]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
1b16f1f1bf6d2eca12cbdf13442d13a8b2a7e35e
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
122 value);
123 }
124
125
126 /* Default input and output radixes, and output format letter. */
127
128 unsigned input_radix = 10;
129 static void
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
135 value);
136 }
137
138 unsigned output_radix = 10;
139 static void
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
145 value);
146 }
147
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
151 static void
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156 }
157
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
162 static void
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168 }
169
170 /* If nonzero, stops printing of char arrays at first null. */
171
172 static void
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179 }
180
181 /* Controls pretty printing of structures. */
182
183 static void
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188 }
189
190 /* Controls pretty printing of arrays. */
191
192 static void
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197 }
198
199 /* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
202 static void
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
208 value);
209 }
210
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
212
213 static void
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218 }
219 \f
220
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225 static int
226 scalar_type_p (struct type *type)
227 {
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246 }
247
248 /* Helper function to check the validity of some bits of a value.
249
250 If TYPE represents some aggregate type (e.g., a structure), return 1.
251
252 Otherwise, any of the bytes starting at OFFSET and extending for
253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
254 return 0. The checking is done using FUNCS.
255
256 Otherwise, return 1. */
257
258 static int
259 valprint_check_validity (struct ui_file *stream,
260 struct type *type,
261 int offset,
262 const struct value *val)
263 {
264 CHECK_TYPEDEF (type);
265
266 if (TYPE_CODE (type) != TYPE_CODE_UNION
267 && TYPE_CODE (type) != TYPE_CODE_STRUCT
268 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
269 {
270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
272 {
273 fprintf_filtered (stream, _("<value optimized out>"));
274 return 0;
275 }
276
277 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * offset,
278 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
279 {
280 fputs_filtered (_("<synthetic pointer>"), stream);
281 return 0;
282 }
283 }
284
285 return 1;
286 }
287
288 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
289 (within GDB), which came from the inferior at address ADDRESS, onto
290 stdio stream STREAM according to OPTIONS.
291
292 If the data are a string pointer, returns the number of string characters
293 printed.
294
295 FIXME: The data at VALADDR is in target byte order. If gdb is ever
296 enhanced to be able to debug more than the single target it was compiled
297 for (specific CPU type and thus specific target byte ordering), then
298 either the print routines are going to have to take this into account,
299 or the data is going to have to be passed into here already converted
300 to the host byte ordering, whichever is more convenient. */
301
302
303 int
304 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
305 CORE_ADDR address, struct ui_file *stream, int recurse,
306 const struct value *val,
307 const struct value_print_options *options,
308 const struct language_defn *language)
309 {
310 volatile struct gdb_exception except;
311 int ret = 0;
312 struct value_print_options local_opts = *options;
313 struct type *real_type = check_typedef (type);
314
315 if (local_opts.pretty == Val_pretty_default)
316 local_opts.pretty = (local_opts.prettyprint_structs
317 ? Val_prettyprint : Val_no_prettyprint);
318
319 QUIT;
320
321 /* Ensure that the type is complete and not just a stub. If the type is
322 only a stub and we can't find and substitute its complete type, then
323 print appropriate string and return. */
324
325 if (TYPE_STUB (real_type))
326 {
327 fprintf_filtered (stream, _("<incomplete type>"));
328 gdb_flush (stream);
329 return (0);
330 }
331
332 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
333 return 0;
334
335 if (!options->raw)
336 {
337 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
338 address, stream, recurse,
339 val, options, language);
340 if (ret)
341 return ret;
342 }
343
344 /* Handle summary mode. If the value is a scalar, print it;
345 otherwise, print an ellipsis. */
346 if (options->summary && !scalar_type_p (type))
347 {
348 fprintf_filtered (stream, "...");
349 return 0;
350 }
351
352 TRY_CATCH (except, RETURN_MASK_ERROR)
353 {
354 ret = language->la_val_print (type, valaddr, embedded_offset, address,
355 stream, recurse, val,
356 &local_opts);
357 }
358 if (except.reason < 0)
359 fprintf_filtered (stream, _("<error reading variable>"));
360
361 return ret;
362 }
363
364 /* Check whether the value VAL is printable. Return 1 if it is;
365 return 0 and print an appropriate error message to STREAM if it
366 is not. */
367
368 static int
369 value_check_printable (struct value *val, struct ui_file *stream)
370 {
371 if (val == 0)
372 {
373 fprintf_filtered (stream, _("<address of value unknown>"));
374 return 0;
375 }
376
377 if (value_entirely_optimized_out (val))
378 {
379 fprintf_filtered (stream, _("<value optimized out>"));
380 return 0;
381 }
382
383 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
384 {
385 fprintf_filtered (stream, _("<internal function %s>"),
386 value_internal_function_name (val));
387 return 0;
388 }
389
390 return 1;
391 }
392
393 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
394 to OPTIONS.
395
396 If the data are a string pointer, returns the number of string characters
397 printed.
398
399 This is a preferable interface to val_print, above, because it uses
400 GDB's value mechanism. */
401
402 int
403 common_val_print (struct value *val, struct ui_file *stream, int recurse,
404 const struct value_print_options *options,
405 const struct language_defn *language)
406 {
407 if (!value_check_printable (val, stream))
408 return 0;
409
410 if (language->la_language == language_ada)
411 /* The value might have a dynamic type, which would cause trouble
412 below when trying to extract the value contents (since the value
413 size is determined from the type size which is unknown). So
414 get a fixed representation of our value. */
415 val = ada_to_fixed_value (val);
416
417 return val_print (value_type (val), value_contents_for_printing (val),
418 value_embedded_offset (val), value_address (val),
419 stream, recurse,
420 val, options, language);
421 }
422
423 /* Print on stream STREAM the value VAL according to OPTIONS. The value
424 is printed using the current_language syntax.
