 }
1572 if (type->code () == TYPE_CODE_FUNC)
1573 return value_coerce_function (arg1);
1574
1575 /* If this is an array that has not yet been pushed to the target,
1576 then this would be a good time to force it to memory. */
1577 arg1 = value_coerce_to_target (arg1);
1578
1579 if (VALUE_LVAL (arg1) != lval_memory)
1580 error (_("Attempt to take address of value not located in memory."));
1581
1582 /* Get target memory address. */
1583 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1584 (value_address (arg1)
1585 + value_embedded_offset (arg1)));
1586
1587 /* This may be a pointer to a base subobject; so remember the
1588 full derived object's type ... */
1589 set_value_enclosing_type (arg2,
1590 lookup_pointer_type (value_enclosing_type (arg1)));
1591 /* ... and also the relative position of the subobject in the full
1592 object. */
1593 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1594 return arg2;
1595 }
1596
1597 /* Return a reference value for the object for which ARG1 is the
1598 contents. */
1599
1600 struct value *
1601 value_ref (struct value *arg1, enum type_code refcode)
1602 {
1603 struct value *arg2;
1604 struct type *type = check_typedef (value_type (arg1));
1605
1606 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1607
1608 if ((type->code () == TYPE_CODE_REF
1609 || type->code () == TYPE_CODE_RVALUE_REF)
1610 && type->code () == refcode)
1611 return arg1;
1612
1613 arg2 = value_addr (arg1);
1614 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1615 return arg2;
1616 }
1617
1618 /* Given a value of a pointer type, apply the C unary * operator to
1619 it. */
1620
1621 struct value *
1622 value_ind (struct value *arg1)
1623 {
1624 struct type *base_type;
1625 struct value *arg2;
1626
1627 arg1 = coerce_array (arg1);
1628
1629 base_type = check_typedef (value_type (arg1));
1630
1631 if (VALUE_LVAL (arg1) == lval_computed)
1632 {
1633 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1634
1635 if (funcs->indirect)
1636 {
1637 struct value *result = funcs->indirect (arg1);
1638
1639 if (result)
1640 return result;
1641 }
1642 }
1643
1644 if (base_type->code () == TYPE_CODE_PTR)
1645 {
1646 struct type *enc_type;
1647
1648 /* We may be pointing to something embedded in a larger object.
1649 Get the real type of the enclosing object. */
1650 enc_type = check_typedef (value_enclosing_type (arg1));
1651 enc_type = enc_type->target_type ();
1652
1653 CORE_ADDR base_addr;
1654 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1655 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1656 {
1657 /* For functions, go through find_function_addr, which knows
1658 how to handle function descriptors. */
1659 base_addr = find_function_addr (arg1, NULL);
1660 }
1661 else
1662 {
1663 /* Retrieve the enclosing object pointed to. */
1664 base_addr = (value_as_address (arg1)
1665 - value_pointed_to_offset (arg1));
1666 }
1667 arg2 = value_at_lazy (enc_type, base_addr);
1668 enc_type = value_type (arg2);
1669 return readjust_indirect_value_type (arg2, enc_type, base_type,
1670 arg1, base_addr);
1671 }
1672
1673 error (_("Attempt to take contents of a non-pointer value."));
1674 }
1675 \f
1676 /* Create a value for an array by allocating space in GDB, copying the
1677 data into that space, and then setting up an array value.
1678
1679 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1680 is populated from the values passed in ELEMVEC.
1681
1682 The element type of the array is inherited from the type of the
1683 first element, and all elements must have the same size (though we
1684 don't currently enforce any restriction on their types). */
1685
1686 struct value *
1687 value_array (int lowbound, int highbound, struct value **elemvec)
1688 {
1689 int nelem;
1690 int idx;
1691 ULONGEST typelength;
1692 struct value *val;
1693 struct type *arraytype;
1694
1695 /* Validate that the bounds are reasonable and that each of the
1696 elements have the same size. */
1697
1698 nelem = highbound - lowbound + 1;
1699 if (nelem <= 0)
1700 {
1701 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1702 }
1703 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1704 for (idx = 1; idx < nelem; idx++)
1705 {
1706 if (type_length_units (value_enclosing_type (elemvec[idx]))
1707 != typelength)
1708 {
1709 error (_("array elements must all be the same size"));
1710 }
1711 }
1712
1713 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1714 lowbound, highbound);
1715
1716 if (!current_language->c_style_arrays_p ())
1717 {
1718 val = allocate_value (arraytype);
1719 for (idx = 0; idx < nelem; idx++)
1720 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1721 typelength);
1722 return val;
1723 }
1724
1725 /* Allocate space to store the array, and then initialize it by
1726 copying in each element. */
1727
1728 val = allocate_value (arraytype);
1729 for (idx = 0; idx < nelem; idx++)
1730 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1731 return val;
1732 }
1733
1734 struct value *
1735 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1736 {
1737 struct value *val;
1738 int lowbound = current_language->string_lower_bound ();
1739 ssize_t highbound = len / char_type->length ();
1740 struct type *stringtype
1741 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1742
1743 val = allocate_value (stringtype);
1744 memcpy (value_contents_raw (val).data (), ptr, len);
1745 return val;
1746 }
1747
1748 /* Create a value for a string constant by allocating space in the
1749 inferior, copying the data into that space, and returning the
1750 address with type TYPE_CODE_STRING. PTR points to the string
1751 constant data; LEN is number of characters.
1752
1753 Note that string types are like array of char types with a lower
1754 bound of zero and an upper bound of LEN - 1. Also note that the
1755 string may contain embedded null bytes. */
1756
1757 struct value *
1758 value_string (const char *ptr, ssize_t len, struct type *char_type)
1759 {
1760 struct value *val;
1761 int lowbound = current_language->string_lower_bound ();
1762 ssize_t highbound = len / char_type->length ();
1763 struct type *stringtype
1764 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1765
1766 val = allocate_value (stringtype);
1767 memcpy (value_contents_raw (val).data (), ptr, len);
1768 return val;
1769 }
1770
1771 \f
1772 /* See if we can pass arguments in T2 to a function which takes arguments
1773 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1774 of the values we're trying to pass. If some arguments need coercion of
1775 some sort, then the coerced values are written into T2. Return value is
1776 0 if the arguments could be matched, or the position at which they
1777 differ if not.
1778
1779 STATICP is nonzero if the T1 argument list came from a static
1780 member function. T2 must still include the ``this'' pointer, but
1781 it will be skipped.
1782
1783 For non-static member functions, we ignore the first argument,
1784 which is the type of the instance variable. This is because we
1785 want to handle calls with objects from derived classes. This is
1786 not entirely correct: we should actually check to make sure that a
1787 requested operation is type secure, shouldn't we? FIXME. */
1788
1789 static int
1790 typecmp (bool staticp, bool varargs, int nargs,
1791 struct field t1[], gdb::array_view<value *> t2)
1792 {
1793 int i;
1794
1795 /* Skip ``this'' argument if applicable. T2 will always include
1796 THIS. */
1797 if (staticp)
1798 t2 = t2.slice (1);
1799
1800 for (i = 0;
1801 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1802 i++)
1803 {
1804 struct type *tt1, *tt2;
1805
1806 if (i == t2.size ())
1807 return i + 1;
1808
1809 tt1 = check_typedef (t1[i].type ());
1810 tt2 = check_typedef (value_type (t2[i]));
1811
1812 if (TYPE_IS_REFERENCE (tt1)
1813 /* We should be doing hairy argument matching, as below. */
1814 && (check_typedef (tt1->target_type ())->code ()
1815 == tt2->code ()))
1816 {
1817 if (tt2->code () == TYPE_CODE_ARRAY)
1818 t2[i] = value_coerce_array (t2[i]);
1819 else
1820 t2[i] = value_ref (t2[i], tt1->code ());
1821 continue;
1822 }
1823
1824 /* djb - 20000715 - Until the new type structure is in the
1825 place, and we can attempt things like implicit conversions,
1826 we need to do this so you can take something like a map<const
1827 char *>, and properly access map["hello"], because the
1828 argument to [] will be a reference to a pointer to a char,
1829 and the argument will be a pointer to a char. */
1830 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1831 {
1832 tt1 = check_typedef ( tt1->target_type () );
1833 }
1834 while (tt2->code () == TYPE_CODE_ARRAY
1835 || tt2->code () == TYPE_CODE_PTR
1836 || TYPE_IS_REFERENCE (tt2))
1837 {
1838 tt2 = check_typedef (tt2->target_type ());
1839 }
1840 if (tt1->code () == tt2->code ())
1841 continue;
1842 /* Array to pointer is a `trivial conversion' according to the
1843 ARM. */
1844
1845 /* We should be doing much hairier argument matching (see
1846 section 13.2 of the ARM), but as a quick kludge, just check
1847 for the same type code. */
1848 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1849 return i + 1;
1850 }
1851 if (varargs || i == t2.size ())
1852 return 0;
1853 return i + 1;
1854 }
1855
1856 /* Helper class for search_struct_field that keeps track of found
1857 results and possibly throws an exception if the search yields
1858 ambiguous results. See search_struct_field for description of
1859 LOOKING_FOR_BASECLASS. */
1860
1861 struct struct_field_searcher
1862 {
1863 /* A found field. */
1864 struct found_field
1865 {
1866 /* Path to the structure where the field was found. */
1867 std::vector<struct type *> path;
1868
1869 /* The field found. */
1870 struct value *field_value;
1871 };
1872
1873 /* See corresponding fields for description of parameters. */
1874 struct_field_searcher (const char *name,
1875 struct type *outermost_type,
1876 bool looking_for_baseclass)
1877 : m_name (name),
1878 m_looking_for_baseclass (looking_for_baseclass),
1879 m_outermost_type (outermost_type)
1880 {
1881 }
1882
1883 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1884 base class search yields ambiguous results, this throws an
1885 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1886 are accumulated and the caller (search_struct_field) takes care
1887 of throwing an error if the field search yields ambiguous
1888 results. The latter is done that way so that the error message
1889 can include a list of all the found candidates. */
1890 void search (struct value *arg, LONGEST offset, struct type *type);
1891
1892 const std::vector<found_field> &fields ()
1893 {
1894 return m_fields;
1895 }
1896
1897 struct value *baseclass ()
1898 {
1899 return m_baseclass;
1900 }
1901
1902 private:
1903 /* Update results to include V, a found field/baseclass. */
1904 void update_result (struct value *v, LONGEST boffset);
1905
1906 /* The name of the field/baseclass we're searching for. */
1907 const char *m_name;
1908
1909 /* Whether we're looking for a baseclass, or a field. */
1910 const bool m_looking_for_baseclass;
1911
1912 /* The offset of the baseclass containing the field/baseclass we
1913 last recorded. */
1914 LONGEST m_last_boffset = 0;
1915
1916 /* If looking for a baseclass, then the result is stored here. */
1917 struct value *m_baseclass = nullptr;
1918
1919 /* When looking for fields, the found candidates are stored
1920 here. */
1921 std::vector<found_field> m_fields;
1922
1923 /* The type of the initial type passed to search_struct_field; this
1924 is used for error reporting when the lookup is ambiguous. */
1925 struct type *m_outermost_type;
1926
1927 /* The full path to the struct being inspected. E.g. for field 'x'
1928 defined in class B inherited by class A, we have A and B pushed
1929 on the path. */
1930 std::vector <struct type *> m_struct_path;
1931 };
1932
1933 void
1934 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1935 {
1936 if (v != NULL)
1937 {
1938 if (m_looking_for_baseclass)
1939 {
1940 if (m_baseclass != nullptr
1941 /* The result is not ambiguous if all the classes that are
1942 found occupy the same space. */
1943 && m_last_boffset != boffset)
1944 error (_("base class '%s' is ambiguous in type '%s'"),
1945 m_name, TYPE_SAFE_NAME (m_outermost_type));
1946
1947 m_baseclass = v;
1948 m_last_boffset = boffset;
1949 }
1950 else
1951 {
1952 /* The field is not ambiguous if it occupies the same
1953 space. */
1954 if (m_fields.empty () || m_last_boffset != boffset)
1955 m_fields.push_back ({m_struct_path, v});
1956 else
1957 {
1958 /*Fields can occupy the same space and have the same name (be
1959 ambiguous). This can happen when fields in two different base
1960 classes are marked [[no_unique_address]] and have the same name.
