]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
PR python/11948:
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
122 value);
123 }
124
125
126 /* Default input and output radixes, and output format letter. */
127
128 unsigned input_radix = 10;
129 static void
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
135 value);
136 }
137
138 unsigned output_radix = 10;
139 static void
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
145 value);
146 }
147
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
151 static void
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156 }
157
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
162 static void
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168 }
169
170 /* If nonzero, stops printing of char arrays at first null. */
171
172 static void
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179 }
180
181 /* Controls pretty printing of structures. */
182
183 static void
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188 }
189
190 /* Controls pretty printing of arrays. */
191
192 static void
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197 }
198
199 /* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
202 static void
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
208 value);
209 }
210
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
212
213 static void
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218 }
219 \f
220
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225 static int
226 scalar_type_p (struct type *type)
227 {
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246 }
247
248 /* Helper function to check the validity of some bits of a value.
249
250 If TYPE represents some aggregate type (e.g., a structure), return 1.
251
252 Otherwise, any of the bytes starting at OFFSET and extending for
253 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
254 return 0. The checking is done using FUNCS.
255
256 Otherwise, return 1. */
257
258 static int
259 valprint_check_validity (struct ui_file *stream,
260 struct type *type,
261 int offset,
262 const struct value *val)
263 {
264 CHECK_TYPEDEF (type);
265
266 if (TYPE_CODE (type) != TYPE_CODE_UNION
267 && TYPE_CODE (type) != TYPE_CODE_STRUCT
268 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
269 {
270 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
271 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
272 {
273 fprintf_filtered (stream, _("<value optimized out>"));
274 return 0;
275 }
276 }
277
278 return 1;
279 }
280
281 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
282 (within GDB), which came from the inferior at address ADDRESS, onto
283 stdio stream STREAM according to OPTIONS.
284
285 If the data are a string pointer, returns the number of string characters
286 printed.
287
288 FIXME: The data at VALADDR is in target byte order. If gdb is ever
289 enhanced to be able to debug more than the single target it was compiled
290 for (specific CPU type and thus specific target byte ordering), then
291 either the print routines are going to have to take this into account,
292 or the data is going to have to be passed into here already converted
293 to the host byte ordering, whichever is more convenient. */
294
295
296 int
297 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
298 CORE_ADDR address, struct ui_file *stream, int recurse,
299 const struct value *val,
300 const struct value_print_options *options,
301 const struct language_defn *language)
302 {
303 volatile struct gdb_exception except;
304 int ret = 0;
305 struct value_print_options local_opts = *options;
306 struct type *real_type = check_typedef (type);
307
308 if (local_opts.pretty == Val_pretty_default)
309 local_opts.pretty = (local_opts.prettyprint_structs
310 ? Val_prettyprint : Val_no_prettyprint);
311
312 QUIT;
313
314 /* Ensure that the type is complete and not just a stub. If the type is
315 only a stub and we can't find and substitute its complete type, then
316 print appropriate string and return. */
317
318 if (TYPE_STUB (real_type))
319 {
320 fprintf_filtered (stream, _("<incomplete type>"));
321 gdb_flush (stream);
322 return (0);
323 }
324
325 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
326 return 0;
327
328 if (!options->raw)
329 {
330 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
331 address, stream, recurse,
332 val, options, language);
333 if (ret)
334 return ret;
335 }
336
337 /* Handle summary mode. If the value is a scalar, print it;
338 otherwise, print an ellipsis. */
339 if (options->summary && !scalar_type_p (type))
340 {
341 fprintf_filtered (stream, "...");
342 return 0;
343 }
344
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
347 ret = language->la_val_print (type, valaddr, embedded_offset, address,
348 stream, recurse, val,
349 &local_opts);
350 }
351 if (except.reason < 0)
352 fprintf_filtered (stream, _("<error reading variable>"));
353
354 return ret;
355 }
356
357 /* Check whether the value VAL is printable. Return 1 if it is;
358 return 0 and print an appropriate error message to STREAM if it
359 is not. */
360
361 static int
362 value_check_printable (struct value *val, struct ui_file *stream)
363 {
364 if (val == 0)
365 {
366 fprintf_filtered (stream, _("<address of value unknown>"));
367 return 0;
368 }
369
370 if (value_entirely_optimized_out (val))
371 {
372 fprintf_filtered (stream, _("<value optimized out>"));
373 return 0;
374 }
375
376 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
377 {
378 fprintf_filtered (stream, _("<internal function %s>"),
379 value_internal_function_name (val));
380 return 0;
381 }
382
383 return 1;
384 }
385
386 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
387 to OPTIONS.
388
389 If the data are a string pointer, returns the number of string characters
390 printed.
391
392 This is a preferable interface to val_print, above, because it uses
393 GDB's value mechanism. */
394
395 int
396 common_val_print (struct value *val, struct ui_file *stream, int recurse,
397 const struct value_print_options *options,
398 const struct language_defn *language)
399 {
400 if (!value_check_printable (val, stream))
401 return 0;
402
403 if (language->la_language == language_ada)
404 /* The value might have a dynamic type, which would cause trouble
405 below when trying to extract the value contents (since the value
406 size is determined from the type size which is unknown). So
407 get a fixed representation of our value. */
408 val = ada_to_fixed_value (val);
409
410 return val_print (value_type (val), value_contents_for_printing (val),
411 value_embedded_offset (val), value_address (val),
412 stream, recurse,
413 val, options, language);
414 }
415
416 /* Print on stream STREAM the value VAL according to OPTIONS. The value
417 is printed using the current_language syntax.
