]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
Print nonexisting/optimized out static fields gracefully.
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "cp-support.h"
43 #include "observer.h"
44 #include "objfiles.h"
45 #include "symtab.h"
46 #include "exceptions.h"
47
48 extern unsigned int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (const char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **,
65 const int no_adl);
66
67 static
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
72 const int no_adl);
73
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (sym != NULL)
138 {
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 {
141 error (_("\"%s\" exists in this program but is not a function."),
142 name);
143 }
144
145 if (objf_p)
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147
148 return value_of_variable (sym, NULL);
149 }
150 else
151 {
152 struct bound_minimal_symbol msymbol =
153 lookup_bound_minimal_symbol (name);
154
155 if (msymbol.minsym != NULL)
156 {
157 struct objfile *objfile = msymbol.objfile;
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
177 else
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
180 name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
204 else
205 error (_("No memory available to program: call to malloc failed"));
206 }
207 return val;
208 }
209
210 static CORE_ADDR
211 allocate_space_in_inferior (int len)
212 {
213 return value_as_long (value_allocate_space_in_inferior (len));
214 }
215
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
220
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
223 {
224 struct type *t1;
225 struct type *t2;
226 struct value *v;
227
228 gdb_assert (type != NULL && v2 != NULL);
229
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
232
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
240
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 return NULL;
245
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
250 {
251 v = search_struct_field (type_name_no_tag (t1),
252 v2, 0, t2, 1);
253 if (v)
254 return v;
255 }
256
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
261 {
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
265
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 if (real_type)
268 {
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
906
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
909 {
910 struct value *val;
911
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
914
915 val = value_from_contents_and_address (type, NULL, addr);
916
917 if (!lazy)
918 value_fetch_lazy (val);
919
920 return val;
921 }
922
923 /* Return a value with type TYPE located at ADDR.
924
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
931
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
934
935 struct value *
936 value_at (struct type *type, CORE_ADDR addr)
937 {
938 return get_value_at (type, addr, 0);
939 }
940
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 if (length)
955 {
956 VEC(mem_range_s) *available_memory;
957
958 if (!traceframe_available_memory (&available_memory, memaddr, length))
959 {
960 if (stack)
961 read_stack (memaddr, buffer, length);
962 else
963 read_memory (memaddr, buffer, length);
964 }
965 else
966 {
967 struct target_section_table *table;
968 struct cleanup *old_chain;
969 CORE_ADDR unavail;
970 mem_range_s *r;
971 int i;
972
973 /* Fallback to reading from read-only sections. */
974 table = target_get_section_table (&exec_ops);
975 available_memory =
976 section_table_available_memory (available_memory,
977 memaddr, length,
978 table->sections,
979 table->sections_end);
980
981 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
982 &available_memory);
983
984 normalize_mem_ranges (available_memory);
985
986 /* Mark which bytes are unavailable, and read those which
987 are available. */
988
989 unavail = memaddr;
990
991 for (i = 0;
992 VEC_iterate (mem_range_s, available_memory, i, r);
993 i++)
994 {
995 if (mem_ranges_overlap (r->start, r->length,
996 memaddr, length))
997 {
998 CORE_ADDR lo1, hi1, lo2, hi2;
999 CORE_ADDR start, end;
1000
1001 /* Get the intersection window. */
1002 lo1 = memaddr;
1003 hi1 = memaddr + length;
1004 lo2 = r->start;
1005 hi2 = r->start + r->length;
1006 start = max (lo1, lo2);
1007 end = min (hi1, hi2);
1008
1009 gdb_assert (end - memaddr <= length);
1010
1011 if (start > unavail)
1012 mark_value_bytes_unavailable (val,
1013 (embedded_offset
1014 + unavail - memaddr),
1015 start - unavail);
1016 unavail = end;
1017
1018 read_memory (start, buffer + start - memaddr, end - start);
1019 }
1020 }
1021
1022 if (unavail != memaddr + length)
1023 mark_value_bytes_unavailable (val,
1024 embedded_offset + unavail - memaddr,
1025 (memaddr + length) - unavail);
1026
1027 do_cleanups (old_chain);
1028 }
1029 }
1030 }
1031
1032 /* Store the contents of FROMVAL into the location of TOVAL.
1033 Return a new value with the location of TOVAL and contents of FROMVAL. */
1034
1035 struct value *
1036 value_assign (struct value *toval, struct value *fromval)
1037 {
1038 struct type *type;
1039 struct value *val;
1040 struct frame_id old_frame;
1041
1042 if (!deprecated_value_modifiable (toval))
1043 error (_("Left operand of assignment is not a modifiable lvalue."));
1044
1045 toval = coerce_ref (toval);
1046
1047 type = value_type (toval);
1048 if (VALUE_LVAL (toval) != lval_internalvar)
1049 fromval = value_cast (type, fromval);
1050 else
1051 {
1052 /* Coerce arrays and functions to pointers, except for arrays
1053 which only live in GDB's storage. */
1054 if (!value_must_coerce_to_target (fromval))
1055 fromval = coerce_array (fromval);
1056 }
1057
1058 CHECK_TYPEDEF (type);
1059
1060 /* Since modifying a register can trash the frame chain, and
1061 modifying memory can trash the frame cache, we save the old frame
1062 and then restore the new frame afterwards. */
1063 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1064
1065 switch (VALUE_LVAL (toval))
1066 {
1067 case lval_internalvar:
1068 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1069 return value_of_internalvar (get_type_arch (type),
1070 VALUE_INTERNALVAR (toval));
1071
1072 case lval_internalvar_component:
1073 {
1074 int offset = value_offset (toval);
1075
1076 /* Are we dealing with a bitfield?
1077
1078 It is important to mention that `value_parent (toval)' is
1079 non-NULL iff `value_bitsize (toval)' is non-zero. */
1080 if (value_bitsize (toval))
1081 {
1082 /* VALUE_INTERNALVAR below refers to the parent value, while
1083 the offset is relative to this parent value. */
1084 gdb_assert (value_parent (value_parent (toval)) == NULL);
1085 offset += value_offset (value_parent (toval));
1086 }
1087
1088 set_internalvar_component (VALUE_INTERNALVAR (toval),
1089 offset,
1090 value_bitpos (toval),
1091 value_bitsize (toval),
1092 fromval);
1093 }
1094 break;
1095
1096 case lval_memory:
1097 {
1098 const gdb_byte *dest_buffer;
1099 CORE_ADDR changed_addr;
1100 int changed_len;
1101 gdb_byte buffer[sizeof (LONGEST)];
1102
1103 if (value_bitsize (toval))
1104 {
1105 struct value *parent = value_parent (toval);
1106
1107 changed_addr = value_address (parent) + value_offset (toval);
1108 changed_len = (value_bitpos (toval)
1109 + value_bitsize (toval)
1110 + HOST_CHAR_BIT - 1)
1111 / HOST_CHAR_BIT;
1112
1113 /* If we can read-modify-write exactly the size of the
1114 containing type (e.g. short or int) then do so. This
1115 is safer for volatile bitfields mapped to hardware
1116 registers. */
1117 if (changed_len < TYPE_LENGTH (type)
1118 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1119 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1120 changed_len = TYPE_LENGTH (type);
1121
1122 if (changed_len > (int) sizeof (LONGEST))
1123 error (_("Can't handle bitfields which "
1124 "don't fit in a %d bit word."),
1125 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1126
1127 read_memory (changed_addr, buffer, changed_len);
1128 modify_field (type, buffer, value_as_long (fromval),
1129 value_bitpos (toval), value_bitsize (toval));
1130 dest_buffer = buffer;
1131 }
1132 else
1133 {
1134 changed_addr = value_address (toval);
1135 changed_len = TYPE_LENGTH (type);
1136 dest_buffer = value_contents (fromval);
1137 }
1138
1139 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1140 }
1141 break;
1142
1143 case lval_register:
1144 {
1145 struct frame_info *frame;
1146 struct gdbarch *gdbarch;
1147 int value_reg;
1148
1149 /* Figure out which frame this is in currently. */
1150 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1151 value_reg = VALUE_REGNUM (toval);
1152
1153 if (!frame)
1154 error (_("Value being assigned to is no longer active."));
1155
1156 gdbarch = get_frame_arch (frame);
1157 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1158 {
1159 /* If TOVAL is a special machine register requiring
1160 conversion of program values to a special raw
1161 format. */
1162 gdbarch_value_to_register (gdbarch, frame,
1163 VALUE_REGNUM (toval), type,
1164 value_contents (fromval));
1165 }
1166 else
1167 {
1168 if (value_bitsize (toval))
1169 {
1170 struct value *parent = value_parent (toval);
1171 int offset = value_offset (parent) + value_offset (toval);
1172 int changed_len;
1173 gdb_byte buffer[sizeof (LONGEST)];
1174 int optim, unavail;
1175
1176 changed_len = (value_bitpos (toval)
1177 + value_bitsize (toval)
1178 + HOST_CHAR_BIT - 1)
1179 / HOST_CHAR_BIT;
1180
1181 if (changed_len > (int) sizeof (LONGEST))
1182 error (_("Can't handle bitfields which "
1183 "don't fit in a %d bit word."),
1184 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1185
1186 if (!get_frame_register_bytes (frame, value_reg, offset,
1187 changed_len, buffer,
1188 &optim, &unavail))
1189 {
1190 if (optim)
1191 error (_("value has been optimized out"));
1192 if (unavail)
1193 throw_error (NOT_AVAILABLE_ERROR,
1194 _("value is not available"));
1195 }
1196
1197 modify_field (type, buffer, value_as_long (fromval),
1198 value_bitpos (toval), value_bitsize (toval));
1199
1200 put_frame_register_bytes (frame, value_reg, offset,
1201 changed_len, buffer);
1202 }
1203 else
1204 {
1205 put_frame_register_bytes (frame, value_reg,
1206 value_offset (toval),
1207 TYPE_LENGTH (type),
1208 value_contents (fromval));
1209 }
1210 }
1211
1212 if (deprecated_register_changed_hook)
1213 deprecated_register_changed_hook (-1);
1214 break;
1215 }
1216
1217 case lval_computed:
1218 {
1219 const struct lval_funcs *funcs = value_computed_funcs (toval);
1220
1221 if (funcs->write != NULL)
1222 {
1223 funcs->write (toval, fromval);
1224 break;
1225 }
1226 }
1227 /* Fall through. */
1228
1229 default:
1230 error (_("Left operand of assignment is not an lvalue."));
1231 }
1232
1233 /* Assigning to the stack pointer, frame pointer, and other
1234 (architecture and calling convention specific) registers may
1235 cause the frame cache and regcache to be out of date. Assigning to memory
1236 also can. We just do this on all assignments to registers or
1237 memory, for simplicity's sake; I doubt the slowdown matters. */