425
426 If the object printed is a string pointer, return the number of string
427 bytes printed. */
428
429 int
430 value_print (struct value *val, struct ui_file *stream,
431 const struct value_print_options *options)
432 {
433 if (!value_check_printable (val, stream))
434 return 0;
435
436 if (!options->raw)
437 {
438 int r = apply_val_pretty_printer (value_type (val),
439 value_contents_for_printing (val),
440 value_embedded_offset (val),
441 value_address (val),
442 stream, 0,
443 val, options, current_language);
444
445 if (r)
446 return r;
447 }
448
449 return LA_VALUE_PRINT (val, stream, options);
450 }
451
452 /* Called by various <lang>_val_print routines to print
453 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
454 value. STREAM is where to print the value. */
455
456 void
457 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
458 struct ui_file *stream)
459 {
460 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
461
462 if (TYPE_LENGTH (type) > sizeof (LONGEST))
463 {
464 LONGEST val;
465
466 if (TYPE_UNSIGNED (type)
467 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
468 byte_order, &val))
469 {
470 print_longest (stream, 'u', 0, val);
471 }
472 else
473 {
474 /* Signed, or we couldn't turn an unsigned value into a
475 LONGEST. For signed values, one could assume two's
476 complement (a reasonable assumption, I think) and do
477 better than this. */
478 print_hex_chars (stream, (unsigned char *) valaddr,
479 TYPE_LENGTH (type), byte_order);
480 }
481 }
482 else
483 {
484 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
485 unpack_long (type, valaddr));
486 }
487 }
488
489 void
490 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
491 struct ui_file *stream)
492 {
493 ULONGEST val = unpack_long (type, valaddr);
494 int bitpos, nfields = TYPE_NFIELDS (type);
495
496 fputs_filtered ("[ ", stream);
497 for (bitpos = 0; bitpos < nfields; bitpos++)
498 {
499 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
500 && (val & ((ULONGEST)1 << bitpos)))
501 {
502 if (TYPE_FIELD_NAME (type, bitpos))
503 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
504 else
505 fprintf_filtered (stream, "#%d ", bitpos);
506 }
507 }
508 fputs_filtered ("]", stream);
509 }
510
511 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
512 The raison d'etre of this function is to consolidate printing of
513 LONG_LONG's into this one function. The format chars b,h,w,g are
514 from print_scalar_formatted(). Numbers are printed using C
515 format.
516
517 USE_C_FORMAT means to use C format in all cases. Without it,
518 'o' and 'x' format do not include the standard C radix prefix
519 (leading 0 or 0x).
520
521 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
522 and was intended to request formating according to the current
523 language and would be used for most integers that GDB prints. The
524 exceptional cases were things like protocols where the format of
525 the integer is a protocol thing, not a user-visible thing). The
526 parameter remains to preserve the information of what things might
527 be printed with language-specific format, should we ever resurrect
528 that capability. */
529
530 void
531 print_longest (struct ui_file *stream, int format, int use_c_format,
532 LONGEST val_long)
533 {
534 const char *val;
535
536 switch (format)
537 {
538 case 'd':
539 val = int_string (val_long, 10, 1, 0, 1); break;
540 case 'u':
541 val = int_string (val_long, 10, 0, 0, 1); break;
542 case 'x':
543 val = int_string (val_long, 16, 0, 0, use_c_format); break;
544 case 'b':
545 val = int_string (val_long, 16, 0, 2, 1); break;
546 case 'h':
547 val = int_string (val_long, 16, 0, 4, 1); break;
548 case 'w':
549 val = int_string (val_long, 16, 0, 8, 1); break;
550 case 'g':
551 val = int_string (val_long, 16, 0, 16, 1); break;
552 break;
553 case 'o':
554 val = int_string (val_long, 8, 0, 0, use_c_format); break;
555 default:
556 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
557 }
558 fputs_filtered (val, stream);
559 }
560
561 /* This used to be a macro, but I don't think it is called often enough
562 to merit such treatment. */
563 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
564 arguments to a function, number in a value history, register number, etc.)
565 where the value must not be larger than can fit in an int. */
566
567 int
568 longest_to_int (LONGEST arg)
569 {
570 /* Let the compiler do the work */
571 int rtnval = (int) arg;
572
573 /* Check for overflows or underflows */
574 if (sizeof (LONGEST) > sizeof (int))
575 {
576 if (rtnval != arg)
577 {
578 error (_("Value out of range."));
579 }
580 }
581 return (rtnval);
582 }
583
584 /* Print a floating point value of type TYPE (not always a
585 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
586
587 void
588 print_floating (const gdb_byte *valaddr, struct type *type,
589 struct ui_file *stream)
590 {
591 DOUBLEST doub;
592 int inv;
593 const struct floatformat *fmt = NULL;
594 unsigned len = TYPE_LENGTH (type);
595 enum float_kind kind;
596
597 /* If it is a floating-point, check for obvious problems. */
598 if (TYPE_CODE (type) == TYPE_CODE_FLT)
599 fmt = floatformat_from_type (type);
600 if (fmt != NULL)
601 {
602 kind = floatformat_classify (fmt, valaddr);
603 if (kind == float_nan)
604 {
605 if (floatformat_is_negative (fmt, valaddr))
606 fprintf_filtered (stream, "-");
607 fprintf_filtered (stream, "nan(");
608 fputs_filtered ("0x", stream);
609 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
610 fprintf_filtered (stream, ")");
611 return;
612 }
613 else if (kind == float_infinite)
614 {
615 if (floatformat_is_negative (fmt, valaddr))
616 fputs_filtered ("-", stream);
617 fputs_filtered ("inf", stream);
618 return;
619 }
620 }
621
622 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
623 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
624 needs to be used as that takes care of any necessary type
625 conversions. Such conversions are of course direct to DOUBLEST
626 and disregard any possible target floating point limitations.