418
419 If the object printed is a string pointer, return the number of string
420 bytes printed. */
421
422 int
423 value_print (struct value *val, struct ui_file *stream,
424 const struct value_print_options *options)
425 {
426 if (!value_check_printable (val, stream))
427 return 0;
428
429 if (!options->raw)
430 {
431 int r = apply_val_pretty_printer (value_type (val),
432 value_contents_for_printing (val),
433 value_embedded_offset (val),
434 value_address (val),
435 stream, 0,
436 val, options, current_language);
437
438 if (r)
439 return r;
440 }
441
442 return LA_VALUE_PRINT (val, stream, options);
443 }
444
445 /* Called by various <lang>_val_print routines to print
446 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
447 value. STREAM is where to print the value. */
448
449 void
450 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
451 struct ui_file *stream)
452 {
453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
454
455 if (TYPE_LENGTH (type) > sizeof (LONGEST))
456 {
457 LONGEST val;
458
459 if (TYPE_UNSIGNED (type)
460 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
461 byte_order, &val))
462 {
463 print_longest (stream, 'u', 0, val);
464 }
465 else
466 {
467 /* Signed, or we couldn't turn an unsigned value into a
468 LONGEST. For signed values, one could assume two's
469 complement (a reasonable assumption, I think) and do
470 better than this. */
471 print_hex_chars (stream, (unsigned char *) valaddr,
472 TYPE_LENGTH (type), byte_order);
473 }
474 }
475 else
476 {
477 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
478 unpack_long (type, valaddr));
479 }
480 }
481
482 void
483 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
484 struct ui_file *stream)
485 {
486 ULONGEST val = unpack_long (type, valaddr);
487 int bitpos, nfields = TYPE_NFIELDS (type);
488
489 fputs_filtered ("[ ", stream);
490 for (bitpos = 0; bitpos < nfields; bitpos++)
491 {
492 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
493 && (val & ((ULONGEST)1 << bitpos)))
494 {
495 if (TYPE_FIELD_NAME (type, bitpos))
496 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
497 else
498 fprintf_filtered (stream, "#%d ", bitpos);
499 }
500 }
501 fputs_filtered ("]", stream);
502 }
503
504 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
505 The raison d'etre of this function is to consolidate printing of
506 LONG_LONG's into this one function. The format chars b,h,w,g are
507 from print_scalar_formatted(). Numbers are printed using C
508 format.
509
510 USE_C_FORMAT means to use C format in all cases. Without it,
511 'o' and 'x' format do not include the standard C radix prefix
512 (leading 0 or 0x).
513
514 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
515 and was intended to request formating according to the current
516 language and would be used for most integers that GDB prints. The
517 exceptional cases were things like protocols where the format of
518 the integer is a protocol thing, not a user-visible thing). The
519 parameter remains to preserve the information of what things might
520 be printed with language-specific format, should we ever resurrect
521 that capability. */
522
523 void
524 print_longest (struct ui_file *stream, int format, int use_c_format,
525 LONGEST val_long)
526 {
527 const char *val;
528
529 switch (format)
530 {
531 case 'd':
532 val = int_string (val_long, 10, 1, 0, 1); break;
533 case 'u':
534 val = int_string (val_long, 10, 0, 0, 1); break;
535 case 'x':
536 val = int_string (val_long, 16, 0, 0, use_c_format); break;
537 case 'b':
538 val = int_string (val_long, 16, 0, 2, 1); break;
539 case 'h':
540 val = int_string (val_long, 16, 0, 4, 1); break;
541 case 'w':
542 val = int_string (val_long, 16, 0, 8, 1); break;
543 case 'g':
544 val = int_string (val_long, 16, 0, 16, 1); break;
545 break;
546 case 'o':
547 val = int_string (val_long, 8, 0, 0, use_c_format); break;
548 default:
549 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
550 }
551 fputs_filtered (val, stream);
552 }
553
554 /* This used to be a macro, but I don't think it is called often enough
555 to merit such treatment. */
556 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
557 arguments to a function, number in a value history, register number, etc.)
558 where the value must not be larger than can fit in an int. */
559
560 int
561 longest_to_int (LONGEST arg)
562 {
563 /* Let the compiler do the work */
564 int rtnval = (int) arg;
565
566 /* Check for overflows or underflows */
567 if (sizeof (LONGEST) > sizeof (int))
568 {
569 if (rtnval != arg)
570 {
571 error (_("Value out of range."));
572 }
573 }
574 return (rtnval);
575 }
576
577 /* Print a floating point value of type TYPE (not always a
578 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
579
580 void
581 print_floating (const gdb_byte *valaddr, struct type *type,
582 struct ui_file *stream)
583 {
584 DOUBLEST doub;
585 int inv;
586 const struct floatformat *fmt = NULL;
587 unsigned len = TYPE_LENGTH (type);
588 enum float_kind kind;
589
590 /* If it is a floating-point, check for obvious problems. */
591 if (TYPE_CODE (type) == TYPE_CODE_FLT)
592 fmt = floatformat_from_type (type);
593 if (fmt != NULL)
594 {
595 kind = floatformat_classify (fmt, valaddr);
596 if (kind == float_nan)
597 {
598 if (floatformat_is_negative (fmt, valaddr))
599 fprintf_filtered (stream, "-");
600 fprintf_filtered (stream, "nan(");
601 fputs_filtered ("0x", stream);
602 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
603 fprintf_filtered (stream, ")");
604 return;
605 }
606 else if (kind == float_infinite)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fputs_filtered ("-", stream);
610 fputs_filtered ("inf", stream);
611 return;
612 }
613 }
614
615 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
616 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
617 needs to be used as that takes care of any necessary type
618 conversions. Such conversions are of course direct to DOUBLEST
619 and disregard any possible target floating point limitations.