1238 switch (VALUE_LVAL (toval))
1239 {
1240 case lval_memory:
1241 case lval_register:
1242 case lval_computed:
1243
1244 observer_notify_target_changed (&current_target);
1245
1246 /* Having destroyed the frame cache, restore the selected
1247 frame. */
1248
1249 /* FIXME: cagney/2002-11-02: There has to be a better way of
1250 doing this. Instead of constantly saving/restoring the
1251 frame. Why not create a get_selected_frame() function that,
1252 having saved the selected frame's ID can automatically
1253 re-find the previously selected frame automatically. */
1254
1255 {
1256 struct frame_info *fi = frame_find_by_id (old_frame);
1257
1258 if (fi != NULL)
1259 select_frame (fi);
1260 }
1261
1262 break;
1263 default:
1264 break;
1265 }
1266
1267 /* If the field does not entirely fill a LONGEST, then zero the sign
1268 bits. If the field is signed, and is negative, then sign
1269 extend. */
1270 if ((value_bitsize (toval) > 0)
1271 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1272 {
1273 LONGEST fieldval = value_as_long (fromval);
1274 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1275
1276 fieldval &= valmask;
1277 if (!TYPE_UNSIGNED (type)
1278 && (fieldval & (valmask ^ (valmask >> 1))))
1279 fieldval |= ~valmask;
1280
1281 fromval = value_from_longest (type, fieldval);
1282 }
1283
1284 /* The return value is a copy of TOVAL so it shares its location
1285 information, but its contents are updated from FROMVAL. This
1286 implies the returned value is not lazy, even if TOVAL was. */
1287 val = value_copy (toval);
1288 set_value_lazy (val, 0);
1289 memcpy (value_contents_raw (val), value_contents (fromval),
1290 TYPE_LENGTH (type));
1291
1292 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1293 in the case of pointer types. For object types, the enclosing type
1294 and embedded offset must *not* be copied: the target object refered
1295 to by TOVAL retains its original dynamic type after assignment. */
1296 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1297 {
1298 set_value_enclosing_type (val, value_enclosing_type (fromval));
1299 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1300 }
1301
1302 return val;
1303 }
1304
1305 /* Extend a value VAL to COUNT repetitions of its type. */
1306
1307 struct value *
1308 value_repeat (struct value *arg1, int count)
1309 {
1310 struct value *val;
1311
1312 if (VALUE_LVAL (arg1) != lval_memory)
1313 error (_("Only values in memory can be extended with '@'."));
1314 if (count < 1)
1315 error (_("Invalid number %d of repetitions."), count);
1316
1317 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1318
1319 VALUE_LVAL (val) = lval_memory;
1320 set_value_address (val, value_address (arg1));
1321
1322 read_value_memory (val, 0, value_stack (val), value_address (val),
1323 value_contents_all_raw (val),
1324 TYPE_LENGTH (value_enclosing_type (val)));
1325
1326 return val;
1327 }
1328
1329 struct value *
1330 value_of_variable (struct symbol *var, const struct block *b)
1331 {
1332 struct frame_info *frame;
1333
1334 if (!symbol_read_needs_frame (var))
1335 frame = NULL;
1336 else if (!b)
1337 frame = get_selected_frame (_("No frame selected."));
1338 else
1339 {
1340 frame = block_innermost_frame (b);
1341 if (!frame)
1342 {
1343 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1344 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1345 error (_("No frame is currently executing in block %s."),
1346 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1347 else
1348 error (_("No frame is currently executing in specified block"));
1349 }
1350 }
1351
1352 return read_var_value (var, frame);
1353 }
1354
1355 struct value *
1356 address_of_variable (struct symbol *var, const struct block *b)
1357 {
1358 struct type *type = SYMBOL_TYPE (var);
1359 struct value *val;
1360
1361 /* Evaluate it first; if the result is a memory address, we're fine.
1362 Lazy evaluation pays off here. */
1363
1364 val = value_of_variable (var, b);
1365
1366 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1367 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1368 {
1369 CORE_ADDR addr = value_address (val);
1370
1371 return value_from_pointer (lookup_pointer_type (type), addr);
1372 }
1373
1374 /* Not a memory address; check what the problem was. */
1375 switch (VALUE_LVAL (val))
1376 {
1377 case lval_register:
1378 {
1379 struct frame_info *frame;
1380 const char *regname;
1381
1382 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1383 gdb_assert (frame);
1384
1385 regname = gdbarch_register_name (get_frame_arch (frame),
1386 VALUE_REGNUM (val));
1387 gdb_assert (regname && *regname);
1388
1389 error (_("Address requested for identifier "
1390 "\"%s\" which is in register $%s"),
1391 SYMBOL_PRINT_NAME (var), regname);
1392 break;
1393 }
1394
1395 default:
1396 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1397 SYMBOL_PRINT_NAME (var));
1398 break;
1399 }
1400
1401 return val;
1402 }
1403
1404 /* Return one if VAL does not live in target memory, but should in order
1405 to operate on it. Otherwise return zero. */
1406
1407 int
1408 value_must_coerce_to_target (struct value *val)
1409 {
1410 struct type *valtype;
1411
1412 /* The only lval kinds which do not live in target memory. */
1413 if (VALUE_LVAL (val) != not_lval
1414 && VALUE_LVAL (val) != lval_internalvar)
1415 return 0;
1416
1417 valtype = check_typedef (value_type (val));
1418
1419 switch (TYPE_CODE (valtype))
1420 {
1421 case TYPE_CODE_ARRAY:
1422 return TYPE_VECTOR (valtype) ? 0 : 1;
1423 case TYPE_CODE_STRING:
1424 return 1;
1425 default:
1426 return 0;
1427 }
1428 }
1429
1430 /* Make sure that VAL lives in target memory if it's supposed to. For
1431 instance, strings are constructed as character arrays in GDB's
1432 storage, and this function copies them to the target. */
1433
1434 struct value *
1435 value_coerce_to_target (struct value *val)
1436 {
1437 LONGEST length;
1438 CORE_ADDR addr;
1439
1440 if (!value_must_coerce_to_target (val))
1441 return val;
1442
1443 length = TYPE_LENGTH (check_typedef (value_type (val)));
1444 addr = allocate_space_in_inferior (length);
1445 write_memory (addr, value_contents (val), length);
1446 return value_at_lazy (value_type (val), addr);
1447 }
1448
1449 /* Given a value which is an array, return a value which is a pointer
1450 to its first element, regardless of whether or not the array has a
1451 nonzero lower bound.
1452
1453 FIXME: A previous comment here indicated that this routine should
1454 be substracting the array's lower bound. It's not clear to me that
1455 this is correct. Given an array subscripting operation, it would
1456 certainly work to do the adjustment here, essentially computing:
1457
1458 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1459
1460 However I believe a more appropriate and logical place to account
1461 for the lower bound is to do so in value_subscript, essentially
1462 computing:
1463
1464 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1465
1466 As further evidence consider what would happen with operations
1467 other than array subscripting, where the caller would get back a
1468 value that had an address somewhere before the actual first element
1469 of the array, and the information about the lower bound would be
1470 lost because of the coercion to pointer type. */
1471
1472 struct value *
1473 value_coerce_array (struct value *arg1)
1474 {
1475 struct type *type = check_typedef (value_type (arg1));
1476
1477 /* If the user tries to do something requiring a pointer with an
1478 array that has not yet been pushed to the target, then this would
1479 be a good time to do so. */
1480 arg1 = value_coerce_to_target (arg1);
1481
1482 if (VALUE_LVAL (arg1) != lval_memory)
1483 error (_("Attempt to take address of value not located in memory."));
1484
1485 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1486 value_address (arg1));
1487 }
1488
1489 /* Given a value which is a function, return a value which is a pointer
1490 to it. */
1491
1492 struct value *
1493 value_coerce_function (struct value *arg1)
1494 {
1495 struct value *retval;
1496
1497 if (VALUE_LVAL (arg1) != lval_memory)
1498 error (_("Attempt to take address of value not located in memory."));
1499
1500 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1501 value_address (arg1));
1502 return retval;
1503 }
1504
1505 /* Return a pointer value for the object for which ARG1 is the
1506 contents. */
1507
1508 struct value *
1509 value_addr (struct value *arg1)
1510 {
1511 struct value *arg2;
1512 struct type *type = check_typedef (value_type (arg1));
1513
1514 if (TYPE_CODE (type) == TYPE_CODE_REF)
1515 {
1516 /* Copy the value, but change the type from (T&) to (T*). We
1517 keep the same location information, which is efficient, and
1518 allows &(&X) to get the location containing the reference. */
1519 arg2 = value_copy (arg1);
1520 deprecated_set_value_type (arg2,
1521 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1522 return arg2;
1523 }
1524 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1525 return value_coerce_function (arg1);
1526
1527 /* If this is an array that has not yet been pushed to the target,
1528 then this would be a good time to force it to memory. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 /* Get target memory address. */
1535 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1536 (value_address (arg1)
1537 + value_embedded_offset (arg1)));
1538
1539 /* This may be a pointer to a base subobject; so remember the
1540 full derived object's type ... */
1541 set_value_enclosing_type (arg2,
1542 lookup_pointer_type (value_enclosing_type (arg1)));
1543 /* ... and also the relative position of the subobject in the full
1544 object. */
1545 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1546 return arg2;
1547 }
1548
1549 /* Return a reference value for the object for which ARG1 is the
1550 contents. */
1551
1552 struct value *
1553 value_ref (struct value *arg1)
1554 {
1555 struct value *arg2;
1556 struct type *type = check_typedef (value_type (arg1));
1557
1558 if (TYPE_CODE (type) == TYPE_CODE_REF)
1559 return arg1;
1560
1561 arg2 = value_addr (arg1);
1562 deprecated_set_value_type (arg2, lookup_reference_type (type));
1563 return arg2;
1564 }
1565
1566 /* Given a value of a pointer type, apply the C unary * operator to
1567 it. */
1568
1569 struct value *
1570 value_ind (struct value *arg1)
1571 {
1572 struct type *base_type;
1573 struct value *arg2;
1574
1575 arg1 = coerce_array (arg1);
1576
1577 base_type = check_typedef (value_type (arg1));
1578
1579 if (VALUE_LVAL (arg1) == lval_computed)
1580 {
1581 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1582
1583 if (funcs->indirect)
1584 {
1585 struct value *result = funcs->indirect (arg1);
1586
1587 if (result)
1588 return result;
1589 }
1590 }
1591
1592 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1593 {
1594 struct type *enc_type;
1595
1596 /* We may be pointing to something embedded in a larger object.