627 For instance, a u64 would be converted and displayed exactly on a
628 host with 80 bit DOUBLEST but with loss of information on a host
629 with 64 bit DOUBLEST. */
630
631 doub = unpack_double (type, valaddr, &inv);
632 if (inv)
633 {
634 fprintf_filtered (stream, "<invalid float value>");
635 return;
636 }
637
638 /* FIXME: kettenis/2001-01-20: The following code makes too much
639 assumptions about the host and target floating point format. */
640
641 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
642 not necessarily be a TYPE_CODE_FLT, the below ignores that and
643 instead uses the type's length to determine the precision of the
644 floating-point value being printed. */
645
646 if (len < sizeof (double))
647 fprintf_filtered (stream, "%.9g", (double) doub);
648 else if (len == sizeof (double))
649 fprintf_filtered (stream, "%.17g", (double) doub);
650 else
651 #ifdef PRINTF_HAS_LONG_DOUBLE
652 fprintf_filtered (stream, "%.35Lg", doub);
653 #else
654 /* This at least wins with values that are representable as
655 doubles. */
656 fprintf_filtered (stream, "%.17g", (double) doub);
657 #endif
658 }
659
660 void
661 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
662 struct ui_file *stream)
663 {
664 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
665 char decstr[MAX_DECIMAL_STRING];
666 unsigned len = TYPE_LENGTH (type);
667
668 decimal_to_string (valaddr, len, byte_order, decstr);
669 fputs_filtered (decstr, stream);
670 return;
671 }
672
673 void
674 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
675 unsigned len, enum bfd_endian byte_order)
676 {
677
678 #define BITS_IN_BYTES 8
679
680 const gdb_byte *p;
681 unsigned int i;
682 int b;
683
684 /* Declared "int" so it will be signed.
685 * This ensures that right shift will shift in zeros.
686 */
687 const int mask = 0x080;
688
689 /* FIXME: We should be not printing leading zeroes in most cases. */
690
691 if (byte_order == BFD_ENDIAN_BIG)
692 {
693 for (p = valaddr;
694 p < valaddr + len;
695 p++)
696 {
697 /* Every byte has 8 binary characters; peel off
698 * and print from the MSB end.
699 */
700 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
701 {
702 if (*p & (mask >> i))
703 b = 1;
704 else
705 b = 0;
706
707 fprintf_filtered (stream, "%1d", b);
708 }
709 }
710 }
711 else
712 {
713 for (p = valaddr + len - 1;
714 p >= valaddr;
715 p--)
716 {
717 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
718 {
719 if (*p & (mask >> i))
720 b = 1;
721 else
722 b = 0;
723
724 fprintf_filtered (stream, "%1d", b);
725 }
726 }
727 }
728 }
729
730 /* VALADDR points to an integer of LEN bytes.
731 * Print it in octal on stream or format it in buf.
732 */
733 void
734 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
735 unsigned len, enum bfd_endian byte_order)
736 {
737 const gdb_byte *p;
738 unsigned char octa1, octa2, octa3, carry;
739 int cycle;
740
741 /* FIXME: We should be not printing leading zeroes in most cases. */
742
743
744 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
745 * the extra bits, which cycle every three bytes:
746 *
747 * Byte side: 0 1 2 3
748 * | | | |
749 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
750 *
751 * Octal side: 0 1 carry 3 4 carry ...
752 *
753 * Cycle number: 0 1 2
754 *
755 * But of course we are printing from the high side, so we have to
756 * figure out where in the cycle we are so that we end up with no
757 * left over bits at the end.
758 */
759 #define BITS_IN_OCTAL 3
760 #define HIGH_ZERO 0340
761 #define LOW_ZERO 0016
762 #define CARRY_ZERO 0003
763 #define HIGH_ONE 0200
764 #define MID_ONE 0160
765 #define LOW_ONE 0016
766 #define CARRY_ONE 0001
767 #define HIGH_TWO 0300
768 #define MID_TWO 0070
769 #define LOW_TWO 0007
770
771 /* For 32 we start in cycle 2, with two bits and one bit carry;
772 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
773 */
774 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
775 carry = 0;
776
777 fputs_filtered ("0", stream);
778 if (byte_order == BFD_ENDIAN_BIG)
779 {
780 for (p = valaddr;
781 p < valaddr + len;
782 p++)
783 {
784 switch (cycle)
785 {
786 case 0:
787 /* No carry in, carry out two bits.
788 */
789 octa1 = (HIGH_ZERO & *p) >> 5;
790 octa2 = (LOW_ZERO & *p) >> 2;
791 carry = (CARRY_ZERO & *p);
792 fprintf_filtered (stream, "%o", octa1);
793 fprintf_filtered (stream, "%o", octa2);
794 break;
795
796 case 1:
797 /* Carry in two bits, carry out one bit.
798 */
799 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
800 octa2 = (MID_ONE & *p) >> 4;
801 octa3 = (LOW_ONE & *p) >> 1;
802 carry = (CARRY_ONE & *p);
803 fprintf_filtered (stream, "%o", octa1);
804 fprintf_filtered (stream, "%o", octa2);
805 fprintf_filtered (stream, "%o", octa3);
806 break;
807
808 case 2:
809 /* Carry in one bit, no carry out.
