]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
2011-01-24 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
123 value);
124 }
125
126
127 /* Default input and output radixes, and output format letter. */
128
129 unsigned input_radix = 10;
130 static void
131 show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
136 value);
137 }
138
139 unsigned output_radix = 10;
140 static void
141 show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
146 value);
147 }
148
149 /* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
152 static void
153 show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157 }
158
159 /* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
163 static void
164 show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169 }
170
171 /* If nonzero, stops printing of char arrays at first null. */
172
173 static void
174 show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
180 value);
181 }
182
183 /* Controls pretty printing of structures. */
184
185 static void
186 show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 }
191
192 /* Controls pretty printing of arrays. */
193
194 static void
195 show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 }
200
201 /* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
204 static void
205 show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, causes machine addresses to be printed in certain contexts. */
214
215 static void
216 show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220 }
221 \f
222
223 /* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227 static int
228 scalar_type_p (struct type *type)
229 {
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248 }
249
250 /* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260 static int
261 valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int offset,
264 const struct value *val)
265 {
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 fprintf_filtered (stream, _("<value optimized out>"));
276 return 0;
277 }
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
285 }
286
287 return 1;
288 }
289
290 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
291 (within GDB), which came from the inferior at address ADDRESS, onto
292 stdio stream STREAM according to OPTIONS.
293
294 If the data are a string pointer, returns the number of string characters
295 printed.
296
297 FIXME: The data at VALADDR is in target byte order. If gdb is ever
298 enhanced to be able to debug more than the single target it was compiled
299 for (specific CPU type and thus specific target byte ordering), then
300 either the print routines are going to have to take this into account,
301 or the data is going to have to be passed into here already converted
302 to the host byte ordering, whichever is more convenient. */
303
304
305 int
306 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
307 CORE_ADDR address, struct ui_file *stream, int recurse,
308 const struct value *val,
309 const struct value_print_options *options,
310 const struct language_defn *language)
311 {
312 volatile struct gdb_exception except;
313 int ret = 0;
314 struct value_print_options local_opts = *options;
315 struct type *real_type = check_typedef (type);
316
317 if (local_opts.pretty == Val_pretty_default)
318 local_opts.pretty = (local_opts.prettyprint_structs
319 ? Val_prettyprint : Val_no_prettyprint);
320
321 QUIT;
322
323 /* Ensure that the type is complete and not just a stub. If the type is
324 only a stub and we can't find and substitute its complete type, then
325 print appropriate string and return. */
326
327 if (TYPE_STUB (real_type))
328 {
329 fprintf_filtered (stream, _("<incomplete type>"));
330 gdb_flush (stream);
331 return (0);
332 }
333
334 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
335 return 0;
336
337 if (!options->raw)
338 {
339 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
340 address, stream, recurse,
341 val, options, language);
342 if (ret)
343 return ret;
344 }
345
346 /* Handle summary mode. If the value is a scalar, print it;
347 otherwise, print an ellipsis. */
348 if (options->summary && !scalar_type_p (type))
349 {
350 fprintf_filtered (stream, "...");
351 return 0;
352 }
353
354 TRY_CATCH (except, RETURN_MASK_ERROR)
355 {
356 ret = language->la_val_print (type, valaddr, embedded_offset, address,
357 stream, recurse, val,
358 &local_opts);
359 }
360 if (except.reason < 0)
361 fprintf_filtered (stream, _("<error reading variable>"));
362
363 return ret;
364 }
365
366 /* Check whether the value VAL is printable. Return 1 if it is;
367 return 0 and print an appropriate error message to STREAM if it
368 is not. */
369
370 static int
371 value_check_printable (struct value *val, struct ui_file *stream)
372 {
373 if (val == 0)
374 {
375 fprintf_filtered (stream, _("<address of value unknown>"));
376 return 0;
377 }
378
379 if (value_entirely_optimized_out (val))
380 {
381 fprintf_filtered (stream, _("<value optimized out>"));
382 return 0;
383 }
384
385 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
386 {
387 fprintf_filtered (stream, _("<internal function %s>"),
388 value_internal_function_name (val));
389 return 0;
390 }
391
392 return 1;
393 }
394
395 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
396 to OPTIONS.
397
398 If the data are a string pointer, returns the number of string characters
399 printed.
400
401 This is a preferable interface to val_print, above, because it uses
402 GDB's value mechanism. */
403
404 int
405 common_val_print (struct value *val, struct ui_file *stream, int recurse,
406 const struct value_print_options *options,
407 const struct language_defn *language)
408 {
409 if (!value_check_printable (val, stream))
410 return 0;
411
412 if (language->la_language == language_ada)
413 /* The value might have a dynamic type, which would cause trouble
414 below when trying to extract the value contents (since the value
415 size is determined from the type size which is unknown). So
416 get a fixed representation of our value. */
417 val = ada_to_fixed_value (val);
418
419 return val_print (value_type (val), value_contents_for_printing (val),
420 value_embedded_offset (val), value_address (val),
421 stream, recurse,
422 val, options, language);
423 }
424
425 /* Print on stream STREAM the value VAL according to OPTIONS. The value
426 is printed using the current_language syntax.