1961 The C++ standard says that such fields can only occupy the same
1962 space if they are of different type, but we don't rely on that in
1963 the following code. */
1964 bool ambiguous = false, insert = true;
1965 for (const found_field &field: m_fields)
1966 {
1967 if(field.path.back () != m_struct_path.back ())
1968 {
1969 /* Same boffset points to members of different classes.
1970 We have found an ambiguity and should record it. */
1971 ambiguous = true;
1972 }
1973 else
1974 {
1975 /* We don't need to insert this value again, because a
1976 non-ambiguous path already leads to it. */
1977 insert = false;
1978 break;
1979 }
1980 }
1981 if (ambiguous && insert)
1982 m_fields.push_back ({m_struct_path, v});
1983 }
1984 }
1985 }
1986 }
1987
1988 /* A helper for search_struct_field. This does all the work; most
1989 arguments are as passed to search_struct_field. */
1990
1991 void
1992 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1993 struct type *type)
1994 {
1995 int i;
1996 int nbases;
1997
1998 m_struct_path.push_back (type);
1999 SCOPE_EXIT { m_struct_path.pop_back (); };
2000
2001 type = check_typedef (type);
2002 nbases = TYPE_N_BASECLASSES (type);
2003
2004 if (!m_looking_for_baseclass)
2005 for (i = type->num_fields () - 1; i >= nbases; i--)
2006 {
2007 const char *t_field_name = type->field (i).name ();
2008
2009 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2010 {
2011 struct value *v;
2012
2013 if (field_is_static (&type->field (i)))
2014 v = value_static_field (type, i);
2015 else
2016 v = value_primitive_field (arg1, offset, i, type);
2017
2018 update_result (v, offset);
2019 return;
2020 }
2021
2022 if (t_field_name
2023 && t_field_name[0] == '\0')
2024 {
2025 struct type *field_type = type->field (i).type ();
2026
2027 if (field_type->code () == TYPE_CODE_UNION
2028 || field_type->code () == TYPE_CODE_STRUCT)
2029 {
2030 /* Look for a match through the fields of an anonymous
2031 union, or anonymous struct. C++ provides anonymous
2032 unions.
2033
2034 In the GNU Chill (now deleted from GDB)
2035 implementation of variant record types, each
2036 <alternative field> has an (anonymous) union type,
2037 each member of the union represents a <variant
2038 alternative>. Each <variant alternative> is
2039 represented as a struct, with a member for each
2040 <variant field>. */
2041
2042 LONGEST new_offset = offset;
2043
2044 /* This is pretty gross. In G++, the offset in an
2045 anonymous union is relative to the beginning of the
2046 enclosing struct. In the GNU Chill (now deleted
2047 from GDB) implementation of variant records, the
2048 bitpos is zero in an anonymous union field, so we
2049 have to add the offset of the union here. */
2050 if (field_type->code () == TYPE_CODE_STRUCT
2051 || (field_type->num_fields () > 0
2052 && field_type->field (0).loc_bitpos () == 0))
2053 new_offset += type->field (i).loc_bitpos () / 8;
2054
2055 search (arg1, new_offset, field_type);
2056 }
2057 }
2058 }
2059
2060 for (i = 0; i < nbases; i++)
2061 {
2062 struct value *v = NULL;
2063 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2064 /* If we are looking for baseclasses, this is what we get when
2065 we hit them. But it could happen that the base part's member
2066 name is not yet filled in. */
2067 int found_baseclass = (m_looking_for_baseclass
2068 && TYPE_BASECLASS_NAME (type, i) != NULL
2069 && (strcmp_iw (m_name,
2070 TYPE_BASECLASS_NAME (type,
2071 i)) == 0));
2072 LONGEST boffset = value_embedded_offset (arg1) + offset;
2073
2074 if (BASETYPE_VIA_VIRTUAL (type, i))
2075 {
2076 struct value *v2;
2077
2078 boffset = baseclass_offset (type, i,
2079 value_contents_for_printing (arg1).data (),
2080 value_embedded_offset (arg1) + offset,
2081 value_address (arg1),
2082 arg1);
2083
2084 /* The virtual base class pointer might have been clobbered
2085 by the user program. Make sure that it still points to a
2086 valid memory location. */
2087
2088 boffset += value_embedded_offset (arg1) + offset;
2089 if (boffset < 0
2090 || boffset >= value_enclosing_type (arg1)->length ())
2091 {
2092 CORE_ADDR base_addr;
2093
2094 base_addr = value_address (arg1) + boffset;
2095 v2 = value_at_lazy (basetype, base_addr);
2096 if (target_read_memory (base_addr,
2097 value_contents_raw (v2).data (),
2098 value_type (v2)->length ()) != 0)
2099 error (_("virtual baseclass botch"));
2100 }
2101 else
2102 {
2103 v2 = value_copy (arg1);
2104 deprecated_set_value_type (v2, basetype);
2105 set_value_embedded_offset (v2, boffset);
2106 }
2107
2108 if (found_baseclass)
2109 v = v2;
2110 else
2111 search (v2, 0, TYPE_BASECLASS (type, i));
2112 }
2113 else if (found_baseclass)
2114 v = value_primitive_field (arg1, offset, i, type);
2115 else
2116 {
2117 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2118 basetype);
2119 }
2120
2121 update_result (v, boffset);
2122 }
2123 }
2124
2125 /* Helper function used by value_struct_elt to recurse through
2126 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2127 it has (class) type TYPE. If found, return value, else return NULL.
2128
2129 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2130 fields, look for a baseclass named NAME. */
2131
2132 static struct value *
2133 search_struct_field (const char *name, struct value *arg1,
2134 struct type *type, int looking_for_baseclass)
2135 {
2136 struct_field_searcher searcher (name, type, looking_for_baseclass);
2137
2138 searcher.search (arg1, 0, type);
2139
2140 if (!looking_for_baseclass)
2141 {
2142 const auto &fields = searcher.fields ();
2143
2144 if (fields.empty ())
2145 return nullptr;
2146 else if (fields.size () == 1)
2147 return fields[0].field_value;
2148 else
2149 {
2150 std::string candidates;
2151
2152 for (auto &&candidate : fields)
2153 {
2154 gdb_assert (!candidate.path.empty ());
2155
2156 struct type *field_type = value_type (candidate.field_value);
2157 struct type *struct_type = candidate.path.back ();
2158
2159 std::string path;
2160 bool first = true;
2161 for (struct type *t : candidate.path)
2162 {
2163 if (first)
2164 first = false;
2165 else
2166 path += " -> ";
2167 path += t->name ();
2168 }
2169
2170 candidates += string_printf ("\n '%s %s::%s' (%s)",
2171 TYPE_SAFE_NAME (field_type),
2172 TYPE_SAFE_NAME (struct_type),
2173 name,
2174 path.c_str ());
2175 }
2176
2177 error (_("Request for member '%s' is ambiguous in type '%s'."
2178 " Candidates are:%s"),
2179 name, TYPE_SAFE_NAME (type),
2180 candidates.c_str ());
2181 }
2182 }
2183 else
2184 return searcher.baseclass ();
2185 }
2186
2187 /* Helper function used by value_struct_elt to recurse through
2188 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2189 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2190 TYPE.
2191
2192 ARGS is an optional array of argument values used to help finding NAME.
2193 The contents of ARGS can be adjusted if type coercion is required in
2194 order to find a matching NAME.