620 For instance, a u64 would be converted and displayed exactly on a
621 host with 80 bit DOUBLEST but with loss of information on a host
622 with 64 bit DOUBLEST. */
623
624 doub = unpack_double (type, valaddr, &inv);
625 if (inv)
626 {
627 fprintf_filtered (stream, "<invalid float value>");
628 return;
629 }
630
631 /* FIXME: kettenis/2001-01-20: The following code makes too much
632 assumptions about the host and target floating point format. */
633
634 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
635 not necessarily be a TYPE_CODE_FLT, the below ignores that and
636 instead uses the type's length to determine the precision of the
637 floating-point value being printed. */
638
639 if (len < sizeof (double))
640 fprintf_filtered (stream, "%.9g", (double) doub);
641 else if (len == sizeof (double))
642 fprintf_filtered (stream, "%.17g", (double) doub);
643 else
644 #ifdef PRINTF_HAS_LONG_DOUBLE
645 fprintf_filtered (stream, "%.35Lg", doub);
646 #else
647 /* This at least wins with values that are representable as
648 doubles. */
649 fprintf_filtered (stream, "%.17g", (double) doub);
650 #endif
651 }
652
653 void
654 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
655 struct ui_file *stream)
656 {
657 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
658 char decstr[MAX_DECIMAL_STRING];
659 unsigned len = TYPE_LENGTH (type);
660
661 decimal_to_string (valaddr, len, byte_order, decstr);
662 fputs_filtered (decstr, stream);
663 return;
664 }
665
666 void
667 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
668 unsigned len, enum bfd_endian byte_order)
669 {
670
671 #define BITS_IN_BYTES 8
672
673 const gdb_byte *p;
674 unsigned int i;
675 int b;
676
677 /* Declared "int" so it will be signed.
678 * This ensures that right shift will shift in zeros.
679 */
680 const int mask = 0x080;
681
682 /* FIXME: We should be not printing leading zeroes in most cases. */
683
684 if (byte_order == BFD_ENDIAN_BIG)
685 {
686 for (p = valaddr;
687 p < valaddr + len;
688 p++)
689 {
690 /* Every byte has 8 binary characters; peel off
691 * and print from the MSB end.
692 */
693 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
694 {
695 if (*p & (mask >> i))
696 b = 1;
697 else
698 b = 0;
699
700 fprintf_filtered (stream, "%1d", b);
701 }
702 }
703 }
704 else
705 {
706 for (p = valaddr + len - 1;
707 p >= valaddr;
708 p--)
709 {
710 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
711 {
712 if (*p & (mask >> i))
713 b = 1;
714 else
715 b = 0;
716
717 fprintf_filtered (stream, "%1d", b);
718 }
719 }
720 }
721 }
722
723 /* VALADDR points to an integer of LEN bytes.
724 * Print it in octal on stream or format it in buf.
725 */
726 void
727 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
728 unsigned len, enum bfd_endian byte_order)
729 {
730 const gdb_byte *p;
731 unsigned char octa1, octa2, octa3, carry;
732 int cycle;
733
734 /* FIXME: We should be not printing leading zeroes in most cases. */
735
736
737 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
738 * the extra bits, which cycle every three bytes:
739 *
740 * Byte side: 0 1 2 3
741 * | | | |
742 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
743 *
744 * Octal side: 0 1 carry 3 4 carry ...
745 *
746 * Cycle number: 0 1 2
747 *
748 * But of course we are printing from the high side, so we have to
749 * figure out where in the cycle we are so that we end up with no
750 * left over bits at the end.
751 */
752 #define BITS_IN_OCTAL 3
753 #define HIGH_ZERO 0340
754 #define LOW_ZERO 0016
755 #define CARRY_ZERO 0003
756 #define HIGH_ONE 0200
757 #define MID_ONE 0160
758 #define LOW_ONE 0016
759 #define CARRY_ONE 0001
760 #define HIGH_TWO 0300
761 #define MID_TWO 0070
762 #define LOW_TWO 0007
763
764 /* For 32 we start in cycle 2, with two bits and one bit carry;
765 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
766 */
767 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
768 carry = 0;
769
770 fputs_filtered ("0", stream);
771 if (byte_order == BFD_ENDIAN_BIG)
772 {
773 for (p = valaddr;
774 p < valaddr + len;
775 p++)
776 {
777 switch (cycle)
778 {
779 case 0:
780 /* No carry in, carry out two bits.
781 */
782 octa1 = (HIGH_ZERO & *p) >> 5;
783 octa2 = (LOW_ZERO & *p) >> 2;
784 carry = (CARRY_ZERO & *p);
785 fprintf_filtered (stream, "%o", octa1);
786 fprintf_filtered (stream, "%o", octa2);
787 break;
788
789 case 1:
790 /* Carry in two bits, carry out one bit.
791 */
792 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
793 octa2 = (MID_ONE & *p) >> 4;
794 octa3 = (LOW_ONE & *p) >> 1;
795 carry = (CARRY_ONE & *p);
796 fprintf_filtered (stream, "%o", octa1);
797 fprintf_filtered (stream, "%o", octa2);
798 fprintf_filtered (stream, "%o", octa3);
799 break;
800
801 case 2:
802 /* Carry in one bit, no carry out.