810 */
811 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
812 octa2 = (MID_TWO & *p) >> 3;
813 octa3 = (LOW_TWO & *p);
814 carry = 0;
815 fprintf_filtered (stream, "%o", octa1);
816 fprintf_filtered (stream, "%o", octa2);
817 fprintf_filtered (stream, "%o", octa3);
818 break;
819
820 default:
821 error (_("Internal error in octal conversion;"));
822 }
823
824 cycle++;
825 cycle = cycle % BITS_IN_OCTAL;
826 }
827 }
828 else
829 {
830 for (p = valaddr + len - 1;
831 p >= valaddr;
832 p--)
833 {
834 switch (cycle)
835 {
836 case 0:
837 /* Carry out, no carry in */
838 octa1 = (HIGH_ZERO & *p) >> 5;
839 octa2 = (LOW_ZERO & *p) >> 2;
840 carry = (CARRY_ZERO & *p);
841 fprintf_filtered (stream, "%o", octa1);
842 fprintf_filtered (stream, "%o", octa2);
843 break;
844
845 case 1:
846 /* Carry in, carry out */
847 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
848 octa2 = (MID_ONE & *p) >> 4;
849 octa3 = (LOW_ONE & *p) >> 1;
850 carry = (CARRY_ONE & *p);
851 fprintf_filtered (stream, "%o", octa1);
852 fprintf_filtered (stream, "%o", octa2);
853 fprintf_filtered (stream, "%o", octa3);
854 break;
855
856 case 2:
857 /* Carry in, no carry out */
858 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
859 octa2 = (MID_TWO & *p) >> 3;
860 octa3 = (LOW_TWO & *p);
861 carry = 0;
862 fprintf_filtered (stream, "%o", octa1);
863 fprintf_filtered (stream, "%o", octa2);
864 fprintf_filtered (stream, "%o", octa3);
865 break;
866
867 default:
868 error (_("Internal error in octal conversion;"));
869 }
870
871 cycle++;
872 cycle = cycle % BITS_IN_OCTAL;
873 }
874 }
875
876 }
877
878 /* VALADDR points to an integer of LEN bytes.
879 * Print it in decimal on stream or format it in buf.
880 */
881 void
882 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
883 unsigned len, enum bfd_endian byte_order)
884 {
885 #define TEN 10
886 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
887 #define CARRY_LEFT( x ) ((x) % TEN)
888 #define SHIFT( x ) ((x) << 4)
889 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
890 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
891
892 const gdb_byte *p;
893 unsigned char *digits;
894 int carry;
895 int decimal_len;
896 int i, j, decimal_digits;
897 int dummy;
898 int flip;
899
900 /* Base-ten number is less than twice as many digits
901 * as the base 16 number, which is 2 digits per byte.
902 */
903 decimal_len = len * 2 * 2;
904 digits = xmalloc (decimal_len);
905
906 for (i = 0; i < decimal_len; i++)
907 {
908 digits[i] = 0;
909 }
910
911 /* Ok, we have an unknown number of bytes of data to be printed in
912 * decimal.
913 *
914 * Given a hex number (in nibbles) as XYZ, we start by taking X and
915 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
916 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
917 *
918 * The trick is that "digits" holds a base-10 number, but sometimes
919 * the individual digits are > 10.
920 *
921 * Outer loop is per nibble (hex digit) of input, from MSD end to
922 * LSD end.
923 */
924 decimal_digits = 0; /* Number of decimal digits so far */
925 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
926 flip = 0;
927 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
928 {
929 /*
930 * Multiply current base-ten number by 16 in place.
931 * Each digit was between 0 and 9, now is between
932 * 0 and 144.
933 */
934 for (j = 0; j < decimal_digits; j++)
935 {
936 digits[j] = SHIFT (digits[j]);
937 }
938
939 /* Take the next nibble off the input and add it to what
940 * we've got in the LSB position. Bottom 'digit' is now
941 * between 0 and 159.
942 *
943 * "flip" is used to run this loop twice for each byte.
944 */
945 if (flip == 0)
946 {
947 /* Take top nibble.
948 */
949 digits[0] += HIGH_NIBBLE (*p);
950 flip = 1;
951 }
952 else
953 {
954 /* Take low nibble and bump our pointer "p".
955 */
956 digits[0] += LOW_NIBBLE (*p);
957 if (byte_order == BFD_ENDIAN_BIG)
958 p++;
959 else
960 p--;
961 flip = 0;
962 }
963
964 /* Re-decimalize. We have to do this often enough
965 * that we don't overflow, but once per nibble is
966 * overkill. Easier this way, though. Note that the
967 * carry is often larger than 10 (e.g. max initial
968 * carry out of lowest nibble is 15, could bubble all
969 * the way up greater than 10). So we have to do
970 * the carrying beyond the last current digit.
971 */
972 carry = 0;
973 for (j = 0; j < decimal_len - 1; j++)
974 {
975 digits[j] += carry;
976
977 /* "/" won't handle an unsigned char with
978 * a value that if signed would be negative.
979 * So extend to longword int via "dummy".
980 */
981 dummy = digits[j];
982 carry = CARRY_OUT (dummy);
983 digits[j] = CARRY_LEFT (dummy);
984
985 if (j >= decimal_digits && carry == 0)
986 {
987 /*
988 * All higher digits are 0 and we
989 * no longer have a carry.
990 *
991 * Note: "j" is 0-based, "decimal_digits" is
992 * 1-based.
993 */
994 decimal_digits = j + 1;
995 break;
996 }
997 }
998 }
999
1000 /* Ok, now "digits" is the decimal representation, with
1001 * the "decimal_digits" actual digits. Print!