2195
2196 If found, return value, else if name matched and args not return
2197 (value) -1, else return NULL. */
2198
2199 static struct value *
2200 search_struct_method (const char *name, struct value **arg1p,
2201 gdb::optional<gdb::array_view<value *>> args,
2202 LONGEST offset, int *static_memfuncp,
2203 struct type *type)
2204 {
2205 int i;
2206 struct value *v;
2207 int name_matched = 0;
2208
2209 type = check_typedef (type);
2210 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2211 {
2212 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2213
2214 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2215 {
2216 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2217 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2218
2219 name_matched = 1;
2220 check_stub_method_group (type, i);
2221 if (j > 0 && !args.has_value ())
2222 error (_("cannot resolve overloaded method "
2223 "`%s': no arguments supplied"), name);
2224 else if (j == 0 && !args.has_value ())
2225 {
2226 v = value_fn_field (arg1p, f, j, type, offset);
2227 if (v != NULL)
2228 return v;
2229 }
2230 else
2231 while (j >= 0)
2232 {
2233 gdb_assert (args.has_value ());
2234 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2235 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2236 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2237 TYPE_FN_FIELD_ARGS (f, j), *args))
2238 {
2239 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2240 return value_virtual_fn_field (arg1p, f, j,
2241 type, offset);
2242 if (TYPE_FN_FIELD_STATIC_P (f, j)
2243 && static_memfuncp)
2244 *static_memfuncp = 1;
2245 v = value_fn_field (arg1p, f, j, type, offset);
2246 if (v != NULL)
2247 return v;
2248 }
2249 j--;
2250 }
2251 }
2252 }
2253
2254 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2255 {
2256 LONGEST base_offset;
2257 LONGEST this_offset;
2258
2259 if (BASETYPE_VIA_VIRTUAL (type, i))
2260 {
2261 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2262 struct value *base_val;
2263 const gdb_byte *base_valaddr;
2264
2265 /* The virtual base class pointer might have been
2266 clobbered by the user program. Make sure that it
2267 still points to a valid memory location. */
2268
2269 if (offset < 0 || offset >= type->length ())
2270 {
2271 CORE_ADDR address;
2272
2273 gdb::byte_vector tmp (baseclass->length ());
2274 address = value_address (*arg1p);
2275
2276 if (target_read_memory (address + offset,
2277 tmp.data (), baseclass->length ()) != 0)
2278 error (_("virtual baseclass botch"));
2279
2280 base_val = value_from_contents_and_address (baseclass,
2281 tmp.data (),
2282 address + offset);
2283 base_valaddr = value_contents_for_printing (base_val).data ();
2284 this_offset = 0;
2285 }
2286 else
2287 {
2288 base_val = *arg1p;
2289 base_valaddr = value_contents_for_printing (*arg1p).data ();
2290 this_offset = offset;
2291 }
2292
2293 base_offset = baseclass_offset (type, i, base_valaddr,
2294 this_offset, value_address (base_val),
2295 base_val);
2296 }
2297 else
2298 {
2299 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2300 }
2301 v = search_struct_method (name, arg1p, args, base_offset + offset,
2302 static_memfuncp, TYPE_BASECLASS (type, i));
2303 if (v == (struct value *) - 1)
2304 {
2305 name_matched = 1;
2306 }
2307 else if (v)
2308 {
2309 /* FIXME-bothner: Why is this commented out? Why is it here? */
2310 /* *arg1p = arg1_tmp; */
2311 return v;
2312 }
2313 }
2314 if (name_matched)
2315 return (struct value *) - 1;
2316 else
2317 return NULL;
2318 }
2319
2320 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2321 extract the component named NAME from the ultimate target
2322 structure/union and return it as a value with its appropriate type.
2323 ERR is used in the error message if *ARGP's type is wrong.
2324
2325 C++: ARGS is a list of argument types to aid in the selection of
2326 an appropriate method. Also, handle derived types.
2327
2328 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2329 where the truthvalue of whether the function that was resolved was
2330 a static member function or not is stored.
2331
2332 ERR is an error message to be printed in case the field is not
2333 found. */
2334
2335 struct value *
2336 value_struct_elt (struct value **argp,
2337 gdb::optional<gdb::array_view<value *>> args,
2338 const char *name, int *static_memfuncp, const char *err)
2339 {
2340 struct type *t;
2341 struct value *v;
2342
2343 *argp = coerce_array (*argp);
2344
2345 t = check_typedef (value_type (*argp));
2346
2347 /* Follow pointers until we get to a non-pointer. */
2348
2349 while (t->is_pointer_or_reference ())
2350 {
2351 *argp = value_ind (*argp);
2352 /* Don't coerce fn pointer to fn and then back again! */
2353 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2354 *argp = coerce_array (*argp);
2355 t = check_typedef (value_type (*argp));
2356 }
2357
2358 if (t->code () != TYPE_CODE_STRUCT
2359 && t->code () != TYPE_CODE_UNION)
2360 error (_("Attempt to extract a component of a value that is not a %s."),
2361 err);
2362
2363 /* Assume it's not, unless we see that it is. */
2364 if (static_memfuncp)
2365 *static_memfuncp = 0;
2366
2367 if (!args.has_value ())
2368 {
2369 /* if there are no arguments ...do this... */
2370
2371 /* Try as a field first, because if we succeed, there is less
2372 work to be done. */
2373 v = search_struct_field (name, *argp, t, 0);
2374 if (v)
2375 return v;
2376
2377 if (current_language->la_language == language_fortran)
2378 {
2379 /* If it is not a field it is the type name of an inherited
2380 structure. */
2381 v = search_struct_field (name, *argp, t, 1);
2382 if (v)
2383 return v;
2384 }
2385
2386 /* C++: If it was not found as a data field, then try to
2387 return it as a pointer to a method. */
2388 v = search_struct_method (name, argp, args, 0,
2389 static_memfuncp, t);
2390
2391 if (v == (struct value *) - 1)
2392 error (_("Cannot take address of method %s."), name);
2393 else if (v == 0)
2394 {
2395 if (TYPE_NFN_FIELDS (t))
2396 error (_("There is no member or method named %s."), name);
2397 else
2398 error (_("There is no member named %s."), name);
2399 }
2400 return v;
2401 }
2402
2403 v = search_struct_method (name, argp, args, 0,
2404 static_memfuncp, t);
2405
2406 if (v == (struct value *) - 1)
2407 {
2408 error (_("One of the arguments you tried to pass to %s could not "
2409 "be converted to what the function wants."), name);
2410 }
2411 else if (v == 0)
2412 {
2413 /* See if user tried to invoke data as function. If so, hand it
2414 back. If it's not callable (i.e., a pointer to function),
2415 gdb should give an error. */
2416 v = search_struct_field (name, *argp, t, 0);
2417 /* If we found an ordinary field, then it is not a method call.
2418 So, treat it as if it were a static member function. */
2419 if (v && static_memfuncp)
2420 *static_memfuncp = 1;
2421 }
2422
2423 if (!v)
2424 throw_error (NOT_FOUND_ERROR,
2425 _("Structure has no component named %s."), name);
2426 return v;
2427 }
2428
2429 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2430 to a structure or union, extract and return its component (field) of
2431 type FTYPE at the specified BITPOS.
2432 Throw an exception on error. */
2433
2434 struct value *
2435 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2436 const char *err)
2437 {
2438 struct type *t;
2439 int i;
2440
2441 *argp = coerce_array (*argp);
2442
2443 t = check_typedef (value_type (*argp));
2444
2445 while (t->is_pointer_or_reference ())
2446 {
2447 *argp = value_ind (*argp);
2448 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2449 *argp = coerce_array (*argp);
2450 t = check_typedef (value_type (*argp));
2451 }
2452
2453 if (t->code () != TYPE_CODE_STRUCT
2454 && t->code () != TYPE_CODE_UNION)
2455 error (_("Attempt to extract a component of a value that is not a %s."),
2456 err);
2457
2458 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2459 {
2460 if (!field_is_static (&t->field (i))
2461 && bitpos == t->field (i).loc_bitpos ()
2462 && types_equal (ftype, t->field (i).type ()))
2463 return value_primitive_field (*argp, 0, i, t);
2464 }
2465
2466 error (_("No field with matching bitpos and type."));
2467
2468 /* Never hit. */
2469 return NULL;
2470 }
2471
2472 /* Search through the methods of an object (and its bases) to find a
2473 specified method. Return a reference to the fn_field list METHODS of
2474 overloaded instances defined in the source language. If available
2475 and matching, a vector of matching xmethods defined in extension
2476 languages are also returned in XMETHODS.
2477
2478 Helper function for value_find_oload_list.
2479 ARGP is a pointer to a pointer to a value (the object).
2480 METHOD is a string containing the method name.
2481 OFFSET is the offset within the value.
2482 TYPE is the assumed type of the object.
2483 METHODS is a pointer to the matching overloaded instances defined
2484 in the source language. Since this is a recursive function,
2485 *METHODS should be set to NULL when calling this function.
2486 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2487 0 when calling this function.
2488 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2489 should also be set to NULL when calling this function.
2490 BASETYPE is set to the actual type of the subobject where the
2491 method is found.
2492 BOFFSET is the offset of the base subobject where the method is found. */
2493
2494 static void
2495 find_method_list (struct value **argp, const char *method,
2496 LONGEST offset, struct type *type,
2497 gdb::array_view<fn_field> *methods,
2498 std::vector<xmethod_worker_up> *xmethods,
2499 struct type **basetype, LONGEST *boffset)
2500 {
2501 int i;
2502 struct fn_field *f = NULL;
2503
2504 gdb_assert (methods != NULL && xmethods != NULL);
2505 type = check_typedef (type);
2506
2507 /* First check in object itself.