803 */
804 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
805 octa2 = (MID_TWO & *p) >> 3;
806 octa3 = (LOW_TWO & *p);
807 carry = 0;
808 fprintf_filtered (stream, "%o", octa1);
809 fprintf_filtered (stream, "%o", octa2);
810 fprintf_filtered (stream, "%o", octa3);
811 break;
812
813 default:
814 error (_("Internal error in octal conversion;"));
815 }
816
817 cycle++;
818 cycle = cycle % BITS_IN_OCTAL;
819 }
820 }
821 else
822 {
823 for (p = valaddr + len - 1;
824 p >= valaddr;
825 p--)
826 {
827 switch (cycle)
828 {
829 case 0:
830 /* Carry out, no carry in */
831 octa1 = (HIGH_ZERO & *p) >> 5;
832 octa2 = (LOW_ZERO & *p) >> 2;
833 carry = (CARRY_ZERO & *p);
834 fprintf_filtered (stream, "%o", octa1);
835 fprintf_filtered (stream, "%o", octa2);
836 break;
837
838 case 1:
839 /* Carry in, carry out */
840 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
841 octa2 = (MID_ONE & *p) >> 4;
842 octa3 = (LOW_ONE & *p) >> 1;
843 carry = (CARRY_ONE & *p);
844 fprintf_filtered (stream, "%o", octa1);
845 fprintf_filtered (stream, "%o", octa2);
846 fprintf_filtered (stream, "%o", octa3);
847 break;
848
849 case 2:
850 /* Carry in, no carry out */
851 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
852 octa2 = (MID_TWO & *p) >> 3;
853 octa3 = (LOW_TWO & *p);
854 carry = 0;
855 fprintf_filtered (stream, "%o", octa1);
856 fprintf_filtered (stream, "%o", octa2);
857 fprintf_filtered (stream, "%o", octa3);
858 break;
859
860 default:
861 error (_("Internal error in octal conversion;"));
862 }
863
864 cycle++;
865 cycle = cycle % BITS_IN_OCTAL;
866 }
867 }
868
869 }
870
871 /* VALADDR points to an integer of LEN bytes.
872 * Print it in decimal on stream or format it in buf.
873 */
874 void
875 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
876 unsigned len, enum bfd_endian byte_order)
877 {
878 #define TEN 10
879 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
880 #define CARRY_LEFT( x ) ((x) % TEN)
881 #define SHIFT( x ) ((x) << 4)
882 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
883 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
884
885 const gdb_byte *p;
886 unsigned char *digits;
887 int carry;
888 int decimal_len;
889 int i, j, decimal_digits;
890 int dummy;
891 int flip;
892
893 /* Base-ten number is less than twice as many digits
894 * as the base 16 number, which is 2 digits per byte.
895 */
896 decimal_len = len * 2 * 2;
897 digits = xmalloc (decimal_len);
898
899 for (i = 0; i < decimal_len; i++)
900 {
901 digits[i] = 0;
902 }
903
904 /* Ok, we have an unknown number of bytes of data to be printed in
905 * decimal.
906 *
907 * Given a hex number (in nibbles) as XYZ, we start by taking X and
908 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
909 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
910 *
911 * The trick is that "digits" holds a base-10 number, but sometimes
912 * the individual digits are > 10.
913 *
914 * Outer loop is per nibble (hex digit) of input, from MSD end to
915 * LSD end.
916 */
917 decimal_digits = 0; /* Number of decimal digits so far */
918 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
919 flip = 0;
920 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
921 {
922 /*
923 * Multiply current base-ten number by 16 in place.
924 * Each digit was between 0 and 9, now is between
925 * 0 and 144.
926 */
927 for (j = 0; j < decimal_digits; j++)
928 {
929 digits[j] = SHIFT (digits[j]);
930 }
931
932 /* Take the next nibble off the input and add it to what
933 * we've got in the LSB position. Bottom 'digit' is now
934 * between 0 and 159.
935 *
936 * "flip" is used to run this loop twice for each byte.
937 */
938 if (flip == 0)
939 {
940 /* Take top nibble.
941 */
942 digits[0] += HIGH_NIBBLE (*p);
943 flip = 1;
944 }
945 else
946 {
947 /* Take low nibble and bump our pointer "p".
948 */
949 digits[0] += LOW_NIBBLE (*p);
950 if (byte_order == BFD_ENDIAN_BIG)
951 p++;
952 else
953 p--;
954 flip = 0;
955 }
956
957 /* Re-decimalize. We have to do this often enough
958 * that we don't overflow, but once per nibble is
959 * overkill. Easier this way, though. Note that the
960 * carry is often larger than 10 (e.g. max initial
961 * carry out of lowest nibble is 15, could bubble all
962 * the way up greater than 10). So we have to do
963 * the carrying beyond the last current digit.
964 */
965 carry = 0;
966 for (j = 0; j < decimal_len - 1; j++)
967 {
968 digits[j] += carry;
969
970 /* "/" won't handle an unsigned char with
971 * a value that if signed would be negative.
972 * So extend to longword int via "dummy".
973 */
974 dummy = digits[j];
975 carry = CARRY_OUT (dummy);
976 digits[j] = CARRY_LEFT (dummy);
977
978 if (j >= decimal_digits && carry == 0)
979 {
980 /*
981 * All higher digits are 0 and we
982 * no longer have a carry.
983 *
984 * Note: "j" is 0-based, "decimal_digits" is
985 * 1-based.
986 */
987 decimal_digits = j + 1;
988 break;
989 }
990 }
991 }
992
993 /* Ok, now "digits" is the decimal representation, with
994 * the "decimal_digits" actual digits. Print!
