]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
2010-05-17 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37 #include "python/python.h"
38 #include "ada-lang.h"
39
40 #include <errno.h>
41
42 /* Prototypes for local functions */
43
44 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
45 int len, int *errnoptr);
46
47 static void show_print (char *, int);
48
49 static void set_print (char *, int);
50
51 static void set_radix (char *, int);
52
53 static void show_radix (char *, int);
54
55 static void set_input_radix (char *, int, struct cmd_list_element *);
56
57 static void set_input_radix_1 (int, unsigned);
58
59 static void set_output_radix (char *, int, struct cmd_list_element *);
60
61 static void set_output_radix_1 (int, unsigned);
62
63 void _initialize_valprint (void);
64
65 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
66
67 struct value_print_options user_print_options =
68 {
69 Val_pretty_default, /* pretty */
70 0, /* prettyprint_arrays */
71 0, /* prettyprint_structs */
72 0, /* vtblprint */
73 1, /* unionprint */
74 1, /* addressprint */
75 0, /* objectprint */
76 PRINT_MAX_DEFAULT, /* print_max */
77 10, /* repeat_count_threshold */
78 0, /* output_format */
79 0, /* format */
80 0, /* stop_print_at_null */
81 0, /* inspect_it */
82 0, /* print_array_indexes */
83 0, /* deref_ref */
84 1, /* static_field_print */
85 1, /* pascal_static_field_print */
86 0, /* raw */
87 0 /* summary */
88 };
89
90 /* Initialize *OPTS to be a copy of the user print options. */
91 void
92 get_user_print_options (struct value_print_options *opts)
93 {
94 *opts = user_print_options;
95 }
96
97 /* Initialize *OPTS to be a copy of the user print options, but with
98 pretty-printing disabled. */
99 void
100 get_raw_print_options (struct value_print_options *opts)
101 {
102 *opts = user_print_options;
103 opts->pretty = Val_no_prettyprint;
104 }
105
106 /* Initialize *OPTS to be a copy of the user print options, but using
107 FORMAT as the formatting option. */
108 void
109 get_formatted_print_options (struct value_print_options *opts,
110 char format)
111 {
112 *opts = user_print_options;
113 opts->format = format;
114 }
115
116 static void
117 show_print_max (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("\
121 Limit on string chars or array elements to print is %s.\n"),
122 value);
123 }
124
125
126 /* Default input and output radixes, and output format letter. */
127
128 unsigned input_radix = 10;
129 static void
130 show_input_radix (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Default input radix for entering numbers is %s.\n"),
135 value);
136 }
137
138 unsigned output_radix = 10;
139 static void
140 show_output_radix (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Default output radix for printing of values is %s.\n"),
145 value);
146 }
147
148 /* By default we print arrays without printing the index of each element in
149 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
150
151 static void
152 show_print_array_indexes (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
156 }
157
158 /* Print repeat counts if there are more than this many repetitions of an
159 element in an array. Referenced by the low level language dependent
160 print routines. */
161
162 static void
163 show_repeat_count_threshold (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
167 value);
168 }
169
170 /* If nonzero, stops printing of char arrays at first null. */
171
172 static void
173 show_stop_print_at_null (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Printing of char arrays to stop at first null char is %s.\n"),
178 value);
179 }
180
181 /* Controls pretty printing of structures. */
182
183 static void
184 show_prettyprint_structs (struct ui_file *file, int from_tty,
185 struct cmd_list_element *c, const char *value)
186 {
187 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
188 }
189
190 /* Controls pretty printing of arrays. */
191
192 static void
193 show_prettyprint_arrays (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
197 }
198
199 /* If nonzero, causes unions inside structures or other unions to be
200 printed. */
201
202 static void
203 show_unionprint (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("\
207 Printing of unions interior to structures is %s.\n"),
208 value);
209 }
210
211 /* If nonzero, causes machine addresses to be printed in certain contexts. */
212
213 static void
214 show_addressprint (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
218 }
219 \f
220
221 /* A helper function for val_print. When printing in "summary" mode,
222 we want to print scalar arguments, but not aggregate arguments.
223 This function distinguishes between the two. */
224
225 static int
226 scalar_type_p (struct type *type)
227 {
228 CHECK_TYPEDEF (type);
229 while (TYPE_CODE (type) == TYPE_CODE_REF)
230 {
231 type = TYPE_TARGET_TYPE (type);
232 CHECK_TYPEDEF (type);
233 }
234 switch (TYPE_CODE (type))
235 {
236 case TYPE_CODE_ARRAY:
237 case TYPE_CODE_STRUCT:
238 case TYPE_CODE_UNION:
239 case TYPE_CODE_SET:
240 case TYPE_CODE_STRING:
241 case TYPE_CODE_BITSTRING:
242 return 0;
243 default:
244 return 1;
245 }
246 }
247
248 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
249 (within GDB), which came from the inferior at address ADDRESS, onto
250 stdio stream STREAM according to OPTIONS.
251
252 If the data are a string pointer, returns the number of string characters
253 printed.