2508 This function is called recursively to search through base classes.
2509 If there is a source method match found at some stage, then we need not
2510 look for source methods in consequent recursive calls. */
2511 if (methods->empty ())
2512 {
2513 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2514 {
2515 /* pai: FIXME What about operators and type conversions? */
2516 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2517
2518 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2519 {
2520 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2521 f = TYPE_FN_FIELDLIST1 (type, i);
2522 *methods = gdb::make_array_view (f, len);
2523
2524 *basetype = type;
2525 *boffset = offset;
2526
2527 /* Resolve any stub methods. */
2528 check_stub_method_group (type, i);
2529
2530 break;
2531 }
2532 }
2533 }
2534
2535 /* Unlike source methods, xmethods can be accumulated over successive
2536 recursive calls. In other words, an xmethod named 'm' in a class
2537 will not hide an xmethod named 'm' in its base class(es). We want
2538 it to be this way because xmethods are after all convenience functions
2539 and hence there is no point restricting them with something like method
2540 hiding. Moreover, if hiding is done for xmethods as well, then we will
2541 have to provide a mechanism to un-hide (like the 'using' construct). */
2542 get_matching_xmethod_workers (type, method, xmethods);
2543
2544 /* If source methods are not found in current class, look for them in the
2545 base classes. We also have to go through the base classes to gather
2546 extension methods. */
2547 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2548 {
2549 LONGEST base_offset;
2550
2551 if (BASETYPE_VIA_VIRTUAL (type, i))
2552 {
2553 base_offset = baseclass_offset (type, i,
2554 value_contents_for_printing (*argp).data (),
2555 value_offset (*argp) + offset,
2556 value_address (*argp), *argp);
2557 }
2558 else /* Non-virtual base, simply use bit position from debug
2559 info. */
2560 {
2561 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2562 }
2563
2564 find_method_list (argp, method, base_offset + offset,
2565 TYPE_BASECLASS (type, i), methods,
2566 xmethods, basetype, boffset);
2567 }
2568 }
2569
2570 /* Return the list of overloaded methods of a specified name. The methods
2571 could be those GDB finds in the binary, or xmethod. Methods found in
2572 the binary are returned in METHODS, and xmethods are returned in
2573 XMETHODS.
2574
2575 ARGP is a pointer to a pointer to a value (the object).
2576 METHOD is the method name.
2577 OFFSET is the offset within the value contents.
2578 METHODS is the list of matching overloaded instances defined in
2579 the source language.
2580 XMETHODS is the vector of matching xmethod workers defined in
2581 extension languages.
2582 BASETYPE is set to the type of the base subobject that defines the
2583 method.
2584 BOFFSET is the offset of the base subobject which defines the method. */
2585
2586 static void
2587 value_find_oload_method_list (struct value **argp, const char *method,
2588 LONGEST offset,
2589 gdb::array_view<fn_field> *methods,
2590 std::vector<xmethod_worker_up> *xmethods,
2591 struct type **basetype, LONGEST *boffset)
2592 {
2593 struct type *t;
2594
2595 t = check_typedef (value_type (*argp));
2596
2597 /* Code snarfed from value_struct_elt. */
2598 while (t->is_pointer_or_reference ())
2599 {
2600 *argp = value_ind (*argp);
2601 /* Don't coerce fn pointer to fn and then back again! */
2602 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2603 *argp = coerce_array (*argp);
2604 t = check_typedef (value_type (*argp));
2605 }
2606
2607 if (t->code () != TYPE_CODE_STRUCT
2608 && t->code () != TYPE_CODE_UNION)
2609 error (_("Attempt to extract a component of a "
2610 "value that is not a struct or union"));
2611
2612 gdb_assert (methods != NULL && xmethods != NULL);
2613
2614 /* Clear the lists. */
2615 *methods = {};
2616 xmethods->clear ();
2617
2618 find_method_list (argp, method, 0, t, methods, xmethods,
2619 basetype, boffset);
2620 }
2621
2622 /* Given an array of arguments (ARGS) (which includes an entry for
2623 "this" in the case of C++ methods), the NAME of a function, and
2624 whether it's a method or not (METHOD), find the best function that
2625 matches on the argument types according to the overload resolution
2626 rules.
2627
2628 METHOD can be one of three values:
2629 NON_METHOD for non-member functions.
2630 METHOD: for member functions.
2631 BOTH: used for overload resolution of operators where the
2632 candidates are expected to be either member or non member
2633 functions. In this case the first argument ARGTYPES
2634 (representing 'this') is expected to be a reference to the
2635 target object, and will be dereferenced when attempting the
2636 non-member search.
2637
2638 In the case of class methods, the parameter OBJ is an object value
2639 in which to search for overloaded methods.
2640
2641 In the case of non-method functions, the parameter FSYM is a symbol
2642 corresponding to one of the overloaded functions.
2643
2644 Return value is an integer: 0 -> good match, 10 -> debugger applied
2645 non-standard coercions, 100 -> incompatible.
2646
2647 If a method is being searched for, VALP will hold the value.
2648 If a non-method is being searched for, SYMP will hold the symbol
2649 for it.
2650
2651 If a method is being searched for, and it is a static method,
2652 then STATICP will point to a non-zero value.
2653
2654 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2655 ADL overload candidates when performing overload resolution for a fully
2656 qualified name.
2657
2658 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2659 read while picking the best overload match (it may be all zeroes and thus
2660 not have a vtable pointer), in which case skip virtual function lookup.
2661 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2662 the result type.
2663
2664 Note: This function does *not* check the value of
2665 overload_resolution. Caller must check it to see whether overload
2666 resolution is permitted. */
2667
2668 int
2669 find_overload_match (gdb::array_view<value *> args,
2670 const char *name, enum oload_search_type method,
2671 struct value **objp, struct symbol *fsym,
2672 struct value **valp, struct symbol **symp,
2673 int *staticp, const int no_adl,
2674 const enum noside noside)
2675 {
2676 struct value *obj = (objp ? *objp : NULL);
2677 struct type *obj_type = obj ? value_type (obj) : NULL;
2678 /* Index of best overloaded function. */
2679 int func_oload_champ = -1;
2680 int method_oload_champ = -1;
2681 int src_method_oload_champ = -1;
2682 int ext_method_oload_champ = -1;
2683
2684 /* The measure for the current best match. */
2685 badness_vector method_badness;
2686 badness_vector func_badness;
2687 badness_vector ext_method_badness;
2688 badness_vector src_method_badness;
2689
2690 struct value *temp = obj;
2691 /* For methods, the list of overloaded methods. */
2692 gdb::array_view<fn_field> methods;
2693 /* For non-methods, the list of overloaded function symbols. */
2694 std::vector<symbol *> functions;
2695 /* For xmethods, the vector of xmethod workers. */
2696 std::vector<xmethod_worker_up> xmethods;
2697 struct type *basetype = NULL;
2698 LONGEST boffset;
2699
2700 const char *obj_type_name = NULL;
2701 const char *func_name = NULL;
2702 gdb::unique_xmalloc_ptr<char> temp_func;
2703 enum oload_classification match_quality;
2704 enum oload_classification method_match_quality = INCOMPATIBLE;
2705 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2706 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2707 enum oload_classification func_match_quality = INCOMPATIBLE;
2708
2709 /* Get the list of overloaded methods or functions. */
2710 if (method == METHOD || method == BOTH)
2711 {
2712 gdb_assert (obj);
2713
2714 /* OBJ may be a pointer value rather than the object itself. */
2715 obj = coerce_ref (obj);
2716 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2717 obj = coerce_ref (value_ind (obj));
2718 obj_type_name = value_type (obj)->name ();
2719
2720 /* First check whether this is a data member, e.g. a pointer to
2721 a function. */
2722 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2723 {
2724 *valp = search_struct_field (name, obj,
2725 check_typedef (value_type (obj)), 0);
2726 if (*valp)
2727 {
2728 *staticp = 1;
2729 return 0;
2730 }
2731 }
2732
2733 /* Retrieve the list of methods with the name NAME. */
2734 value_find_oload_method_list (&temp, name, 0, &methods,
2735 &xmethods, &basetype, &boffset);
2736 /* If this is a method only search, and no methods were found
2737 the search has failed. */
2738 if (method == METHOD && methods.empty () && xmethods.empty ())
2739 error (_("Couldn't find method %s%s%s"),
2740 obj_type_name,
2741 (obj_type_name && *obj_type_name) ? "::" : "",
2742 name);
2743 /* If we are dealing with stub method types, they should have
2744 been resolved by find_method_list via
2745 value_find_oload_method_list above. */
2746 if (!methods.empty ())
2747 {
2748 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2749
2750 src_method_oload_champ
2751 = find_oload_champ (args,
2752 methods.size (),
2753 methods.data (), NULL, NULL,
2754 &src_method_badness);
2755
2756 src_method_match_quality = classify_oload_match
2757 (src_method_badness, args.size (),
2758 oload_method_static_p (methods.data (), src_method_oload_champ));
2759 }
2760
2761 if (!xmethods.empty ())
2762 {
2763 ext_method_oload_champ
2764 = find_oload_champ (args,
2765 xmethods.size (),
2766 NULL, xmethods.data (), NULL,
2767 &ext_method_badness);
2768 ext_method_match_quality = classify_oload_match (ext_method_badness,
2769 args.size (), 0);
2770 }
2771
2772 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2773 {
2774 switch (compare_badness (ext_method_badness, src_method_badness))
2775 {
2776 case 0: /* Src method and xmethod are equally good. */
2777 /* If src method and xmethod are equally good, then
2778 xmethod should be the winner. Hence, fall through to the
2779 case where a xmethod is better than the source
2780 method, except when the xmethod match quality is
2781 non-standard. */
2782 /* FALLTHROUGH */
2783 case 1: /* Src method and ext method are incompatible. */
2784 /* If ext method match is not standard, then let source method
2785 win. Otherwise, fallthrough to let xmethod win. */
2786 if (ext_method_match_quality != STANDARD)
2787 {
2788 method_oload_champ = src_method_oload_champ;
2789 method_badness = src_method_badness;
2790 ext_method_oload_champ = -1;
2791 method_match_quality = src_method_match_quality;
2792 break;
2793 }
2794 /* FALLTHROUGH */
2795 case 2: /* Ext method is champion. */
2796 method_oload_champ = ext_method_oload_champ;
2797 method_badness = ext_method_badness;
2798 src_method_oload_champ = -1;
2799 method_match_quality = ext_method_match_quality;
2800 break;
2801 case 3: /* Src method is champion. */
2802 method_oload_champ = src_method_oload_champ;
2803 method_badness = src_method_badness;
2804 ext_method_oload_champ = -1;
2805 method_match_quality = src_method_match_quality;
2806 break;
2807 default:
2808 gdb_assert_not_reached ("Unexpected overload comparison "
2809 "result");
2810 break;
2811 }
2812 }
2813 else if (src_method_oload_champ >= 0)
2814 {
2815 method_oload_champ = src_method_oload_champ;
2816 method_badness = src_method_badness;
2817 method_match_quality = src_method_match_quality;
2818 }
2819 else if (ext_method_oload_champ >= 0)
2820 {
2821 method_oload_champ = ext_method_oload_champ;
2822 method_badness = ext_method_badness;
2823 method_match_quality = ext_method_match_quality;
2824 }
2825 }
2826
2827 if (method == NON_METHOD || method == BOTH)
2828 {
2829 const char *qualified_name = NULL;
2830
2831 /* If the overload match is being search for both as a method
2832 and non member function, the first argument must now be
2833 dereferenced. */
2834 if (method == BOTH)
2835 args[0] = value_ind (args[0]);
2836
2837 if (fsym)
2838 {
2839 qualified_name = fsym->natural_name ();
2840
2841 /* If we have a function with a C++ name, try to extract just
2842 the function part. Do not try this for non-functions (e.g.