995 */
996 for (i = decimal_digits - 1; i >= 0; i--)
997 {
998 fprintf_filtered (stream, "%1d", digits[i]);
999 }
1000 xfree (digits);
1001 }
1002
1003 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1004
1005 void
1006 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1007 unsigned len, enum bfd_endian byte_order)
1008 {
1009 const gdb_byte *p;
1010
1011 /* FIXME: We should be not printing leading zeroes in most cases. */
1012
1013 fputs_filtered ("0x", stream);
1014 if (byte_order == BFD_ENDIAN_BIG)
1015 {
1016 for (p = valaddr;
1017 p < valaddr + len;
1018 p++)
1019 {
1020 fprintf_filtered (stream, "%02x", *p);
1021 }
1022 }
1023 else
1024 {
1025 for (p = valaddr + len - 1;
1026 p >= valaddr;
1027 p--)
1028 {
1029 fprintf_filtered (stream, "%02x", *p);
1030 }
1031 }
1032 }
1033
1034 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
1035 Omit any leading zero chars. */
1036
1037 void
1038 print_char_chars (struct ui_file *stream, struct type *type,
1039 const gdb_byte *valaddr,
1040 unsigned len, enum bfd_endian byte_order)
1041 {
1042 const gdb_byte *p;
1043
1044 if (byte_order == BFD_ENDIAN_BIG)
1045 {
1046 p = valaddr;
1047 while (p < valaddr + len - 1 && *p == 0)
1048 ++p;
1049
1050 while (p < valaddr + len)
1051 {
1052 LA_EMIT_CHAR (*p, type, stream, '\'');
1053 ++p;
1054 }
1055 }
1056 else
1057 {
1058 p = valaddr + len - 1;
1059 while (p > valaddr && *p == 0)
1060 --p;
1061
1062 while (p >= valaddr)
1063 {
1064 LA_EMIT_CHAR (*p, type, stream, '\'');
1065 --p;
1066 }
1067 }
1068 }
1069
1070 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1071 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1072 Save the high bound into HIGH_BOUND if not NULL.
1073
1074 Return 1 if the operation was successful. Return zero otherwise,
1075 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1076
1077 We now simply use get_discrete_bounds call to get the values
1078 of the low and high bounds.
1079 get_discrete_bounds can return three values:
1080 1, meaning that index is a range,
1081 0, meaning that index is a discrete type,
1082 or -1 for failure. */
1083
1084 int
1085 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1086 {
1087 struct type *index = TYPE_INDEX_TYPE (type);
1088 LONGEST low = 0;
1089 LONGEST high = 0;
1090 int res;
1091
1092 if (index == NULL)
1093 return 0;
1094
1095 res = get_discrete_bounds (index, &low, &high);
1096 if (res == -1)
1097 return 0;
1098
1099 if (low_bound)
1100 *low_bound = low;
1101
1102 if (high_bound)
1103 *high_bound = high;
1104
1105 return 1;
1106 }
1107
1108 /* Print on STREAM using the given OPTIONS the index for the element
1109 at INDEX of an array whose index type is INDEX_TYPE. */
1110
1111 void
1112 maybe_print_array_index (struct type *index_type, LONGEST index,
1113 struct ui_file *stream,
1114 const struct value_print_options *options)
1115 {
1116 struct value *index_value;
1117
1118 if (!options->print_array_indexes)
1119 return;
1120
1121 index_value = value_from_longest (index_type, index);
1122
1123 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1124 }
1125
1126 /* Called by various <lang>_val_print routines to print elements of an
1127 array in the form "<elem1>, <elem2>, <elem3>, ...".
1128
1129 (FIXME?) Assumes array element separator is a comma, which is correct
1130 for all languages currently handled.
1131 (FIXME?) Some languages have a notation for repeated array elements,
1132 perhaps we should try to use that notation when appropriate.
1133 */
1134
1135 void
1136 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1137 CORE_ADDR address, struct ui_file *stream,
1138 int recurse,
1139 const struct value *val,
1140 const struct value_print_options *options,
1141 unsigned int i)
1142 {
1143 unsigned int things_printed = 0;
1144 unsigned len;
1145 struct type *elttype, *index_type;
1146 unsigned eltlen;
1147 /* Position of the array element we are examining to see
1148 whether it is repeated. */
1149 unsigned int rep1;
1150 /* Number of repetitions we have detected so far. */
1151 unsigned int reps;
1152 LONGEST low_bound_index = 0;
1153
1154 elttype = TYPE_TARGET_TYPE (type);
1155 eltlen = TYPE_LENGTH (check_typedef (elttype));
1156 index_type = TYPE_INDEX_TYPE (type);
1157
1158 /* Compute the number of elements in the array. On most arrays,
1159 the size of its elements is not zero, and so the number of elements
1160 is simply the size of the array divided by the size of the elements.
1161 But for arrays of elements whose size is zero, we need to look at
1162 the bounds. */
1163 if (eltlen != 0)
1164 len = TYPE_LENGTH (type) / eltlen;
1165 else
1166 {
1167 LONGEST low, hi;
1168
1169 if (get_array_bounds (type, &low, &hi))
1170 len = hi - low + 1;
1171 else
1172 {
1173 warning (_("unable to get bounds of array, assuming null array"));
1174 len = 0;
1175 }
1176 }
1177
1178 /* Get the array low bound. This only makes sense if the array
1179 has one or more element in it. */
1180 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1181 {
1182 warning (_("unable to get low bound of array, using zero as default"));
1183 low_bound_index = 0;
1184 }
1185
1186 annotate_array_section_begin (i, elttype);
1187
1188 for (; i < len && things_printed < options->print_max; i++)
1189 {
1190 if (i != 0)
1191 {
1192 if (options->prettyprint_arrays)
1193 {
1194 fprintf_filtered (stream, ",\n");
1195 print_spaces_filtered (2 + 2 * recurse, stream);
1196 }
1197 else
1198 {
1199 fprintf_filtered (stream, ", ");
1200 }
1201 }
1202 wrap_here (n_spaces (2 + 2 * recurse));
1203 maybe_print_array_index (index_type, i + low_bound_index,
1204 stream, options);
1205
1206 rep1 = i + 1;
1207 reps = 1;
1208 while ((rep1 < len) &&
1209 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1210 {
1211 ++reps;
1212 ++rep1;
1213 }
1214
1215 if (reps > options->repeat_count_threshold)
1216 {
1217 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1218 stream, recurse + 1, val, options, current_language);
1219 annotate_elt_rep (reps);
1220 fprintf_filtered (stream, " <repeats %u times>", reps);
1221 annotate_elt_rep_end ();
1222
1223 i = rep1 - 1;
1224 things_printed += options->repeat_count_threshold;
1225 }
1226 else
1227 {
1228 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1229 stream, recurse + 1, val, options, current_language);
1230 annotate_elt ();
1231 things_printed++;
1232 }
1233 }
1234 annotate_array_section_end ();
1235 if (i < len)
1236 {
1237 fprintf_filtered (stream, "...");
1238 }
1239 }
1240
1241 /* Read LEN bytes of target memory at address MEMADDR, placing the
1242 results in GDB's memory at MYADDR. Returns a count of the bytes
1243 actually read, and optionally an errno value in the location
1244 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1245
1246 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1247 function be eliminated. */
1248
1249 static int
1250 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1251 {
1252 int nread; /* Number of bytes actually read. */
1253 int errcode; /* Error from last read. */
1254
1255 /* First try a complete read. */
1256 errcode = target_read_memory (memaddr, myaddr, len);
1257 if (errcode == 0)
1258 {
1259 /* Got it all. */
1260 nread = len;
1261 }
1262 else
1263 {
1264 /* Loop, reading one byte at a time until we get as much as we can. */
1265 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1266 {
1267 errcode = target_read_memory (memaddr++, myaddr++, 1);
1268 }
1269 /* If an error, the last read was unsuccessful, so adjust count. */
1270 if (errcode != 0)
1271 {
1272 nread--;
1273 }
1274 }
1275 if (errnoptr != NULL)
1276 {
1277 *errnoptr = errcode;
1278 }
1279 return (nread);
1280 }
1281
1282 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1283 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1284 allocated buffer containing the string, which the caller is responsible to
1285 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1286 success, or errno on failure.