254
255 FIXME: The data at VALADDR is in target byte order. If gdb is ever
256 enhanced to be able to debug more than the single target it was compiled
257 for (specific CPU type and thus specific target byte ordering), then
258 either the print routines are going to have to take this into account,
259 or the data is going to have to be passed into here already converted
260 to the host byte ordering, whichever is more convenient. */
261
262
263 int
264 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
265 CORE_ADDR address, struct ui_file *stream, int recurse,
266 const struct value_print_options *options,
267 const struct language_defn *language)
268 {
269 volatile struct gdb_exception except;
270 int ret = 0;
271 struct value_print_options local_opts = *options;
272 struct type *real_type = check_typedef (type);
273
274 if (local_opts.pretty == Val_pretty_default)
275 local_opts.pretty = (local_opts.prettyprint_structs
276 ? Val_prettyprint : Val_no_prettyprint);
277
278 QUIT;
279
280 /* Ensure that the type is complete and not just a stub. If the type is
281 only a stub and we can't find and substitute its complete type, then
282 print appropriate string and return. */
283
284 if (TYPE_STUB (real_type))
285 {
286 fprintf_filtered (stream, "<incomplete type>");
287 gdb_flush (stream);
288 return (0);
289 }
290
291 if (!options->raw)
292 {
293 ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
294 address, stream, recurse, options,
295 language);
296 if (ret)
297 return ret;
298 }
299
300 /* Handle summary mode. If the value is a scalar, print it;
301 otherwise, print an ellipsis. */
302 if (options->summary && !scalar_type_p (type))
303 {
304 fprintf_filtered (stream, "...");
305 return 0;
306 }
307
308 TRY_CATCH (except, RETURN_MASK_ERROR)
309 {
310 ret = language->la_val_print (type, valaddr, embedded_offset, address,
311 stream, recurse, &local_opts);
312 }
313 if (except.reason < 0)
314 fprintf_filtered (stream, _("<error reading variable>"));
315
316 return ret;
317 }
318
319 /* Check whether the value VAL is printable. Return 1 if it is;
320 return 0 and print an appropriate error message to STREAM if it
321 is not. */
322
323 static int
324 value_check_printable (struct value *val, struct ui_file *stream)
325 {
326 if (val == 0)
327 {
328 fprintf_filtered (stream, _("<address of value unknown>"));
329 return 0;
330 }
331
332 if (value_optimized_out (val))
333 {
334 fprintf_filtered (stream, _("<value optimized out>"));
335 return 0;
336 }
337
338 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
339 {
340 fprintf_filtered (stream, _("<internal function %s>"),
341 value_internal_function_name (val));
342 return 0;
343 }
344
345 return 1;
346 }
347
348 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
349 to OPTIONS.
350
351 If the data are a string pointer, returns the number of string characters
352 printed.
353
354 This is a preferable interface to val_print, above, because it uses
355 GDB's value mechanism. */
356
357 int
358 common_val_print (struct value *val, struct ui_file *stream, int recurse,
359 const struct value_print_options *options,
360 const struct language_defn *language)
361 {
362 if (!value_check_printable (val, stream))
363 return 0;
364
365 if (language->la_language == language_ada)
366 /* The value might have a dynamic type, which would cause trouble
367 below when trying to extract the value contents (since the value
368 size is determined from the type size which is unknown). So
369 get a fixed representation of our value. */
370 val = ada_to_fixed_value (val);
371
372 return val_print (value_type (val), value_contents_all (val),
373 value_embedded_offset (val), value_address (val),
374 stream, recurse, options, language);
375 }
376
377 /* Print on stream STREAM the value VAL according to OPTIONS. The value
378 is printed using the current_language syntax.
379
380 If the object printed is a string pointer, return the number of string
381 bytes printed. */
382
383 int
384 value_print (struct value *val, struct ui_file *stream,
385 const struct value_print_options *options)
386 {
387 if (!value_check_printable (val, stream))
388 return 0;
389
390 if (!options->raw)
391 {
392 int r = apply_val_pretty_printer (value_type (val),
393 value_contents_all (val),
394 value_embedded_offset (val),
395 value_address (val),
396 stream, 0, options,
397 current_language);
398
399 if (r)
400 return r;
401 }
402
403 return LA_VALUE_PRINT (val, stream, options);
404 }
405
406 /* Called by various <lang>_val_print routines to print
407 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
408 value. STREAM is where to print the value. */
409
410 void
411 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
412 struct ui_file *stream)
413 {
414 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
415
416 if (TYPE_LENGTH (type) > sizeof (LONGEST))
417 {
418 LONGEST val;
419
420 if (TYPE_UNSIGNED (type)
421 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
422 byte_order, &val))
423 {
424 print_longest (stream, 'u', 0, val);
425 }
426 else
427 {
428 /* Signed, or we couldn't turn an unsigned value into a
429 LONGEST. For signed values, one could assume two's
430 complement (a reasonable assumption, I think) and do
431 better than this. */
432 print_hex_chars (stream, (unsigned char *) valaddr,
433 TYPE_LENGTH (type), byte_order);
434 }
435 }
436 else
437 {
438 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
439 unpack_long (type, valaddr));
440 }
441 }
442
443 void
444 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
445 struct ui_file *stream)
446 {
447 ULONGEST val = unpack_long (type, valaddr);
448 int bitpos, nfields = TYPE_NFIELDS (type);
449
450 fputs_filtered ("[ ", stream);
451 for (bitpos = 0; bitpos < nfields; bitpos++)
452 {
453 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
454 && (val & ((ULONGEST)1 << bitpos)))
455 {
456 if (TYPE_FIELD_NAME (type, bitpos))
457 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
458 else
459 fprintf_filtered (stream, "#%d ", bitpos);
460 }
461 }
462 fputs_filtered ("]", stream);
463 }
464
465 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
466 The raison d'etre of this function is to consolidate printing of
467 LONG_LONG's into this one function. The format chars b,h,w,g are
468 from print_scalar_formatted(). Numbers are printed using C
469 format.
470
471 USE_C_FORMAT means to use C format in all cases. Without it,
472 'o' and 'x' format do not include the standard C radix prefix
473 (leading 0 or 0x).
474
475 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
476 and was intended to request formating according to the current
477 language and would be used for most integers that GDB prints. The
478 exceptional cases were things like protocols where the format of
479 the integer is a protocol thing, not a user-visible thing). The
480 parameter remains to preserve the information of what things might
481 be printed with language-specific format, should we ever resurrect
482 that capability. */
483
484 void
485 print_longest (struct ui_file *stream, int format, int use_c_format,
486 LONGEST val_long)
487 {
488 const char *val;
489
490 switch (format)
491 {
492 case 'd':
493 val = int_string (val_long, 10, 1, 0, 1); break;
494 case 'u':
495 val = int_string (val_long, 10, 0, 0, 1); break;
496 case 'x':
497 val = int_string (val_long, 16, 0, 0, use_c_format); break;
498 case 'b':
499 val = int_string (val_long, 16, 0, 2, 1); break;
500 case 'h':
501 val = int_string (val_long, 16, 0, 4, 1); break;
502 case 'w':
503 val = int_string (val_long, 16, 0, 8, 1); break;
504 case 'g':
505 val = int_string (val_long, 16, 0, 16, 1); break;
506 break;
507 case 'o':
508 val = int_string (val_long, 8, 0, 0, use_c_format); break;
509 default:
510 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
511 }
512 fputs_filtered (val, stream);
513 }
514
515 /* This used to be a macro, but I don't think it is called often enough
516 to merit such treatment. */
517 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
518 arguments to a function, number in a value history, register number, etc.)