2843 function pointers). */
2844 if (qualified_name
2845 && (check_typedef (fsym->type ())->code ()
2846 == TYPE_CODE_FUNC))
2847 {
2848 temp_func = cp_func_name (qualified_name);
2849
2850 /* If cp_func_name did not remove anything, the name of the
2851 symbol did not include scope or argument types - it was
2852 probably a C-style function. */
2853 if (temp_func != nullptr)
2854 {
2855 if (strcmp (temp_func.get (), qualified_name) == 0)
2856 func_name = NULL;
2857 else
2858 func_name = temp_func.get ();
2859 }
2860 }
2861 }
2862 else
2863 {
2864 func_name = name;
2865 qualified_name = name;
2866 }
2867
2868 /* If there was no C++ name, this must be a C-style function or
2869 not a function at all. Just return the same symbol. Do the
2870 same if cp_func_name fails for some reason. */
2871 if (func_name == NULL)
2872 {
2873 *symp = fsym;
2874 return 0;
2875 }
2876
2877 func_oload_champ = find_oload_champ_namespace (args,
2878 func_name,
2879 qualified_name,
2880 &functions,
2881 &func_badness,
2882 no_adl);
2883
2884 if (func_oload_champ >= 0)
2885 func_match_quality = classify_oload_match (func_badness,
2886 args.size (), 0);
2887 }
2888
2889 /* Did we find a match ? */
2890 if (method_oload_champ == -1 && func_oload_champ == -1)
2891 throw_error (NOT_FOUND_ERROR,
2892 _("No symbol \"%s\" in current context."),
2893 name);
2894
2895 /* If we have found both a method match and a function
2896 match, find out which one is better, and calculate match
2897 quality. */
2898 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2899 {
2900 switch (compare_badness (func_badness, method_badness))
2901 {
2902 case 0: /* Top two contenders are equally good. */
2903 /* FIXME: GDB does not support the general ambiguous case.
2904 All candidates should be collected and presented the
2905 user. */
2906 error (_("Ambiguous overload resolution"));
2907 break;
2908 case 1: /* Incomparable top contenders. */
2909 /* This is an error incompatible candidates
2910 should not have been proposed. */
2911 error (_("Internal error: incompatible "
2912 "overload candidates proposed"));
2913 break;
2914 case 2: /* Function champion. */
2915 method_oload_champ = -1;
2916 match_quality = func_match_quality;
2917 break;
2918 case 3: /* Method champion. */
2919 func_oload_champ = -1;
2920 match_quality = method_match_quality;
2921 break;
2922 default:
2923 error (_("Internal error: unexpected overload comparison result"));
2924 break;
2925 }
2926 }
2927 else
2928 {
2929 /* We have either a method match or a function match. */
2930 if (method_oload_champ >= 0)
2931 match_quality = method_match_quality;
2932 else
2933 match_quality = func_match_quality;
2934 }
2935
2936 if (match_quality == INCOMPATIBLE)
2937 {
2938 if (method == METHOD)
2939 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2940 obj_type_name,
2941 (obj_type_name && *obj_type_name) ? "::" : "",
2942 name);
2943 else
2944 error (_("Cannot resolve function %s to any overloaded instance"),
2945 func_name);
2946 }
2947 else if (match_quality == NON_STANDARD)
2948 {
2949 if (method == METHOD)
2950 warning (_("Using non-standard conversion to match "
2951 "method %s%s%s to supplied arguments"),
2952 obj_type_name,
2953 (obj_type_name && *obj_type_name) ? "::" : "",
2954 name);
2955 else
2956 warning (_("Using non-standard conversion to match "
2957 "function %s to supplied arguments"),
2958 func_name);
2959 }
2960
2961 if (staticp != NULL)
2962 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2963
2964 if (method_oload_champ >= 0)
2965 {
2966 if (src_method_oload_champ >= 0)
2967 {
2968 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2969 && noside != EVAL_AVOID_SIDE_EFFECTS)
2970 {
2971 *valp = value_virtual_fn_field (&temp, methods.data (),
2972 method_oload_champ, basetype,
2973 boffset);
2974 }
2975 else
2976 *valp = value_fn_field (&temp, methods.data (),
2977 method_oload_champ, basetype, boffset);
2978 }
2979 else
2980 *valp = value_from_xmethod
2981 (std::move (xmethods[ext_method_oload_champ]));
2982 }
2983 else
2984 *symp = functions[func_oload_champ];
2985
2986 if (objp)
2987 {
2988 struct type *temp_type = check_typedef (value_type (temp));
2989 struct type *objtype = check_typedef (obj_type);
2990
2991 if (temp_type->code () != TYPE_CODE_PTR
2992 && objtype->is_pointer_or_reference ())
2993 {
2994 temp = value_addr (temp);
2995 }
2996 *objp = temp;
2997 }
2998
2999 switch (match_quality)
3000 {
3001 case INCOMPATIBLE:
3002 return 100;
3003 case NON_STANDARD:
3004 return 10;
3005 default: /* STANDARD */
3006 return 0;
3007 }
3008 }
3009
3010 /* Find the best overload match, searching for FUNC_NAME in namespaces
3011 contained in QUALIFIED_NAME until it either finds a good match or
3012 runs out of namespaces. It stores the overloaded functions in
3013 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3014 argument dependent lookup is not performed. */
3015
3016 static int
3017 find_oload_champ_namespace (gdb::array_view<value *> args,
3018 const char *func_name,
3019 const char *qualified_name,
3020 std::vector<symbol *> *oload_syms,
3021 badness_vector *oload_champ_bv,
3022 const int no_adl)
3023 {
3024 int oload_champ;
3025
3026 find_oload_champ_namespace_loop (args,
3027 func_name,
3028 qualified_name, 0,
3029 oload_syms, oload_champ_bv,
3030 &oload_champ,
3031 no_adl);
3032
3033 return oload_champ;
3034 }
3035
3036 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3037 how deep we've looked for namespaces, and the champ is stored in
3038 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3039 if it isn't. Other arguments are the same as in
3040 find_oload_champ_namespace. */
3041
3042 static int
3043 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3044 const char *func_name,
3045 const char *qualified_name,
3046 int namespace_len,
3047 std::vector<symbol *> *oload_syms,
3048 badness_vector *oload_champ_bv,
3049 int *oload_champ,
3050 const int no_adl)
3051 {
3052 int next_namespace_len = namespace_len;
3053 int searched_deeper = 0;
3054 int new_oload_champ;
3055 char *new_namespace;
3056
3057 if (next_namespace_len != 0)
3058 {
3059 gdb_assert (qualified_name[next_namespace_len] == ':');
3060 next_namespace_len += 2;
3061 }
3062 next_namespace_len +=
3063 cp_find_first_component (qualified_name + next_namespace_len);
3064
3065 /* First, see if we have a deeper namespace we can search in.
3066 If we get a good match there, use it. */
3067
3068 if (qualified_name[next_namespace_len] == ':')
3069 {
3070 searched_deeper = 1;
3071
3072 if (find_oload_champ_namespace_loop (args,
3073 func_name, qualified_name,
3074 next_namespace_len,
3075 oload_syms, oload_champ_bv,
3076 oload_champ, no_adl))
3077 {
3078 return 1;
3079 }
3080 };
3081
3082 /* If we reach here, either we're in the deepest namespace or we
3083 didn't find a good match in a deeper namespace. But, in the
3084 latter case, we still have a bad match in a deeper namespace;
3085 note that we might not find any match at all in the current
3086 namespace. (There's always a match in the deepest namespace,
3087 because this overload mechanism only gets called if there's a
3088 function symbol to start off with.) */
3089
3090 new_namespace = (char *) alloca (namespace_len + 1);
3091 strncpy (new_namespace, qualified_name, namespace_len);
3092 new_namespace[namespace_len] = '\0';
3093
3094 std::vector<symbol *> new_oload_syms
3095 = make_symbol_overload_list (func_name, new_namespace);
3096
3097 /* If we have reached the deepest level perform argument
3098 determined lookup. */
3099 if (!searched_deeper && !no_adl)
3100 {
3101 int ix;
3102 struct type **arg_types;
3103
3104 /* Prepare list of argument types for overload resolution. */
3105 arg_types = (struct type **)
3106 alloca (args.size () * (sizeof (struct type *)));
3107 for (ix = 0; ix < args.size (); ix++)
3108 arg_types[ix] = value_type (args[ix]);
3109 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3110 &new_oload_syms);
3111 }
3112
3113 badness_vector new_oload_champ_bv;
3114 new_oload_champ = find_oload_champ (args,
3115 new_oload_syms.size (),
3116 NULL, NULL, new_oload_syms.data (),
3117 &new_oload_champ_bv);
3118
3119 /* Case 1: We found a good match. Free earlier matches (if any),
3120 and return it. Case 2: We didn't find a good match, but we're
3121 not the deepest function. Then go with the bad match that the
3122 deeper function found. Case 3: We found a bad match, and we're
3123 the deepest function. Then return what we found, even though
3124 it's a bad match. */
3125
3126 if (new_oload_champ != -1
3127 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3128 {
3129 *oload_syms = std::move (new_oload_syms);
3130 *oload_champ = new_oload_champ;
3131 *oload_champ_bv = std::move (new_oload_champ_bv);
3132 return 1;
3133 }
3134 else if (searched_deeper)
3135 {
3136 return 0;
3137 }
3138 else
3139 {
3140 *oload_syms = std::move (new_oload_syms);
3141 *oload_champ = new_oload_champ;
3142 *oload_champ_bv = std::move (new_oload_champ_bv);
3143 return 0;
3144 }
3145 }
3146
3147 /* Look for a function to take ARGS. Find the best match from among
3148 the overloaded methods or functions given by METHODS or FUNCTIONS
3149 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3150 and XMETHODS can be non-NULL.