1287
1288 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1289 the middle or end of the string). If LEN is -1, stops at the first
1290 null character (not necessarily the first null byte) up to a maximum
1291 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1292 characters as possible from the string.
1293
1294 Unless an exception is thrown, BUFFER will always be allocated, even on
1295 failure. In this case, some characters might have been read before the
1296 failure happened. Check BYTES_READ to recognize this situation.
1297
1298 Note: There was a FIXME asking to make this code use target_read_string,
1299 but this function is more general (can read past null characters, up to
1300 given LEN). Besides, it is used much more often than target_read_string
1301 so it is more tested. Perhaps callers of target_read_string should use
1302 this function instead? */
1303
1304 int
1305 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1306 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1307 {
1308 int found_nul; /* Non-zero if we found the nul char. */
1309 int errcode; /* Errno returned from bad reads. */
1310 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1311 unsigned int chunksize; /* Size of each fetch, in chars. */
1312 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1313 gdb_byte *limit; /* First location past end of fetch buffer. */
1314 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1315
1316 /* Decide how large of chunks to try to read in one operation. This
1317 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1318 so we might as well read them all in one operation. If LEN is -1, we
1319 are looking for a NUL terminator to end the fetching, so we might as
1320 well read in blocks that are large enough to be efficient, but not so
1321 large as to be slow if fetchlimit happens to be large. So we choose the
1322 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1323 200 is way too big for remote debugging over a serial line. */
1324
1325 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1326
1327 /* Loop until we either have all the characters, or we encounter
1328 some error, such as bumping into the end of the address space. */
1329
1330 found_nul = 0;
1331 *buffer = NULL;
1332
1333 old_chain = make_cleanup (free_current_contents, buffer);
1334
1335 if (len > 0)
1336 {
1337 *buffer = (gdb_byte *) xmalloc (len * width);
1338 bufptr = *buffer;
1339
1340 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1341 / width;
1342 addr += nfetch * width;
1343 bufptr += nfetch * width;
1344 }
1345 else if (len == -1)
1346 {
1347 unsigned long bufsize = 0;
1348
1349 do
1350 {
1351 QUIT;
1352 nfetch = min (chunksize, fetchlimit - bufsize);
1353
1354 if (*buffer == NULL)
1355 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1356 else
1357 *buffer = (gdb_byte *) xrealloc (*buffer,
1358 (nfetch + bufsize) * width);
1359
1360 bufptr = *buffer + bufsize * width;
1361 bufsize += nfetch;
1362
1363 /* Read as much as we can. */
1364 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1365 / width;
1366
1367 /* Scan this chunk for the null character that terminates the string
1368 to print. If found, we don't need to fetch any more. Note
1369 that bufptr is explicitly left pointing at the next character
1370 after the null character, or at the next character after the end
1371 of the buffer. */
1372
1373 limit = bufptr + nfetch * width;
1374 while (bufptr < limit)
1375 {
1376 unsigned long c;
1377
1378 c = extract_unsigned_integer (bufptr, width, byte_order);
1379 addr += width;
1380 bufptr += width;
1381 if (c == 0)
1382 {
1383 /* We don't care about any error which happened after
1384 the NUL terminator. */
1385 errcode = 0;
1386 found_nul = 1;
1387 break;
1388 }
1389 }
1390 }
1391 while (errcode == 0 /* no error */
1392 && bufptr - *buffer < fetchlimit * width /* no overrun */
1393 && !found_nul); /* haven't found NUL yet */
1394 }
1395 else
1396 { /* Length of string is really 0! */
1397 /* We always allocate *buffer. */
1398 *buffer = bufptr = xmalloc (1);
1399 errcode = 0;
1400 }
1401
1402 /* bufptr and addr now point immediately beyond the last byte which we
1403 consider part of the string (including a '\0' which ends the string). */
1404 *bytes_read = bufptr - *buffer;
1405
1406 QUIT;
1407
1408 discard_cleanups (old_chain);
1409
1410 return errcode;
1411 }
1412
1413 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1414 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1415 stops at the first null byte, otherwise printing proceeds (including null
1416 bytes) until either print_max or LEN characters have been printed,
1417 whichever is smaller. ENCODING is the name of the string's
1418 encoding. It can be NULL, in which case the target encoding is
1419 assumed. */
1420
1421 int
1422 val_print_string (struct type *elttype, const char *encoding,
1423 CORE_ADDR addr, int len,
1424 struct ui_file *stream,
1425 const struct value_print_options *options)
1426 {
1427 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1428 int errcode; /* Errno returned from bad reads. */
1429 int found_nul; /* Non-zero if we found the nul char */
1430 unsigned int fetchlimit; /* Maximum number of chars to print. */
1431 int bytes_read;
1432 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1433 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1434 struct gdbarch *gdbarch = get_type_arch (elttype);
