]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
2011-01-11 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file,
121 _("Limit on string chars or array "
122 "elements to print is %s.\n"),
123 value);
124 }
125
126
127 /* Default input and output radixes, and output format letter. */
128
129 unsigned input_radix = 10;
130 static void
131 show_input_radix (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file,
135 _("Default input radix for entering numbers is %s.\n"),
136 value);
137 }
138
139 unsigned output_radix = 10;
140 static void
141 show_output_radix (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143 {
144 fprintf_filtered (file,
145 _("Default output radix for printing of values is %s.\n"),
146 value);
147 }
148
149 /* By default we print arrays without printing the index of each element in
150 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
151
152 static void
153 show_print_array_indexes (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
157 }
158
159 /* Print repeat counts if there are more than this many repetitions of an
160 element in an array. Referenced by the low level language dependent
161 print routines. */
162
163 static void
164 show_repeat_count_threshold (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
168 value);
169 }
170
171 /* If nonzero, stops printing of char arrays at first null. */
172
173 static void
174 show_stop_print_at_null (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Printing of char arrays to stop "
179 "at first null char is %s.\n"),
180 value);
181 }
182
183 /* Controls pretty printing of structures. */
184
185 static void
186 show_prettyprint_structs (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
190 }
191
192 /* Controls pretty printing of arrays. */
193
194 static void
195 show_prettyprint_arrays (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
199 }
200
201 /* If nonzero, causes unions inside structures or other unions to be
202 printed. */
203
204 static void
205 show_unionprint (struct ui_file *file, int from_tty,
206 struct cmd_list_element *c, const char *value)
207 {
208 fprintf_filtered (file,
209 _("Printing of unions interior to structures is %s.\n"),
210 value);
211 }
212
213 /* If nonzero, causes machine addresses to be printed in certain contexts. */
214
215 static void
216 show_addressprint (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
220 }
221 \f
222
223 /* A helper function for val_print. When printing in "summary" mode,
224 we want to print scalar arguments, but not aggregate arguments.
225 This function distinguishes between the two. */
226
227 static int
228 scalar_type_p (struct type *type)
229 {
230 CHECK_TYPEDEF (type);
231 while (TYPE_CODE (type) == TYPE_CODE_REF)
232 {
233 type = TYPE_TARGET_TYPE (type);
234 CHECK_TYPEDEF (type);
235 }
236 switch (TYPE_CODE (type))
237 {
238 case TYPE_CODE_ARRAY:
239 case TYPE_CODE_STRUCT:
240 case TYPE_CODE_UNION:
241 case TYPE_CODE_SET:
242 case TYPE_CODE_STRING:
243 case TYPE_CODE_BITSTRING:
244 return 0;
245 default:
246 return 1;
247 }
248 }
249
250 /* Helper function to check the validity of some bits of a value.
251
252 If TYPE represents some aggregate type (e.g., a structure), return 1.
253
254 Otherwise, any of the bytes starting at OFFSET and extending for
255 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
256 return 0. The checking is done using FUNCS.
257
258 Otherwise, return 1. */
259
260 static int
261 valprint_check_validity (struct ui_file *stream,
262 struct type *type,
263 int offset,
264 const struct value *val)
265 {
266 CHECK_TYPEDEF (type);
267
268 if (TYPE_CODE (type) != TYPE_CODE_UNION
269 && TYPE_CODE (type) != TYPE_CODE_STRUCT
270 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
271 {
272 if (! value_bits_valid (val, TARGET_CHAR_BIT * offset,
273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
274 {
275 fprintf_filtered (stream, _("<value optimized out>"));
276 return 0;
277 }
278
279 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * offset,
280 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
281 {
282 fputs_filtered (_("<synthetic pointer>"), stream);
283 return 0;
284 }
285 }
286
287 return 1;
288 }
289
290 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
291 (within GDB), which came from the inferior at address ADDRESS, onto
292 stdio stream STREAM according to OPTIONS.
293
294 If the data are a string pointer, returns the number of string characters
295 printed.
296
297 FIXME: The data at VALADDR is in target byte order. If gdb is ever
298 enhanced to be able to debug more than the single target it was compiled
299 for (specific CPU type and thus specific target byte ordering), then
300 either the print routines are going to have to take this into account,
301 or the data is going to have to be passed into here already converted
302 to the host byte ordering, whichever is more convenient. */
303
304
305 int
306 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
307 CORE_ADDR address, struct ui_file *stream, int recurse,
308 const struct value *val,
309 const struct value_print_options *options,
310 const struct language_defn *language)
311 {
312 volatile struct gdb_exception except;
313 int ret = 0;
314 struct value_print_options local_opts = *options;
315 struct type *real_type = check_typedef (type);
316
317 if (local_opts.pretty == Val_pretty_default)
318 local_opts.pretty = (local_opts.prettyprint_structs
319 ? Val_prettyprint : Val_no_prettyprint);
320
321 QUIT;
322
323 /* Ensure that the type is complete and not just a stub. If the type is
324 only a stub and we can't find and substitute its complete type, then
325 print appropriate string and return. */
326
327 if (TYPE_STUB (real_type))
328 {
329 fprintf_filtered (stream, _("<incomplete type>"));
330 gdb_flush (stream);
331 return (0);
332 }
333
334 if (!valprint_check_validity (stream, real_type, embedded_offset, val))
335 return 0;
336
337 if (!options->raw)
338 {
339 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
340 address, stream, recurse,
341 val, options, language);
342 if (ret)
343 return ret;
344 }
345
346 /* Handle summary mode. If the value is a scalar, print it;
347 otherwise, print an ellipsis. */
348 if (options->summary && !scalar_type_p (type))
349 {
350 fprintf_filtered (stream, "...");
351 return 0;
352 }
353
354 TRY_CATCH (except, RETURN_MASK_ERROR)
355 {
356 ret = language->la_val_print (type, valaddr, embedded_offset, address,
357 stream, recurse, val,
358 &local_opts);
359 }
360 if (except.reason < 0)
361 fprintf_filtered (stream, _("<error reading variable>"));
362
363 return ret;
364 }
365
366 /* Check whether the value VAL is printable. Return 1 if it is;
367 return 0 and print an appropriate error message to STREAM if it
368 is not. */
369
370 static int
371 value_check_printable (struct value *val, struct ui_file *stream)
372 {
373 if (val == 0)
374 {
375 fprintf_filtered (stream, _("<address of value unknown>"));
376 return 0;
377 }
378
379 if (value_entirely_optimized_out (val))
380 {
381 fprintf_filtered (stream, _("<value optimized out>"));
382 return 0;
383 }
384
385 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
386 {
387 fprintf_filtered (stream, _("<internal function %s>"),
388 value_internal_function_name (val));
389 return 0;
390 }
391
392 return 1;
393 }
394
395 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
396 to OPTIONS.