519 where the value must not be larger than can fit in an int. */
520
521 int
522 longest_to_int (LONGEST arg)
523 {
524 /* Let the compiler do the work */
525 int rtnval = (int) arg;
526
527 /* Check for overflows or underflows */
528 if (sizeof (LONGEST) > sizeof (int))
529 {
530 if (rtnval != arg)
531 {
532 error (_("Value out of range."));
533 }
534 }
535 return (rtnval);
536 }
537
538 /* Print a floating point value of type TYPE (not always a
539 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
540
541 void
542 print_floating (const gdb_byte *valaddr, struct type *type,
543 struct ui_file *stream)
544 {
545 DOUBLEST doub;
546 int inv;
547 const struct floatformat *fmt = NULL;
548 unsigned len = TYPE_LENGTH (type);
549 enum float_kind kind;
550
551 /* If it is a floating-point, check for obvious problems. */
552 if (TYPE_CODE (type) == TYPE_CODE_FLT)
553 fmt = floatformat_from_type (type);
554 if (fmt != NULL)
555 {
556 kind = floatformat_classify (fmt, valaddr);
557 if (kind == float_nan)
558 {
559 if (floatformat_is_negative (fmt, valaddr))
560 fprintf_filtered (stream, "-");
561 fprintf_filtered (stream, "nan(");
562 fputs_filtered ("0x", stream);
563 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
564 fprintf_filtered (stream, ")");
565 return;
566 }
567 else if (kind == float_infinite)
568 {
569 if (floatformat_is_negative (fmt, valaddr))
570 fputs_filtered ("-", stream);
571 fputs_filtered ("inf", stream);
572 return;
573 }
574 }
575
576 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
577 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
578 needs to be used as that takes care of any necessary type
579 conversions. Such conversions are of course direct to DOUBLEST
580 and disregard any possible target floating point limitations.
581 For instance, a u64 would be converted and displayed exactly on a
582 host with 80 bit DOUBLEST but with loss of information on a host
583 with 64 bit DOUBLEST. */
584
585 doub = unpack_double (type, valaddr, &inv);
586 if (inv)
587 {
588 fprintf_filtered (stream, "<invalid float value>");
589 return;
590 }
591
592 /* FIXME: kettenis/2001-01-20: The following code makes too much
593 assumptions about the host and target floating point format. */
594
595 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
596 not necessarily be a TYPE_CODE_FLT, the below ignores that and
597 instead uses the type's length to determine the precision of the
598 floating-point value being printed. */
599
600 if (len < sizeof (double))
601 fprintf_filtered (stream, "%.9g", (double) doub);
602 else if (len == sizeof (double))
603 fprintf_filtered (stream, "%.17g", (double) doub);
604 else
605 #ifdef PRINTF_HAS_LONG_DOUBLE
606 fprintf_filtered (stream, "%.35Lg", doub);
607 #else
608 /* This at least wins with values that are representable as
609 doubles. */
610 fprintf_filtered (stream, "%.17g", (double) doub);
611 #endif
612 }
613
614 void
615 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
616 struct ui_file *stream)
617 {
618 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
619 char decstr[MAX_DECIMAL_STRING];
620 unsigned len = TYPE_LENGTH (type);
621
622 decimal_to_string (valaddr, len, byte_order, decstr);
623 fputs_filtered (decstr, stream);
624 return;
625 }
626
627 void
628 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
629 unsigned len, enum bfd_endian byte_order)
630 {
631
632 #define BITS_IN_BYTES 8
633
634 const gdb_byte *p;
635 unsigned int i;
636 int b;
637
638 /* Declared "int" so it will be signed.
639 * This ensures that right shift will shift in zeros.
640 */
641 const int mask = 0x080;
642
643 /* FIXME: We should be not printing leading zeroes in most cases. */
644
645 if (byte_order == BFD_ENDIAN_BIG)
646 {
647 for (p = valaddr;
648 p < valaddr + len;
649 p++)
650 {
651 /* Every byte has 8 binary characters; peel off
652 * and print from the MSB end.
653 */
654 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
655 {
656 if (*p & (mask >> i))
657 b = 1;
658 else
659 b = 0;
660
661 fprintf_filtered (stream, "%1d", b);
662 }
663 }
664 }
665 else
666 {
667 for (p = valaddr + len - 1;
668 p >= valaddr;
669 p--)
670 {
671 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
672 {
673 if (*p & (mask >> i))
674 b = 1;
675 else
676 b = 0;
677
678 fprintf_filtered (stream, "%1d", b);
679 }
680 }
681 }
682 }
683
684 /* VALADDR points to an integer of LEN bytes.
685 * Print it in octal on stream or format it in buf.
686 */
687 void
688 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
689 unsigned len, enum bfd_endian byte_order)
690 {
691 const gdb_byte *p;
692 unsigned char octa1, octa2, octa3, carry;
693 int cycle;
694
695 /* FIXME: We should be not printing leading zeroes in most cases. */
696
697
698 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
699 * the extra bits, which cycle every three bytes:
700 *
701 * Byte side: 0 1 2 3
702 * | | | |
703 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
704 *
705 * Octal side: 0 1 carry 3 4 carry ...
706 *
707 * Cycle number: 0 1 2
708 *
709 * But of course we are printing from the high side, so we have to
710 * figure out where in the cycle we are so that we end up with no
711 * left over bits at the end.
712 */
713 #define BITS_IN_OCTAL 3
714 #define HIGH_ZERO 0340
715 #define LOW_ZERO 0016
716 #define CARRY_ZERO 0003
717 #define HIGH_ONE 0200
718 #define MID_ONE 0160
719 #define LOW_ONE 0016
720 #define CARRY_ONE 0001
721 #define HIGH_TWO 0300
722 #define MID_TWO 0070
723 #define LOW_TWO 0007
724
725 /* For 32 we start in cycle 2, with two bits and one bit carry;
726 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
727 */
728 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
729 carry = 0;
730
731 fputs_filtered ("0", stream);
732 if (byte_order == BFD_ENDIAN_BIG)
733 {
734 for (p = valaddr;
735 p < valaddr + len;
736 p++)
737 {
738 switch (cycle)
739 {
740 case 0:
741 /* No carry in, carry out two bits.