3151
3152 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3153 or XMETHODS, whichever is non-NULL.
3154
3155 Return the index of the best match; store an indication of the
3156 quality of the match in OLOAD_CHAMP_BV. */
3157
3158 static int
3159 find_oload_champ (gdb::array_view<value *> args,
3160 size_t num_fns,
3161 fn_field *methods,
3162 xmethod_worker_up *xmethods,
3163 symbol **functions,
3164 badness_vector *oload_champ_bv)
3165 {
3166 /* A measure of how good an overloaded instance is. */
3167 badness_vector bv;
3168 /* Index of best overloaded function. */
3169 int oload_champ = -1;
3170 /* Current ambiguity state for overload resolution. */
3171 int oload_ambiguous = 0;
3172 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3173
3174 /* A champion can be found among methods alone, or among functions
3175 alone, or in xmethods alone, but not in more than one of these
3176 groups. */
3177 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3178 == 1);
3179
3180 /* Consider each candidate in turn. */
3181 for (size_t ix = 0; ix < num_fns; ix++)
3182 {
3183 int jj;
3184 int static_offset = 0;
3185 std::vector<type *> parm_types;
3186
3187 if (xmethods != NULL)
3188 parm_types = xmethods[ix]->get_arg_types ();
3189 else
3190 {
3191 size_t nparms;
3192
3193 if (methods != NULL)
3194 {
3195 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3196 static_offset = oload_method_static_p (methods, ix);
3197 }
3198 else
3199 nparms = functions[ix]->type ()->num_fields ();
3200
3201 parm_types.reserve (nparms);
3202 for (jj = 0; jj < nparms; jj++)
3203 {
3204 type *t = (methods != NULL
3205 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3206 : functions[ix]->type ()->field (jj).type ());
3207 parm_types.push_back (t);
3208 }
3209 }
3210
3211 /* Compare parameter types to supplied argument types. Skip
3212 THIS for static methods. */
3213 bv = rank_function (parm_types,
3214 args.slice (static_offset));
3215
3216 if (overload_debug)
3217 {
3218 if (methods != NULL)
3219 gdb_printf (gdb_stderr,
3220 "Overloaded method instance %s, # of parms %d\n",
3221 methods[ix].physname, (int) parm_types.size ());
3222 else if (xmethods != NULL)
3223 gdb_printf (gdb_stderr,
3224 "Xmethod worker, # of parms %d\n",
3225 (int) parm_types.size ());
3226 else
3227 gdb_printf (gdb_stderr,
3228 "Overloaded function instance "
3229 "%s # of parms %d\n",
3230 functions[ix]->demangled_name (),
3231 (int) parm_types.size ());
3232
3233 gdb_printf (gdb_stderr,
3234 "...Badness of length : {%d, %d}\n",
3235 bv[0].rank, bv[0].subrank);
3236
3237 for (jj = 1; jj < bv.size (); jj++)
3238 gdb_printf (gdb_stderr,
3239 "...Badness of arg %d : {%d, %d}\n",
3240 jj, bv[jj].rank, bv[jj].subrank);
3241 }
3242
3243 if (oload_champ_bv->empty ())
3244 {
3245 *oload_champ_bv = std::move (bv);
3246 oload_champ = 0;
3247 }
3248 else /* See whether current candidate is better or worse than
3249 previous best. */
3250 switch (compare_badness (bv, *oload_champ_bv))
3251 {
3252 case 0: /* Top two contenders are equally good. */
3253 oload_ambiguous = 1;
3254 break;
3255 case 1: /* Incomparable top contenders. */
3256 oload_ambiguous = 2;
3257 break;
3258 case 2: /* New champion, record details. */
3259 *oload_champ_bv = std::move (bv);
3260 oload_ambiguous = 0;
3261 oload_champ = ix;
3262 break;
3263 case 3:
3264 default:
3265 break;
3266 }
3267 if (overload_debug)
3268 gdb_printf (gdb_stderr, "Overload resolution "
3269 "champion is %d, ambiguous? %d\n",
3270 oload_champ, oload_ambiguous);
3271 }
3272
3273 return oload_champ;
3274 }
3275
3276 /* Return 1 if we're looking at a static method, 0 if we're looking at
3277 a non-static method or a function that isn't a method. */
3278
3279 static int
3280 oload_method_static_p (struct fn_field *fns_ptr, int index)
3281 {
3282 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3283 return 1;
3284 else
3285 return 0;
3286 }
3287
3288 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3289
3290 static enum oload_classification
3291 classify_oload_match (const badness_vector &oload_champ_bv,
3292 int nargs,
3293 int static_offset)
3294 {
3295 int ix;
3296 enum oload_classification worst = STANDARD;
3297
3298 for (ix = 1; ix <= nargs - static_offset; ix++)
3299 {
3300 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3301 or worse return INCOMPATIBLE. */
3302 if (compare_ranks (oload_champ_bv[ix],
3303 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3304 return INCOMPATIBLE; /* Truly mismatched types. */
3305 /* Otherwise If this conversion is as bad as
3306 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3307 else if (compare_ranks (oload_champ_bv[ix],
3308 NS_POINTER_CONVERSION_BADNESS) <= 0)
3309 worst = NON_STANDARD; /* Non-standard type conversions
3310 needed. */
3311 }
3312
3313 /* If no INCOMPATIBLE classification was found, return the worst one
3314 that was found (if any). */
3315 return worst;
3316 }
3317
3318 /* C++: return 1 is NAME is a legitimate name for the destructor of
3319 type TYPE. If TYPE does not have a destructor, or if NAME is
3320 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3321 have CHECK_TYPEDEF applied, this function will apply it itself. */
3322
3323 int
3324 destructor_name_p (const char *name, struct type *type)
3325 {
3326 if (name[0] == '~')
3327 {
3328 const char *dname = type_name_or_error (type);
3329 const char *cp = strchr (dname, '<');
3330 unsigned int len;
3331
3332 /* Do not compare the template part for template classes. */
3333 if (cp == NULL)
3334 len = strlen (dname);
3335 else
3336 len = cp - dname;
3337 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3338 error (_("name of destructor must equal name of class"));
3339 else
3340 return 1;
3341 }
3342 return 0;
3343 }
3344
3345 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3346 class". If the name is found, return a value representing it;
3347 otherwise throw an exception. */
3348
3349 static struct value *
3350 enum_constant_from_type (struct type *type, const char *name)
3351 {
3352 int i;
3353 int name_len = strlen (name);
3354
3355 gdb_assert (type->code () == TYPE_CODE_ENUM
3356 && type->is_declared_class ());
3357
3358 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3359 {
3360 const char *fname = type->field (i).name ();
3361 int len;
3362
3363 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3364 || fname == NULL)
3365 continue;
3366
3367 /* Look for the trailing "::NAME", since enum class constant
3368 names are qualified here. */
3369 len = strlen (fname);
3370 if (len + 2 >= name_len
3371 && fname[len - name_len - 2] == ':'
3372 && fname[len - name_len - 1] == ':'
3373 && strcmp (&fname[len - name_len], name) == 0)
3374 return value_from_longest (type, type->field (i).loc_enumval ());
3375 }
3376
3377 error (_("no constant named \"%s\" in enum \"%s\""),
3378 name, type->name ());
3379 }
3380
3381 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3382 return the appropriate member (or the address of the member, if
3383 WANT_ADDRESS). This function is used to resolve user expressions
3384 of the form "DOMAIN::NAME". For more details on what happens, see
3385 the comment before value_struct_elt_for_reference. */
3386
3387 struct value *
3388 value_aggregate_elt (struct type *curtype, const char *name,
3389 struct type *expect_type, int want_address,
3390 enum noside noside)
3391 {
3392 switch (curtype->code ())
3393 {
3394 case TYPE_CODE_STRUCT:
3395 case TYPE_CODE_UNION:
3396 return value_struct_elt_for_reference (curtype, 0, curtype,
3397 name, expect_type,
3398 want_address, noside);
3399 case TYPE_CODE_NAMESPACE:
3400 return value_namespace_elt (curtype, name,
3401 want_address, noside);
3402
3403 case TYPE_CODE_ENUM:
3404 return enum_constant_from_type (curtype, name);
3405
3406 default:
3407 internal_error (__FILE__, __LINE__,
3408 _("non-aggregate type in value_aggregate_elt"));
3409 }
3410 }
3411
3412 /* Compares the two method/function types T1 and T2 for "equality"
3413 with respect to the methods' parameters. If the types of the
3414 two parameter lists are the same, returns 1; 0 otherwise. This
3415 comparison may ignore any artificial parameters in T1 if
3416 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3417 the first artificial parameter in T1, assumed to be a 'this' pointer.