397
398 If the data are a string pointer, returns the number of string characters
399 printed.
400
401 This is a preferable interface to val_print, above, because it uses
402 GDB's value mechanism. */
403
404 int
405 common_val_print (struct value *val, struct ui_file *stream, int recurse,
406 const struct value_print_options *options,
407 const struct language_defn *language)
408 {
409 if (!value_check_printable (val, stream))
410 return 0;
411
412 if (language->la_language == language_ada)
413 /* The value might have a dynamic type, which would cause trouble
414 below when trying to extract the value contents (since the value
415 size is determined from the type size which is unknown). So
416 get a fixed representation of our value. */
417 val = ada_to_fixed_value (val);
418
419 return val_print (value_type (val), value_contents_for_printing (val),
420 value_embedded_offset (val), value_address (val),
421 stream, recurse,
422 val, options, language);
423 }
424
425 /* Print on stream STREAM the value VAL according to OPTIONS. The value
426 is printed using the current_language syntax.
427
428 If the object printed is a string pointer, return the number of string
429 bytes printed. */
430
431 int
432 value_print (struct value *val, struct ui_file *stream,
433 const struct value_print_options *options)
434 {
435 if (!value_check_printable (val, stream))
436 return 0;
437
438 if (!options->raw)
439 {
440 int r = apply_val_pretty_printer (value_type (val),
441 value_contents_for_printing (val),
442 value_embedded_offset (val),
443 value_address (val),
444 stream, 0,
445 val, options, current_language);
446
447 if (r)
448 return r;
449 }
450
451 return LA_VALUE_PRINT (val, stream, options);
452 }
453
454 /* Called by various <lang>_val_print routines to print
455 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
456 value. STREAM is where to print the value. */
457
458 void
459 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
460 struct ui_file *stream)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
463
464 if (TYPE_LENGTH (type) > sizeof (LONGEST))
465 {
466 LONGEST val;
467
468 if (TYPE_UNSIGNED (type)
469 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
470 byte_order, &val))
471 {
472 print_longest (stream, 'u', 0, val);
473 }
474 else
475 {
476 /* Signed, or we couldn't turn an unsigned value into a
477 LONGEST. For signed values, one could assume two's
478 complement (a reasonable assumption, I think) and do
479 better than this. */
480 print_hex_chars (stream, (unsigned char *) valaddr,
481 TYPE_LENGTH (type), byte_order);
482 }
483 }
484 else
485 {
486 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
487 unpack_long (type, valaddr));
488 }
489 }
490
491 void
492 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
493 struct ui_file *stream)
494 {
495 ULONGEST val = unpack_long (type, valaddr);
496 int bitpos, nfields = TYPE_NFIELDS (type);
497
498 fputs_filtered ("[ ", stream);
499 for (bitpos = 0; bitpos < nfields; bitpos++)
500 {
501 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
502 && (val & ((ULONGEST)1 << bitpos)))
503 {
504 if (TYPE_FIELD_NAME (type, bitpos))
505 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
506 else
507 fprintf_filtered (stream, "#%d ", bitpos);
508 }
509 }
510 fputs_filtered ("]", stream);
511 }
512
513 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
514 The raison d'etre of this function is to consolidate printing of
515 LONG_LONG's into this one function. The format chars b,h,w,g are
516 from print_scalar_formatted(). Numbers are printed using C
517 format.
518
519 USE_C_FORMAT means to use C format in all cases. Without it,
520 'o' and 'x' format do not include the standard C radix prefix
521 (leading 0 or 0x).
522
523 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
524 and was intended to request formating according to the current
525 language and would be used for most integers that GDB prints. The
526 exceptional cases were things like protocols where the format of
527 the integer is a protocol thing, not a user-visible thing). The
528 parameter remains to preserve the information of what things might
529 be printed with language-specific format, should we ever resurrect
530 that capability. */
531
532 void
533 print_longest (struct ui_file *stream, int format, int use_c_format,
534 LONGEST val_long)
535 {
536 const char *val;
537
538 switch (format)
539 {
540 case 'd':
541 val = int_string (val_long, 10, 1, 0, 1); break;
542 case 'u':
543 val = int_string (val_long, 10, 0, 0, 1); break;
544 case 'x':
545 val = int_string (val_long, 16, 0, 0, use_c_format); break;
546 case 'b':
547 val = int_string (val_long, 16, 0, 2, 1); break;
548 case 'h':
549 val = int_string (val_long, 16, 0, 4, 1); break;
550 case 'w':
551 val = int_string (val_long, 16, 0, 8, 1); break;
552 case 'g':
553 val = int_string (val_long, 16, 0, 16, 1); break;
554 break;
555 case 'o':
556 val = int_string (val_long, 8, 0, 0, use_c_format); break;
557 default:
558 internal_error (__FILE__, __LINE__,
559 _("failed internal consistency check"));
560 }
561 fputs_filtered (val, stream);
562 }
563
564 /* This used to be a macro, but I don't think it is called often enough
565 to merit such treatment. */
566 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
567 arguments to a function, number in a value history, register number, etc.)