1597 Get the real type of the enclosing object. */
1598 enc_type = check_typedef (value_enclosing_type (arg1));
1599 enc_type = TYPE_TARGET_TYPE (enc_type);
1600
1601 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1602 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1603 /* For functions, go through find_function_addr, which knows
1604 how to handle function descriptors. */
1605 arg2 = value_at_lazy (enc_type,
1606 find_function_addr (arg1, NULL));
1607 else
1608 /* Retrieve the enclosing object pointed to. */
1609 arg2 = value_at_lazy (enc_type,
1610 (value_as_address (arg1)
1611 - value_pointed_to_offset (arg1)));
1612
1613 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1614 }
1615
1616 error (_("Attempt to take contents of a non-pointer value."));
1617 return 0; /* For lint -- never reached. */
1618 }
1619 \f
1620 /* Create a value for an array by allocating space in GDB, copying the
1621 data into that space, and then setting up an array value.
1622
1623 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1624 is populated from the values passed in ELEMVEC.
1625
1626 The element type of the array is inherited from the type of the
1627 first element, and all elements must have the same size (though we
1628 don't currently enforce any restriction on their types). */
1629
1630 struct value *
1631 value_array (int lowbound, int highbound, struct value **elemvec)
1632 {
1633 int nelem;
1634 int idx;
1635 unsigned int typelength;
1636 struct value *val;
1637 struct type *arraytype;
1638
1639 /* Validate that the bounds are reasonable and that each of the
1640 elements have the same size. */
1641
1642 nelem = highbound - lowbound + 1;
1643 if (nelem <= 0)
1644 {
1645 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1646 }
1647 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1648 for (idx = 1; idx < nelem; idx++)
1649 {
1650 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1651 {
1652 error (_("array elements must all be the same size"));
1653 }
1654 }
1655
1656 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1657 lowbound, highbound);
1658
1659 if (!current_language->c_style_arrays)
1660 {
1661 val = allocate_value (arraytype);
1662 for (idx = 0; idx < nelem; idx++)
1663 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1664 typelength);
1665 return val;
1666 }
1667
1668 /* Allocate space to store the array, and then initialize it by
1669 copying in each element. */
1670
1671 val = allocate_value (arraytype);
1672 for (idx = 0; idx < nelem; idx++)
1673 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1674 return val;
1675 }
1676
1677 struct value *
1678 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1679 {
1680 struct value *val;
1681 int lowbound = current_language->string_lower_bound;
1682 ssize_t highbound = len / TYPE_LENGTH (char_type);
1683 struct type *stringtype
1684 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1685
1686 val = allocate_value (stringtype);
1687 memcpy (value_contents_raw (val), ptr, len);
1688 return val;
1689 }
1690
1691 /* Create a value for a string constant by allocating space in the
1692 inferior, copying the data into that space, and returning the
1693 address with type TYPE_CODE_STRING. PTR points to the string
1694 constant data; LEN is number of characters.
1695
1696 Note that string types are like array of char types with a lower
1697 bound of zero and an upper bound of LEN - 1. Also note that the
1698 string may contain embedded null bytes. */
1699
1700 struct value *
1701 value_string (char *ptr, ssize_t len, struct type *char_type)
1702 {
1703 struct value *val;
1704 int lowbound = current_language->string_lower_bound;
1705 ssize_t highbound = len / TYPE_LENGTH (char_type);
1706 struct type *stringtype
1707 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1708
1709 val = allocate_value (stringtype);
1710 memcpy (value_contents_raw (val), ptr, len);
1711 return val;
1712 }
1713
1714 \f
1715 /* See if we can pass arguments in T2 to a function which takes
1716 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1717 a NULL-terminated vector. If some arguments need coercion of some
1718 sort, then the coerced values are written into T2. Return value is
1719 0 if the arguments could be matched, or the position at which they
1720 differ if not.
1721
1722 STATICP is nonzero if the T1 argument list came from a static
1723 member function. T2 will still include the ``this'' pointer, but
1724 it will be skipped.
1725
1726 For non-static member functions, we ignore the first argument,
1727 which is the type of the instance variable. This is because we
1728 want to handle calls with objects from derived classes. This is
1729 not entirely correct: we should actually check to make sure that a
1730 requested operation is type secure, shouldn't we? FIXME. */
1731
1732 static int
1733 typecmp (int staticp, int varargs, int nargs,
1734 struct field t1[], struct value *t2[])
1735 {
1736 int i;
1737
1738 if (t2 == 0)
1739 internal_error (__FILE__, __LINE__,
1740 _("typecmp: no argument list"));
1741
1742 /* Skip ``this'' argument if applicable. T2 will always include
1743 THIS. */
1744 if (staticp)
1745 t2 ++;
1746
1747 for (i = 0;
1748 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1749 i++)
1750 {
1751 struct type *tt1, *tt2;
1752
1753 if (!t2[i])
1754 return i + 1;
1755
1756 tt1 = check_typedef (t1[i].type);
1757 tt2 = check_typedef (value_type (t2[i]));
1758
1759 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1760 /* We should be doing hairy argument matching, as below. */
1761 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1762 == TYPE_CODE (tt2)))
1763 {
1764 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1765 t2[i] = value_coerce_array (t2[i]);
1766 else
1767 t2[i] = value_ref (t2[i]);
1768 continue;
1769 }
1770
1771 /* djb - 20000715 - Until the new type structure is in the
1772 place, and we can attempt things like implicit conversions,
1773 we need to do this so you can take something like a map<const
1774 char *>, and properly access map["hello"], because the
1775 argument to [] will be a reference to a pointer to a char,
1776 and the argument will be a pointer to a char. */
1777 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1778 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1779 {
1780 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1781 }
1782 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1783 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1784 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1785 {
1786 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1787 }
1788 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1789 continue;
1790 /* Array to pointer is a `trivial conversion' according to the
1791 ARM. */
1792
1793 /* We should be doing much hairier argument matching (see
1794 section 13.2 of the ARM), but as a quick kludge, just check
1795 for the same type code. */
1796 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1797 return i + 1;
1798 }
1799 if (varargs || t2[i] == NULL)
1800 return 0;
1801 return i + 1;
1802 }
1803
1804 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1805 and *LAST_BOFFSET, and possibly throws an exception if the field
1806 search has yielded ambiguous results. */
1807
1808 static void
1809 update_search_result (struct value **result_ptr, struct value *v,
1810 int *last_boffset, int boffset,
1811 const char *name, struct type *type)
1812 {
1813 if (v != NULL)
1814 {
1815 if (*result_ptr != NULL
1816 /* The result is not ambiguous if all the classes that are
1817 found occupy the same space. */
1818 && *last_boffset != boffset)
1819 error (_("base class '%s' is ambiguous in type '%s'"),
1820 name, TYPE_SAFE_NAME (type));
1821 *result_ptr = v;
1822 *last_boffset = boffset;
1823 }
1824 }
1825
1826 /* A helper for search_struct_field. This does all the work; most
1827 arguments are as passed to search_struct_field. The result is
1828 stored in *RESULT_PTR, which must be initialized to NULL.
1829 OUTERMOST_TYPE is the type of the initial type passed to
1830 search_struct_field; this is used for error reporting when the
1831 lookup is ambiguous. */
1832
1833 static void
1834 do_search_struct_field (const char *name, struct value *arg1, int offset,
1835 struct type *type, int looking_for_baseclass,
1836 struct value **result_ptr,
1837 int *last_boffset,
1838 struct type *outermost_type)
1839 {
1840 int i;
1841 int nbases;
1842
1843 CHECK_TYPEDEF (type);
1844 nbases = TYPE_N_BASECLASSES (type);
1845
1846 if (!looking_for_baseclass)
1847 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1848 {
1849 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1850
1851 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1852 {
1853 struct value *v;
1854
1855 if (field_is_static (&TYPE_FIELD (type, i)))
1856 v = value_static_field (type, i);
1857 else
1858 v = value_primitive_field (arg1, offset, i, type);
1859 *result_ptr = v;
1860 return;
1861 }
1862
1863 if (t_field_name
1864 && (t_field_name[0] == '\0'
1865 || (TYPE_CODE (type) == TYPE_CODE_UNION
1866 && (strcmp_iw (t_field_name, "else") == 0))))
1867 {
1868 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1869
1870 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1871 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1872 {
1873 /* Look for a match through the fields of an anonymous
1874 union, or anonymous struct. C++ provides anonymous
1875 unions.