1002 */
1003 for (i = decimal_digits - 1; i >= 0; i--)
1004 {
1005 fprintf_filtered (stream, "%1d", digits[i]);
1006 }
1007 xfree (digits);
1008 }
1009
1010 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1011
1012 void
1013 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1014 unsigned len, enum bfd_endian byte_order)
1015 {
1016 const gdb_byte *p;
1017
1018 /* FIXME: We should be not printing leading zeroes in most cases. */
1019
1020 fputs_filtered ("0x", stream);
1021 if (byte_order == BFD_ENDIAN_BIG)
1022 {
1023 for (p = valaddr;
1024 p < valaddr + len;
1025 p++)
1026 {
1027 fprintf_filtered (stream, "%02x", *p);
1028 }
1029 }
1030 else
1031 {
1032 for (p = valaddr + len - 1;
1033 p >= valaddr;
1034 p--)
1035 {
1036 fprintf_filtered (stream, "%02x", *p);
1037 }
1038 }
1039 }
1040
1041 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
1042 Omit any leading zero chars. */
1043
1044 void
1045 print_char_chars (struct ui_file *stream, struct type *type,
1046 const gdb_byte *valaddr,
1047 unsigned len, enum bfd_endian byte_order)
1048 {
1049 const gdb_byte *p;
1050
1051 if (byte_order == BFD_ENDIAN_BIG)
1052 {
1053 p = valaddr;
1054 while (p < valaddr + len - 1 && *p == 0)
1055 ++p;
1056
1057 while (p < valaddr + len)
1058 {
1059 LA_EMIT_CHAR (*p, type, stream, '\'');
1060 ++p;
1061 }
1062 }
1063 else
1064 {
1065 p = valaddr + len - 1;
1066 while (p > valaddr && *p == 0)
1067 --p;
1068
1069 while (p >= valaddr)
1070 {
1071 LA_EMIT_CHAR (*p, type, stream, '\'');
1072 --p;
1073 }
1074 }
1075 }
1076
1077 /* Print on STREAM using the given OPTIONS the index for the element
1078 at INDEX of an array whose index type is INDEX_TYPE. */
1079
1080 void
1081 maybe_print_array_index (struct type *index_type, LONGEST index,
1082 struct ui_file *stream,
1083 const struct value_print_options *options)
1084 {
1085 struct value *index_value;
1086
1087 if (!options->print_array_indexes)
1088 return;
1089
1090 index_value = value_from_longest (index_type, index);
1091
1092 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1093 }
1094
1095 /* Called by various <lang>_val_print routines to print elements of an
1096 array in the form "<elem1>, <elem2>, <elem3>, ...".
1097
1098 (FIXME?) Assumes array element separator is a comma, which is correct
1099 for all languages currently handled.
1100 (FIXME?) Some languages have a notation for repeated array elements,
1101 perhaps we should try to use that notation when appropriate.
1102 */
1103
1104 void
1105 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1106 CORE_ADDR address, struct ui_file *stream,
1107 int recurse,
1108 const struct value *val,
1109 const struct value_print_options *options,
1110 unsigned int i)
1111 {
1112 unsigned int things_printed = 0;
1113 unsigned len;
1114 struct type *elttype, *index_type;
1115 unsigned eltlen;
1116 /* Position of the array element we are examining to see
1117 whether it is repeated. */
1118 unsigned int rep1;
1119 /* Number of repetitions we have detected so far. */
1120 unsigned int reps;
1121 LONGEST low_bound, high_bound;
1122
1123 elttype = TYPE_TARGET_TYPE (type);
1124 eltlen = TYPE_LENGTH (check_typedef (elttype));
1125 index_type = TYPE_INDEX_TYPE (type);
1126
1127 if (get_array_bounds (type, &low_bound, &high_bound))
1128 {
1129 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1130 But we have to be a little extra careful, because some languages
1131 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1132 empty arrays. In that situation, the array length is just zero,
1133 not negative! */
1134 if (low_bound > high_bound)
1135 len = 0;
1136 else
1137 len = high_bound - low_bound + 1;
1138 }
1139 else
1140 {
1141 warning (_("unable to get bounds of array, assuming null array"));
1142 low_bound = 0;
1143 len = 0;
1144 }
1145
1146 annotate_array_section_begin (i, elttype);
1147
1148 for (; i < len && things_printed < options->print_max; i++)
1149 {
1150 if (i != 0)
1151 {
1152 if (options->prettyprint_arrays)
1153 {
1154 fprintf_filtered (stream, ",\n");
1155 print_spaces_filtered (2 + 2 * recurse, stream);
1156 }
1157 else
1158 {
1159 fprintf_filtered (stream, ", ");
1160 }
1161 }
1162 wrap_here (n_spaces (2 + 2 * recurse));
1163 maybe_print_array_index (index_type, i + low_bound,
1164 stream, options);
1165
1166 rep1 = i + 1;
1167 reps = 1;
1168 while ((rep1 < len) &&
1169 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1170 {
1171 ++reps;
1172 ++rep1;
1173 }
1174
1175 if (reps > options->repeat_count_threshold)
1176 {
1177 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1178 stream, recurse + 1, val, options, current_language);
1179 annotate_elt_rep (reps);
1180 fprintf_filtered (stream, " <repeats %u times>", reps);
1181 annotate_elt_rep_end ();
1182
1183 i = rep1 - 1;
1184 things_printed += options->repeat_count_threshold;
1185 }
1186 else
1187 {
1188 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1189 stream, recurse + 1, val, options, current_language);
1190 annotate_elt ();
1191 things_printed++;
1192 }
1193 }
1194 annotate_array_section_end ();
1195 if (i < len)
1196 {
1197 fprintf_filtered (stream, "...");
1198 }
1199 }
1200
1201 /* Read LEN bytes of target memory at address MEMADDR, placing the
1202 results in GDB's memory at MYADDR. Returns a count of the bytes
1203 actually read, and optionally an errno value in the location
1204 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1205
1206 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1207 function be eliminated. */
1208
1209 static int
1210 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1211 {
1212 int nread; /* Number of bytes actually read. */
1213 int errcode; /* Error from last read. */
1214
1215 /* First try a complete read. */
1216 errcode = target_read_memory (memaddr, myaddr, len);
1217 if (errcode == 0)
1218 {
1219 /* Got it all. */
1220 nread = len;
1221 }
1222 else
1223 {
1224 /* Loop, reading one byte at a time until we get as much as we can. */
1225 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1226 {
1227 errcode = target_read_memory (memaddr++, myaddr++, 1);
1228 }
1229 /* If an error, the last read was unsuccessful, so adjust count. */
1230 if (errcode != 0)
1231 {
1232 nread--;
1233 }
1234 }
1235 if (errnoptr != NULL)
1236 {
1237 *errnoptr = errcode;
1238 }
1239 return (nread);
1240 }
1241
1242 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1243 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1244 allocated buffer containing the string, which the caller is responsible to
1245 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1246 success, or errno on failure.