568 where the value must not be larger than can fit in an int. */
569
570 int
571 longest_to_int (LONGEST arg)
572 {
573 /* Let the compiler do the work. */
574 int rtnval = (int) arg;
575
576 /* Check for overflows or underflows. */
577 if (sizeof (LONGEST) > sizeof (int))
578 {
579 if (rtnval != arg)
580 {
581 error (_("Value out of range."));
582 }
583 }
584 return (rtnval);
585 }
586
587 /* Print a floating point value of type TYPE (not always a
588 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
589
590 void
591 print_floating (const gdb_byte *valaddr, struct type *type,
592 struct ui_file *stream)
593 {
594 DOUBLEST doub;
595 int inv;
596 const struct floatformat *fmt = NULL;
597 unsigned len = TYPE_LENGTH (type);
598 enum float_kind kind;
599
600 /* If it is a floating-point, check for obvious problems. */
601 if (TYPE_CODE (type) == TYPE_CODE_FLT)
602 fmt = floatformat_from_type (type);
603 if (fmt != NULL)
604 {
605 kind = floatformat_classify (fmt, valaddr);
606 if (kind == float_nan)
607 {
608 if (floatformat_is_negative (fmt, valaddr))
609 fprintf_filtered (stream, "-");
610 fprintf_filtered (stream, "nan(");
611 fputs_filtered ("0x", stream);
612 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
613 fprintf_filtered (stream, ")");
614 return;
615 }
616 else if (kind == float_infinite)
617 {
618 if (floatformat_is_negative (fmt, valaddr))
619 fputs_filtered ("-", stream);
620 fputs_filtered ("inf", stream);
621 return;
622 }
623 }
624
625 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
626 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
627 needs to be used as that takes care of any necessary type
628 conversions. Such conversions are of course direct to DOUBLEST
629 and disregard any possible target floating point limitations.
630 For instance, a u64 would be converted and displayed exactly on a
631 host with 80 bit DOUBLEST but with loss of information on a host
632 with 64 bit DOUBLEST. */
633
634 doub = unpack_double (type, valaddr, &inv);
635 if (inv)
636 {
637 fprintf_filtered (stream, "<invalid float value>");
638 return;
639 }
640
641 /* FIXME: kettenis/2001-01-20: The following code makes too much
642 assumptions about the host and target floating point format. */
643
644 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
645 not necessarily be a TYPE_CODE_FLT, the below ignores that and
646 instead uses the type's length to determine the precision of the
647 floating-point value being printed. */
648
649 if (len < sizeof (double))
650 fprintf_filtered (stream, "%.9g", (double) doub);
651 else if (len == sizeof (double))
652 fprintf_filtered (stream, "%.17g", (double) doub);
653 else
654 #ifdef PRINTF_HAS_LONG_DOUBLE
655 fprintf_filtered (stream, "%.35Lg", doub);
656 #else
657 /* This at least wins with values that are representable as
658 doubles. */
659 fprintf_filtered (stream, "%.17g", (double) doub);
660 #endif
661 }
662
663 void
664 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
665 struct ui_file *stream)
666 {
667 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
668 char decstr[MAX_DECIMAL_STRING];
669 unsigned len = TYPE_LENGTH (type);
670
671 decimal_to_string (valaddr, len, byte_order, decstr);
672 fputs_filtered (decstr, stream);
673 return;
674 }
675
676 void
677 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
678 unsigned len, enum bfd_endian byte_order)
679 {
680
681 #define BITS_IN_BYTES 8
682
683 const gdb_byte *p;
684 unsigned int i;
685 int b;
686
687 /* Declared "int" so it will be signed.
688 This ensures that right shift will shift in zeros. */
689
690 const int mask = 0x080;
691
692 /* FIXME: We should be not printing leading zeroes in most cases. */
693
694 if (byte_order == BFD_ENDIAN_BIG)
695 {
696 for (p = valaddr;
697 p < valaddr + len;
698 p++)
699 {
700 /* Every byte has 8 binary characters; peel off
701 and print from the MSB end. */
702
703 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
704 {
705 if (*p & (mask >> i))
706 b = 1;
707 else
708 b = 0;
709
710 fprintf_filtered (stream, "%1d", b);
711 }
712 }
713 }
714 else
715 {
716 for (p = valaddr + len - 1;
717 p >= valaddr;
718 p--)
719 {
720 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
721 {
722 if (*p & (mask >> i))
723 b = 1;
724 else
725 b = 0;
726
727 fprintf_filtered (stream, "%1d", b);
728 }
729 }
730 }
731 }
732
733 /* VALADDR points to an integer of LEN bytes.
734 Print it in octal on stream or format it in buf. */
735
736 void
737 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
738 unsigned len, enum bfd_endian byte_order)
739 {
740 const gdb_byte *p;
741 unsigned char octa1, octa2, octa3, carry;
742 int cycle;
743
744 /* FIXME: We should be not printing leading zeroes in most cases. */
745
746
747 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
748 * the extra bits, which cycle every three bytes:
749 *
750 * Byte side: 0 1 2 3
751 * | | | |
752 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
753 *
754 * Octal side: 0 1 carry 3 4 carry ...
755 *
756 * Cycle number: 0 1 2
757 *
758 * But of course we are printing from the high side, so we have to
759 * figure out where in the cycle we are so that we end up with no
760 * left over bits at the end.