1876
1877 In the GNU Chill (now deleted from GDB)
1878 implementation of variant record types, each
1879 <alternative field> has an (anonymous) union type,
1880 each member of the union represents a <variant
1881 alternative>. Each <variant alternative> is
1882 represented as a struct, with a member for each
1883 <variant field>. */
1884
1885 struct value *v = NULL;
1886 int new_offset = offset;
1887
1888 /* This is pretty gross. In G++, the offset in an
1889 anonymous union is relative to the beginning of the
1890 enclosing struct. In the GNU Chill (now deleted
1891 from GDB) implementation of variant records, the
1892 bitpos is zero in an anonymous union field, so we
1893 have to add the offset of the union here. */
1894 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1895 || (TYPE_NFIELDS (field_type) > 0
1896 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1897 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1898
1899 do_search_struct_field (name, arg1, new_offset,
1900 field_type,
1901 looking_for_baseclass, &v,
1902 last_boffset,
1903 outermost_type);
1904 if (v)
1905 {
1906 *result_ptr = v;
1907 return;
1908 }
1909 }
1910 }
1911 }
1912
1913 for (i = 0; i < nbases; i++)
1914 {
1915 struct value *v = NULL;
1916 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1917 /* If we are looking for baseclasses, this is what we get when
1918 we hit them. But it could happen that the base part's member
1919 name is not yet filled in. */
1920 int found_baseclass = (looking_for_baseclass
1921 && TYPE_BASECLASS_NAME (type, i) != NULL
1922 && (strcmp_iw (name,
1923 TYPE_BASECLASS_NAME (type,
1924 i)) == 0));
1925 int boffset = value_embedded_offset (arg1) + offset;
1926
1927 if (BASETYPE_VIA_VIRTUAL (type, i))
1928 {
1929 struct value *v2;
1930
1931 boffset = baseclass_offset (type, i,
1932 value_contents_for_printing (arg1),
1933 value_embedded_offset (arg1) + offset,
1934 value_address (arg1),
1935 arg1);
1936
1937 /* The virtual base class pointer might have been clobbered
1938 by the user program. Make sure that it still points to a
1939 valid memory location. */
1940
1941 boffset += value_embedded_offset (arg1) + offset;
1942 if (boffset < 0
1943 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1944 {
1945 CORE_ADDR base_addr;
1946
1947 base_addr = value_address (arg1) + boffset;
1948 v2 = value_at_lazy (basetype, base_addr);
1949 if (target_read_memory (base_addr,
1950 value_contents_raw (v2),
1951 TYPE_LENGTH (value_type (v2))) != 0)
1952 error (_("virtual baseclass botch"));
1953 }
1954 else
1955 {
1956 v2 = value_copy (arg1);
1957 deprecated_set_value_type (v2, basetype);
1958 set_value_embedded_offset (v2, boffset);
1959 }
1960
1961 if (found_baseclass)
1962 v = v2;
1963 else
1964 {
1965 do_search_struct_field (name, v2, 0,
1966 TYPE_BASECLASS (type, i),
1967 looking_for_baseclass,
1968 result_ptr, last_boffset,
1969 outermost_type);
1970 }
1971 }
1972 else if (found_baseclass)
1973 v = value_primitive_field (arg1, offset, i, type);
1974 else
1975 {
1976 do_search_struct_field (name, arg1,
1977 offset + TYPE_BASECLASS_BITPOS (type,
1978 i) / 8,
1979 basetype, looking_for_baseclass,
1980 result_ptr, last_boffset,
1981 outermost_type);
1982 }
1983
1984 update_search_result (result_ptr, v, last_boffset,
1985 boffset, name, outermost_type);
1986 }
1987 }
1988
1989 /* Helper function used by value_struct_elt to recurse through
1990 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1991 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1992 TYPE. If found, return value, else return NULL.
1993
1994 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1995 fields, look for a baseclass named NAME. */
1996
1997 static struct value *
1998 search_struct_field (const char *name, struct value *arg1, int offset,
1999 struct type *type, int looking_for_baseclass)
2000 {
2001 struct value *result = NULL;
2002 int boffset = 0;
2003
2004 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2005 &result, &boffset, type);
2006 return result;
2007 }
2008
2009 /* Helper function used by value_struct_elt to recurse through
2010 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2011 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2012 TYPE.
2013
2014 If found, return value, else if name matched and args not return
2015 (value) -1, else return NULL. */
2016
2017 static struct value *
2018 search_struct_method (const char *name, struct value **arg1p,
2019 struct value **args, int offset,
2020 int *static_memfuncp, struct type *type)
2021 {
2022 int i;
2023 struct value *v;
2024 int name_matched = 0;
2025 char dem_opname[64];
2026
2027 CHECK_TYPEDEF (type);
2028 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2029 {
2030 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2031
2032 /* FIXME! May need to check for ARM demangling here. */
2033 if (strncmp (t_field_name, "__", 2) == 0 ||
2034 strncmp (t_field_name, "op", 2) == 0 ||
2035 strncmp (t_field_name, "type", 4) == 0)
2036 {
2037 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2038 t_field_name = dem_opname;
2039 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2040 t_field_name = dem_opname;
2041 }
2042 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2043 {
2044 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2045 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2046
2047 name_matched = 1;
2048 check_stub_method_group (type, i);
2049 if (j > 0 && args == 0)
2050 error (_("cannot resolve overloaded method "
2051 "`%s': no arguments supplied"), name);
2052 else if (j == 0 && args == 0)
2053 {
2054 v = value_fn_field (arg1p, f, j, type, offset);
2055 if (v != NULL)
2056 return v;
2057 }
2058 else
2059 while (j >= 0)
2060 {
2061 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2062 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2063 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2064 TYPE_FN_FIELD_ARGS (f, j), args))
2065 {
2066 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2067 return value_virtual_fn_field (arg1p, f, j,
2068 type, offset);
2069 if (TYPE_FN_FIELD_STATIC_P (f, j)
2070 && static_memfuncp)
2071 *static_memfuncp = 1;
2072 v = value_fn_field (arg1p, f, j, type, offset);
2073 if (v != NULL)
2074 return v;
2075 }
2076 j--;
2077 }
2078 }
2079 }
2080
2081 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2082 {
2083 int base_offset;
2084 int this_offset;
2085
2086 if (BASETYPE_VIA_VIRTUAL (type, i))
2087 {
2088 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2089 struct value *base_val;
2090 const gdb_byte *base_valaddr;
2091
2092 /* The virtual base class pointer might have been
2093 clobbered by the user program. Make sure that it
2094 still points to a valid memory location. */
2095
2096 if (offset < 0 || offset >= TYPE_LENGTH (type))
2097 {
2098 gdb_byte *tmp;
2099 struct cleanup *back_to;
2100 CORE_ADDR address;
2101
2102 tmp = xmalloc (TYPE_LENGTH (baseclass));
2103 back_to = make_cleanup (xfree, tmp);
2104 address = value_address (*arg1p);
2105
2106 if (target_read_memory (address + offset,
2107 tmp, TYPE_LENGTH (baseclass)) != 0)
2108 error (_("virtual baseclass botch"));
2109
2110 base_val = value_from_contents_and_address (baseclass,
2111 tmp,
2112 address + offset);
2113 base_valaddr = value_contents_for_printing (base_val);
2114 this_offset = 0;
2115 do_cleanups (back_to);
2116 }
2117 else
2118 {
2119 base_val = *arg1p;
2120 base_valaddr = value_contents_for_printing (*arg1p);
2121 this_offset = offset;
2122 }
2123
2124 base_offset = baseclass_offset (type, i, base_valaddr,
2125 this_offset, value_address (base_val),
2126 base_val);
2127 }
2128 else
2129 {
2130 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2131 }
2132 v = search_struct_method (name, arg1p, args, base_offset + offset,
2133 static_memfuncp, TYPE_BASECLASS (type, i));
2134 if (v == (struct value *) - 1)
2135 {
2136 name_matched = 1;
2137 }
2138 else if (v)
2139 {
2140 /* FIXME-bothner: Why is this commented out? Why is it here? */
2141 /* *arg1p = arg1_tmp; */
2142 return v;
2143 }
2144 }
2145 if (name_matched)
2146 return (struct value *) - 1;
2147 else
2148 return NULL;
2149 }
2150
2151 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2152 extract the component named NAME from the ultimate target
2153 structure/union and return it as a value with its appropriate type.
2154 ERR is used in the error message if *ARGP's type is wrong.
2155
2156 C++: ARGS is a list of argument types to aid in the selection of
2157 an appropriate method. Also, handle derived types.
2158
2159 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2160 where the truthvalue of whether the function that was resolved was
2161 a static member function or not is stored.
2162
2163 ERR is an error message to be printed in case the field is not
2164 found. */
2165
2166 struct value *
2167 value_struct_elt (struct value **argp, struct value **args,
2168 const char *name, int *static_memfuncp, const char *err)
2169 {
2170 struct type *t;
2171 struct value *v;
2172
2173 *argp = coerce_array (*argp);
2174
2175 t = check_typedef (value_type (*argp));
2176
2177 /* Follow pointers until we get to a non-pointer. */
2178
2179 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2180 {
2181 *argp = value_ind (*argp);
2182 /* Don't coerce fn pointer to fn and then back again! */
2183 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2184 *argp = coerce_array (*argp);
2185 t = check_typedef (value_type (*argp));
2186 }
2187
2188 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2189 && TYPE_CODE (t) != TYPE_CODE_UNION)
2190 error (_("Attempt to extract a component of a value that is not a %s."),
2191 err);
2192
2193 /* Assume it's not, unless we see that it is. */
2194 if (static_memfuncp)
2195 *static_memfuncp = 0;
2196
2197 if (!args)
2198 {
2199 /* if there are no arguments ...do this... */
2200
2201 /* Try as a field first, because if we succeed, there is less
2202 work to be done. */
2203 v = search_struct_field (name, *argp, 0, t, 0);
2204 if (v)
2205 return v;
2206
2207 /* C++: If it was not found as a data field, then try to
2208 return it as a pointer to a method. */
2209 v = search_struct_method (name, argp, args, 0,
2210 static_memfuncp, t);
2211
2212 if (v == (struct value *) - 1)
2213 error (_("Cannot take address of method %s."), name);
2214 else if (v == 0)
2215 {
2216 if (TYPE_NFN_FIELDS (t))
2217 error (_("There is no member or method named %s."), name);
2218 else
2219 error (_("There is no member named %s."), name);
2220 }
2221 return v;
2222 }
2223
2224 v = search_struct_method (name, argp, args, 0,
2225 static_memfuncp, t);
2226
2227 if (v == (struct value *) - 1)
2228 {
2229 error (_("One of the arguments you tried to pass to %s could not "
2230 "be converted to what the function wants."), name);
2231 }
2232 else if (v == 0)
2233 {
2234 /* See if user tried to invoke data as function. If so, hand it
2235 back. If it's not callable (i.e., a pointer to function),
2236 gdb should give an error. */
2237 v = search_struct_field (name, *argp, 0, t, 0);
2238 /* If we found an ordinary field, then it is not a method call.
2239 So, treat it as if it were a static member function. */
2240 if (v && static_memfuncp)
2241 *static_memfuncp = 1;
2242 }
2243
2244 if (!v)
2245 throw_error (NOT_FOUND_ERROR,
2246 _("Structure has no component named %s."), name);
2247 return v;
2248 }
2249
2250 /* Search through the methods of an object (and its bases) to find a
2251 specified method. Return the pointer to the fn_field list of
2252 overloaded instances.
2253
2254 Helper function for value_find_oload_list.
2255 ARGP is a pointer to a pointer to a value (the object).
2256 METHOD is a string containing the method name.
2257 OFFSET is the offset within the value.
2258 TYPE is the assumed type of the object.
2259 NUM_FNS is the number of overloaded instances.
2260 BASETYPE is set to the actual type of the subobject where the
2261 method is found.