3418
3419 The type T2 is expected to have come from make_params (in eval.c). */
3420
3421 static int
3422 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3423 {
3424 int start = 0;
3425
3426 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3427 ++start;
3428
3429 /* If skipping artificial fields, find the first real field
3430 in T1. */
3431 if (skip_artificial)
3432 {
3433 while (start < t1->num_fields ()
3434 && TYPE_FIELD_ARTIFICIAL (t1, start))
3435 ++start;
3436 }
3437
3438 /* Now compare parameters. */
3439
3440 /* Special case: a method taking void. T1 will contain no
3441 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3442 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3443 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3444 return 1;
3445
3446 if ((t1->num_fields () - start) == t2->num_fields ())
3447 {
3448 int i;
3449
3450 for (i = 0; i < t2->num_fields (); ++i)
3451 {
3452 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3453 t2->field (i).type (), NULL),
3454 EXACT_MATCH_BADNESS) != 0)
3455 return 0;
3456 }
3457
3458 return 1;
3459 }
3460
3461 return 0;
3462 }
3463
3464 /* C++: Given an aggregate type VT, and a class type CLS, search
3465 recursively for CLS using value V; If found, store the offset
3466 which is either fetched from the virtual base pointer if CLS
3467 is virtual or accumulated offset of its parent classes if
3468 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3469 is virtual, and return true. If not found, return false. */
3470
3471 static bool
3472 get_baseclass_offset (struct type *vt, struct type *cls,
3473 struct value *v, int *boffs, bool *isvirt)
3474 {
3475 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3476 {
3477 struct type *t = vt->field (i).type ();
3478 if (types_equal (t, cls))
3479 {
3480 if (BASETYPE_VIA_VIRTUAL (vt, i))
3481 {
3482 const gdb_byte *adr = value_contents_for_printing (v).data ();
3483 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3484 value_as_long (v), v);
3485 *isvirt = true;
3486 }
3487 else
3488 *isvirt = false;
3489 return true;
3490 }
3491
3492 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3493 {
3494 if (*isvirt == false) /* Add non-virtual base offset. */
3495 {
3496 const gdb_byte *adr = value_contents_for_printing (v).data ();
3497 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3498 value_as_long (v), v);
3499 }
3500 return true;
3501 }
3502 }
3503
3504 return false;
3505 }
3506
3507 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3508 return the address of this member as a "pointer to member" type.
3509 If INTYPE is non-null, then it will be the type of the member we
3510 are looking for. This will help us resolve "pointers to member
3511 functions". This function is used to resolve user expressions of
3512 the form "DOMAIN::NAME". */
3513
3514 static struct value *
3515 value_struct_elt_for_reference (struct type *domain, int offset,
3516 struct type *curtype, const char *name,
3517 struct type *intype,
3518 int want_address,
3519 enum noside noside)
3520 {
3521 struct type *t = check_typedef (curtype);
3522 int i;
3523 struct value *result;
3524
3525 if (t->code () != TYPE_CODE_STRUCT
3526 && t->code () != TYPE_CODE_UNION)
3527 error (_("Internal error: non-aggregate type "
3528 "to value_struct_elt_for_reference"));
3529
3530 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3531 {
3532 const char *t_field_name = t->field (i).name ();
3533
3534 if (t_field_name && strcmp (t_field_name, name) == 0)
3535 {
3536 if (field_is_static (&t->field (i)))
3537 {
3538 struct value *v = value_static_field (t, i);
3539 if (want_address)
3540 v = value_addr (v);
3541 return v;
3542 }
3543 if (TYPE_FIELD_PACKED (t, i))
3544 error (_("pointers to bitfield members not allowed"));
3545
3546 if (want_address)
3547 return value_from_longest
3548 (lookup_memberptr_type (t->field (i).type (), domain),
3549 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3550 else if (noside != EVAL_NORMAL)
3551 return allocate_value (t->field (i).type ());
3552 else
3553 {
3554 /* Try to evaluate NAME as a qualified name with implicit
3555 this pointer. In this case, attempt to return the
3556 equivalent to `this->*(&TYPE::NAME)'. */
3557 struct value *v = value_of_this_silent (current_language);
3558 if (v != NULL)
3559 {
3560 struct value *ptr, *this_v = v;
3561 long mem_offset;
3562 struct type *type, *tmp;
3563
3564 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3565 type = check_typedef (value_type (ptr));
3566 gdb_assert (type != NULL
3567 && type->code () == TYPE_CODE_MEMBERPTR);
3568 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3569 v = value_cast_pointers (tmp, v, 1);
3570 mem_offset = value_as_long (ptr);
3571 if (domain != curtype)
3572 {
3573 /* Find class offset of type CURTYPE from either its
3574 parent type DOMAIN or the type of implied this. */
3575 int boff = 0;
3576 bool isvirt = false;
3577 if (get_baseclass_offset (domain, curtype, v, &boff,
3578 &isvirt))
3579 mem_offset += boff;
3580 else
3581 {
3582 struct type *p = check_typedef (value_type (this_v));
3583 p = check_typedef (p->target_type ());
3584 if (get_baseclass_offset (p, curtype, this_v,
3585 &boff, &isvirt))
3586 mem_offset += boff;
3587 }
3588 }
3589 tmp = lookup_pointer_type (type->target_type ());
3590 result = value_from_pointer (tmp,
3591 value_as_long (v) + mem_offset);
3592 return value_ind (result);
3593 }
3594
3595 error (_("Cannot reference non-static field \"%s\""), name);
3596 }
3597 }
3598 }
3599
3600 /* C++: If it was not found as a data field, then try to return it
3601 as a pointer to a method. */
3602
3603 /* Perform all necessary dereferencing. */
3604 while (intype && intype->code () == TYPE_CODE_PTR)
3605 intype = intype->target_type ();
3606
3607 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3608 {
3609 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3610
3611 if (t_field_name && strcmp (t_field_name, name) == 0)
3612 {
3613 int j;
3614 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3615 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3616
3617 check_stub_method_group (t, i);
3618
3619 if (intype)
3620 {
3621 for (j = 0; j < len; ++j)
3622 {
3623 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3624 continue;
3625 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3626 continue;
3627
3628 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3629 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3630 intype, 1))
3631 break;
3632 }
3633
3634 if (j == len)
3635 error (_("no member function matches "
3636 "that type instantiation"));
3637 }
3638 else
3639 {
3640 int ii;
3641
3642 j = -1;
3643 for (ii = 0; ii < len; ++ii)
3644 {
3645 /* Skip artificial methods. This is necessary if,
3646 for example, the user wants to "print
3647 subclass::subclass" with only one user-defined
3648 constructor. There is no ambiguity in this case.
3649 We are careful here to allow artificial methods
3650 if they are the unique result. */
3651 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3652 {
3653 if (j == -1)
3654 j = ii;
3655 continue;
3656 }
3657
3658 /* Desired method is ambiguous if more than one
3659 method is defined. */
3660 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3661 error (_("non-unique member `%s' requires "
3662 "type instantiation"), name);
3663
3664 j = ii;
3665 }
3666
3667 if (j == -1)
3668 error (_("no matching member function"));
3669 }
3670
3671 if (TYPE_FN_FIELD_STATIC_P (f, j))
3672 {
3673 struct symbol *s =
3674 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3675 0, VAR_DOMAIN, 0).symbol;
3676
3677 if (s == NULL)
3678 return NULL;
3679
3680 if (want_address)
3681 return value_addr (read_var_value (s, 0, 0));
3682 else
3683 return read_var_value (s, 0, 0);
3684 }
3685
3686 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3687 {
3688 if (want_address)
3689 {
3690 result = allocate_value
3691 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3692 cplus_make_method_ptr (value_type (result),
3693 value_contents_writeable (result).data (),
3694 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3695 }
3696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3697 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3698 else
3699 error (_("Cannot reference virtual member function \"%s\""),
3700 name);
3701 }
3702 else
3703 {
3704 struct symbol *s =
3705 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3706 0, VAR_DOMAIN, 0).symbol;
3707
3708 if (s == NULL)
3709 return NULL;
3710
3711 struct value *v = read_var_value (s, 0, 0);
3712 if (!want_address)
3713 result = v;
3714 else
3715 {
3716 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3717 cplus_make_method_ptr (value_type (result),
3718 value_contents_writeable (result).data (),
3719 value_address (v), 0);
3720 }
3721 }
3722 return result;
3723 }
3724 }
3725 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3726 {
3727 struct value *v;
3728 int base_offset;
3729
3730 if (BASETYPE_VIA_VIRTUAL (t, i))
3731 base_offset = 0;
3732 else
3733 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3734 v = value_struct_elt_for_reference (domain,
3735 offset + base_offset,
3736 TYPE_BASECLASS (t, i),
3737 name, intype,
3738 want_address, noside);
3739 if (v)
3740 return v;
3741 }
3742
3743 /* As a last chance, pretend that CURTYPE is a namespace, and look
3744 it up that way; this (frequently) works for types nested inside
3745 classes. */
3746
3747 return value_maybe_namespace_elt (curtype, name,
3748 want_address, noside);
3749 }
3750
3751 /* C++: Return the member NAME of the namespace given by the type
3752 CURTYPE. */
3753
3754 static struct value *
3755 value_namespace_elt (const struct type *curtype,
3756 const char *name, int want_address,
3757 enum noside noside)
3758 {
3759 struct value *retval = value_maybe_namespace_elt (curtype, name,
3760 want_address,
3761 noside);
3762
3763 if (retval == NULL)
3764 error (_("No symbol \"%s\" in namespace \"%s\"."),
3765 name, curtype->name ());
3766
3767 return retval;
3768 }
3769
3770 /* A helper function used by value_namespace_elt and
3771 value_struct_elt_for_reference. It looks up NAME inside the
3772 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3773 is a class and NAME refers to a type in CURTYPE itself (as opposed
3774 to, say, some base class of CURTYPE). */
3775
3776 static struct value *
3777 value_maybe_namespace_elt (const struct type *curtype,
3778 const char *name, int want_address,
3779 enum noside noside)
3780 {
3781 const char *namespace_name = curtype->name ();
3782 struct block_symbol sym;
3783 struct value *result;
3784
3785 sym = cp_lookup_symbol_namespace (namespace_name, name,
3786 get_selected_block (0), VAR_DOMAIN);
3787
3788 if (sym.symbol == NULL)
3789 return NULL;
3790 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3791 && (sym.symbol->aclass () == LOC_TYPEDEF))
3792 result = allocate_value (sym.symbol->type ());
3793 else
3794 result = value_of_variable (sym.symbol, sym.block);
3795
3796 if (want_address)
3797 result = value_addr (result);
3798
3799 return result;
3800 }
3801
3802 /* Given a pointer or a reference value V, find its real (RTTI) type.