761 */
762 #define BITS_IN_OCTAL 3
763 #define HIGH_ZERO 0340
764 #define LOW_ZERO 0016
765 #define CARRY_ZERO 0003
766 #define HIGH_ONE 0200
767 #define MID_ONE 0160
768 #define LOW_ONE 0016
769 #define CARRY_ONE 0001
770 #define HIGH_TWO 0300
771 #define MID_TWO 0070
772 #define LOW_TWO 0007
773
774 /* For 32 we start in cycle 2, with two bits and one bit carry;
775 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
776
777 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
778 carry = 0;
779
780 fputs_filtered ("0", stream);
781 if (byte_order == BFD_ENDIAN_BIG)
782 {
783 for (p = valaddr;
784 p < valaddr + len;
785 p++)
786 {
787 switch (cycle)
788 {
789 case 0:
790 /* No carry in, carry out two bits. */
791
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in two bits, carry out one bit. */
801
802 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
803 octa2 = (MID_ONE & *p) >> 4;
804 octa3 = (LOW_ONE & *p) >> 1;
805 carry = (CARRY_ONE & *p);
806 fprintf_filtered (stream, "%o", octa1);
807 fprintf_filtered (stream, "%o", octa2);
808 fprintf_filtered (stream, "%o", octa3);
809 break;
810
811 case 2:
812 /* Carry in one bit, no carry out. */
813
814 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
815 octa2 = (MID_TWO & *p) >> 3;
816 octa3 = (LOW_TWO & *p);
817 carry = 0;
818 fprintf_filtered (stream, "%o", octa1);
819 fprintf_filtered (stream, "%o", octa2);
820 fprintf_filtered (stream, "%o", octa3);
821 break;
822
823 default:
824 error (_("Internal error in octal conversion;"));
825 }
826
827 cycle++;
828 cycle = cycle % BITS_IN_OCTAL;
829 }
830 }
831 else
832 {
833 for (p = valaddr + len - 1;
834 p >= valaddr;
835 p--)
836 {
837 switch (cycle)
838 {
839 case 0:
840 /* Carry out, no carry in */
841
842 octa1 = (HIGH_ZERO & *p) >> 5;
843 octa2 = (LOW_ZERO & *p) >> 2;
844 carry = (CARRY_ZERO & *p);
845 fprintf_filtered (stream, "%o", octa1);
846 fprintf_filtered (stream, "%o", octa2);
847 break;
848
849 case 1:
850 /* Carry in, carry out */
851
852 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
853 octa2 = (MID_ONE & *p) >> 4;
854 octa3 = (LOW_ONE & *p) >> 1;
855 carry = (CARRY_ONE & *p);
856 fprintf_filtered (stream, "%o", octa1);
857 fprintf_filtered (stream, "%o", octa2);
858 fprintf_filtered (stream, "%o", octa3);
859 break;
860
861 case 2:
862 /* Carry in, no carry out */
863
864 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
865 octa2 = (MID_TWO & *p) >> 3;
866 octa3 = (LOW_TWO & *p);
867 carry = 0;
868 fprintf_filtered (stream, "%o", octa1);
869 fprintf_filtered (stream, "%o", octa2);
870 fprintf_filtered (stream, "%o", octa3);
871 break;
872
873 default:
874 error (_("Internal error in octal conversion;"));
875 }
876
877 cycle++;
878 cycle = cycle % BITS_IN_OCTAL;
879 }
880 }
881
882 }
883
884 /* VALADDR points to an integer of LEN bytes.
885 Print it in decimal on stream or format it in buf. */
886
887 void
888 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
889 unsigned len, enum bfd_endian byte_order)
890 {
891 #define TEN 10
892 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
893 #define CARRY_LEFT( x ) ((x) % TEN)
894 #define SHIFT( x ) ((x) << 4)
895 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
896 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
897
898 const gdb_byte *p;
899 unsigned char *digits;
900 int carry;
901 int decimal_len;
902 int i, j, decimal_digits;
903 int dummy;
904 int flip;
905
906 /* Base-ten number is less than twice as many digits
907 as the base 16 number, which is 2 digits per byte. */
908
909 decimal_len = len * 2 * 2;
910 digits = xmalloc (decimal_len);
911
912 for (i = 0; i < decimal_len; i++)
913 {
914 digits[i] = 0;
915 }
916
917 /* Ok, we have an unknown number of bytes of data to be printed in
918 * decimal.
919 *
920 * Given a hex number (in nibbles) as XYZ, we start by taking X and
921 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
922 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
923 *
924 * The trick is that "digits" holds a base-10 number, but sometimes
925 * the individual digits are > 10.
926 *
927 * Outer loop is per nibble (hex digit) of input, from MSD end to
928 * LSD end.
929 */
930 decimal_digits = 0; /* Number of decimal digits so far */
931 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
932 flip = 0;
933 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
934 {
935 /*
936 * Multiply current base-ten number by 16 in place.
937 * Each digit was between 0 and 9, now is between
938 * 0 and 144.
939 */
940 for (j = 0; j < decimal_digits; j++)
941 {
942 digits[j] = SHIFT (digits[j]);
943 }
944
945 /* Take the next nibble off the input and add it to what
946 * we've got in the LSB position. Bottom 'digit' is now
947 * between 0 and 159.
948 *
949 * "flip" is used to run this loop twice for each byte.
950 */
951 if (flip == 0)
952 {
953 /* Take top nibble. */
954
955 digits[0] += HIGH_NIBBLE (*p);
956 flip = 1;
957 }
958 else
959 {
960 /* Take low nibble and bump our pointer "p". */
961
962 digits[0] += LOW_NIBBLE (*p);
963 if (byte_order == BFD_ENDIAN_BIG)
964 p++;
965 else
966 p--;
967 flip = 0;
968 }
969
970 /* Re-decimalize. We have to do this often enough
971 * that we don't overflow, but once per nibble is
972 * overkill. Easier this way, though. Note that the
973 * carry is often larger than 10 (e.g. max initial
974 * carry out of lowest nibble is 15, could bubble all
975 * the way up greater than 10). So we have to do
976 * the carrying beyond the last current digit.
977 */
978 carry = 0;
979 for (j = 0; j < decimal_len - 1; j++)
980 {
981 digits[j] += carry;
982
983 /* "/" won't handle an unsigned char with
984 * a value that if signed would be negative.
985 * So extend to longword int via "dummy".
986 */
987 dummy = digits[j];
988 carry = CARRY_OUT (dummy);
989 digits[j] = CARRY_LEFT (dummy);
990
991 if (j >= decimal_digits && carry == 0)
992 {
993 /*
994 * All higher digits are 0 and we
995 * no longer have a carry.
996 *
997 * Note: "j" is 0-based, "decimal_digits" is
998 * 1-based.