2262 BOFFSET is the offset of the base subobject where the method is found. */
2263
2264 static struct fn_field *
2265 find_method_list (struct value **argp, const char *method,
2266 int offset, struct type *type, int *num_fns,
2267 struct type **basetype, int *boffset)
2268 {
2269 int i;
2270 struct fn_field *f;
2271 CHECK_TYPEDEF (type);
2272
2273 *num_fns = 0;
2274
2275 /* First check in object itself. */
2276 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2277 {
2278 /* pai: FIXME What about operators and type conversions? */
2279 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2280
2281 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2282 {
2283 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2284 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2285
2286 *num_fns = len;
2287 *basetype = type;
2288 *boffset = offset;
2289
2290 /* Resolve any stub methods. */
2291 check_stub_method_group (type, i);
2292
2293 return f;
2294 }
2295 }
2296
2297 /* Not found in object, check in base subobjects. */
2298 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2299 {
2300 int base_offset;
2301
2302 if (BASETYPE_VIA_VIRTUAL (type, i))
2303 {
2304 base_offset = baseclass_offset (type, i,
2305 value_contents_for_printing (*argp),
2306 value_offset (*argp) + offset,
2307 value_address (*argp), *argp);
2308 }
2309 else /* Non-virtual base, simply use bit position from debug
2310 info. */
2311 {
2312 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2313 }
2314 f = find_method_list (argp, method, base_offset + offset,
2315 TYPE_BASECLASS (type, i), num_fns,
2316 basetype, boffset);
2317 if (f)
2318 return f;
2319 }
2320 return NULL;
2321 }
2322
2323 /* Return the list of overloaded methods of a specified name.
2324
2325 ARGP is a pointer to a pointer to a value (the object).
2326 METHOD is the method name.
2327 OFFSET is the offset within the value contents.
2328 NUM_FNS is the number of overloaded instances.
2329 BASETYPE is set to the type of the base subobject that defines the
2330 method.
2331 BOFFSET is the offset of the base subobject which defines the method. */
2332
2333 static struct fn_field *
2334 value_find_oload_method_list (struct value **argp, const char *method,
2335 int offset, int *num_fns,
2336 struct type **basetype, int *boffset)
2337 {
2338 struct type *t;
2339
2340 t = check_typedef (value_type (*argp));
2341
2342 /* Code snarfed from value_struct_elt. */
2343 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2344 {
2345 *argp = value_ind (*argp);
2346 /* Don't coerce fn pointer to fn and then back again! */
2347 if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
2348 *argp = coerce_array (*argp);
2349 t = check_typedef (value_type (*argp));
2350 }
2351
2352 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2353 && TYPE_CODE (t) != TYPE_CODE_UNION)
2354 error (_("Attempt to extract a component of a "
2355 "value that is not a struct or union"));
2356
2357 return find_method_list (argp, method, 0, t, num_fns,
2358 basetype, boffset);
2359 }
2360
2361 /* Given an array of arguments (ARGS) (which includes an
2362 entry for "this" in the case of C++ methods), the number of
2363 arguments NARGS, the NAME of a function, and whether it's a method or
2364 not (METHOD), find the best function that matches on the argument types
2365 according to the overload resolution rules.
2366
2367 METHOD can be one of three values:
2368 NON_METHOD for non-member functions.
2369 METHOD: for member functions.
2370 BOTH: used for overload resolution of operators where the
2371 candidates are expected to be either member or non member
2372 functions. In this case the first argument ARGTYPES
2373 (representing 'this') is expected to be a reference to the
2374 target object, and will be dereferenced when attempting the
2375 non-member search.
2376
2377 In the case of class methods, the parameter OBJ is an object value
2378 in which to search for overloaded methods.
2379
2380 In the case of non-method functions, the parameter FSYM is a symbol
2381 corresponding to one of the overloaded functions.
2382
2383 Return value is an integer: 0 -> good match, 10 -> debugger applied
2384 non-standard coercions, 100 -> incompatible.
2385
2386 If a method is being searched for, VALP will hold the value.
2387 If a non-method is being searched for, SYMP will hold the symbol
2388 for it.
2389
2390 If a method is being searched for, and it is a static method,
2391 then STATICP will point to a non-zero value.
2392
2393 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2394 ADL overload candidates when performing overload resolution for a fully
2395 qualified name.
2396
2397 Note: This function does *not* check the value of
2398 overload_resolution. Caller must check it to see whether overload
2399 resolution is permitted. */
2400
2401 int
2402 find_overload_match (struct value **args, int nargs,
2403 const char *name, enum oload_search_type method,
2404 struct value **objp, struct symbol *fsym,
2405 struct value **valp, struct symbol **symp,
2406 int *staticp, const int no_adl)
2407 {
2408 struct value *obj = (objp ? *objp : NULL);
2409 struct type *obj_type = obj ? value_type (obj) : NULL;
2410 /* Index of best overloaded function. */
2411 int func_oload_champ = -1;
2412 int method_oload_champ = -1;
2413
2414 /* The measure for the current best match. */
2415 struct badness_vector *method_badness = NULL;
2416 struct badness_vector *func_badness = NULL;
2417
2418 struct value *temp = obj;
2419 /* For methods, the list of overloaded methods. */
2420 struct fn_field *fns_ptr = NULL;
2421 /* For non-methods, the list of overloaded function symbols. */
2422 struct symbol **oload_syms = NULL;
2423 /* Number of overloaded instances being considered. */
2424 int num_fns = 0;
2425 struct type *basetype = NULL;
2426 int boffset;
2427
2428 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2429
2430 const char *obj_type_name = NULL;
2431 const char *func_name = NULL;
2432 enum oload_classification match_quality;
2433 enum oload_classification method_match_quality = INCOMPATIBLE;
2434 enum oload_classification func_match_quality = INCOMPATIBLE;
2435
2436 /* Get the list of overloaded methods or functions. */
2437 if (method == METHOD || method == BOTH)
2438 {
2439 gdb_assert (obj);
2440
2441 /* OBJ may be a pointer value rather than the object itself. */
2442 obj = coerce_ref (obj);
2443 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2444 obj = coerce_ref (value_ind (obj));
2445 obj_type_name = TYPE_NAME (value_type (obj));
2446
2447 /* First check whether this is a data member, e.g. a pointer to
2448 a function. */
2449 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2450 {
2451 *valp = search_struct_field (name, obj, 0,
2452 check_typedef (value_type (obj)), 0);
2453 if (*valp)
2454 {
2455 *staticp = 1;
2456 do_cleanups (all_cleanups);
2457 return 0;
2458 }
2459 }
2460
2461 /* Retrieve the list of methods with the name NAME. */
2462 fns_ptr = value_find_oload_method_list (&temp, name,
2463 0, &num_fns,
2464 &basetype, &boffset);
2465 /* If this is a method only search, and no methods were found
2466 the search has faild. */
2467 if (method == METHOD && (!fns_ptr || !num_fns))
2468 error (_("Couldn't find method %s%s%s"),
2469 obj_type_name,
2470 (obj_type_name && *obj_type_name) ? "::" : "",
2471 name);
2472 /* If we are dealing with stub method types, they should have
2473 been resolved by find_method_list via
2474 value_find_oload_method_list above. */
2475 if (fns_ptr)
2476 {
2477 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2478 method_oload_champ = find_oload_champ (args, nargs, method,
2479 num_fns, fns_ptr,
2480 oload_syms, &method_badness);
2481
2482 method_match_quality =
2483 classify_oload_match (method_badness, nargs,
2484 oload_method_static (method, fns_ptr,
2485 method_oload_champ));
2486
2487 make_cleanup (xfree, method_badness);
2488 }
2489
2490 }
2491
2492 if (method == NON_METHOD || method == BOTH)
2493 {
2494 const char *qualified_name = NULL;
2495
2496 /* If the overload match is being search for both as a method
2497 and non member function, the first argument must now be
2498 dereferenced. */
2499 if (method == BOTH)
2500 args[0] = value_ind (args[0]);
2501
2502 if (fsym)
2503 {
2504 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2505
2506 /* If we have a function with a C++ name, try to extract just
2507 the function part. Do not try this for non-functions (e.g.
2508 function pointers). */
2509 if (qualified_name
2510 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2511 == TYPE_CODE_FUNC)
2512 {
2513 char *temp;
2514
2515 temp = cp_func_name (qualified_name);
2516
2517 /* If cp_func_name did not remove anything, the name of the
2518 symbol did not include scope or argument types - it was
2519 probably a C-style function. */
2520 if (temp)
2521 {
2522 make_cleanup (xfree, temp);
2523 if (strcmp (temp, qualified_name) == 0)
2524 func_name = NULL;
2525 else
2526 func_name = temp;
2527 }
2528 }
2529 }
2530 else
2531 {
2532 func_name = name;
2533 qualified_name = name;
2534 }
2535
2536 /* If there was no C++ name, this must be a C-style function or
2537 not a function at all. Just return the same symbol. Do the
2538 same if cp_func_name fails for some reason. */
2539 if (func_name == NULL)
2540 {
2541 *symp = fsym;
2542 do_cleanups (all_cleanups);
2543 return 0;
2544 }
2545
2546 func_oload_champ = find_oload_champ_namespace (args, nargs,
2547 func_name,
2548 qualified_name,
2549 &oload_syms,
2550 &func_badness,
2551 no_adl);
2552
2553 if (func_oload_champ >= 0)
2554 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2555
2556 make_cleanup (xfree, oload_syms);
2557 make_cleanup (xfree, func_badness);
2558 }
2559
2560 /* Did we find a match ? */
2561 if (method_oload_champ == -1 && func_oload_champ == -1)
2562 throw_error (NOT_FOUND_ERROR,
2563 _("No symbol \"%s\" in current context."),
2564 name);
2565
2566 /* If we have found both a method match and a function
2567 match, find out which one is better, and calculate match
2568 quality. */
2569 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2570 {
2571 switch (compare_badness (func_badness, method_badness))
2572 {
2573 case 0: /* Top two contenders are equally good. */
2574 /* FIXME: GDB does not support the general ambiguous case.