742 */
743 octa1 = (HIGH_ZERO & *p) >> 5;
744 octa2 = (LOW_ZERO & *p) >> 2;
745 carry = (CARRY_ZERO & *p);
746 fprintf_filtered (stream, "%o", octa1);
747 fprintf_filtered (stream, "%o", octa2);
748 break;
749
750 case 1:
751 /* Carry in two bits, carry out one bit.
752 */
753 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
754 octa2 = (MID_ONE & *p) >> 4;
755 octa3 = (LOW_ONE & *p) >> 1;
756 carry = (CARRY_ONE & *p);
757 fprintf_filtered (stream, "%o", octa1);
758 fprintf_filtered (stream, "%o", octa2);
759 fprintf_filtered (stream, "%o", octa3);
760 break;
761
762 case 2:
763 /* Carry in one bit, no carry out.
764 */
765 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
766 octa2 = (MID_TWO & *p) >> 3;
767 octa3 = (LOW_TWO & *p);
768 carry = 0;
769 fprintf_filtered (stream, "%o", octa1);
770 fprintf_filtered (stream, "%o", octa2);
771 fprintf_filtered (stream, "%o", octa3);
772 break;
773
774 default:
775 error (_("Internal error in octal conversion;"));
776 }
777
778 cycle++;
779 cycle = cycle % BITS_IN_OCTAL;
780 }
781 }
782 else
783 {
784 for (p = valaddr + len - 1;
785 p >= valaddr;
786 p--)
787 {
788 switch (cycle)
789 {
790 case 0:
791 /* Carry out, no carry in */
792 octa1 = (HIGH_ZERO & *p) >> 5;
793 octa2 = (LOW_ZERO & *p) >> 2;
794 carry = (CARRY_ZERO & *p);
795 fprintf_filtered (stream, "%o", octa1);
796 fprintf_filtered (stream, "%o", octa2);
797 break;
798
799 case 1:
800 /* Carry in, carry out */
801 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
802 octa2 = (MID_ONE & *p) >> 4;
803 octa3 = (LOW_ONE & *p) >> 1;
804 carry = (CARRY_ONE & *p);
805 fprintf_filtered (stream, "%o", octa1);
806 fprintf_filtered (stream, "%o", octa2);
807 fprintf_filtered (stream, "%o", octa3);
808 break;
809
810 case 2:
811 /* Carry in, no carry out */
812 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
813 octa2 = (MID_TWO & *p) >> 3;
814 octa3 = (LOW_TWO & *p);
815 carry = 0;
816 fprintf_filtered (stream, "%o", octa1);
817 fprintf_filtered (stream, "%o", octa2);
818 fprintf_filtered (stream, "%o", octa3);
819 break;
820
821 default:
822 error (_("Internal error in octal conversion;"));
823 }
824
825 cycle++;
826 cycle = cycle % BITS_IN_OCTAL;
827 }
828 }
829
830 }
831
832 /* VALADDR points to an integer of LEN bytes.
833 * Print it in decimal on stream or format it in buf.
834 */
835 void
836 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
837 unsigned len, enum bfd_endian byte_order)
838 {
839 #define TEN 10
840 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
841 #define CARRY_LEFT( x ) ((x) % TEN)
842 #define SHIFT( x ) ((x) << 4)
843 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
844 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
845
846 const gdb_byte *p;
847 unsigned char *digits;
848 int carry;
849 int decimal_len;
850 int i, j, decimal_digits;
851 int dummy;
852 int flip;
853
854 /* Base-ten number is less than twice as many digits
855 * as the base 16 number, which is 2 digits per byte.
856 */
857 decimal_len = len * 2 * 2;
858 digits = xmalloc (decimal_len);
859
860 for (i = 0; i < decimal_len; i++)
861 {
862 digits[i] = 0;
863 }
864
865 /* Ok, we have an unknown number of bytes of data to be printed in
866 * decimal.
867 *
868 * Given a hex number (in nibbles) as XYZ, we start by taking X and
869 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
870 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
871 *
872 * The trick is that "digits" holds a base-10 number, but sometimes
873 * the individual digits are > 10.
874 *
875 * Outer loop is per nibble (hex digit) of input, from MSD end to
876 * LSD end.
877 */
878 decimal_digits = 0; /* Number of decimal digits so far */
879 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
880 flip = 0;
881 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
882 {
883 /*
884 * Multiply current base-ten number by 16 in place.
885 * Each digit was between 0 and 9, now is between
886 * 0 and 144.
887 */
888 for (j = 0; j < decimal_digits; j++)
889 {
890 digits[j] = SHIFT (digits[j]);
891 }
892
893 /* Take the next nibble off the input and add it to what
894 * we've got in the LSB position. Bottom 'digit' is now
895 * between 0 and 159.
896 *
897 * "flip" is used to run this loop twice for each byte.
898 */
899 if (flip == 0)
900 {
901 /* Take top nibble.
902 */
903 digits[0] += HIGH_NIBBLE (*p);
904 flip = 1;
905 }
906 else
907 {
908 /* Take low nibble and bump our pointer "p".
909 */
910 digits[0] += LOW_NIBBLE (*p);
911 if (byte_order == BFD_ENDIAN_BIG)
912 p++;
913 else
914 p--;
915 flip = 0;
916 }
917
918 /* Re-decimalize. We have to do this often enough
919 * that we don't overflow, but once per nibble is
920 * overkill. Easier this way, though. Note that the
921 * carry is often larger than 10 (e.g. max initial
922 * carry out of lowest nibble is 15, could bubble all
923 * the way up greater than 10). So we have to do
924 * the carrying beyond the last current digit.
925 */
926 carry = 0;
927 for (j = 0; j < decimal_len - 1; j++)
928 {
929 digits[j] += carry;
930
931 /* "/" won't handle an unsigned char with
932 * a value that if signed would be negative.
933 * So extend to longword int via "dummy".