999 */
1000 decimal_digits = j + 1;
1001 break;
1002 }
1003 }
1004 }
1005
1006 /* Ok, now "digits" is the decimal representation, with
1007 the "decimal_digits" actual digits. Print! */
1008
1009 for (i = decimal_digits - 1; i >= 0; i--)
1010 {
1011 fprintf_filtered (stream, "%1d", digits[i]);
1012 }
1013 xfree (digits);
1014 }
1015
1016 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1017
1018 void
1019 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1020 unsigned len, enum bfd_endian byte_order)
1021 {
1022 const gdb_byte *p;
1023
1024 /* FIXME: We should be not printing leading zeroes in most cases. */
1025
1026 fputs_filtered ("0x", stream);
1027 if (byte_order == BFD_ENDIAN_BIG)
1028 {
1029 for (p = valaddr;
1030 p < valaddr + len;
1031 p++)
1032 {
1033 fprintf_filtered (stream, "%02x", *p);
1034 }
1035 }
1036 else
1037 {
1038 for (p = valaddr + len - 1;
1039 p >= valaddr;
1040 p--)
1041 {
1042 fprintf_filtered (stream, "%02x", *p);
1043 }
1044 }
1045 }
1046
1047 /* VALADDR points to a char integer of LEN bytes.
1048 Print it out in appropriate language form on stream.
1049 Omit any leading zero chars. */
1050
1051 void
1052 print_char_chars (struct ui_file *stream, struct type *type,
1053 const gdb_byte *valaddr,
1054 unsigned len, enum bfd_endian byte_order)
1055 {
1056 const gdb_byte *p;
1057
1058 if (byte_order == BFD_ENDIAN_BIG)
1059 {
1060 p = valaddr;
1061 while (p < valaddr + len - 1 && *p == 0)
1062 ++p;
1063
1064 while (p < valaddr + len)
1065 {
1066 LA_EMIT_CHAR (*p, type, stream, '\'');
1067 ++p;
1068 }
1069 }
1070 else
1071 {
1072 p = valaddr + len - 1;
1073 while (p > valaddr && *p == 0)
1074 --p;
1075
1076 while (p >= valaddr)
1077 {
1078 LA_EMIT_CHAR (*p, type, stream, '\'');
1079 --p;
1080 }
1081 }
1082 }
1083
1084 /* Print on STREAM using the given OPTIONS the index for the element
1085 at INDEX of an array whose index type is INDEX_TYPE. */
1086
1087 void
1088 maybe_print_array_index (struct type *index_type, LONGEST index,
1089 struct ui_file *stream,
1090 const struct value_print_options *options)
1091 {
1092 struct value *index_value;
1093
1094 if (!options->print_array_indexes)
1095 return;
1096
1097 index_value = value_from_longest (index_type, index);
1098
1099 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1100 }
1101
1102 /* Called by various <lang>_val_print routines to print elements of an
1103 array in the form "<elem1>, <elem2>, <elem3>, ...".
1104
1105 (FIXME?) Assumes array element separator is a comma, which is correct
1106 for all languages currently handled.
1107 (FIXME?) Some languages have a notation for repeated array elements,
1108 perhaps we should try to use that notation when appropriate. */
1109
1110 void
1111 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1112 CORE_ADDR address, struct ui_file *stream,
1113 int recurse,
1114 const struct value *val,
1115 const struct value_print_options *options,
1116 unsigned int i)
1117 {
1118 unsigned int things_printed = 0;
1119 unsigned len;
1120 struct type *elttype, *index_type;
1121 unsigned eltlen;
1122 /* Position of the array element we are examining to see
1123 whether it is repeated. */
1124 unsigned int rep1;
1125 /* Number of repetitions we have detected so far. */
1126 unsigned int reps;
1127 LONGEST low_bound, high_bound;
1128
1129 elttype = TYPE_TARGET_TYPE (type);
1130 eltlen = TYPE_LENGTH (check_typedef (elttype));
1131 index_type = TYPE_INDEX_TYPE (type);
1132
1133 if (get_array_bounds (type, &low_bound, &high_bound))
1134 {
1135 /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1.
1136 But we have to be a little extra careful, because some languages
1137 such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for
1138 empty arrays. In that situation, the array length is just zero,
1139 not negative! */
1140 if (low_bound > high_bound)
1141 len = 0;
1142 else
1143 len = high_bound - low_bound + 1;
1144 }
1145 else
1146 {
1147 warning (_("unable to get bounds of array, assuming null array"));
1148 low_bound = 0;
1149 len = 0;
1150 }
1151
1152 annotate_array_section_begin (i, elttype);
1153
1154 for (; i < len && things_printed < options->print_max; i++)
1155 {
1156 if (i != 0)
1157 {
1158 if (options->prettyprint_arrays)
1159 {
1160 fprintf_filtered (stream, ",\n");
1161 print_spaces_filtered (2 + 2 * recurse, stream);
1162 }
1163 else
1164 {
1165 fprintf_filtered (stream, ", ");
1166 }
1167 }
1168 wrap_here (n_spaces (2 + 2 * recurse));
1169 maybe_print_array_index (index_type, i + low_bound,
1170 stream, options);
1171
1172 rep1 = i + 1;
1173 reps = 1;
1174 while ((rep1 < len) &&
1175 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1176 {
1177 ++reps;
1178 ++rep1;
1179 }
1180
1181 if (reps > options->repeat_count_threshold)
1182 {
1183 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1184 stream, recurse + 1, val, options, current_language);
1185 annotate_elt_rep (reps);
1186 fprintf_filtered (stream, " <repeats %u times>", reps);
1187 annotate_elt_rep_end ();
1188
1189 i = rep1 - 1;
1190 things_printed += options->repeat_count_threshold;
1191 }
1192 else
1193 {
1194 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1195 stream, recurse + 1, val, options, current_language);
1196 annotate_elt ();
1197 things_printed++;
1198 }
1199 }
1200 annotate_array_section_end ();
1201 if (i < len)
1202 {
1203 fprintf_filtered (stream, "...");
1204 }
1205 }
1206
1207 /* Read LEN bytes of target memory at address MEMADDR, placing the
1208 results in GDB's memory at MYADDR. Returns a count of the bytes
1209 actually read, and optionally an errno value in the location
1210 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1211
1212 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1213 function be eliminated. */
1214
1215 static int
1216 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1217 int len, int *errnoptr)
1218 {
1219 int nread; /* Number of bytes actually read. */
1220 int errcode; /* Error from last read. */
1221
1222 /* First try a complete read. */
1223 errcode = target_read_memory (memaddr, myaddr, len);
1224 if (errcode == 0)
1225 {
1226 /* Got it all. */
1227 nread = len;
1228 }
1229 else
1230 {
1231 /* Loop, reading one byte at a time until we get as much as we can. */
1232 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1233 {
1234 errcode = target_read_memory (memaddr++, myaddr++, 1);
1235 }
1236 /* If an error, the last read was unsuccessful, so adjust count. */
1237 if (errcode != 0)
1238 {
1239 nread--;
1240 }
1241 }
1242 if (errnoptr != NULL)
1243 {
1244 *errnoptr = errcode;
1245 }
1246 return (nread);
1247 }
1248
1249 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1250 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1251 allocated buffer containing the string, which the caller is responsible to
1252 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1253 success, or errno on failure.