2575 All candidates should be collected and presented the
2576 user. */
2577 error (_("Ambiguous overload resolution"));
2578 break;
2579 case 1: /* Incomparable top contenders. */
2580 /* This is an error incompatible candidates
2581 should not have been proposed. */
2582 error (_("Internal error: incompatible "
2583 "overload candidates proposed"));
2584 break;
2585 case 2: /* Function champion. */
2586 method_oload_champ = -1;
2587 match_quality = func_match_quality;
2588 break;
2589 case 3: /* Method champion. */
2590 func_oload_champ = -1;
2591 match_quality = method_match_quality;
2592 break;
2593 default:
2594 error (_("Internal error: unexpected overload comparison result"));
2595 break;
2596 }
2597 }
2598 else
2599 {
2600 /* We have either a method match or a function match. */
2601 if (method_oload_champ >= 0)
2602 match_quality = method_match_quality;
2603 else
2604 match_quality = func_match_quality;
2605 }
2606
2607 if (match_quality == INCOMPATIBLE)
2608 {
2609 if (method == METHOD)
2610 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2611 obj_type_name,
2612 (obj_type_name && *obj_type_name) ? "::" : "",
2613 name);
2614 else
2615 error (_("Cannot resolve function %s to any overloaded instance"),
2616 func_name);
2617 }
2618 else if (match_quality == NON_STANDARD)
2619 {
2620 if (method == METHOD)
2621 warning (_("Using non-standard conversion to match "
2622 "method %s%s%s to supplied arguments"),
2623 obj_type_name,
2624 (obj_type_name && *obj_type_name) ? "::" : "",
2625 name);
2626 else
2627 warning (_("Using non-standard conversion to match "
2628 "function %s to supplied arguments"),
2629 func_name);
2630 }
2631
2632 if (staticp != NULL)
2633 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2634
2635 if (method_oload_champ >= 0)
2636 {
2637 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2638 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2639 basetype, boffset);
2640 else
2641 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2642 basetype, boffset);
2643 }
2644 else
2645 *symp = oload_syms[func_oload_champ];
2646
2647 if (objp)
2648 {
2649 struct type *temp_type = check_typedef (value_type (temp));
2650 struct type *objtype = check_typedef (obj_type);
2651
2652 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2653 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2654 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2655 {
2656 temp = value_addr (temp);
2657 }
2658 *objp = temp;
2659 }
2660
2661 do_cleanups (all_cleanups);
2662
2663 switch (match_quality)
2664 {
2665 case INCOMPATIBLE:
2666 return 100;
2667 case NON_STANDARD:
2668 return 10;
2669 default: /* STANDARD */
2670 return 0;
2671 }
2672 }
2673
2674 /* Find the best overload match, searching for FUNC_NAME in namespaces
2675 contained in QUALIFIED_NAME until it either finds a good match or
2676 runs out of namespaces. It stores the overloaded functions in
2677 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2678 calling function is responsible for freeing *OLOAD_SYMS and
2679 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2680 performned. */
2681
2682 static int
2683 find_oload_champ_namespace (struct value **args, int nargs,
2684 const char *func_name,
2685 const char *qualified_name,
2686 struct symbol ***oload_syms,
2687 struct badness_vector **oload_champ_bv,
2688 const int no_adl)
2689 {
2690 int oload_champ;
2691
2692 find_oload_champ_namespace_loop (args, nargs,
2693 func_name,
2694 qualified_name, 0,
2695 oload_syms, oload_champ_bv,
2696 &oload_champ,
2697 no_adl);
2698
2699 return oload_champ;
2700 }
2701
2702 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2703 how deep we've looked for namespaces, and the champ is stored in
2704 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2705 if it isn't. Other arguments are the same as in
2706 find_oload_champ_namespace
2707
2708 It is the caller's responsibility to free *OLOAD_SYMS and
2709 *OLOAD_CHAMP_BV. */
2710
2711 static int
2712 find_oload_champ_namespace_loop (struct value **args, int nargs,
2713 const char *func_name,
2714 const char *qualified_name,
2715 int namespace_len,
2716 struct symbol ***oload_syms,
2717 struct badness_vector **oload_champ_bv,
2718 int *oload_champ,
2719 const int no_adl)
2720 {
2721 int next_namespace_len = namespace_len;
2722 int searched_deeper = 0;
2723 int num_fns = 0;
2724 struct cleanup *old_cleanups;
2725 int new_oload_champ;
2726 struct symbol **new_oload_syms;
2727 struct badness_vector *new_oload_champ_bv;
2728 char *new_namespace;
2729
2730 if (next_namespace_len != 0)
2731 {
2732 gdb_assert (qualified_name[next_namespace_len] == ':');
2733 next_namespace_len += 2;
2734 }
2735 next_namespace_len +=
2736 cp_find_first_component (qualified_name + next_namespace_len);
2737
2738 /* Initialize these to values that can safely be xfree'd. */
2739 *oload_syms = NULL;
2740 *oload_champ_bv = NULL;
2741
2742 /* First, see if we have a deeper namespace we can search in.
2743 If we get a good match there, use it. */
2744
2745 if (qualified_name[next_namespace_len] == ':')
2746 {
2747 searched_deeper = 1;
2748
2749 if (find_oload_champ_namespace_loop (args, nargs,
2750 func_name, qualified_name,
2751 next_namespace_len,
2752 oload_syms, oload_champ_bv,
2753 oload_champ, no_adl))
2754 {
2755 return 1;
2756 }
2757 };
2758
2759 /* If we reach here, either we're in the deepest namespace or we
2760 didn't find a good match in a deeper namespace. But, in the
2761 latter case, we still have a bad match in a deeper namespace;
2762 note that we might not find any match at all in the current
2763 namespace. (There's always a match in the deepest namespace,
2764 because this overload mechanism only gets called if there's a
2765 function symbol to start off with.) */
2766
2767 old_cleanups = make_cleanup (xfree, *oload_syms);
2768 make_cleanup (xfree, *oload_champ_bv);
2769 new_namespace = alloca (namespace_len + 1);
2770 strncpy (new_namespace, qualified_name, namespace_len);
2771 new_namespace[namespace_len] = '\0';
2772 new_oload_syms = make_symbol_overload_list (func_name,
2773 new_namespace);
2774
2775 /* If we have reached the deepest level perform argument
2776 determined lookup. */
2777 if (!searched_deeper && !no_adl)
2778 {
2779 int ix;
2780 struct type **arg_types;
2781
2782 /* Prepare list of argument types for overload resolution. */
2783 arg_types = (struct type **)
2784 alloca (nargs * (sizeof (struct type *)));
2785 for (ix = 0; ix < nargs; ix++)
2786 arg_types[ix] = value_type (args[ix]);
2787 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2788 }
2789
2790 while (new_oload_syms[num_fns])
2791 ++num_fns;
2792
2793 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2794 NULL, new_oload_syms,
2795 &new_oload_champ_bv);
2796
2797 /* Case 1: We found a good match. Free earlier matches (if any),
2798 and return it. Case 2: We didn't find a good match, but we're
2799 not the deepest function. Then go with the bad match that the
2800 deeper function found. Case 3: We found a bad match, and we're
2801 the deepest function. Then return what we found, even though
2802 it's a bad match. */
2803
2804 if (new_oload_champ != -1
2805 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2806 {
2807 *oload_syms = new_oload_syms;
2808 *oload_champ = new_oload_champ;
2809 *oload_champ_bv = new_oload_champ_bv;
2810 do_cleanups (old_cleanups);
2811 return 1;
2812 }
2813 else if (searched_deeper)
2814 {
2815 xfree (new_oload_syms);
2816 xfree (new_oload_champ_bv);
2817 discard_cleanups (old_cleanups);
2818 return 0;
2819 }
2820 else
2821 {
2822 *oload_syms = new_oload_syms;
2823 *oload_champ = new_oload_champ;
2824 *oload_champ_bv = new_oload_champ_bv;
2825 do_cleanups (old_cleanups);
2826 return 0;
2827 }
2828 }
2829
2830 /* Look for a function to take NARGS args of ARGS. Find
2831 the best match from among the overloaded methods or functions
2832 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2833 The number of methods/functions in the list is given by NUM_FNS.
2834 Return the index of the best match; store an indication of the
2835 quality of the match in OLOAD_CHAMP_BV.