1247
1248 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1249 the middle or end of the string). If LEN is -1, stops at the first
1250 null character (not necessarily the first null byte) up to a maximum
1251 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1252 characters as possible from the string.
1253
1254 Unless an exception is thrown, BUFFER will always be allocated, even on
1255 failure. In this case, some characters might have been read before the
1256 failure happened. Check BYTES_READ to recognize this situation.
1257
1258 Note: There was a FIXME asking to make this code use target_read_string,
1259 but this function is more general (can read past null characters, up to
1260 given LEN). Besides, it is used much more often than target_read_string
1261 so it is more tested. Perhaps callers of target_read_string should use
1262 this function instead? */
1263
1264 int
1265 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1266 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1267 {
1268 int found_nul; /* Non-zero if we found the nul char. */
1269 int errcode; /* Errno returned from bad reads. */
1270 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1271 unsigned int chunksize; /* Size of each fetch, in chars. */
1272 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1273 gdb_byte *limit; /* First location past end of fetch buffer. */
1274 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1275
1276 /* Decide how large of chunks to try to read in one operation. This
1277 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1278 so we might as well read them all in one operation. If LEN is -1, we
1279 are looking for a NUL terminator to end the fetching, so we might as
1280 well read in blocks that are large enough to be efficient, but not so
1281 large as to be slow if fetchlimit happens to be large. So we choose the
1282 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1283 200 is way too big for remote debugging over a serial line. */
1284
1285 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1286
1287 /* Loop until we either have all the characters, or we encounter
1288 some error, such as bumping into the end of the address space. */
1289
1290 found_nul = 0;
1291 *buffer = NULL;
1292
1293 old_chain = make_cleanup (free_current_contents, buffer);
1294
1295 if (len > 0)
1296 {
1297 *buffer = (gdb_byte *) xmalloc (len * width);
1298 bufptr = *buffer;
1299
1300 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1301 / width;
1302 addr += nfetch * width;
1303 bufptr += nfetch * width;
1304 }
1305 else if (len == -1)
1306 {
1307 unsigned long bufsize = 0;
1308
1309 do
1310 {
1311 QUIT;
1312 nfetch = min (chunksize, fetchlimit - bufsize);
1313
1314 if (*buffer == NULL)
1315 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1316 else
1317 *buffer = (gdb_byte *) xrealloc (*buffer,
1318 (nfetch + bufsize) * width);
1319
1320 bufptr = *buffer + bufsize * width;
1321 bufsize += nfetch;
1322
1323 /* Read as much as we can. */
1324 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1325 / width;
1326
1327 /* Scan this chunk for the null character that terminates the string
1328 to print. If found, we don't need to fetch any more. Note
1329 that bufptr is explicitly left pointing at the next character
1330 after the null character, or at the next character after the end
1331 of the buffer. */
1332
1333 limit = bufptr + nfetch * width;
1334 while (bufptr < limit)
1335 {
1336 unsigned long c;
1337
1338 c = extract_unsigned_integer (bufptr, width, byte_order);
1339 addr += width;
1340 bufptr += width;
1341 if (c == 0)
1342 {
1343 /* We don't care about any error which happened after
1344 the NUL terminator. */
1345 errcode = 0;
1346 found_nul = 1;
1347 break;
1348 }
1349 }
1350 }
1351 while (errcode == 0 /* no error */
1352 && bufptr - *buffer < fetchlimit * width /* no overrun */
1353 && !found_nul); /* haven't found NUL yet */
1354 }
1355 else
1356 { /* Length of string is really 0! */
1357 /* We always allocate *buffer. */
1358 *buffer = bufptr = xmalloc (1);
1359 errcode = 0;
1360 }
1361
1362 /* bufptr and addr now point immediately beyond the last byte which we
1363 consider part of the string (including a '\0' which ends the string). */
1364 *bytes_read = bufptr - *buffer;
1365
1366 QUIT;
1367
1368 discard_cleanups (old_chain);
1369
1370 return errcode;
1371 }
1372
1373 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1374 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1375 stops at the first null byte, otherwise printing proceeds (including null
1376 bytes) until either print_max or LEN characters have been printed,
1377 whichever is smaller. ENCODING is the name of the string's
1378 encoding. It can be NULL, in which case the target encoding is
1379 assumed. */
1380
1381 int
1382 val_print_string (struct type *elttype, const char *encoding,
1383 CORE_ADDR addr, int len,
1384 struct ui_file *stream,
1385 const struct value_print_options *options)
1386 {
1387 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1388 int errcode; /* Errno returned from bad reads. */
1389 int found_nul; /* Non-zero if we found the nul char */
1390 unsigned int fetchlimit; /* Maximum number of chars to print. */
1391 int bytes_read;
1392 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1393 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1394 struct gdbarch *gdbarch = get_type_arch (elttype);