427
428 If the object printed is a string pointer, return the number of string
429 bytes printed. */
430
431 int
432 value_print (struct value *val, struct ui_file *stream,
433 const struct value_print_options *options)
434 {
435 if (!value_check_printable (val, stream))
436 return 0;
437
438 if (!options->raw)
439 {
440 int r = apply_val_pretty_printer (value_type (val),
441 value_contents_for_printing (val),
442 value_embedded_offset (val),
443 value_address (val),
444 stream, 0,
445 val, options, current_language);
446
447 if (r)
448 return r;
449 }
450
451 return LA_VALUE_PRINT (val, stream, options);
452 }
453
454 /* Called by various <lang>_val_print routines to print
455 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
456 value. STREAM is where to print the value. */
457
458 void
459 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
460 struct ui_file *stream)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
463
464 if (TYPE_LENGTH (type) > sizeof (LONGEST))
465 {
466 LONGEST val;
467
468 if (TYPE_UNSIGNED (type)
469 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
470 byte_order, &val))
471 {
472 print_longest (stream, 'u', 0, val);
473 }
474 else
475 {
476 /* Signed, or we couldn't turn an unsigned value into a
477 LONGEST. For signed values, one could assume two's
478 complement (a reasonable assumption, I think) and do
479 better than this. */
480 print_hex_chars (stream, (unsigned char *) valaddr,
481 TYPE_LENGTH (type), byte_order);
482 }
483 }
484 else
485 {
486 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
487 unpack_long (type, valaddr));
488 }
489 }
490
491 void
492 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
493 struct ui_file *stream)
494 {
495 ULONGEST val = unpack_long (type, valaddr);
496 int bitpos, nfields = TYPE_NFIELDS (type);
497
498 fputs_filtered ("[ ", stream);
499 for (bitpos = 0; bitpos < nfields; bitpos++)
500 {
501 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
502 && (val & ((ULONGEST)1 << bitpos)))
503 {
504 if (TYPE_FIELD_NAME (type, bitpos))
505 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
506 else
507 fprintf_filtered (stream, "#%d ", bitpos);
508 }
509 }
510 fputs_filtered ("]", stream);
511 }
512
513 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
514 The raison d'etre of this function is to consolidate printing of
515 LONG_LONG's into this one function. The format chars b,h,w,g are
516 from print_scalar_formatted(). Numbers are printed using C
517 format.
518
519 USE_C_FORMAT means to use C format in all cases. Without it,
520 'o' and 'x' format do not include the standard C radix prefix
521 (leading 0 or 0x).
522
523 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
524 and was intended to request formating according to the current
525 language and would be used for most integers that GDB prints. The
526 exceptional cases were things like protocols where the format of
527 the integer is a protocol thing, not a user-visible thing). The
528 parameter remains to preserve the information of what things might
529 be printed with language-specific format, should we ever resurrect
530 that capability. */
531
532 void
533 print_longest (struct ui_file *stream, int format, int use_c_format,
534 LONGEST val_long)
535 {
536 const char *val;
537
538 switch (format)
539 {
540 case 'd':
541 val = int_string (val_long, 10, 1, 0, 1); break;
542 case 'u':
543 val = int_string (val_long, 10, 0, 0, 1); break;
544 case 'x':
545 val = int_string (val_long, 16, 0, 0, use_c_format); break;
546 case 'b':
547 val = int_string (val_long, 16, 0, 2, 1); break;
548 case 'h':
549 val = int_string (val_long, 16, 0, 4, 1); break;
550 case 'w':
551 val = int_string (val_long, 16, 0, 8, 1); break;
552 case 'g':
553 val = int_string (val_long, 16, 0, 16, 1); break;
554 break;
555 case 'o':
556 val = int_string (val_long, 8, 0, 0, use_c_format); break;
557 default:
558 internal_error (__FILE__, __LINE__,
559 _("failed internal consistency check"));
560 }
561 fputs_filtered (val, stream);
562 }
563
564 /* This used to be a macro, but I don't think it is called often enough
565 to merit such treatment. */
566 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
567 arguments to a function, number in a value history, register number, etc.)
568 where the value must not be larger than can fit in an int. */
569
570 int
571 longest_to_int (LONGEST arg)
572 {
573 /* Let the compiler do the work. */
574 int rtnval = (int) arg;
575
576 /* Check for overflows or underflows. */
577 if (sizeof (LONGEST) > sizeof (int))
578 {
579 if (rtnval != arg)
580 {
581 error (_("Value out of range."));
582 }
583 }
584 return (rtnval);
585 }
586
587 /* Print a floating point value of type TYPE (not always a
588 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
589
590 void
591 print_floating (const gdb_byte *valaddr, struct type *type,
592 struct ui_file *stream)
593 {
594 DOUBLEST doub;
595 int inv;
596 const struct floatformat *fmt = NULL;
597 unsigned len = TYPE_LENGTH (type);
598 enum float_kind kind;
599
600 /* If it is a floating-point, check for obvious problems. */
601 if (TYPE_CODE (type) == TYPE_CODE_FLT)
602 fmt = floatformat_from_type (type);
603 if (fmt != NULL)
604 {
605 kind = floatformat_classify (fmt, valaddr);
606 if (kind == float_nan)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fprintf_filtered (stream, "-");
610 fprintf_filtered (stream, "nan(");
611 fputs_filtered ("0x", stream);
612 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
613 fprintf_filtered (stream, ")");
614 return;
615 }
616 else if (kind == float_infinite)
617 {
618 if (floatformat_is_negative (fmt, valaddr))
619 fputs_filtered ("-", stream);
620 fputs_filtered ("inf", stream);
621 return;
622 }
623 }
624
625 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
626 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
627 needs to be used as that takes care of any necessary type
628 conversions. Such conversions are of course direct to DOUBLEST
629 and disregard any possible target floating point limitations.