934 */
935 dummy = digits[j];
936 carry = CARRY_OUT (dummy);
937 digits[j] = CARRY_LEFT (dummy);
938
939 if (j >= decimal_digits && carry == 0)
940 {
941 /*
942 * All higher digits are 0 and we
943 * no longer have a carry.
944 *
945 * Note: "j" is 0-based, "decimal_digits" is
946 * 1-based.
947 */
948 decimal_digits = j + 1;
949 break;
950 }
951 }
952 }
953
954 /* Ok, now "digits" is the decimal representation, with
955 * the "decimal_digits" actual digits. Print!
956 */
957 for (i = decimal_digits - 1; i >= 0; i--)
958 {
959 fprintf_filtered (stream, "%1d", digits[i]);
960 }
961 xfree (digits);
962 }
963
964 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
965
966 void
967 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
968 unsigned len, enum bfd_endian byte_order)
969 {
970 const gdb_byte *p;
971
972 /* FIXME: We should be not printing leading zeroes in most cases. */
973
974 fputs_filtered ("0x", stream);
975 if (byte_order == BFD_ENDIAN_BIG)
976 {
977 for (p = valaddr;
978 p < valaddr + len;
979 p++)
980 {
981 fprintf_filtered (stream, "%02x", *p);
982 }
983 }
984 else
985 {
986 for (p = valaddr + len - 1;
987 p >= valaddr;
988 p--)
989 {
990 fprintf_filtered (stream, "%02x", *p);
991 }
992 }
993 }
994
995 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
996 Omit any leading zero chars. */
997
998 void
999 print_char_chars (struct ui_file *stream, struct type *type,
1000 const gdb_byte *valaddr,
1001 unsigned len, enum bfd_endian byte_order)
1002 {
1003 const gdb_byte *p;
1004
1005 if (byte_order == BFD_ENDIAN_BIG)
1006 {
1007 p = valaddr;
1008 while (p < valaddr + len - 1 && *p == 0)
1009 ++p;
1010
1011 while (p < valaddr + len)
1012 {
1013 LA_EMIT_CHAR (*p, type, stream, '\'');
1014 ++p;
1015 }
1016 }
1017 else
1018 {
1019 p = valaddr + len - 1;
1020 while (p > valaddr && *p == 0)
1021 --p;
1022
1023 while (p >= valaddr)
1024 {
1025 LA_EMIT_CHAR (*p, type, stream, '\'');
1026 --p;
1027 }
1028 }
1029 }
1030
1031 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1032 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1033 Save the high bound into HIGH_BOUND if not NULL.
1034
1035 Return 1 if the operation was successful. Return zero otherwise,
1036 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1037
1038 Computing the array upper and lower bounds is pretty easy, but this
1039 function does some additional verifications before returning them.
1040 If something incorrect is detected, it is better to return a status
1041 rather than throwing an error, making it easier for the caller to
1042 implement an error-recovery plan. For instance, it may decide to
1043 warn the user that the bounds were not found and then use some
1044 default values instead. */
1045
1046 int
1047 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
1048 {
1049 struct type *index = TYPE_INDEX_TYPE (type);
1050 long low = 0;
1051 long high = 0;
1052
1053 if (index == NULL)
1054 return 0;
1055
1056 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
1057 {
1058 low = TYPE_LOW_BOUND (index);
1059 high = TYPE_HIGH_BOUND (index);
1060 }
1061 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
1062 {
1063 const int n_enums = TYPE_NFIELDS (index);
1064
1065 low = TYPE_FIELD_BITPOS (index, 0);
1066 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
1067 }
1068 else
1069 return 0;
1070
1071 /* Abort if the lower bound is greater than the higher bound, except
1072 when low = high + 1. This is a very common idiom used in Ada when
1073 defining empty ranges (for instance "range 1 .. 0"). */
1074 if (low > high + 1)
1075 return 0;
1076
1077 if (low_bound)
1078 *low_bound = low;
1079
1080 if (high_bound)
1081 *high_bound = high;
1082
1083 return 1;
1084 }
1085
1086 /* Print on STREAM using the given OPTIONS the index for the element
1087 at INDEX of an array whose index type is INDEX_TYPE. */
1088
1089 void
1090 maybe_print_array_index (struct type *index_type, LONGEST index,
1091 struct ui_file *stream,
1092 const struct value_print_options *options)
1093 {
1094 struct value *index_value;
1095
1096 if (!options->print_array_indexes)
1097 return;
1098
1099 index_value = value_from_longest (index_type, index);
1100
1101 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1102 }
1103
1104 /* Called by various <lang>_val_print routines to print elements of an
1105 array in the form "<elem1>, <elem2>, <elem3>, ...".
1106
1107 (FIXME?) Assumes array element separator is a comma, which is correct
1108 for all languages currently handled.
1109 (FIXME?) Some languages have a notation for repeated array elements,
1110 perhaps we should try to use that notation when appropriate.
1111 */
1112
1113 void
1114 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1115 CORE_ADDR address, struct ui_file *stream,
1116 int recurse,
1117 const struct value_print_options *options,
1118 unsigned int i)
1119 {
1120 unsigned int things_printed = 0;
1121 unsigned len;
1122 struct type *elttype, *index_type;
1123 unsigned eltlen;
1124 /* Position of the array element we are examining to see
1125 whether it is repeated. */
1126 unsigned int rep1;
1127 /* Number of repetitions we have detected so far. */
1128 unsigned int reps;
1129 long low_bound_index = 0;
1130
1131 elttype = TYPE_TARGET_TYPE (type);
1132 eltlen = TYPE_LENGTH (check_typedef (elttype));
1133 index_type = TYPE_INDEX_TYPE (type);
1134
1135 /* Compute the number of elements in the array. On most arrays,
1136 the size of its elements is not zero, and so the number of elements
1137 is simply the size of the array divided by the size of the elements.