2836
2837 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2838
2839 static int
2840 find_oload_champ (struct value **args, int nargs, int method,
2841 int num_fns, struct fn_field *fns_ptr,
2842 struct symbol **oload_syms,
2843 struct badness_vector **oload_champ_bv)
2844 {
2845 int ix;
2846 /* A measure of how good an overloaded instance is. */
2847 struct badness_vector *bv;
2848 /* Index of best overloaded function. */
2849 int oload_champ = -1;
2850 /* Current ambiguity state for overload resolution. */
2851 int oload_ambiguous = 0;
2852 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2853
2854 *oload_champ_bv = NULL;
2855
2856 /* Consider each candidate in turn. */
2857 for (ix = 0; ix < num_fns; ix++)
2858 {
2859 int jj;
2860 int static_offset = oload_method_static (method, fns_ptr, ix);
2861 int nparms;
2862 struct type **parm_types;
2863
2864 if (method)
2865 {
2866 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2867 }
2868 else
2869 {
2870 /* If it's not a method, this is the proper place. */
2871 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2872 }
2873
2874 /* Prepare array of parameter types. */
2875 parm_types = (struct type **)
2876 xmalloc (nparms * (sizeof (struct type *)));
2877 for (jj = 0; jj < nparms; jj++)
2878 parm_types[jj] = (method
2879 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2880 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2881 jj));
2882
2883 /* Compare parameter types to supplied argument types. Skip
2884 THIS for static methods. */
2885 bv = rank_function (parm_types, nparms,
2886 args + static_offset,
2887 nargs - static_offset);
2888
2889 if (!*oload_champ_bv)
2890 {
2891 *oload_champ_bv = bv;
2892 oload_champ = 0;
2893 }
2894 else /* See whether current candidate is better or worse than
2895 previous best. */
2896 switch (compare_badness (bv, *oload_champ_bv))
2897 {
2898 case 0: /* Top two contenders are equally good. */
2899 oload_ambiguous = 1;
2900 break;
2901 case 1: /* Incomparable top contenders. */
2902 oload_ambiguous = 2;
2903 break;
2904 case 2: /* New champion, record details. */
2905 *oload_champ_bv = bv;
2906 oload_ambiguous = 0;
2907 oload_champ = ix;
2908 break;
2909 case 3:
2910 default:
2911 break;
2912 }
2913 xfree (parm_types);
2914 if (overload_debug)
2915 {
2916 if (method)
2917 fprintf_filtered (gdb_stderr,
2918 "Overloaded method instance %s, # of parms %d\n",
2919 fns_ptr[ix].physname, nparms);
2920 else
2921 fprintf_filtered (gdb_stderr,
2922 "Overloaded function instance "
2923 "%s # of parms %d\n",
2924 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2925 nparms);
2926 for (jj = 0; jj < nargs - static_offset; jj++)
2927 fprintf_filtered (gdb_stderr,
2928 "...Badness @ %d : %d\n",
2929 jj, bv->rank[jj].rank);
2930 fprintf_filtered (gdb_stderr, "Overload resolution "
2931 "champion is %d, ambiguous? %d\n",
2932 oload_champ, oload_ambiguous);
2933 }
2934 }
2935
2936 return oload_champ;
2937 }
2938
2939 /* Return 1 if we're looking at a static method, 0 if we're looking at
2940 a non-static method or a function that isn't a method. */
2941
2942 static int
2943 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2944 {
2945 if (method && fns_ptr && index >= 0
2946 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2947 return 1;
2948 else
2949 return 0;
2950 }
2951
2952 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2953
2954 static enum oload_classification
2955 classify_oload_match (struct badness_vector *oload_champ_bv,
2956 int nargs,
2957 int static_offset)
2958 {
2959 int ix;
2960 enum oload_classification worst = STANDARD;
2961
2962 for (ix = 1; ix <= nargs - static_offset; ix++)
2963 {
2964 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2965 or worse return INCOMPATIBLE. */
2966 if (compare_ranks (oload_champ_bv->rank[ix],
2967 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2968 return INCOMPATIBLE; /* Truly mismatched types. */
2969 /* Otherwise If this conversion is as bad as
2970 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2971 else if (compare_ranks (oload_champ_bv->rank[ix],
2972 NS_POINTER_CONVERSION_BADNESS) <= 0)
2973 worst = NON_STANDARD; /* Non-standard type conversions
2974 needed. */
2975 }
2976
2977 /* If no INCOMPATIBLE classification was found, return the worst one
2978 that was found (if any). */
2979 return worst;
2980 }
2981
2982 /* C++: return 1 is NAME is a legitimate name for the destructor of
2983 type TYPE. If TYPE does not have a destructor, or if NAME is
2984 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2985 have CHECK_TYPEDEF applied, this function will apply it itself. */
2986
2987 int
2988 destructor_name_p (const char *name, struct type *type)
2989 {
2990 if (name[0] == '~')
2991 {
2992 const char *dname = type_name_no_tag_or_error (type);
2993 const char *cp = strchr (dname, '<');
2994 unsigned int len;
2995
2996 /* Do not compare the template part for template classes. */
2997 if (cp == NULL)
2998 len = strlen (dname);
2999 else
3000 len = cp - dname;
3001 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3002 error (_("name of destructor must equal name of class"));
3003 else
3004 return 1;
3005 }
3006 return 0;
3007 }
3008
3009 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3010 return the appropriate member (or the address of the member, if
3011 WANT_ADDRESS). This function is used to resolve user expressions
3012 of the form "DOMAIN::NAME". For more details on what happens, see
3013 the comment before value_struct_elt_for_reference. */
3014
3015 struct value *
3016 value_aggregate_elt (struct type *curtype, char *name,
3017 struct type *expect_type, int want_address,
3018 enum noside noside)
3019 {
3020 switch (TYPE_CODE (curtype))
3021 {
3022 case TYPE_CODE_STRUCT:
3023 case TYPE_CODE_UNION:
3024 return value_struct_elt_for_reference (curtype, 0, curtype,
3025 name, expect_type,
3026 want_address, noside);
3027 case TYPE_CODE_NAMESPACE:
3028 return value_namespace_elt (curtype, name,
3029 want_address, noside);
3030 default:
3031 internal_error (__FILE__, __LINE__,
3032 _("non-aggregate type in value_aggregate_elt"));
3033 }
3034 }
3035
3036 /* Compares the two method/function types T1 and T2 for "equality"
3037 with respect to the methods' parameters. If the types of the
3038 two parameter lists are the same, returns 1; 0 otherwise. This
3039 comparison may ignore any artificial parameters in T1 if
3040 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3041 the first artificial parameter in T1, assumed to be a 'this' pointer.
3042
3043 The type T2 is expected to have come from make_params (in eval.c). */
3044
3045 static int
3046 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3047 {
3048 int start = 0;
3049
3050 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3051 ++start;
3052
3053 /* If skipping artificial fields, find the first real field
3054 in T1. */
3055 if (skip_artificial)
3056 {
3057 while (start < TYPE_NFIELDS (t1)
3058 && TYPE_FIELD_ARTIFICIAL (t1, start))
3059 ++start;
3060 }
3061
3062 /* Now compare parameters. */
3063
3064 /* Special case: a method taking void. T1 will contain no
3065 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3066 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3067 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3068 return 1;
3069
3070 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3071 {
3072 int i;
3073
3074 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3075 {
3076 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3077 TYPE_FIELD_TYPE (t2, i), NULL),
3078 EXACT_MATCH_BADNESS) != 0)
3079 return 0;
3080 }
3081
3082 return 1;
3083 }
3084
3085 return 0;
3086 }
3087
3088 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3089 return the address of this member as a "pointer to member" type.
3090 If INTYPE is non-null, then it will be the type of the member we
3091 are looking for. This will help us resolve "pointers to member
3092 functions". This function is used to resolve user expressions of
3093 the form "DOMAIN::NAME". */
3094
3095 static struct value *
3096 value_struct_elt_for_reference (struct type *domain, int offset,
3097 struct type *curtype, char *name,
3098 struct type *intype,
3099 int want_address,
3100 enum noside noside)
3101 {
3102 struct type *t = curtype;
3103 int i;
3104 struct value *v, *result;
3105
3106 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3107 && TYPE_CODE (t) != TYPE_CODE_UNION)
3108 error (_("Internal error: non-aggregate type "
3109 "to value_struct_elt_for_reference"));
3110
3111 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3112 {
3113 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3114
3115 if (t_field_name && strcmp (t_field_name, name) == 0)
3116 {
3117 if (field_is_static (&TYPE_FIELD (t, i)))
3118 {
3119 v = value_static_field (t, i);
3120 if (want_address)
3121 v = value_addr (v);
3122 return v;
3123 }
3124 if (TYPE_FIELD_PACKED (t, i))
3125 error (_("pointers to bitfield members not allowed"));
3126
3127 if (want_address)
3128 return value_from_longest
3129 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3130 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3132 return allocate_value (TYPE_FIELD_TYPE (t, i));
3133 else
3134 error (_("Cannot reference non-static field \"%s\""), name);
3135 }
3136 }
3137
3138 /* C++: If it was not found as a data field, then try to return it
3139 as a pointer to a method. */
3140
3141 /* Perform all necessary dereferencing. */
3142 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3143 intype = TYPE_TARGET_TYPE (intype);
3144
3145 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3146 {
3147 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3148 char dem_opname[64];
3149
3150 if (strncmp (t_field_name, "__", 2) == 0
3151 || strncmp (t_field_name, "op", 2) == 0
3152 || strncmp (t_field_name, "type", 4) == 0)
3153 {
3154 if (cplus_demangle_opname (t_field_name,
3155 dem_opname, DMGL_ANSI))
3156 t_field_name = dem_opname;
3157 else if (cplus_demangle_opname (t_field_name,
3158 dem_opname, 0))
3159 t_field_name = dem_opname;
3160 }
3161 if (t_field_name && strcmp (t_field_name, name) == 0)
3162 {
3163 int j;
3164 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3165 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3166
3167 check_stub_method_group (t, i);
3168
3169 if (intype)
3170 {
3171 for (j = 0; j < len; ++j)
3172 {
3173 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3174 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3175 intype, 1))
3176 break;
3177 }
3178
3179 if (j == len)
3180 error (_("no member function matches "
3181 "that type instantiation"));
3182 }
3183 else
3184 {
3185 int ii;
3186
3187 j = -1;
3188 for (ii = 0; ii < len; ++ii)
3189 {
3190 /* Skip artificial methods. This is necessary if,
3191 for example, the user wants to "print
3192 subclass::subclass" with only one user-defined
3193 constructor. There is no ambiguity in this case.
3194 We are careful here to allow artificial methods
3195 if they are the unique result. */
3196 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3197 {
3198 if (j == -1)
3199 j = ii;
3200 continue;
3201 }
3202
3203 /* Desired method is ambiguous if more than one
3204 method is defined. */
3205 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3206 error (_("non-unique member `%s' requires "
3207 "type instantiation"), name);
3208
3209 j = ii;
3210 }
3211
3212 if (j == -1)
3213 error (_("no matching member function"));
3214 }
3215
3216 if (TYPE_FN_FIELD_STATIC_P (f, j))
3217 {
3218 struct symbol *s =
3219 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3220 0, VAR_DOMAIN, 0);
3221
3222 if (s == NULL)
3223 return NULL;
3224
3225 if (want_address)
3226 return value_addr (read_var_value (s, 0));
3227 else
3228 return read_var_value (s, 0);
3229 }
3230
3231 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3232 {
3233 if (want_address)
3234 {
3235 result = allocate_value
3236 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3237 cplus_make_method_ptr (value_type (result),
3238 value_contents_writeable (result),
3239 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3240 }
3241 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3242 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3243 else
3244 error (_("Cannot reference virtual member function \"%s\""),
3245 name);
3246 }
3247 else
3248 {
3249 struct symbol *s =
3250 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3251 0, VAR_DOMAIN, 0);
3252
3253 if (s == NULL)
3254 return NULL;
3255
3256 v = read_var_value (s, 0);
3257 if (!want_address)
3258 result = v;
3259 else
3260 {
3261 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3262 cplus_make_method_ptr (value_type (result),
3263 value_contents_writeable (result),
3264 value_address (v), 0);
3265 }
3266 }
3267 return result;
3268 }
3269 }
3270 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3271 {
3272 struct value *v;
3273 int base_offset;
3274
3275 if (BASETYPE_VIA_VIRTUAL (t, i))
3276 base_offset = 0;
3277 else
3278 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3279 v = value_struct_elt_for_reference (domain,
3280 offset + base_offset,
3281 TYPE_BASECLASS (t, i),
3282 name, intype,
3283 want_address, noside);
3284 if (v)
3285 return v;
3286 }
3287
3288 /* As a last chance, pretend that CURTYPE is a namespace, and look
3289 it up that way; this (frequently) works for types nested inside
3290 classes. */
3291
3292 return value_maybe_namespace_elt (curtype, name,
3293 want_address, noside);
3294 }
3295
3296 /* C++: Return the member NAME of the namespace given by the type
3297 CURTYPE. */
3298
3299 static struct value *
3300 value_namespace_elt (const struct type *curtype,
3301 char *name, int want_address,
3302 enum noside noside)
3303 {
3304 struct value *retval = value_maybe_namespace_elt (curtype, name,
3305 want_address,
3306 noside);
3307
3308 if (retval == NULL)
3309 error (_("No symbol \"%s\" in namespace \"%s\"."),
3310 name, TYPE_TAG_NAME (curtype));
3311
3312 return retval;
3313 }
3314
3315 /* A helper function used by value_namespace_elt and
3316 value_struct_elt_for_reference. It looks up NAME inside the
3317 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3318 is a class and NAME refers to a type in CURTYPE itself (as opposed
3319 to, say, some base class of CURTYPE). */
3320
3321 static struct value *
3322 value_maybe_namespace_elt (const struct type *curtype,
3323 char *name, int want_address,
3324 enum noside noside)
3325 {
3326 const char *namespace_name = TYPE_TAG_NAME (curtype);
3327 struct symbol *sym;
3328 struct value *result;
3329
3330 sym = cp_lookup_symbol_namespace (namespace_name, name,
3331 get_selected_block (0), VAR_DOMAIN);
3332
3333 if (sym == NULL)
3334 {
3335 char *concatenated_name = alloca (strlen (namespace_name) + 2
3336 + strlen (name) + 1);
3337
3338 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3339 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3340 }
3341
3342 if (sym == NULL)
3343 return NULL;
3344 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3345 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3346 result = allocate_value (SYMBOL_TYPE (sym));
3347 else
3348 result = value_of_variable (sym, get_selected_block (0));
3349
3350 if (result && want_address)
3351 result = value_addr (result);
3352
3353 return result;
3354 }
3355
3356 /* Given a pointer or a reference value V, find its real (RTTI) type.