630 For instance, a u64 would be converted and displayed exactly on a
631 host with 80 bit DOUBLEST but with loss of information on a host
632 with 64 bit DOUBLEST. */
633
634 doub = unpack_double (type, valaddr, &inv);
635 if (inv)
636 {
637 fprintf_filtered (stream, "<invalid float value>");
638 return;
639 }
640
641 /* FIXME: kettenis/2001-01-20: The following code makes too much
642 assumptions about the host and target floating point format. */
643
644 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
645 not necessarily be a TYPE_CODE_FLT, the below ignores that and
646 instead uses the type's length to determine the precision of the
647 floating-point value being printed. */
648
649 if (len < sizeof (double))
650 fprintf_filtered (stream, "%.9g", (double) doub);
651 else if (len == sizeof (double))
652 fprintf_filtered (stream, "%.17g", (double) doub);
653 else
654 #ifdef PRINTF_HAS_LONG_DOUBLE
655 fprintf_filtered (stream, "%.35Lg", doub);
656 #else
657 /* This at least wins with values that are representable as
658 doubles. */
659 fprintf_filtered (stream, "%.17g", (double) doub);
660 #endif
661 }
662
663 void
664 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
665 struct ui_file *stream)
666 {
667 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
668 char decstr[MAX_DECIMAL_STRING];
669 unsigned len = TYPE_LENGTH (type);
670
671 decimal_to_string (valaddr, len, byte_order, decstr);
672 fputs_filtered (decstr, stream);
673 return;
674 }
675
676 void
677 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
678 unsigned len, enum bfd_endian byte_order)
679 {
680
681 #define BITS_IN_BYTES 8
682
683 const gdb_byte *p;
684 unsigned int i;
685 int b;
686
687 /* Declared "int" so it will be signed.
688 This ensures that right shift will shift in zeros. */
689
690 const int mask = 0x080;
691
692 /* FIXME: We should be not printing leading zeroes in most cases. */
693
694 if (byte_order == BFD_ENDIAN_BIG)
695 {
696 for (p = valaddr;
697 p < valaddr + len;
698 p++)
699 {
700 /* Every byte has 8 binary characters; peel off
701 and print from the MSB end. */
702
703 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
704 {
705 if (*p & (mask >> i))
706 b = 1;
707 else
708 b = 0;
709
710 fprintf_filtered (stream, "%1d", b);
711 }
712 }
713 }
714 else
715 {
716 for (p = valaddr + len - 1;
717 p >= valaddr;
718 p--)
719 {
720 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
721 {
722 if (*p & (mask >> i))
723 b = 1;
724 else
725 b = 0;
726
727 fprintf_filtered (stream, "%1d", b);
728 }
729 }
730 }
731 }
732
733 /* VALADDR points to an integer of LEN bytes.
734 Print it in octal on stream or format it in buf. */
735
736 void
737 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
738 unsigned len, enum bfd_endian byte_order)
739 {
740 const gdb_byte *p;
741 unsigned char octa1, octa2, octa3, carry;
742 int cycle;
743
744 /* FIXME: We should be not printing leading zeroes in most cases. */
745
746
747 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
748 * the extra bits, which cycle every three bytes:
749 *
750 * Byte side: 0 1 2 3
751 * | | | |
752 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
753 *
754 * Octal side: 0 1 carry 3 4 carry ...
755 *
756 * Cycle number: 0 1 2
757 *
758 * But of course we are printing from the high side, so we have to
759 * figure out where in the cycle we are so that we end up with no
760 * left over bits at the end.
761 */
762 #define BITS_IN_OCTAL 3
763 #define HIGH_ZERO 0340
764 #define LOW_ZERO 0016
765 #define CARRY_ZERO 0003
766 #define HIGH_ONE 0200
767 #define MID_ONE 0160
768 #define LOW_ONE 0016
769 #define CARRY_ONE 0001
770 #define HIGH_TWO 0300
771 #define MID_TWO 0070
772 #define LOW_TWO 0007
773
774 /* For 32 we start in cycle 2, with two bits and one bit carry;
775 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
776
777 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
778 carry = 0;
779
780 fputs_filtered ("0", stream);
781 if (byte_order == BFD_ENDIAN_BIG)
782 {
783 for (p = valaddr;
784 p < valaddr + len;
785 p++)
786 {
787 switch (cycle)
788 {
789 case 0:
790 /* No carry in, carry out two bits. */
791
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in two bits, carry out one bit. */
801
802 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
803 octa2 = (MID_ONE & *p) >> 4;
804 octa3 = (LOW_ONE & *p) >> 1;
805 carry = (CARRY_ONE & *p);
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 fprintf_filtered (stream, "%o", octa3);
809 break;
810
811 case 2:
812 /* Carry in one bit, no carry out. */
813
814 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
815 octa2 = (MID_TWO & *p) >> 3;
816 octa3 = (LOW_TWO & *p);
817 carry = 0;
818 fprintf_filtered (stream, "%o", octa1);
819 fprintf_filtered (stream, "%o", octa2);
820 fprintf_filtered (stream, "%o", octa3);
821 break;
822
823 default:
824 error (_("Internal error in octal conversion;"));
825 }
826
827 cycle++;
828 cycle = cycle % BITS_IN_OCTAL;
829 }
830 }
831 else
832 {
833 for (p = valaddr + len - 1;
834 p >= valaddr;
835 p--)
836 {
837 switch (cycle)
838 {
839 case 0:
840 /* Carry out, no carry in */
841
842 octa1 = (HIGH_ZERO & *p) >> 5;
843 octa2 = (LOW_ZERO & *p) >> 2;
844 carry = (CARRY_ZERO & *p);
845 fprintf_filtered (stream, "%o", octa1);
846 fprintf_filtered (stream, "%o", octa2);
847 break;
848
849 case 1:
850 /* Carry in, carry out */
851
852 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
853 octa2 = (MID_ONE & *p) >> 4;
854 octa3 = (LOW_ONE & *p) >> 1;
855 carry = (CARRY_ONE & *p);
856 fprintf_filtered (stream, "%o", octa1);
857 fprintf_filtered (stream, "%o", octa2);
858 fprintf_filtered (stream, "%o", octa3);
859 break;
860
861 case 2:
862 /* Carry in, no carry out */
863
864 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
865 octa2 = (MID_TWO & *p) >> 3;
866 octa3 = (LOW_TWO & *p);
867 carry = 0;
868 fprintf_filtered (stream, "%o", octa1);
869 fprintf_filtered (stream, "%o", octa2);
870 fprintf_filtered (stream, "%o", octa3);
871 break;
872
873 default:
874 error (_("Internal error in octal conversion;"));
875 }
876
877 cycle++;
878 cycle = cycle % BITS_IN_OCTAL;
879 }
880 }
881
882 }
883
884 /* VALADDR points to an integer of LEN bytes.