1395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1396 int width = TYPE_LENGTH (elttype);
1397
1398 /* First we need to figure out the limit on the number of characters we are
1399 going to attempt to fetch and print. This is actually pretty simple. If
1400 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1401 LEN is -1, then the limit is print_max. This is true regardless of
1402 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1403 because finding the null byte (or available memory) is what actually
1404 limits the fetch. */
1405
1406 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1407
1408 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1409 &buffer, &bytes_read);
1410 old_chain = make_cleanup (xfree, buffer);
1411
1412 addr += bytes_read;
1413
1414 /* We now have either successfully filled the buffer to fetchlimit, or
1415 terminated early due to an error or finding a null char when LEN is -1. */
1416
1417 /* Determine found_nul by looking at the last character read. */
1418 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1419 byte_order) == 0;
1420 if (len == -1 && !found_nul)
1421 {
1422 gdb_byte *peekbuf;
1423
1424 /* We didn't find a NUL terminator we were looking for. Attempt
1425 to peek at the next character. If not successful, or it is not
1426 a null byte, then force ellipsis to be printed. */
1427
1428 peekbuf = (gdb_byte *) alloca (width);
1429
1430 if (target_read_memory (addr, peekbuf, width) == 0
1431 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1432 force_ellipsis = 1;
1433 }
1434 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1435 {
1436 /* Getting an error when we have a requested length, or fetching less
1437 than the number of characters actually requested, always make us
1438 print ellipsis. */
1439 force_ellipsis = 1;
1440 }
1441
1442 /* If we get an error before fetching anything, don't print a string.
1443 But if we fetch something and then get an error, print the string
1444 and then the error message. */
1445 if (errcode == 0 || bytes_read > 0)
1446 {
1447 if (options->addressprint)
1448 {
1449 fputs_filtered (" ", stream);
1450 }
1451 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1452 encoding, force_ellipsis, options);
1453 }
1454
1455 if (errcode != 0)
1456 {
1457 if (errcode == EIO)
1458 {
1459 fprintf_filtered (stream, " <Address ");
1460 fputs_filtered (paddress (gdbarch, addr), stream);
1461 fprintf_filtered (stream, " out of bounds>");
1462 }
1463 else
1464 {
1465 fprintf_filtered (stream, " <Error reading address ");
1466 fputs_filtered (paddress (gdbarch, addr), stream);
1467 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1468 }
1469 }
1470
1471 gdb_flush (stream);
1472 do_cleanups (old_chain);
1473
1474 return (bytes_read / width);
1475 }
1476 \f
1477
1478 /* The 'set input-radix' command writes to this auxiliary variable.
1479 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1480 it is left unchanged. */
1481
1482 static unsigned input_radix_1 = 10;
1483
1484 /* Validate an input or output radix setting, and make sure the user
1485 knows what they really did here. Radix setting is confusing, e.g.
1486 setting the input radix to "10" never changes it! */
1487
1488 static void
1489 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1490 {
1491 set_input_radix_1 (from_tty, input_radix_1);
1492 }
1493
1494 static void
1495 set_input_radix_1 (int from_tty, unsigned radix)
1496 {
1497 /* We don't currently disallow any input radix except 0 or 1, which don't
1498 make any mathematical sense. In theory, we can deal with any input
1499 radix greater than 1, even if we don't have unique digits for every
1500 value from 0 to radix-1, but in practice we lose on large radix values.
1501 We should either fix the lossage or restrict the radix range more.
1502 (FIXME). */
1503
1504 if (radix < 2)
1505 {
1506 input_radix_1 = input_radix;
1507 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1508 radix);
1509 }
1510 input_radix_1 = input_radix = radix;
1511 if (from_tty)
1512 {
1513 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1514 radix, radix, radix);
1515 }
1516 }
1517
1518 /* The 'set output-radix' command writes to this auxiliary variable.
1519 If the requested radix is valid, OUTPUT_RADIX is updated,
1520 otherwise, it is left unchanged. */
1521
1522 static unsigned output_radix_1 = 10;
1523
1524 static void
1525 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1526 {
1527 set_output_radix_1 (from_tty, output_radix_1);
1528 }
1529
1530 static void
1531 set_output_radix_1 (int from_tty, unsigned radix)
1532 {
1533 /* Validate the radix and disallow ones that we aren't prepared to
1534 handle correctly, leaving the radix unchanged. */
1535 switch (radix)
1536 {
1537 case 16:
1538 user_print_options.output_format = 'x'; /* hex */
1539 break;
1540 case 10:
1541 user_print_options.output_format = 0; /* decimal */
1542 break;
1543 case 8:
1544 user_print_options.output_format = 'o'; /* octal */
1545 break;
1546 default:
1547 output_radix_1 = output_radix;
1548 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1549 radix);
1550 }
1551 output_radix_1 = output_radix = radix;
1552 if (from_tty)
1553 {
1554 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1555 radix, radix, radix);
1556 }
1557 }
1558
1559 /* Set both the input and output radix at once. Try to set the output radix
1560 first, since it has the most restrictive range. An radix that is valid as
1561 an output radix is also valid as an input radix.