1138 But for arrays of elements whose size is zero, we need to look at
1139 the bounds. */
1140 if (eltlen != 0)
1141 len = TYPE_LENGTH (type) / eltlen;
1142 else
1143 {
1144 long low, hi;
1145
1146 if (get_array_bounds (type, &low, &hi))
1147 len = hi - low + 1;
1148 else
1149 {
1150 warning (_("unable to get bounds of array, assuming null array"));
1151 len = 0;
1152 }
1153 }
1154
1155 /* Get the array low bound. This only makes sense if the array
1156 has one or more element in it. */
1157 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1158 {
1159 warning (_("unable to get low bound of array, using zero as default"));
1160 low_bound_index = 0;
1161 }
1162
1163 annotate_array_section_begin (i, elttype);
1164
1165 for (; i < len && things_printed < options->print_max; i++)
1166 {
1167 if (i != 0)
1168 {
1169 if (options->prettyprint_arrays)
1170 {
1171 fprintf_filtered (stream, ",\n");
1172 print_spaces_filtered (2 + 2 * recurse, stream);
1173 }
1174 else
1175 {
1176 fprintf_filtered (stream, ", ");
1177 }
1178 }
1179 wrap_here (n_spaces (2 + 2 * recurse));
1180 maybe_print_array_index (index_type, i + low_bound_index,
1181 stream, options);
1182
1183 rep1 = i + 1;
1184 reps = 1;
1185 while ((rep1 < len) &&
1186 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1187 {
1188 ++reps;
1189 ++rep1;
1190 }
1191
1192 if (reps > options->repeat_count_threshold)
1193 {
1194 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1195 stream, recurse + 1, options, current_language);
1196 annotate_elt_rep (reps);
1197 fprintf_filtered (stream, " <repeats %u times>", reps);
1198 annotate_elt_rep_end ();
1199
1200 i = rep1 - 1;
1201 things_printed += options->repeat_count_threshold;
1202 }
1203 else
1204 {
1205 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1206 stream, recurse + 1, options, current_language);
1207 annotate_elt ();
1208 things_printed++;
1209 }
1210 }
1211 annotate_array_section_end ();
1212 if (i < len)
1213 {
1214 fprintf_filtered (stream, "...");
1215 }
1216 }
1217
1218 /* Read LEN bytes of target memory at address MEMADDR, placing the
1219 results in GDB's memory at MYADDR. Returns a count of the bytes
1220 actually read, and optionally an errno value in the location
1221 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1222
1223 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1224 function be eliminated. */
1225
1226 static int
1227 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1228 {
1229 int nread; /* Number of bytes actually read. */
1230 int errcode; /* Error from last read. */
1231
1232 /* First try a complete read. */
1233 errcode = target_read_memory (memaddr, myaddr, len);
1234 if (errcode == 0)
1235 {
1236 /* Got it all. */
1237 nread = len;
1238 }
1239 else
1240 {
1241 /* Loop, reading one byte at a time until we get as much as we can. */
1242 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1243 {
1244 errcode = target_read_memory (memaddr++, myaddr++, 1);
1245 }
1246 /* If an error, the last read was unsuccessful, so adjust count. */
1247 if (errcode != 0)
1248 {
1249 nread--;
1250 }
1251 }
1252 if (errnoptr != NULL)
1253 {
1254 *errnoptr = errcode;
1255 }
1256 return (nread);
1257 }
1258
1259 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1260 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1261 allocated buffer containing the string, which the caller is responsible to
1262 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1263 success, or errno on failure.
1264
1265 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1266 the middle or end of the string). If LEN is -1, stops at the first
1267 null character (not necessarily the first null byte) up to a maximum
1268 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1269 characters as possible from the string.
1270
1271 Unless an exception is thrown, BUFFER will always be allocated, even on
1272 failure. In this case, some characters might have been read before the
1273 failure happened. Check BYTES_READ to recognize this situation.
1274
1275 Note: There was a FIXME asking to make this code use target_read_string,
1276 but this function is more general (can read past null characters, up to
1277 given LEN). Besides, it is used much more often than target_read_string
1278 so it is more tested. Perhaps callers of target_read_string should use
1279 this function instead? */
1280
1281 int
1282 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1283 enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
1284 {
1285 int found_nul; /* Non-zero if we found the nul char. */
1286 int errcode; /* Errno returned from bad reads. */
1287 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1288 unsigned int chunksize; /* Size of each fetch, in chars. */
1289 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1290 gdb_byte *limit; /* First location past end of fetch buffer. */
1291 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1292
1293 /* Decide how large of chunks to try to read in one operation. This
1294 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1295 so we might as well read them all in one operation. If LEN is -1, we
1296 are looking for a NUL terminator to end the fetching, so we might as
1297 well read in blocks that are large enough to be efficient, but not so
1298 large as to be slow if fetchlimit happens to be large. So we choose the
1299 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1300 200 is way too big for remote debugging over a serial line. */
1301
1302 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1303
1304 /* Loop until we either have all the characters, or we encounter
1305 some error, such as bumping into the end of the address space. */
1306
1307 found_nul = 0;
1308 *buffer = NULL;
1309
1310 old_chain = make_cleanup (free_current_contents, buffer);
1311
1312 if (len > 0)
1313 {
1314 *buffer = (gdb_byte *) xmalloc (len * width);
1315 bufptr = *buffer;
1316
1317 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1318 / width;
1319 addr += nfetch * width;
1320 bufptr += nfetch * width;
1321 }
1322 else if (len == -1)
1323 {
1324 unsigned long bufsize = 0;
1325
1326 do
1327 {
1328 QUIT;
1329 nfetch = min (chunksize, fetchlimit - bufsize);
1330
1331 if (*buffer == NULL)
1332 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1333 else
1334 *buffer = (gdb_byte *) xrealloc (*buffer,
1335 (nfetch + bufsize) * width);
1336
1337 bufptr = *buffer + bufsize * width;
1338 bufsize += nfetch;
1339
1340 /* Read as much as we can. */
1341 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1342 / width;
1343
1344 /* Scan this chunk for the null character that terminates the string
1345 to print. If found, we don't need to fetch any more. Note
1346 that bufptr is explicitly left pointing at the next character
1347 after the null character, or at the next character after the end
1348 of the buffer. */
1349
1350 limit = bufptr + nfetch * width;
1351 while (bufptr < limit)
1352 {
1353 unsigned long c;
1354
1355 c = extract_unsigned_integer (bufptr, width, byte_order);
1356 addr += width;
1357 bufptr += width;
1358 if (c == 0)
1359 {
1360 /* We don't care about any error which happened after