1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1436 int width = TYPE_LENGTH (elttype);
1437
1438 /* First we need to figure out the limit on the number of characters we are
1439 going to attempt to fetch and print. This is actually pretty simple. If
1440 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1441 LEN is -1, then the limit is print_max. This is true regardless of
1442 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1443 because finding the null byte (or available memory) is what actually
1444 limits the fetch. */
1445
1446 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1447
1448 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1449 &buffer, &bytes_read);
1450 old_chain = make_cleanup (xfree, buffer);
1451
1452 addr += bytes_read;
1453
1454 /* We now have either successfully filled the buffer to fetchlimit, or
1455 terminated early due to an error or finding a null char when LEN is -1. */
1456
1457 /* Determine found_nul by looking at the last character read. */
1458 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1459 byte_order) == 0;
1460 if (len == -1 && !found_nul)
1461 {
1462 gdb_byte *peekbuf;
1463
1464 /* We didn't find a NUL terminator we were looking for. Attempt
1465 to peek at the next character. If not successful, or it is not
1466 a null byte, then force ellipsis to be printed. */
1467
1468 peekbuf = (gdb_byte *) alloca (width);
1469
1470 if (target_read_memory (addr, peekbuf, width) == 0
1471 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1472 force_ellipsis = 1;
1473 }
1474 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1475 {
1476 /* Getting an error when we have a requested length, or fetching less
1477 than the number of characters actually requested, always make us
1478 print ellipsis. */
1479 force_ellipsis = 1;
1480 }
1481
1482 /* If we get an error before fetching anything, don't print a string.
1483 But if we fetch something and then get an error, print the string
1484 and then the error message. */
1485 if (errcode == 0 || bytes_read > 0)
1486 {
1487 if (options->addressprint)
1488 {
1489 fputs_filtered (" ", stream);
1490 }
1491 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1492 NULL, force_ellipsis, options);
1493 }
1494
1495 if (errcode != 0)
1496 {
1497 if (errcode == EIO)
1498 {
1499 fprintf_filtered (stream, " <Address ");
1500 fputs_filtered (paddress (gdbarch, addr), stream);
1501 fprintf_filtered (stream, " out of bounds>");
1502 }
1503 else
1504 {
1505 fprintf_filtered (stream, " <Error reading address ");
1506 fputs_filtered (paddress (gdbarch, addr), stream);
1507 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1508 }
1509 }
1510
1511 gdb_flush (stream);
1512 do_cleanups (old_chain);
1513
1514 return (bytes_read / width);
1515 }
1516 \f
1517
1518 /* The 'set input-radix' command writes to this auxiliary variable.
1519 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1520 it is left unchanged. */
1521
1522 static unsigned input_radix_1 = 10;
1523
1524 /* Validate an input or output radix setting, and make sure the user
1525 knows what they really did here. Radix setting is confusing, e.g.
1526 setting the input radix to "10" never changes it! */
1527
1528 static void
1529 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1530 {
1531 set_input_radix_1 (from_tty, input_radix_1);
1532 }
1533
1534 static void
1535 set_input_radix_1 (int from_tty, unsigned radix)
1536 {
1537 /* We don't currently disallow any input radix except 0 or 1, which don't
1538 make any mathematical sense. In theory, we can deal with any input
1539 radix greater than 1, even if we don't have unique digits for every
1540 value from 0 to radix-1, but in practice we lose on large radix values.
1541 We should either fix the lossage or restrict the radix range more.
1542 (FIXME). */
1543
1544 if (radix < 2)
1545 {
1546 input_radix_1 = input_radix;
1547 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1548 radix);
1549 }
1550 input_radix_1 = input_radix = radix;
1551 if (from_tty)
1552 {
1553 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1554 radix, radix, radix);
1555 }
1556 }
1557
1558 /* The 'set output-radix' command writes to this auxiliary variable.
1559 If the requested radix is valid, OUTPUT_RADIX is updated,
1560 otherwise, it is left unchanged. */
1561
1562 static unsigned output_radix_1 = 10;
1563
1564 static void
1565 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1566 {
1567 set_output_radix_1 (from_tty, output_radix_1);
1568 }
1569
1570 static void
1571 set_output_radix_1 (int from_tty, unsigned radix)
1572 {
1573 /* Validate the radix and disallow ones that we aren't prepared to
1574 handle correctly, leaving the radix unchanged. */
1575 switch (radix)
1576 {
1577 case 16:
1578 user_print_options.output_format = 'x'; /* hex */
1579 break;
1580 case 10:
1581 user_print_options.output_format = 0; /* decimal */
1582 break;
1583 case 8:
1584 user_print_options.output_format = 'o'; /* octal */
1585 break;
1586 default:
1587 output_radix_1 = output_radix;
1588 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1589 radix);
1590 }
1591 output_radix_1 = output_radix = radix;
1592 if (from_tty)
1593 {
1594 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1595 radix, radix, radix);
1596 }
1597 }
1598
1599 /* Set both the input and output radix at once. Try to set the output radix
1600 first, since it has the most restrictive range. An radix that is valid as
1601 an output radix is also valid as an input radix.