885 Print it in decimal on stream or format it in buf. */
886
887 void
888 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
889 unsigned len, enum bfd_endian byte_order)
890 {
891 #define TEN 10
892 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
893 #define CARRY_LEFT( x ) ((x) % TEN)
894 #define SHIFT( x ) ((x) << 4)
895 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
896 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
897
898 const gdb_byte *p;
899 unsigned char *digits;
900 int carry;
901 int decimal_len;
902 int i, j, decimal_digits;
903 int dummy;
904 int flip;
905
906 /* Base-ten number is less than twice as many digits
907 as the base 16 number, which is 2 digits per byte. */
908
909 decimal_len = len * 2 * 2;
910 digits = xmalloc (decimal_len);
911
912 for (i = 0; i < decimal_len; i++)
913 {
914 digits[i] = 0;
915 }
916
917 /* Ok, we have an unknown number of bytes of data to be printed in
918 * decimal.
919 *
920 * Given a hex number (in nibbles) as XYZ, we start by taking X and
921 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
922 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
923 *
924 * The trick is that "digits" holds a base-10 number, but sometimes
925 * the individual digits are > 10.
926 *
927 * Outer loop is per nibble (hex digit) of input, from MSD end to
928 * LSD end.
929 */
930 decimal_digits = 0; /* Number of decimal digits so far */
931 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
932 flip = 0;
933 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
934 {
935 /*
936 * Multiply current base-ten number by 16 in place.
937 * Each digit was between 0 and 9, now is between
938 * 0 and 144.
939 */
940 for (j = 0; j < decimal_digits; j++)
941 {
942 digits[j] = SHIFT (digits[j]);
943 }
944
945 /* Take the next nibble off the input and add it to what
946 * we've got in the LSB position. Bottom 'digit' is now
947 * between 0 and 159.
948 *
949 * "flip" is used to run this loop twice for each byte.
950 */
951 if (flip == 0)
952 {
953 /* Take top nibble. */
954
955 digits[0] += HIGH_NIBBLE (*p);
956 flip = 1;
957 }
958 else
959 {
960 /* Take low nibble and bump our pointer "p". */
961
962 digits[0] += LOW_NIBBLE (*p);
963 if (byte_order == BFD_ENDIAN_BIG)
964 p++;
965 else
966 p--;
967 flip = 0;
968 }
969
970 /* Re-decimalize. We have to do this often enough
971 * that we don't overflow, but once per nibble is
972 * overkill. Easier this way, though. Note that the
973 * carry is often larger than 10 (e.g. max initial
974 * carry out of lowest nibble is 15, could bubble all
975 * the way up greater than 10). So we have to do
976 * the carrying beyond the last current digit.
977 */
978 carry = 0;
979 for (j = 0; j < decimal_len - 1; j++)
980 {
981 digits[j] += carry;
982
983 /* "/" won't handle an unsigned char with
984 * a value that if signed would be negative.
985 * So extend to longword int via "dummy".
986 */
987 dummy = digits[j];
988 carry = CARRY_OUT (dummy);
989 digits[j] = CARRY_LEFT (dummy);
990
991 if (j >= decimal_digits && carry == 0)
992 {
993 /*
994 * All higher digits are 0 and we
995 * no longer have a carry.
996 *
997 * Note: "j" is 0-based, "decimal_digits" is
998 * 1-based.
999 */
1000 decimal_digits = j + 1;
1001 break;
1002 }
1003 }
1004 }
1005
1006 /* Ok, now "digits" is the decimal representation, with
1007 the "decimal_digits" actual digits. Print! */
1008
1009 for (i = decimal_digits - 1; i >= 0; i--)
1010 {
1011 fprintf_filtered (stream, "%1d", digits[i]);
1012 }
1013 xfree (digits);
1014 }
1015
1016 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1017
1018 void
1019 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1020 unsigned len, enum bfd_endian byte_order)
1021 {
1022 const gdb_byte *p;
1023
1024 /* FIXME: We should be not printing leading zeroes in most cases. */
1025
1026 fputs_filtered ("0x", stream);
1027 if (byte_order == BFD_ENDIAN_BIG)
1028 {
1029 for (p = valaddr;
1030 p < valaddr + len;
1031 p++)
1032 {
1033 fprintf_filtered (stream, "%02x", *p);
1034 }
1035 }
1036 else
1037 {
1038 for (p = valaddr + len - 1;
1039 p >= valaddr;
1040 p--)
1041 {
1042 fprintf_filtered (stream, "%02x", *p);
1043 }
1044 }
1045 }
1046
1047 /* VALADDR points to a char integer of LEN bytes.