1562
1563 It may be useful to have an unusual input radix. If the user wishes to
1564 set an input radix that is not valid as an output radix, he needs to use
1565 the 'set input-radix' command. */
1566
1567 static void
1568 set_radix (char *arg, int from_tty)
1569 {
1570 unsigned radix;
1571
1572 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1573 set_output_radix_1 (0, radix);
1574 set_input_radix_1 (0, radix);
1575 if (from_tty)
1576 {
1577 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1578 radix, radix, radix);
1579 }
1580 }
1581
1582 /* Show both the input and output radices. */
1583
1584 static void
1585 show_radix (char *arg, int from_tty)
1586 {
1587 if (from_tty)
1588 {
1589 if (input_radix == output_radix)
1590 {
1591 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1592 input_radix, input_radix, input_radix);
1593 }
1594 else
1595 {
1596 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1597 input_radix, input_radix, input_radix);
1598 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1599 output_radix, output_radix, output_radix);
1600 }
1601 }
1602 }
1603 \f
1604
1605 static void
1606 set_print (char *arg, int from_tty)
1607 {
1608 printf_unfiltered (
1609 "\"set print\" must be followed by the name of a print subcommand.\n");
1610 help_list (setprintlist, "set print ", -1, gdb_stdout);
1611 }
1612
1613 static void
1614 show_print (char *args, int from_tty)
1615 {
1616 cmd_show_list (showprintlist, from_tty, "");
1617 }
1618 \f
1619 void
1620 _initialize_valprint (void)
1621 {
1622 add_prefix_cmd ("print", no_class, set_print,
1623 _("Generic command for setting how things print."),
1624 &setprintlist, "set print ", 0, &setlist);
1625 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1626 /* prefer set print to set prompt */
1627 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1628
1629 add_prefix_cmd ("print", no_class, show_print,
1630 _("Generic command for showing print settings."),
1631 &showprintlist, "show print ", 0, &showlist);
1632 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1633 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1634
1635 add_setshow_uinteger_cmd ("elements", no_class,
1636 &user_print_options.print_max, _("\
1637 Set limit on string chars or array elements to print."), _("\
1638 Show limit on string chars or array elements to print."), _("\
1639 \"set print elements 0\" causes there to be no limit."),
1640 NULL,
1641 show_print_max,
1642 &setprintlist, &showprintlist);
1643
1644 add_setshow_boolean_cmd ("null-stop", no_class,
1645 &user_print_options.stop_print_at_null, _("\
1646 Set printing of char arrays to stop at first null char."), _("\
1647 Show printing of char arrays to stop at first null char."), NULL,
1648 NULL,
1649 show_stop_print_at_null,
1650 &setprintlist, &showprintlist);
1651
1652 add_setshow_uinteger_cmd ("repeats", no_class,
1653 &user_print_options.repeat_count_threshold, _("\
1654 Set threshold for repeated print elements."), _("\
1655 Show threshold for repeated print elements."), _("\
1656 \"set print repeats 0\" causes all elements to be individually printed."),
1657 NULL,
1658 show_repeat_count_threshold,
1659 &setprintlist, &showprintlist);
1660
1661 add_setshow_boolean_cmd ("pretty", class_support,
1662 &user_print_options.prettyprint_structs, _("\
1663 Set prettyprinting of structures."), _("\
1664 Show prettyprinting of structures."), NULL,
1665 NULL,
1666 show_prettyprint_structs,
1667 &setprintlist, &showprintlist);
1668
1669 add_setshow_boolean_cmd ("union", class_support,
1670 &user_print_options.unionprint, _("\
1671 Set printing of unions interior to structures."), _("\
1672 Show printing of unions interior to structures."), NULL,
1673 NULL,
1674 show_unionprint,
1675 &setprintlist, &showprintlist);
1676
1677 add_setshow_boolean_cmd ("array", class_support,
1678 &user_print_options.prettyprint_arrays, _("\
1679 Set prettyprinting of arrays."), _("\
1680 Show prettyprinting of arrays."), NULL,
1681 NULL,
1682 show_prettyprint_arrays,
1683 &setprintlist, &showprintlist);
1684
1685 add_setshow_boolean_cmd ("address", class_support,
1686 &user_print_options.addressprint, _("\
1687 Set printing of addresses."), _("\
1688 Show printing of addresses."), NULL,
1689 NULL,
1690 show_addressprint,
1691 &setprintlist, &showprintlist);
1692
1693 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1694 _("\
1695 Set default input radix for entering numbers."), _("\
1696 Show default input radix for entering numbers."), NULL,
1697 set_input_radix,
1698 show_input_radix,
1699 &setlist, &showlist);
1700
1701 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1702 _("\
1703 Set default output radix for printing of values."), _("\
1704 Show default output radix for printing of values."), NULL,
1705 set_output_radix,
1706 show_output_radix,
1707 &setlist, &showlist);
1708
1709 /* The "set radix" and "show radix" commands are special in that
1710 they are like normal set and show commands but allow two normally
1711 independent variables to be either set or shown with a single
1712 command. So the usual deprecated_add_set_cmd() and [deleted]
1713 add_show_from_set() commands aren't really appropriate. */
1714 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1715 longer true - show can display anything. */
1716 add_cmd ("radix", class_support, set_radix, _("\
1717 Set default input and output number radices.\n\
1718 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1719 Without an argument, sets both radices back to the default value of 10."),
1720 &setlist);
1721 add_cmd ("radix", class_support, show_radix, _("\
1722 Show the default input and output number radices.\n\
1723 Use 'show input-radix' or 'show output-radix' to independently show each."),
1724 &showlist);
1725
1726 add_setshow_boolean_cmd ("array-indexes", class_support,
1727 &user_print_options.print_array_indexes, _("\
1728 Set printing of array indexes."), _("\
1729 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1730 &setprintlist, &showprintlist);
1731 }