1361 the NUL terminator. */
1362 errcode = 0;
1363 found_nul = 1;
1364 break;
1365 }
1366 }
1367 }
1368 while (errcode == 0 /* no error */
1369 && bufptr - *buffer < fetchlimit * width /* no overrun */
1370 && !found_nul); /* haven't found NUL yet */
1371 }
1372 else
1373 { /* Length of string is really 0! */
1374 /* We always allocate *buffer. */
1375 *buffer = bufptr = xmalloc (1);
1376 errcode = 0;
1377 }
1378
1379 /* bufptr and addr now point immediately beyond the last byte which we
1380 consider part of the string (including a '\0' which ends the string). */
1381 *bytes_read = bufptr - *buffer;
1382
1383 QUIT;
1384
1385 discard_cleanups (old_chain);
1386
1387 return errcode;
1388 }
1389
1390 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1391 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1392 stops at the first null byte, otherwise printing proceeds (including null
1393 bytes) until either print_max or LEN characters have been printed,
1394 whichever is smaller. */
1395
1396 int
1397 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1398 struct ui_file *stream,
1399 const struct value_print_options *options)
1400 {
1401 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1402 int errcode; /* Errno returned from bad reads. */
1403 int found_nul; /* Non-zero if we found the nul char */
1404 unsigned int fetchlimit; /* Maximum number of chars to print. */
1405 int bytes_read;
1406 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1407 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1408 struct gdbarch *gdbarch = get_type_arch (elttype);
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410 int width = TYPE_LENGTH (elttype);
1411
1412 /* First we need to figure out the limit on the number of characters we are
1413 going to attempt to fetch and print. This is actually pretty simple. If
1414 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1415 LEN is -1, then the limit is print_max. This is true regardless of
1416 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1417 because finding the null byte (or available memory) is what actually
1418 limits the fetch. */
1419
1420 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1421
1422 errcode = read_string (addr, len, width, fetchlimit, byte_order,
1423 &buffer, &bytes_read);
1424 old_chain = make_cleanup (xfree, buffer);
1425
1426 addr += bytes_read;
1427
1428 /* We now have either successfully filled the buffer to fetchlimit, or
1429 terminated early due to an error or finding a null char when LEN is -1. */
1430
1431 /* Determine found_nul by looking at the last character read. */
1432 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
1433 byte_order) == 0;
1434 if (len == -1 && !found_nul)
1435 {
1436 gdb_byte *peekbuf;
1437
1438 /* We didn't find a NUL terminator we were looking for. Attempt
1439 to peek at the next character. If not successful, or it is not
1440 a null byte, then force ellipsis to be printed. */
1441
1442 peekbuf = (gdb_byte *) alloca (width);
1443
1444 if (target_read_memory (addr, peekbuf, width) == 0
1445 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
1446 force_ellipsis = 1;
1447 }
1448 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1449 {
1450 /* Getting an error when we have a requested length, or fetching less
1451 than the number of characters actually requested, always make us
1452 print ellipsis. */
1453 force_ellipsis = 1;
1454 }
1455
1456 /* If we get an error before fetching anything, don't print a string.
1457 But if we fetch something and then get an error, print the string
1458 and then the error message. */
1459 if (errcode == 0 || bytes_read > 0)
1460 {
1461 if (options->addressprint)
1462 {
1463 fputs_filtered (" ", stream);
1464 }
1465 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width,
1466 NULL, force_ellipsis, options);
1467 }
1468
1469 if (errcode != 0)
1470 {
1471 if (errcode == EIO)
1472 {
1473 fprintf_filtered (stream, " <Address ");
1474 fputs_filtered (paddress (gdbarch, addr), stream);
1475 fprintf_filtered (stream, " out of bounds>");
1476 }
1477 else
1478 {
1479 fprintf_filtered (stream, " <Error reading address ");
1480 fputs_filtered (paddress (gdbarch, addr), stream);
1481 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1482 }
1483 }
1484
1485 gdb_flush (stream);
1486 do_cleanups (old_chain);
1487
1488 return (bytes_read / width);
1489 }
1490 \f
1491
1492 /* The 'set input-radix' command writes to this auxiliary variable.
1493 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1494 it is left unchanged. */
1495
1496 static unsigned input_radix_1 = 10;
1497
1498 /* Validate an input or output radix setting, and make sure the user
1499 knows what they really did here. Radix setting is confusing, e.g.
1500 setting the input radix to "10" never changes it! */
1501
1502 static void
1503 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1504 {
1505 set_input_radix_1 (from_tty, input_radix_1);
1506 }
1507
1508 static void
1509 set_input_radix_1 (int from_tty, unsigned radix)
1510 {
1511 /* We don't currently disallow any input radix except 0 or 1, which don't
1512 make any mathematical sense. In theory, we can deal with any input
1513 radix greater than 1, even if we don't have unique digits for every
1514 value from 0 to radix-1, but in practice we lose on large radix values.
1515 We should either fix the lossage or restrict the radix range more.
1516 (FIXME). */
1517
1518 if (radix < 2)
1519 {
1520 input_radix_1 = input_radix;
1521 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1522 radix);
1523 }
1524 input_radix_1 = input_radix = radix;
1525 if (from_tty)
1526 {
1527 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1528 radix, radix, radix);
1529 }
1530 }
1531
1532 /* The 'set output-radix' command writes to this auxiliary variable.
1533 If the requested radix is valid, OUTPUT_RADIX is updated,
1534 otherwise, it is left unchanged. */
1535
1536 static unsigned output_radix_1 = 10;
1537
1538 static void
1539 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1540 {
1541 set_output_radix_1 (from_tty, output_radix_1);
1542 }
1543
1544 static void
1545 set_output_radix_1 (int from_tty, unsigned radix)
1546 {
1547 /* Validate the radix and disallow ones that we aren't prepared to
1548 handle correctly, leaving the radix unchanged. */
1549 switch (radix)
1550 {
1551 case 16:
1552 user_print_options.output_format = 'x'; /* hex */
1553 break;
1554 case 10:
1555 user_print_options.output_format = 0; /* decimal */
1556 break;
1557 case 8:
1558 user_print_options.output_format = 'o'; /* octal */
1559 break;
1560 default:
1561 output_radix_1 = output_radix;
1562 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1563 radix);
1564 }
1565 output_radix_1 = output_radix = radix;
1566 if (from_tty)
1567 {
1568 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1569 radix, radix, radix);
1570 }
1571 }
1572
1573 /* Set both the input and output radix at once. Try to set the output radix
1574 first, since it has the most restrictive range. An radix that is valid as
1575 an output radix is also valid as an input radix.