1048 Print it out in appropriate language form on stream.
1049 Omit any leading zero chars. */
1050
1051 void
1052 print_char_chars (struct ui_file *stream, struct type *type,
1053 const gdb_byte *valaddr,
1054 unsigned len, enum bfd_endian byte_order)
1055 {
1056 const gdb_byte *p;
1057
1058 if (byte_order == BFD_ENDIAN_BIG)
1059 {
1060 p = valaddr;
1061 while (p < valaddr + len - 1 && *p == 0)
1062 ++p;
1063
1064 while (p < valaddr + len)
1065 {
1066 LA_EMIT_CHAR (*p, type, stream, '\'');
1067 ++p;
1068 }
1069 }
1070 else
1071 {
1072 p = valaddr + len - 1;
1073 while (p > valaddr && *p == 0)
1074 --p;
1075
1076 while (p >= valaddr)
1077 {
1078 LA_EMIT_CHAR (*p, type, stream, '\'');
1079 --p;
1080 }
1081 }
1082 }
1083
1084 /* Print on STREAM using the given OPTIONS the index for the element
1085 at INDEX of an array whose index type is INDEX_TYPE. */
1086
1087 void
1088 maybe_print_array_index (struct type *index_type, LONGEST index,
1089 struct ui_file *stream,
1090 const struct value_print_options *options)
1091 {
1092 struct value *index_value;
1093
1094 if (!options->print_array_indexes)
1095 return;
1096
1097 index_value = value_from_longest (index_type, index);
1098
1099 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1100 }
1101
1102 /* Called by various <lang>_val_print routines to print elements of an
1103 array in the form "<elem1>, <elem2>, <elem3>, ...".
1104
1105 (FIXME?) Assumes array element separator is a comma, which is correct
1106 for all languages currently handled.
1107 (FIXME?) Some languages have a notation for repeated array elements,
1108 perhaps we should try to use that notation when appropriate. */
1109
1110 void
1111 val_print_array_elements (struct type *type,
1112 const gdb_byte *valaddr, int embedded_offset,
1113 CORE_ADDR address, struct ui_file *stream,
1114 int recurse,
1115 const struct value *val,
1116 const struct value_print_options *options,
1117 unsigned int i)
1118 {
1119 unsigned int things_printed = 0;
1120 unsigned len;
1121 struct type *elttype, *index_type;
1122 unsigned eltlen;
1123 /* Position of the array element we are examining to see
1124 whether it is repeated. */
1125 unsigned int rep1;
1126 /* Number of repetitions we have detected so far. */
1127 unsigned int reps;
1128 LONGEST low_bound, high_bound;
1129
1130 elttype = TYPE_TARGET_TYPE (type);
1131 eltlen = TYPE_LENGTH (check_typedef (elttype));
1132 index_type = TYPE_INDEX_TYPE (type);
1133
1134 if (get_array_bounds (type, &low_bound, &high_bound))
1135 {
1136 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1137 But we have to be a little extra careful, because some languages
1138 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1139 empty arrays. In that situation, the array length is just zero,
1140 not negative! */
1141 if (low_bound > high_bound)
1142 len = 0;
1143 else
1144 len = high_bound - low_bound + 1;
1145 }
1146 else
1147 {
1148 warning (_("unable to get bounds of array, assuming null array"));
1149 low_bound = 0;
1150 len = 0;
1151 }
1152
1153 annotate_array_section_begin (i, elttype);
1154
1155 for (; i < len && things_printed < options->print_max; i++)
1156 {
1157 if (i != 0)
1158 {
1159 if (options->prettyprint_arrays)
1160 {
1161 fprintf_filtered (stream, ",\n");
1162 print_spaces_filtered (2 + 2 * recurse, stream);
1163 }
1164 else
1165 {
1166 fprintf_filtered (stream, ", ");
1167 }
1168 }
1169 wrap_here (n_spaces (2 + 2 * recurse));
1170 maybe_print_array_index (index_type, i + low_bound,
1171 stream, options);
1172
1173 rep1 = i + 1;
1174 reps = 1;
1175 while (rep1 < len
1176 && memcmp (valaddr + embedded_offset + i * eltlen,
1177 valaddr + embedded_offset + rep1 * eltlen,
1178 eltlen) == 0)
1179 {
1180 ++reps;
1181 ++rep1;
1182 }
1183
1184 if (reps > options->repeat_count_threshold)
1185 {
1186 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1187 address, stream, recurse + 1, val, options,
1188 current_language);
1189 annotate_elt_rep (reps);
1190 fprintf_filtered (stream, " <repeats %u times>", reps);
1191 annotate_elt_rep_end ();
1192
1193 i = rep1 - 1;
1194 things_printed += options->repeat_count_threshold;
1195 }
1196 else
1197 {
1198 val_print (elttype, valaddr, embedded_offset + i * eltlen,
1199 address,
1200 stream, recurse + 1, val, options, current_language);
1201 annotate_elt ();
1202 things_printed++;
1203 }
1204 }
1205 annotate_array_section_end ();
1206 if (i < len)
1207 {
1208 fprintf_filtered (stream, "...");
1209 }
1210 }
1211
1212 /* Read LEN bytes of target memory at address MEMADDR, placing the
1213 results in GDB's memory at MYADDR. Returns a count of the bytes
1214 actually read, and optionally an errno value in the location
1215 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1216
1217 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1218 function be eliminated. */
1219
1220 static int
1221 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1222 int len, int *errnoptr)
1223 {
1224 int nread; /* Number of bytes actually read. */
1225 int errcode; /* Error from last read. */
1226
1227 /* First try a complete read. */
1228 errcode = target_read_memory (memaddr, myaddr, len);
1229 if (errcode == 0)
1230 {
1231 /* Got it all. */
1232 nread = len;
1233 }
1234 else
1235 {
1236 /* Loop, reading one byte at a time until we get as much as we can. */
1237 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1238 {
1239 errcode = target_read_memory (memaddr++, myaddr++, 1);
1240 }
1241 /* If an error, the last read was unsuccessful, so adjust count. */
1242 if (errcode != 0)
1243 {
1244 nread--;
1245 }
1246 }
1247 if (errnoptr != NULL)
1248 {
1249 *errnoptr = errcode;
1250 }
1251 return (nread);
1252 }
1253
1254 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1255 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1256 allocated buffer containing the string, which the caller is responsible to
1257 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1258 success, or errno on failure.