1602
1603 It may be useful to have an unusual input radix. If the user wishes to
1604 set an input radix that is not valid as an output radix, he needs to use
1605 the 'set input-radix' command. */
1606
1607 static void
1608 set_radix (char *arg, int from_tty)
1609 {
1610 unsigned radix;
1611
1612 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1613 set_output_radix_1 (0, radix);
1614 set_input_radix_1 (0, radix);
1615 if (from_tty)
1616 {
1617 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1618 radix, radix, radix);
1619 }
1620 }
1621
1622 /* Show both the input and output radices. */
1623
1624 static void
1625 show_radix (char *arg, int from_tty)
1626 {
1627 if (from_tty)
1628 {
1629 if (input_radix == output_radix)
1630 {
1631 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1632 input_radix, input_radix, input_radix);
1633 }
1634 else
1635 {
1636 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1637 input_radix, input_radix, input_radix);
1638 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1639 output_radix, output_radix, output_radix);
1640 }
1641 }
1642 }
1643 \f
1644
1645 static void
1646 set_print (char *arg, int from_tty)
1647 {
1648 printf_unfiltered (
1649 "\"set print\" must be followed by the name of a print subcommand.\n");
1650 help_list (setprintlist, "set print ", -1, gdb_stdout);
1651 }
1652
1653 static void
1654 show_print (char *args, int from_tty)
1655 {
1656 cmd_show_list (showprintlist, from_tty, "");
1657 }
1658 \f
1659 void
1660 _initialize_valprint (void)
1661 {
1662 add_prefix_cmd ("print", no_class, set_print,
1663 _("Generic command for setting how things print."),
1664 &setprintlist, "set print ", 0, &setlist);
1665 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1666 /* prefer set print to set prompt */
1667 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1668
1669 add_prefix_cmd ("print", no_class, show_print,
1670 _("Generic command for showing print settings."),
1671 &showprintlist, "show print ", 0, &showlist);
1672 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1673 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1674
1675 add_setshow_uinteger_cmd ("elements", no_class,
1676 &user_print_options.print_max, _("\
1677 Set limit on string chars or array elements to print."), _("\
1678 Show limit on string chars or array elements to print."), _("\
1679 \"set print elements 0\" causes there to be no limit."),
1680 NULL,
1681 show_print_max,
1682 &setprintlist, &showprintlist);
1683
1684 add_setshow_boolean_cmd ("null-stop", no_class,
1685 &user_print_options.stop_print_at_null, _("\
1686 Set printing of char arrays to stop at first null char."), _("\
1687 Show printing of char arrays to stop at first null char."), NULL,
1688 NULL,
1689 show_stop_print_at_null,
1690 &setprintlist, &showprintlist);
1691
1692 add_setshow_uinteger_cmd ("repeats", no_class,
1693 &user_print_options.repeat_count_threshold, _("\
1694 Set threshold for repeated print elements."), _("\
1695 Show threshold for repeated print elements."), _("\
1696 \"set print repeats 0\" causes all elements to be individually printed."),
1697 NULL,
1698 show_repeat_count_threshold,
1699 &setprintlist, &showprintlist);
1700
1701 add_setshow_boolean_cmd ("pretty", class_support,
1702 &user_print_options.prettyprint_structs, _("\
1703 Set prettyprinting of structures."), _("\
1704 Show prettyprinting of structures."), NULL,
1705 NULL,
1706 show_prettyprint_structs,
1707 &setprintlist, &showprintlist);
1708
1709 add_setshow_boolean_cmd ("union", class_support,
1710 &user_print_options.unionprint, _("\
1711 Set printing of unions interior to structures."), _("\
1712 Show printing of unions interior to structures."), NULL,
1713 NULL,
1714 show_unionprint,
1715 &setprintlist, &showprintlist);
1716
1717 add_setshow_boolean_cmd ("array", class_support,
1718 &user_print_options.prettyprint_arrays, _("\
1719 Set prettyprinting of arrays."), _("\
1720 Show prettyprinting of arrays."), NULL,
1721 NULL,
1722 show_prettyprint_arrays,
1723 &setprintlist, &showprintlist);
1724
1725 add_setshow_boolean_cmd ("address", class_support,
1726 &user_print_options.addressprint, _("\
1727 Set printing of addresses."), _("\
1728 Show printing of addresses."), NULL,
1729 NULL,
1730 show_addressprint,
1731 &setprintlist, &showprintlist);
1732
1733 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1734 _("\
1735 Set default input radix for entering numbers."), _("\
1736 Show default input radix for entering numbers."), NULL,
1737 set_input_radix,
1738 show_input_radix,
1739 &setlist, &showlist);
1740
1741 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1742 _("\
1743 Set default output radix for printing of values."), _("\
1744 Show default output radix for printing of values."), NULL,
1745 set_output_radix,
1746 show_output_radix,
1747 &setlist, &showlist);
1748
1749 /* The "set radix" and "show radix" commands are special in that
1750 they are like normal set and show commands but allow two normally
1751 independent variables to be either set or shown with a single
1752 command. So the usual deprecated_add_set_cmd() and [deleted]
1753 add_show_from_set() commands aren't really appropriate. */
1754 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1755 longer true - show can display anything. */
1756 add_cmd ("radix", class_support, set_radix, _("\
1757 Set default input and output number radices.\n\
1758 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1759 Without an argument, sets both radices back to the default value of 10."),
1760 &setlist);
1761 add_cmd ("radix", class_support, show_radix, _("\
1762 Show the default input and output number radices.\n\
1763 Use 'show input-radix' or 'show output-radix' to independently show each."),
1764 &showlist);
1765
1766 add_setshow_boolean_cmd ("array-indexes", class_support,
1767 &user_print_options.print_array_indexes, _("\
1768 Set printing of array indexes."), _("\
1769 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1770 &setprintlist, &showprintlist);
1771 }