1254
1255 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1256 the middle or end of the string). If LEN is -1, stops at the first
1257 null character (not necessarily the first null byte) up to a maximum
1258 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1259 characters as possible from the string.
1260
1261 Unless an exception is thrown, BUFFER will always be allocated, even on
1262 failure. In this case, some characters might have been read before the
1263 failure happened. Check BYTES_READ to recognize this situation.
1264
1265 Note: There was a FIXME asking to make this code use target_read_string,
1266 but this function is more general (can read past null characters, up to
1267 given LEN). Besides, it is used much more often than target_read_string
1268 so it is more tested. Perhaps callers of target_read_string should use
1269 this function instead? */
1270
1271 int
1272 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1273 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1274 {
1275 int found_nul; /* Non-zero if we found the nul char. */
1276 int errcode; /* Errno returned from bad reads. */
1277 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1278 unsigned int chunksize; /* Size of each fetch, in chars. */
1279 gdb_byte *bufptr; /* Pointer to next available byte in
1280 buffer. */
1281 gdb_byte *limit; /* First location past end of fetch buffer. */
1282 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1283
1284 /* Decide how large of chunks to try to read in one operation. This
1285 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1286 so we might as well read them all in one operation. If LEN is -1, we
1287 are looking for a NUL terminator to end the fetching, so we might as
1288 well read in blocks that are large enough to be efficient, but not so
1289 large as to be slow if fetchlimit happens to be large. So we choose the
1290 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1291 200 is way too big for remote debugging over a serial line. */
1292
1293 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1294
1295 /* Loop until we either have all the characters, or we encounter
1296 some error, such as bumping into the end of the address space. */
1297
1298 found_nul = 0;
1299 *buffer = NULL;
1300
1301 old_chain = make_cleanup (free_current_contents, buffer);
1302
1303 if (len > 0)
1304 {
1305 *buffer = (gdb_byte *) xmalloc (len * width);
1306 bufptr = *buffer;
1307
1308 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1309 / width;
1310 addr += nfetch * width;
1311 bufptr += nfetch * width;
1312 }
1313 else if (len == -1)
1314 {
1315 unsigned long bufsize = 0;
1316
1317 do
1318 {
1319 QUIT;
1320 nfetch = min (chunksize, fetchlimit - bufsize);
1321
1322 if (*buffer == NULL)
1323 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1324 else
1325 *buffer = (gdb_byte *) xrealloc (*buffer,
1326 (nfetch + bufsize) * width);
1327
1328 bufptr = *buffer + bufsize * width;
1329 bufsize += nfetch;
1330
1331 /* Read as much as we can. */
1332 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1333 / width;
1334
1335 /* Scan this chunk for the null character that terminates the string
1336 to print. If found, we don't need to fetch any more. Note
1337 that bufptr is explicitly left pointing at the next character
1338 after the null character, or at the next character after the end
1339 of the buffer. */
1340
1341 limit = bufptr + nfetch * width;
1342 while (bufptr < limit)
1343 {
1344 unsigned long c;
1345
1346 c = extract_unsigned_integer (bufptr, width, byte_order);
1347 addr += width;
1348 bufptr += width;
1349 if (c == 0)
1350 {
1351 /* We don't care about any error which happened after
1352 the NUL terminator. */
1353 errcode = 0;
1354 found_nul = 1;
1355 break;
1356 }
1357 }
1358 }
1359 while (errcode == 0 /* no error */
1360 && bufptr - *buffer < fetchlimit * width /* no overrun */
1361 && !found_nul); /* haven't found NUL yet */
1362 }
1363 else
1364 { /* Length of string is really 0! */
1365 /* We always allocate *buffer. */
1366 *buffer = bufptr = xmalloc (1);
1367 errcode = 0;
1368 }
1369
1370 /* bufptr and addr now point immediately beyond the last byte which we
1371 consider part of the string (including a '\0' which ends the string). */
1372 *bytes_read = bufptr - *buffer;
1373
1374 QUIT;
1375
1376 discard_cleanups (old_chain);
1377
1378 return errcode;
1379 }
1380
1381 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1382 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1383 stops at the first null byte, otherwise printing proceeds (including null
1384 bytes) until either print_max or LEN characters have been printed,
1385 whichever is smaller. ENCODING is the name of the string's
1386 encoding. It can be NULL, in which case the target encoding is
1387 assumed. */
1388
1389 int
1390 val_print_string (struct type *elttype, const char *encoding,
1391 CORE_ADDR addr, int len,
1392 struct ui_file *stream,
1393 const struct value_print_options *options)
1394 {
1395 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1396 int errcode; /* Errno returned from bad reads. */
1397 int found_nul; /* Non-zero if we found the nul char. */
1398 unsigned int fetchlimit; /* Maximum number of chars to print. */
1399 int bytes_read;
1400 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1401 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1402 struct gdbarch *gdbarch = get_type_arch (elttype);
1403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1404 int width = TYPE_LENGTH (elttype);
1405