1259
1260 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1261 the middle or end of the string). If LEN is -1, stops at the first
1262 null character (not necessarily the first null byte) up to a maximum
1263 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1264 characters as possible from the string.
1265
1266 Unless an exception is thrown, BUFFER will always be allocated, even on
1267 failure. In this case, some characters might have been read before the
1268 failure happened. Check BYTES_READ to recognize this situation.
1269
1270 Note: There was a FIXME asking to make this code use target_read_string,
1271 but this function is more general (can read past null characters, up to
1272 given LEN). Besides, it is used much more often than target_read_string
1273 so it is more tested. Perhaps callers of target_read_string should use
1274 this function instead? */
1275
1276 int
1277 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1278 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1279 {
1280 int found_nul; /* Non-zero if we found the nul char. */
1281 int errcode; /* Errno returned from bad reads. */
1282 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1283 unsigned int chunksize; /* Size of each fetch, in chars. */
1284 gdb_byte *bufptr; /* Pointer to next available byte in
1285 buffer. */
1286 gdb_byte *limit; /* First location past end of fetch buffer. */
1287 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1288
1289 /* Decide how large of chunks to try to read in one operation. This
1290 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1291 so we might as well read them all in one operation. If LEN is -1, we
1292 are looking for a NUL terminator to end the fetching, so we might as
1293 well read in blocks that are large enough to be efficient, but not so
1294 large as to be slow if fetchlimit happens to be large. So we choose the
1295 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1296 200 is way too big for remote debugging over a serial line. */
1297
1298 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1299
1300 /* Loop until we either have all the characters, or we encounter
1301 some error, such as bumping into the end of the address space. */
1302
1303 found_nul = 0;
1304 *buffer = NULL;
1305
1306 old_chain = make_cleanup (free_current_contents, buffer);
1307
1308 if (len > 0)
1309 {
1310 *buffer = (gdb_byte *) xmalloc (len * width);
1311 bufptr = *buffer;
1312
1313 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1314 / width;
1315 addr += nfetch * width;
1316 bufptr += nfetch * width;
1317 }
1318 else if (len == -1)
1319 {
1320 unsigned long bufsize = 0;
1321
1322 do
1323 {
1324 QUIT;
1325 nfetch = min (chunksize, fetchlimit - bufsize);
1326
1327 if (*buffer == NULL)
1328 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1329 else
1330 *buffer = (gdb_byte *) xrealloc (*buffer,
1331 (nfetch + bufsize) * width);
1332
1333 bufptr = *buffer + bufsize * width;
1334 bufsize += nfetch;
1335
1336 /* Read as much as we can. */
1337 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1338 / width;
1339
1340 /* Scan this chunk for the null character that terminates the string
1341 to print. If found, we don't need to fetch any more. Note
1342 that bufptr is explicitly left pointing at the next character
1343 after the null character, or at the next character after the end
1344 of the buffer. */
1345
1346 limit = bufptr + nfetch * width;
1347 while (bufptr < limit)
1348 {
1349 unsigned long c;
1350
1351 c = extract_unsigned_integer (bufptr, width, byte_order);
1352 addr += width;
1353 bufptr += width;
1354 if (c == 0)
1355 {
1356 /* We don't care about any error which happened after
1357 the NUL terminator. */
1358 errcode = 0;
1359 found_nul = 1;
1360 break;
1361 }
1362 }
1363 }
1364 while (errcode == 0 /* no error */
1365 && bufptr - *buffer < fetchlimit * width /* no overrun */
1366 && !found_nul); /* haven't found NUL yet */
1367 }
1368 else
1369 { /* Length of string is really 0! */
1370 /* We always allocate *buffer. */
1371 *buffer = bufptr = xmalloc (1);
1372 errcode = 0;
1373 }
1374
1375 /* bufptr and addr now point immediately beyond the last byte which we
1376 consider part of the string (including a '\0' which ends the string). */
1377 *bytes_read = bufptr - *buffer;
1378
1379 QUIT;
1380
1381 discard_cleanups (old_chain);
1382
1383 return errcode;
1384 }
1385
1386 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1387 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1388 stops at the first null byte, otherwise printing proceeds (including null
1389 bytes) until either print_max or LEN characters have been printed,
1390 whichever is smaller. ENCODING is the name of the string's
1391 encoding. It can be NULL, in which case the target encoding is
1392 assumed. */
1393
1394 int
1395 val_print_string (struct type *elttype, const char *encoding,
1396 CORE_ADDR addr, int len,
1397 struct ui_file *stream,
1398 const struct value_print_options *options)
1399 {
1400 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1401 int errcode; /* Errno returned from bad reads. */
1402 int found_nul; /* Non-zero if we found the nul char. */
1403 unsigned int fetchlimit; /* Maximum number of chars to print. */
1404 int bytes_read;
1405 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1406 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1407 struct gdbarch *gdbarch = get_type_arch (elttype);
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 int width = TYPE_LENGTH (elttype);
1410
1411 /* First we need to figure out the limit on the number of characters we are
1412 going to attempt to fetch and print. This is actually pretty simple. If
1413 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1414 LEN is -1, then the limit is print_max. This is true regardless of
1415 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1416 because finding the null byte (or available memory) is what actually
1417 limits the fetch. */
1418
1419 fetchlimit = (len == -1 ? options->print_max : min (len,
1420 options->print_max));
1421
1422 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1423 &buffer, &bytes_read);
1424 old_chain = make_cleanup (xfree, buffer);
1425
1426 addr += bytes_read;
1427
1428 /* We now have either successfully filled the buffer to fetchlimit,
1429 or terminated early due to an error or finding a null char when
1430 LEN is -1. */
1431
1432 /* Determine found_nul by looking at the last character read. */
1433 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1434 byte_order) == 0;
1435 if (len == -1 && !found_nul)
1436 {
1437 gdb_byte *peekbuf;
1438
1439 /* We didn't find a NUL terminator we were looking for. Attempt
1440 to peek at the next character. If not successful, or it is not
1441 a null byte, then force ellipsis to be printed. */
1442
1443 peekbuf = (gdb_byte *) alloca (width);
1444
1445 if (target_read_memory (addr, peekbuf, width) == 0
1446 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1447 force_ellipsis = 1;
1448 }
1449 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1450 {
1451 /* Getting an error when we have a requested length, or fetching less
1452 than the number of characters actually requested, always make us
1453 print ellipsis. */
1454 force_ellipsis = 1;
1455 }
1456
1457 /* If we get an error before fetching anything, don't print a string.