1576
1577 It may be useful to have an unusual input radix. If the user wishes to
1578 set an input radix that is not valid as an output radix, he needs to use
1579 the 'set input-radix' command. */
1580
1581 static void
1582 set_radix (char *arg, int from_tty)
1583 {
1584 unsigned radix;
1585
1586 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1587 set_output_radix_1 (0, radix);
1588 set_input_radix_1 (0, radix);
1589 if (from_tty)
1590 {
1591 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1592 radix, radix, radix);
1593 }
1594 }
1595
1596 /* Show both the input and output radices. */
1597
1598 static void
1599 show_radix (char *arg, int from_tty)
1600 {
1601 if (from_tty)
1602 {
1603 if (input_radix == output_radix)
1604 {
1605 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1606 input_radix, input_radix, input_radix);
1607 }
1608 else
1609 {
1610 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1611 input_radix, input_radix, input_radix);
1612 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1613 output_radix, output_radix, output_radix);
1614 }
1615 }
1616 }
1617 \f
1618
1619 static void
1620 set_print (char *arg, int from_tty)
1621 {
1622 printf_unfiltered (
1623 "\"set print\" must be followed by the name of a print subcommand.\n");
1624 help_list (setprintlist, "set print ", -1, gdb_stdout);
1625 }
1626
1627 static void
1628 show_print (char *args, int from_tty)
1629 {
1630 cmd_show_list (showprintlist, from_tty, "");
1631 }
1632 \f
1633 void
1634 _initialize_valprint (void)
1635 {
1636 add_prefix_cmd ("print", no_class, set_print,
1637 _("Generic command for setting how things print."),
1638 &setprintlist, "set print ", 0, &setlist);
1639 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1640 /* prefer set print to set prompt */
1641 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1642
1643 add_prefix_cmd ("print", no_class, show_print,
1644 _("Generic command for showing print settings."),
1645 &showprintlist, "show print ", 0, &showlist);
1646 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1647 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1648
1649 add_setshow_uinteger_cmd ("elements", no_class,
1650 &user_print_options.print_max, _("\
1651 Set limit on string chars or array elements to print."), _("\
1652 Show limit on string chars or array elements to print."), _("\
1653 \"set print elements 0\" causes there to be no limit."),
1654 NULL,
1655 show_print_max,
1656 &setprintlist, &showprintlist);
1657
1658 add_setshow_boolean_cmd ("null-stop", no_class,
1659 &user_print_options.stop_print_at_null, _("\
1660 Set printing of char arrays to stop at first null char."), _("\
1661 Show printing of char arrays to stop at first null char."), NULL,
1662 NULL,
1663 show_stop_print_at_null,
1664 &setprintlist, &showprintlist);
1665
1666 add_setshow_uinteger_cmd ("repeats", no_class,
1667 &user_print_options.repeat_count_threshold, _("\
1668 Set threshold for repeated print elements."), _("\
1669 Show threshold for repeated print elements."), _("\
1670 \"set print repeats 0\" causes all elements to be individually printed."),
1671 NULL,
1672 show_repeat_count_threshold,
1673 &setprintlist, &showprintlist);
1674
1675 add_setshow_boolean_cmd ("pretty", class_support,
1676 &user_print_options.prettyprint_structs, _("\
1677 Set prettyprinting of structures."), _("\
1678 Show prettyprinting of structures."), NULL,
1679 NULL,
1680 show_prettyprint_structs,
1681 &setprintlist, &showprintlist);
1682
1683 add_setshow_boolean_cmd ("union", class_support,
1684 &user_print_options.unionprint, _("\
1685 Set printing of unions interior to structures."), _("\
1686 Show printing of unions interior to structures."), NULL,
1687 NULL,
1688 show_unionprint,
1689 &setprintlist, &showprintlist);
1690
1691 add_setshow_boolean_cmd ("array", class_support,
1692 &user_print_options.prettyprint_arrays, _("\
1693 Set prettyprinting of arrays."), _("\
1694 Show prettyprinting of arrays."), NULL,
1695 NULL,
1696 show_prettyprint_arrays,
1697 &setprintlist, &showprintlist);
1698
1699 add_setshow_boolean_cmd ("address", class_support,
1700 &user_print_options.addressprint, _("\
1701 Set printing of addresses."), _("\
1702 Show printing of addresses."), NULL,
1703 NULL,
1704 show_addressprint,
1705 &setprintlist, &showprintlist);
1706
1707 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1708 _("\
1709 Set default input radix for entering numbers."), _("\
1710 Show default input radix for entering numbers."), NULL,
1711 set_input_radix,
1712 show_input_radix,
1713 &setlist, &showlist);
1714
1715 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1716 _("\
1717 Set default output radix for printing of values."), _("\
1718 Show default output radix for printing of values."), NULL,
1719 set_output_radix,
1720 show_output_radix,
1721 &setlist, &showlist);
1722
1723 /* The "set radix" and "show radix" commands are special in that
1724 they are like normal set and show commands but allow two normally
1725 independent variables to be either set or shown with a single
1726 command. So the usual deprecated_add_set_cmd() and [deleted]
1727 add_show_from_set() commands aren't really appropriate. */
1728 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1729 longer true - show can display anything. */
1730 add_cmd ("radix", class_support, set_radix, _("\
1731 Set default input and output number radices.\n\
1732 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1733 Without an argument, sets both radices back to the default value of 10."),
1734 &setlist);
1735 add_cmd ("radix", class_support, show_radix, _("\
1736 Show the default input and output number radices.\n\
1737 Use 'show input-radix' or 'show output-radix' to independently show each."),
1738 &showlist);
1739
1740 add_setshow_boolean_cmd ("array-indexes", class_support,
1741 &user_print_options.print_array_indexes, _("\
1742 Set printing of array indexes."), _("\
1743 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1744 &setprintlist, &showprintlist);
1745 }