1406 /* First we need to figure out the limit on the number of characters we are
1407 going to attempt to fetch and print. This is actually pretty simple. If
1408 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1409 LEN is -1, then the limit is print_max. This is true regardless of
1410 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1411 because finding the null byte (or available memory) is what actually
1412 limits the fetch. */
1413
1414 fetchlimit = (len == -1 ? options->print_max : min (len,
1415 options->print_max));
1416
1417 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1418 &buffer, &bytes_read);
1419 old_chain = make_cleanup (xfree, buffer);
1420
1421 addr += bytes_read;
1422
1423 /* We now have either successfully filled the buffer to fetchlimit,
1424 or terminated early due to an error or finding a null char when
1425 LEN is -1. */
1426
1427 /* Determine found_nul by looking at the last character read. */
1428 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1429 byte_order) == 0;
1430 if (len == -1 && !found_nul)
1431 {
1432 gdb_byte *peekbuf;
1433
1434 /* We didn't find a NUL terminator we were looking for. Attempt
1435 to peek at the next character. If not successful, or it is not
1436 a null byte, then force ellipsis to be printed. */
1437
1438 peekbuf = (gdb_byte *) alloca (width);
1439
1440 if (target_read_memory (addr, peekbuf, width) == 0
1441 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1442 force_ellipsis = 1;
1443 }
1444 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1445 {
1446 /* Getting an error when we have a requested length, or fetching less
1447 than the number of characters actually requested, always make us
1448 print ellipsis. */
1449 force_ellipsis = 1;
1450 }
1451
1452 /* If we get an error before fetching anything, don't print a string.
1453 But if we fetch something and then get an error, print the string
1454 and then the error message. */
1455 if (errcode == 0 || bytes_read > 0)
1456 {
1457 if (options->addressprint)
1458 {
1459 fputs_filtered (" ", stream);
1460 }
1461 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1462 encoding, force_ellipsis, options);
1463 }
1464
1465 if (errcode != 0)
1466 {
1467 if (errcode == EIO)
1468 {
1469 fprintf_filtered (stream, " <Address ");
1470 fputs_filtered (paddress (gdbarch, addr), stream);
1471 fprintf_filtered (stream, " out of bounds>");
1472 }
1473 else
1474 {
1475 fprintf_filtered (stream, " <Error reading address ");
1476 fputs_filtered (paddress (gdbarch, addr), stream);
1477 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1478 }
1479 }
1480
1481 gdb_flush (stream);
1482 do_cleanups (old_chain);
1483
1484 return (bytes_read / width);
1485 }
1486 \f
1487
1488 /* The 'set input-radix' command writes to this auxiliary variable.
1489 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1490 it is left unchanged. */
1491
1492 static unsigned input_radix_1 = 10;
1493
1494 /* Validate an input or output radix setting, and make sure the user
1495 knows what they really did here. Radix setting is confusing, e.g.
1496 setting the input radix to "10" never changes it! */
1497
1498 static void
1499 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1500 {
1501 set_input_radix_1 (from_tty, input_radix_1);
1502 }
1503
1504 static void
1505 set_input_radix_1 (int from_tty, unsigned radix)
1506 {
1507 /* We don't currently disallow any input radix except 0 or 1, which don't
1508 make any mathematical sense. In theory, we can deal with any input
1509 radix greater than 1, even if we don't have unique digits for every
1510 value from 0 to radix-1, but in practice we lose on large radix values.
1511 We should either fix the lossage or restrict the radix range more.
1512 (FIXME). */
1513
1514 if (radix < 2)
1515 {
1516 input_radix_1 = input_radix;
1517 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1518 radix);
1519 }
1520 input_radix_1 = input_radix = radix;
1521 if (from_tty)
1522 {
1523 printf_filtered (_("Input radix now set to "
1524 "decimal %u, hex %x, octal %o.\n"),
1525 radix, radix, radix);
1526 }
1527 }
1528
1529 /* The 'set output-radix' command writes to this auxiliary variable.
1530 If the requested radix is valid, OUTPUT_RADIX is updated,
1531 otherwise, it is left unchanged. */
1532
1533 static unsigned output_radix_1 = 10;
1534
1535 static void
1536 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1537 {
1538 set_output_radix_1 (from_tty, output_radix_1);
1539 }
1540
1541 static void
1542 set_output_radix_1 (int from_tty, unsigned radix)
1543 {
1544 /* Validate the radix and disallow ones that we aren't prepared to
1545 handle correctly, leaving the radix unchanged. */
1546 switch (radix)
1547 {
1548 case 16:
1549 user_print_options.output_format = 'x'; /* hex */
1550 break;
1551 case 10:
1552 user_print_options.output_format = 0; /* decimal */
1553 break;
1554 case 8:
1555 user_print_options.output_format = 'o'; /* octal */
1556 break;
1557 default:
1558 output_radix_1 = output_radix;
1559 error (_("Unsupported output radix ``decimal %u''; "
1560 "output radix unchanged."),
1561 radix);
1562 }
1563 output_radix_1 = output_radix = radix;
1564 if (from_tty)
1565 {
1566 printf_filtered (_("Output radix now set to "
1567 "decimal %u, hex %x, octal %o.\n"),
1568 radix, radix, radix);
1569 }
1570 }
1571
1572 /* Set both the input and output radix at once. Try to set the output radix
1573 first, since it has the most restrictive range. An radix that is valid as
1574 an output radix is also valid as an input radix.