1458 But if we fetch something and then get an error, print the string
1459 and then the error message. */
1460 if (errcode == 0 || bytes_read > 0)
1461 {
1462 if (options->addressprint)
1463 {
1464 fputs_filtered (" ", stream);
1465 }
1466 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1467 encoding, force_ellipsis, options);
1468 }
1469
1470 if (errcode != 0)
1471 {
1472 if (errcode == EIO)
1473 {
1474 fprintf_filtered (stream, " <Address ");
1475 fputs_filtered (paddress (gdbarch, addr), stream);
1476 fprintf_filtered (stream, " out of bounds>");
1477 }
1478 else
1479 {
1480 fprintf_filtered (stream, " <Error reading address ");
1481 fputs_filtered (paddress (gdbarch, addr), stream);
1482 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1483 }
1484 }
1485
1486 gdb_flush (stream);
1487 do_cleanups (old_chain);
1488
1489 return (bytes_read / width);
1490 }
1491 \f
1492
1493 /* The 'set input-radix' command writes to this auxiliary variable.
1494 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1495 it is left unchanged. */
1496
1497 static unsigned input_radix_1 = 10;
1498
1499 /* Validate an input or output radix setting, and make sure the user
1500 knows what they really did here. Radix setting is confusing, e.g.
1501 setting the input radix to "10" never changes it! */
1502
1503 static void
1504 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1505 {
1506 set_input_radix_1 (from_tty, input_radix_1);
1507 }
1508
1509 static void
1510 set_input_radix_1 (int from_tty, unsigned radix)
1511 {
1512 /* We don't currently disallow any input radix except 0 or 1, which don't
1513 make any mathematical sense. In theory, we can deal with any input
1514 radix greater than 1, even if we don't have unique digits for every
1515 value from 0 to radix-1, but in practice we lose on large radix values.
1516 We should either fix the lossage or restrict the radix range more.
1517 (FIXME). */
1518
1519 if (radix < 2)
1520 {
1521 input_radix_1 = input_radix;
1522 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1523 radix);
1524 }
1525 input_radix_1 = input_radix = radix;
1526 if (from_tty)
1527 {
1528 printf_filtered (_("Input radix now set to "
1529 "decimal %u, hex %x, octal %o.\n"),
1530 radix, radix, radix);
1531 }
1532 }
1533
1534 /* The 'set output-radix' command writes to this auxiliary variable.
1535 If the requested radix is valid, OUTPUT_RADIX is updated,
1536 otherwise, it is left unchanged. */
1537
1538 static unsigned output_radix_1 = 10;
1539
1540 static void
1541 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1542 {
1543 set_output_radix_1 (from_tty, output_radix_1);
1544 }
1545
1546 static void
1547 set_output_radix_1 (int from_tty, unsigned radix)
1548 {
1549 /* Validate the radix and disallow ones that we aren't prepared to
1550 handle correctly, leaving the radix unchanged. */
1551 switch (radix)
1552 {
1553 case 16:
1554 user_print_options.output_format = 'x'; /* hex */
1555 break;
1556 case 10:
1557 user_print_options.output_format = 0; /* decimal */
1558 break;
1559 case 8:
1560 user_print_options.output_format = 'o'; /* octal */
1561 break;
1562 default:
1563 output_radix_1 = output_radix;
1564 error (_("Unsupported output radix ``decimal %u''; "
1565 "output radix unchanged."),
1566 radix);
1567 }
1568 output_radix_1 = output_radix = radix;
1569 if (from_tty)
1570 {
1571 printf_filtered (_("Output radix now set to "
1572 "decimal %u, hex %x, octal %o.\n"),
1573 radix, radix, radix);
1574 }
1575 }
1576
1577 /* Set both the input and output radix at once. Try to set the output radix
1578 first, since it has the most restrictive range. An radix that is valid as
1579 an output radix is also valid as an input radix.