3803
3804 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3805 and refer to the values computed for the object pointed to. */
3806
3807 struct type *
3808 value_rtti_indirect_type (struct value *v, int *full,
3809 LONGEST *top, int *using_enc)
3810 {
3811 struct value *target = NULL;
3812 struct type *type, *real_type, *target_type;
3813
3814 type = value_type (v);
3815 type = check_typedef (type);
3816 if (TYPE_IS_REFERENCE (type))
3817 target = coerce_ref (v);
3818 else if (type->code () == TYPE_CODE_PTR)
3819 {
3820
3821 try
3822 {
3823 target = value_ind (v);
3824 }
3825 catch (const gdb_exception_error &except)
3826 {
3827 if (except.error == MEMORY_ERROR)
3828 {
3829 /* value_ind threw a memory error. The pointer is NULL or
3830 contains an uninitialized value: we can't determine any
3831 type. */
3832 return NULL;
3833 }
3834 throw;
3835 }
3836 }
3837 else
3838 return NULL;
3839
3840 real_type = value_rtti_type (target, full, top, using_enc);
3841
3842 if (real_type)
3843 {
3844 /* Copy qualifiers to the referenced object. */
3845 target_type = value_type (target);
3846 real_type = make_cv_type (TYPE_CONST (target_type),
3847 TYPE_VOLATILE (target_type), real_type, NULL);
3848 if (TYPE_IS_REFERENCE (type))
3849 real_type = lookup_reference_type (real_type, type->code ());
3850 else if (type->code () == TYPE_CODE_PTR)
3851 real_type = lookup_pointer_type (real_type);
3852 else
3853 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3854
3855 /* Copy qualifiers to the pointer/reference. */
3856 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3857 real_type, NULL);
3858 }
3859
3860 return real_type;
3861 }
3862
3863 /* Given a value pointed to by ARGP, check its real run-time type, and
3864 if that is different from the enclosing type, create a new value
3865 using the real run-time type as the enclosing type (and of the same
3866 type as ARGP) and return it, with the embedded offset adjusted to
3867 be the correct offset to the enclosed object. RTYPE is the type,
3868 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3869 by value_rtti_type(). If these are available, they can be supplied
3870 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3871 NULL if they're not available. */
3872
3873 struct value *
3874 value_full_object (struct value *argp,
3875 struct type *rtype,
3876 int xfull, int xtop,
3877 int xusing_enc)
3878 {
3879 struct type *real_type;
3880 int full = 0;
3881 LONGEST top = -1;
3882 int using_enc = 0;
3883 struct value *new_val;
3884
3885 if (rtype)
3886 {
3887 real_type = rtype;
3888 full = xfull;
3889 top = xtop;
3890 using_enc = xusing_enc;
3891 }
3892 else
3893 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3894
3895 /* If no RTTI data, or if object is already complete, do nothing. */
3896 if (!real_type || real_type == value_enclosing_type (argp))
3897 return argp;
3898
3899 /* In a destructor we might see a real type that is a superclass of
3900 the object's type. In this case it is better to leave the object
3901 as-is. */
3902 if (full
3903 && real_type->length () < value_enclosing_type (argp)->length ())
3904 return argp;
3905
3906 /* If we have the full object, but for some reason the enclosing
3907 type is wrong, set it. */
3908 /* pai: FIXME -- sounds iffy */
3909 if (full)
3910 {
3911 argp = value_copy (argp);
3912 set_value_enclosing_type (argp, real_type);
3913 return argp;
3914 }
3915
3916 /* Check if object is in memory. */
3917 if (VALUE_LVAL (argp) != lval_memory)
3918 {
3919 warning (_("Couldn't retrieve complete object of RTTI "
3920 "type %s; object may be in register(s)."),
3921 real_type->name ());
3922
3923 return argp;
3924 }
3925
3926 /* All other cases -- retrieve the complete object. */
3927 /* Go back by the computed top_offset from the beginning of the
3928 object, adjusting for the embedded offset of argp if that's what
3929 value_rtti_type used for its computation. */
3930 new_val = value_at_lazy (real_type, value_address (argp) - top +
3931 (using_enc ? 0 : value_embedded_offset (argp)));
3932 deprecated_set_value_type (new_val, value_type (argp));
3933 set_value_embedded_offset (new_val, (using_enc
3934 ? top + value_embedded_offset (argp)
3935 : top));
3936 return new_val;
3937 }
3938
3939
3940 /* Return the value of the local variable, if one exists. Throw error
3941 otherwise, such as if the request is made in an inappropriate context. */
3942
3943 struct value *
3944 value_of_this (const struct language_defn *lang)
3945 {
3946 struct block_symbol sym;
3947 const struct block *b;
3948 struct frame_info *frame;
3949
3950 if (lang->name_of_this () == NULL)
3951 error (_("no `this' in current language"));
3952
3953 frame = get_selected_frame (_("no frame selected"));
3954
3955 b = get_frame_block (frame, NULL);
3956
3957 sym = lookup_language_this (lang, b);
3958 if (sym.symbol == NULL)
3959 error (_("current stack frame does not contain a variable named `%s'"),
3960 lang->name_of_this ());
3961
3962 return read_var_value (sym.symbol, sym.block, frame);
3963 }
3964
3965 /* Return the value of the local variable, if one exists. Return NULL
3966 otherwise. Never throw error. */
3967
3968 struct value *
3969 value_of_this_silent (const struct language_defn *lang)
3970 {
3971 struct value *ret = NULL;
3972
3973 try
3974 {
3975 ret = value_of_this (lang);
3976 }
3977 catch (const gdb_exception_error &except)
3978 {
3979 }
3980
3981 return ret;
3982 }
3983
3984 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3985 elements long, starting at LOWBOUND. The result has the same lower
3986 bound as the original ARRAY. */
3987
3988 struct value *
3989 value_slice (struct value *array, int lowbound, int length)
3990 {
3991 struct type *slice_range_type, *slice_type, *range_type;
3992 LONGEST lowerbound, upperbound;
3993 struct value *slice;
3994 struct type *array_type;
3995
3996 array_type = check_typedef (value_type (array));
3997 if (array_type->code () != TYPE_CODE_ARRAY
3998 && array_type->code () != TYPE_CODE_STRING)
3999 error (_("cannot take slice of non-array"));
4000
4001 if (type_not_allocated (array_type))
4002 error (_("array not allocated"));
4003 if (type_not_associated (array_type))
4004 error (_("array not associated"));
4005
4006 range_type = array_type->index_type ();
4007 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
4008 error (_("slice from bad array or bitstring"));
4009
4010 if (lowbound < lowerbound || length < 0
4011 || lowbound + length - 1 > upperbound)
4012 error (_("slice out of range"));
4013
4014 /* FIXME-type-allocation: need a way to free this type when we are
4015 done with it. */
4016 slice_range_type = create_static_range_type (NULL,
4017 range_type->target_type (),
4018 lowbound,
4019 lowbound + length - 1);
4020
4021 {
4022 struct type *element_type = array_type->target_type ();
4023 LONGEST offset
4024 = (lowbound - lowerbound) * check_typedef (element_type)->length ();
4025
4026 slice_type = create_array_type (NULL,
4027 element_type,
4028 slice_range_type);
4029 slice_type->set_code (array_type->code ());
4030
4031 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4032 slice = allocate_value_lazy (slice_type);
4033 else
4034 {
4035 slice = allocate_value (slice_type);
4036 value_contents_copy (slice, 0, array, offset,
4037 type_length_units (slice_type));
4038 }
4039
4040 set_value_component_location (slice, array);
4041 set_value_offset (slice, value_offset (array) + offset);
4042 }
4043
4044 return slice;
4045 }
4046
4047 /* See value.h. */
4048
4049 struct value *
4050 value_literal_complex (struct value *arg1,
4051 struct value *arg2,
4052 struct type *type)
4053 {
4054 struct value *val;
4055 struct type *real_type = type->target_type ();
4056
4057 val = allocate_value (type);
4058 arg1 = value_cast (real_type, arg1);
4059 arg2 = value_cast (real_type, arg2);
4060
4061 int len = real_type->length ();
4062
4063 copy (value_contents (arg1),
4064 value_contents_raw (val).slice (0, len));
4065 copy (value_contents (arg2),
4066 value_contents_raw (val).slice (len, len));
4067
4068 return val;
4069 }
4070
4071 /* See value.h. */
4072
4073 struct value *
4074 value_real_part (struct value *value)
4075 {
4076 struct type *type = check_typedef (value_type (value));
4077 struct type *ttype = type->target_type ();
4078
4079 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4080 return value_from_component (value, ttype, 0);
4081 }
4082
4083 /* See value.h. */
4084
4085 struct value *
4086 value_imaginary_part (struct value *value)
4087 {
4088 struct type *type = check_typedef (value_type (value));
4089 struct type *ttype = type->target_type ();
4090
4091 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4092 return value_from_component (value, ttype,
4093 check_typedef (ttype)->length ());
4094 }
4095
4096 /* Cast a value into the appropriate complex data type. */
4097
4098 static struct value *
4099 cast_into_complex (struct type *type, struct value *val)
4100 {
4101 struct type *real_type = type->target_type ();
4102
4103 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4104 {
4105 struct type *val_real_type = value_type (val)->target_type ();
4106 struct value *re_val = allocate_value (val_real_type);
4107 struct value *im_val = allocate_value (val_real_type);
4108 int len = val_real_type->length ();
4109
4110 copy (value_contents (val).slice (0, len),
4111 value_contents_raw (re_val));
4112 copy (value_contents (val).slice (len, len),
4113 value_contents_raw (im_val));
4114
4115 return value_literal_complex (re_val, im_val, type);
4116 }
4117 else if (value_type (val)->code () == TYPE_CODE_FLT
4118 || value_type (val)->code () == TYPE_CODE_INT)
4119 return value_literal_complex (val,
4120 value_zero (real_type, not_lval),
4121 type);
4122 else
4123 error (_("cannot cast non-number to complex"));
4124 }
4125
4126 void _initialize_valops ();
4127 void
4128 _initialize_valops ()
4129 {
4130 add_setshow_boolean_cmd ("overload-resolution", class_support,
4131 &overload_resolution, _("\
4132 Set overload resolution in evaluating C++ functions."), _("\
4133 Show overload resolution in evaluating C++ functions."),
4134 NULL, NULL,
4135 show_overload_resolution,
4136 &setlist, &showlist);
4137 overload_resolution = 1;
4138 }