3357
3358 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3359 and refer to the values computed for the object pointed to. */
3360
3361 struct type *
3362 value_rtti_indirect_type (struct value *v, int *full,
3363 int *top, int *using_enc)
3364 {
3365 struct value *target;
3366 struct type *type, *real_type, *target_type;
3367
3368 type = value_type (v);
3369 type = check_typedef (type);
3370 if (TYPE_CODE (type) == TYPE_CODE_REF)
3371 target = coerce_ref (v);
3372 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3373 target = value_ind (v);
3374 else
3375 return NULL;
3376
3377 real_type = value_rtti_type (target, full, top, using_enc);
3378
3379 if (real_type)
3380 {
3381 /* Copy qualifiers to the referenced object. */
3382 target_type = value_type (target);
3383 real_type = make_cv_type (TYPE_CONST (target_type),
3384 TYPE_VOLATILE (target_type), real_type, NULL);
3385 if (TYPE_CODE (type) == TYPE_CODE_REF)
3386 real_type = lookup_reference_type (real_type);
3387 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3388 real_type = lookup_pointer_type (real_type);
3389 else
3390 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3391
3392 /* Copy qualifiers to the pointer/reference. */
3393 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3394 real_type, NULL);
3395 }
3396
3397 return real_type;
3398 }
3399
3400 /* Given a value pointed to by ARGP, check its real run-time type, and
3401 if that is different from the enclosing type, create a new value
3402 using the real run-time type as the enclosing type (and of the same
3403 type as ARGP) and return it, with the embedded offset adjusted to
3404 be the correct offset to the enclosed object. RTYPE is the type,
3405 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3406 by value_rtti_type(). If these are available, they can be supplied
3407 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3408 NULL if they're not available. */
3409
3410 struct value *
3411 value_full_object (struct value *argp,
3412 struct type *rtype,
3413 int xfull, int xtop,
3414 int xusing_enc)
3415 {
3416 struct type *real_type;
3417 int full = 0;
3418 int top = -1;
3419 int using_enc = 0;
3420 struct value *new_val;
3421
3422 if (rtype)
3423 {
3424 real_type = rtype;
3425 full = xfull;
3426 top = xtop;
3427 using_enc = xusing_enc;
3428 }
3429 else
3430 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3431
3432 /* If no RTTI data, or if object is already complete, do nothing. */
3433 if (!real_type || real_type == value_enclosing_type (argp))
3434 return argp;
3435
3436 /* In a destructor we might see a real type that is a superclass of
3437 the object's type. In this case it is better to leave the object
3438 as-is. */
3439 if (full
3440 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3441 return argp;
3442
3443 /* If we have the full object, but for some reason the enclosing
3444 type is wrong, set it. */
3445 /* pai: FIXME -- sounds iffy */
3446 if (full)
3447 {
3448 argp = value_copy (argp);
3449 set_value_enclosing_type (argp, real_type);
3450 return argp;
3451 }
3452
3453 /* Check if object is in memory. */
3454 if (VALUE_LVAL (argp) != lval_memory)
3455 {
3456 warning (_("Couldn't retrieve complete object of RTTI "
3457 "type %s; object may be in register(s)."),
3458 TYPE_NAME (real_type));
3459
3460 return argp;
3461 }
3462
3463 /* All other cases -- retrieve the complete object. */
3464 /* Go back by the computed top_offset from the beginning of the
3465 object, adjusting for the embedded offset of argp if that's what
3466 value_rtti_type used for its computation. */
3467 new_val = value_at_lazy (real_type, value_address (argp) - top +
3468 (using_enc ? 0 : value_embedded_offset (argp)));
3469 deprecated_set_value_type (new_val, value_type (argp));
3470 set_value_embedded_offset (new_val, (using_enc
3471 ? top + value_embedded_offset (argp)
3472 : top));
3473 return new_val;
3474 }
3475
3476
3477 /* Return the value of the local variable, if one exists. Throw error
3478 otherwise, such as if the request is made in an inappropriate context. */
3479
3480 struct value *
3481 value_of_this (const struct language_defn *lang)
3482 {
3483 struct symbol *sym;
3484 struct block *b;
3485 struct frame_info *frame;
3486
3487 if (!lang->la_name_of_this)
3488 error (_("no `this' in current language"));
3489
3490 frame = get_selected_frame (_("no frame selected"));
3491
3492 b = get_frame_block (frame, NULL);
3493
3494 sym = lookup_language_this (lang, b);
3495 if (sym == NULL)
3496 error (_("current stack frame does not contain a variable named `%s'"),
3497 lang->la_name_of_this);
3498
3499 return read_var_value (sym, frame);
3500 }
3501
3502 /* Return the value of the local variable, if one exists. Return NULL
3503 otherwise. Never throw error. */
3504
3505 struct value *
3506 value_of_this_silent (const struct language_defn *lang)
3507 {
3508 struct value *ret = NULL;
3509 volatile struct gdb_exception except;
3510
3511 TRY_CATCH (except, RETURN_MASK_ERROR)
3512 {
3513 ret = value_of_this (lang);
3514 }
3515
3516 return ret;
3517 }
3518
3519 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3520 elements long, starting at LOWBOUND. The result has the same lower
3521 bound as the original ARRAY. */
3522
3523 struct value *
3524 value_slice (struct value *array, int lowbound, int length)
3525 {
3526 struct type *slice_range_type, *slice_type, *range_type;
3527 LONGEST lowerbound, upperbound;
3528 struct value *slice;
3529 struct type *array_type;
3530
3531 array_type = check_typedef (value_type (array));
3532 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3533 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3534 error (_("cannot take slice of non-array"));
3535
3536 range_type = TYPE_INDEX_TYPE (array_type);
3537 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3538 error (_("slice from bad array or bitstring"));
3539
3540 if (lowbound < lowerbound || length < 0
3541 || lowbound + length - 1 > upperbound)
3542 error (_("slice out of range"));
3543
3544 /* FIXME-type-allocation: need a way to free this type when we are
3545 done with it. */
3546 slice_range_type = create_range_type ((struct type *) NULL,
3547 TYPE_TARGET_TYPE (range_type),
3548 lowbound,
3549 lowbound + length - 1);
3550
3551 {
3552 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3553 LONGEST offset =
3554 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3555
3556 slice_type = create_array_type ((struct type *) NULL,
3557 element_type,
3558 slice_range_type);
3559 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3560
3561 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3562 slice = allocate_value_lazy (slice_type);
3563 else
3564 {
3565 slice = allocate_value (slice_type);
3566 value_contents_copy (slice, 0, array, offset,
3567 TYPE_LENGTH (slice_type));
3568 }
3569
3570 set_value_component_location (slice, array);
3571 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3572 set_value_offset (slice, value_offset (array) + offset);
3573 }
3574 return slice;
3575 }
3576
3577 /* Create a value for a FORTRAN complex number. Currently most of the
3578 time values are coerced to COMPLEX*16 (i.e. a complex number
3579 composed of 2 doubles. This really should be a smarter routine
3580 that figures out precision inteligently as opposed to assuming
3581 doubles. FIXME: fmb */
3582
3583 struct value *
3584 value_literal_complex (struct value *arg1,
3585 struct value *arg2,
3586 struct type *type)
3587 {
3588 struct value *val;
3589 struct type *real_type = TYPE_TARGET_TYPE (type);
3590
3591 val = allocate_value (type);
3592 arg1 = value_cast (real_type, arg1);
3593 arg2 = value_cast (real_type, arg2);
3594
3595 memcpy (value_contents_raw (val),
3596 value_contents (arg1), TYPE_LENGTH (real_type));
3597 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3598 value_contents (arg2), TYPE_LENGTH (real_type));
3599 return val;
3600 }
3601
3602 /* Cast a value into the appropriate complex data type. */
3603
3604 static struct value *
3605 cast_into_complex (struct type *type, struct value *val)
3606 {
3607 struct type *real_type = TYPE_TARGET_TYPE (type);
3608
3609 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3610 {
3611 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3612 struct value *re_val = allocate_value (val_real_type);
3613 struct value *im_val = allocate_value (val_real_type);
3614
3615 memcpy (value_contents_raw (re_val),
3616 value_contents (val), TYPE_LENGTH (val_real_type));
3617 memcpy (value_contents_raw (im_val),
3618 value_contents (val) + TYPE_LENGTH (val_real_type),
3619 TYPE_LENGTH (val_real_type));
3620
3621 return value_literal_complex (re_val, im_val, type);
3622 }
3623 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3624 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3625 return value_literal_complex (val,
3626 value_zero (real_type, not_lval),
3627 type);
3628 else
3629 error (_("cannot cast non-number to complex"));
3630 }
3631
3632 void
3633 _initialize_valops (void)
3634 {
3635 add_setshow_boolean_cmd ("overload-resolution", class_support,
3636 &overload_resolution, _("\
3637 Set overload resolution in evaluating C++ functions."), _("\
3638 Show overload resolution in evaluating C++ functions."),
3639 NULL, NULL,
3640 show_overload_resolution,
3641 &setlist, &showlist);
3642 overload_resolution = 1;
3643 }