1580
1581 It may be useful to have an unusual input radix. If the user wishes to
1582 set an input radix that is not valid as an output radix, he needs to use
1583 the 'set input-radix' command. */
1584
1585 static void
1586 set_radix (char *arg, int from_tty)
1587 {
1588 unsigned radix;
1589
1590 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1591 set_output_radix_1 (0, radix);
1592 set_input_radix_1 (0, radix);
1593 if (from_tty)
1594 {
1595 printf_filtered (_("Input and output radices now set to "
1596 "decimal %u, hex %x, octal %o.\n"),
1597 radix, radix, radix);
1598 }
1599 }
1600
1601 /* Show both the input and output radices. */
1602
1603 static void
1604 show_radix (char *arg, int from_tty)
1605 {
1606 if (from_tty)
1607 {
1608 if (input_radix == output_radix)
1609 {
1610 printf_filtered (_("Input and output radices set to "
1611 "decimal %u, hex %x, octal %o.\n"),
1612 input_radix, input_radix, input_radix);
1613 }
1614 else
1615 {
1616 printf_filtered (_("Input radix set to decimal "
1617 "%u, hex %x, octal %o.\n"),
1618 input_radix, input_radix, input_radix);
1619 printf_filtered (_("Output radix set to decimal "
1620 "%u, hex %x, octal %o.\n"),
1621 output_radix, output_radix, output_radix);
1622 }
1623 }
1624 }
1625 \f
1626
1627 static void
1628 set_print (char *arg, int from_tty)
1629 {
1630 printf_unfiltered (
1631 "\"set print\" must be followed by the name of a print subcommand.\n");
1632 help_list (setprintlist, "set print ", -1, gdb_stdout);
1633 }
1634
1635 static void
1636 show_print (char *args, int from_tty)
1637 {
1638 cmd_show_list (showprintlist, from_tty, "");
1639 }
1640 \f
1641 void
1642 _initialize_valprint (void)
1643 {
1644 add_prefix_cmd ("print", no_class, set_print,
1645 _("Generic command for setting how things print."),
1646 &setprintlist, "set print ", 0, &setlist);
1647 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1648 /* Prefer set print to set prompt. */
1649 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1650
1651 add_prefix_cmd ("print", no_class, show_print,
1652 _("Generic command for showing print settings."),
1653 &showprintlist, "show print ", 0, &showlist);
1654 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1655 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1656
1657 add_setshow_uinteger_cmd ("elements", no_class,
1658 &user_print_options.print_max, _("\
1659 Set limit on string chars or array elements to print."), _("\
1660 Show limit on string chars or array elements to print."), _("\
1661 \"set print elements 0\" causes there to be no limit."),
1662 NULL,
1663 show_print_max,
1664 &setprintlist, &showprintlist);
1665
1666 add_setshow_boolean_cmd ("null-stop", no_class,
1667 &user_print_options.stop_print_at_null, _("\
1668 Set printing of char arrays to stop at first null char."), _("\
1669 Show printing of char arrays to stop at first null char."), NULL,
1670 NULL,
1671 show_stop_print_at_null,
1672 &setprintlist, &showprintlist);
1673
1674 add_setshow_uinteger_cmd ("repeats", no_class,
1675 &user_print_options.repeat_count_threshold, _("\
1676 Set threshold for repeated print elements."), _("\
1677 Show threshold for repeated print elements."), _("\
1678 \"set print repeats 0\" causes all elements to be individually printed."),
1679 NULL,
1680 show_repeat_count_threshold,
1681 &setprintlist, &showprintlist);
1682
1683 add_setshow_boolean_cmd ("pretty", class_support,
1684 &user_print_options.prettyprint_structs, _("\
1685 Set prettyprinting of structures."), _("\
1686 Show prettyprinting of structures."), NULL,
1687 NULL,
1688 show_prettyprint_structs,
1689 &setprintlist, &showprintlist);
1690
1691 add_setshow_boolean_cmd ("union", class_support,
1692 &user_print_options.unionprint, _("\
1693 Set printing of unions interior to structures."), _("\
1694 Show printing of unions interior to structures."), NULL,
1695 NULL,
1696 show_unionprint,
1697 &setprintlist, &showprintlist);
1698
1699 add_setshow_boolean_cmd ("array", class_support,
1700 &user_print_options.prettyprint_arrays, _("\
1701 Set prettyprinting of arrays."), _("\
1702 Show prettyprinting of arrays."), NULL,
1703 NULL,
1704 show_prettyprint_arrays,
1705 &setprintlist, &showprintlist);
1706
1707 add_setshow_boolean_cmd ("address", class_support,
1708 &user_print_options.addressprint, _("\
1709 Set printing of addresses."), _("\
1710 Show printing of addresses."), NULL,
1711 NULL,
1712 show_addressprint,
1713 &setprintlist, &showprintlist);
1714
1715 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1716 _("\
1717 Set default input radix for entering numbers."), _("\
1718 Show default input radix for entering numbers."), NULL,
1719 set_input_radix,
1720 show_input_radix,
1721 &setlist, &showlist);
1722
1723 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1724 _("\
1725 Set default output radix for printing of values."), _("\
1726 Show default output radix for printing of values."), NULL,
1727 set_output_radix,
1728 show_output_radix,
1729 &setlist, &showlist);
1730
1731 /* The "set radix" and "show radix" commands are special in that
1732 they are like normal set and show commands but allow two normally
1733 independent variables to be either set or shown with a single
1734 command. So the usual deprecated_add_set_cmd() and [deleted]
1735 add_show_from_set() commands aren't really appropriate. */
1736 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1737 longer true - show can display anything. */
1738 add_cmd ("radix", class_support, set_radix, _("\
1739 Set default input and output number radices.\n\
1740 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1741 Without an argument, sets both radices back to the default value of 10."),
1742 &setlist);
1743 add_cmd ("radix", class_support, show_radix, _("\
1744 Show the default input and output number radices.\n\
1745 Use 'show input-radix' or 'show output-radix' to independently show each."),
1746 &showlist);
1747
1748 add_setshow_boolean_cmd ("array-indexes", class_support,
1749 &user_print_options.print_array_indexes, _("\
1750 Set printing of array indexes."), _("\
1751 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1752 &setprintlist, &showprintlist);
1753 }