1575
1576 It may be useful to have an unusual input radix. If the user wishes to
1577 set an input radix that is not valid as an output radix, he needs to use
1578 the 'set input-radix' command. */
1579
1580 static void
1581 set_radix (char *arg, int from_tty)
1582 {
1583 unsigned radix;
1584
1585 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1586 set_output_radix_1 (0, radix);
1587 set_input_radix_1 (0, radix);
1588 if (from_tty)
1589 {
1590 printf_filtered (_("Input and output radices now set to "
1591 "decimal %u, hex %x, octal %o.\n"),
1592 radix, radix, radix);
1593 }
1594 }
1595
1596 /* Show both the input and output radices. */
1597
1598 static void
1599 show_radix (char *arg, int from_tty)
1600 {
1601 if (from_tty)
1602 {
1603 if (input_radix == output_radix)
1604 {
1605 printf_filtered (_("Input and output radices set to "
1606 "decimal %u, hex %x, octal %o.\n"),
1607 input_radix, input_radix, input_radix);
1608 }
1609 else
1610 {
1611 printf_filtered (_("Input radix set to decimal "
1612 "%u, hex %x, octal %o.\n"),
1613 input_radix, input_radix, input_radix);
1614 printf_filtered (_("Output radix set to decimal "
1615 "%u, hex %x, octal %o.\n"),
1616 output_radix, output_radix, output_radix);
1617 }
1618 }
1619 }
1620 \f
1621
1622 static void
1623 set_print (char *arg, int from_tty)
1624 {
1625 printf_unfiltered (
1626 "\"set print\" must be followed by the name of a print subcommand.\n");
1627 help_list (setprintlist, "set print ", -1, gdb_stdout);
1628 }
1629
1630 static void
1631 show_print (char *args, int from_tty)
1632 {
1633 cmd_show_list (showprintlist, from_tty, "");
1634 }
1635 \f
1636 void
1637 _initialize_valprint (void)
1638 {
1639 add_prefix_cmd ("print", no_class, set_print,
1640 _("Generic command for setting how things print."),
1641 &setprintlist, "set print ", 0, &setlist);
1642 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1643 /* Prefer set print to set prompt. */
1644 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1645
1646 add_prefix_cmd ("print", no_class, show_print,
1647 _("Generic command for showing print settings."),
1648 &showprintlist, "show print ", 0, &showlist);
1649 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1650 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1651
1652 add_setshow_uinteger_cmd ("elements", no_class,
1653 &user_print_options.print_max, _("\
1654 Set limit on string chars or array elements to print."), _("\
1655 Show limit on string chars or array elements to print."), _("\
1656 \"set print elements 0\" causes there to be no limit."),
1657 NULL,
1658 show_print_max,
1659 &setprintlist, &showprintlist);
1660
1661 add_setshow_boolean_cmd ("null-stop", no_class,
1662 &user_print_options.stop_print_at_null, _("\
1663 Set printing of char arrays to stop at first null char."), _("\
1664 Show printing of char arrays to stop at first null char."), NULL,
1665 NULL,
1666 show_stop_print_at_null,
1667 &setprintlist, &showprintlist);
1668
1669 add_setshow_uinteger_cmd ("repeats", no_class,
1670 &user_print_options.repeat_count_threshold, _("\
1671 Set threshold for repeated print elements."), _("\
1672 Show threshold for repeated print elements."), _("\
1673 \"set print repeats 0\" causes all elements to be individually printed."),
1674 NULL,
1675 show_repeat_count_threshold,
1676 &setprintlist, &showprintlist);
1677
1678 add_setshow_boolean_cmd ("pretty", class_support,
1679 &user_print_options.prettyprint_structs, _("\
1680 Set prettyprinting of structures."), _("\
1681 Show prettyprinting of structures."), NULL,
1682 NULL,
1683 show_prettyprint_structs,
1684 &setprintlist, &showprintlist);
1685
1686 add_setshow_boolean_cmd ("union", class_support,
1687 &user_print_options.unionprint, _("\
1688 Set printing of unions interior to structures."), _("\
1689 Show printing of unions interior to structures."), NULL,
1690 NULL,
1691 show_unionprint,
1692 &setprintlist, &showprintlist);
1693
1694 add_setshow_boolean_cmd ("array", class_support,
1695 &user_print_options.prettyprint_arrays, _("\
1696 Set prettyprinting of arrays."), _("\
1697 Show prettyprinting of arrays."), NULL,
1698 NULL,
1699 show_prettyprint_arrays,
1700 &setprintlist, &showprintlist);
1701
1702 add_setshow_boolean_cmd ("address", class_support,
1703 &user_print_options.addressprint, _("\
1704 Set printing of addresses."), _("\
1705 Show printing of addresses."), NULL,
1706 NULL,
1707 show_addressprint,
1708 &setprintlist, &showprintlist);
1709
1710 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1711 _("\
1712 Set default input radix for entering numbers."), _("\
1713 Show default input radix for entering numbers."), NULL,
1714 set_input_radix,
1715 show_input_radix,
1716 &setlist, &showlist);
1717
1718 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1719 _("\
1720 Set default output radix for printing of values."), _("\
1721 Show default output radix for printing of values."), NULL,
1722 set_output_radix,
1723 show_output_radix,
1724 &setlist, &showlist);
1725
1726 /* The "set radix" and "show radix" commands are special in that
1727 they are like normal set and show commands but allow two normally
1728 independent variables to be either set or shown with a single
1729 command. So the usual deprecated_add_set_cmd() and [deleted]
1730 add_show_from_set() commands aren't really appropriate. */
1731 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1732 longer true - show can display anything. */
1733 add_cmd ("radix", class_support, set_radix, _("\
1734 Set default input and output number radices.\n\
1735 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1736 Without an argument, sets both radices back to the default value of 10."),
1737 &setlist);
1738 add_cmd ("radix", class_support, show_radix, _("\
1739 Show the default input and output number radices.\n\
1740 Use 'show input-radix' or 'show output-radix' to independently show each."),
1741 &showlist);
1742
1743 add_setshow_boolean_cmd ("array-indexes", class_support,
1744 &user_print_options.print_array_indexes, _("\
1745 Set printing of array indexes."), _("\
1746 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1747 &setprintlist, &showprintlist);
1748 }