]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "annotate.h"
32 #include "valprint.h"
33 #include "floatformat.h"
34 #include "doublest.h"
35 #include "exceptions.h"
36 #include "dfp.h"
37
38 #include <errno.h>
39
40 /* Prototypes for local functions */
41
42 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
43 int len, int *errnoptr);
44
45 static void show_print (char *, int);
46
47 static void set_print (char *, int);
48
49 static void set_radix (char *, int);
50
51 static void show_radix (char *, int);
52
53 static void set_input_radix (char *, int, struct cmd_list_element *);
54
55 static void set_input_radix_1 (int, unsigned);
56
57 static void set_output_radix (char *, int, struct cmd_list_element *);
58
59 static void set_output_radix_1 (int, unsigned);
60
61 void _initialize_valprint (void);
62
63 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
64
65 struct value_print_options user_print_options =
66 {
67 Val_pretty_default, /* pretty */
68 0, /* prettyprint_arrays */
69 0, /* prettyprint_structs */
70 0, /* vtblprint */
71 1, /* unionprint */
72 1, /* addressprint */
73 0, /* objectprint */
74 PRINT_MAX_DEFAULT, /* print_max */
75 10, /* repeat_count_threshold */
76 0, /* output_format */
77 0, /* format */
78 0, /* stop_print_at_null */
79 0, /* inspect_it */
80 0, /* print_array_indexes */
81 0, /* deref_ref */
82 1, /* static_field_print */
83 1 /* pascal_static_field_print */
84 };
85
86 /* Initialize *OPTS to be a copy of the user print options. */
87 void
88 get_user_print_options (struct value_print_options *opts)
89 {
90 *opts = user_print_options;
91 }
92
93 /* Initialize *OPTS to be a copy of the user print options, but with
94 pretty-printing disabled. */
95 void
96 get_raw_print_options (struct value_print_options *opts)
97 {
98 *opts = user_print_options;
99 opts->pretty = Val_no_prettyprint;
100 }
101
102 /* Initialize *OPTS to be a copy of the user print options, but using
103 FORMAT as the formatting option. */
104 void
105 get_formatted_print_options (struct value_print_options *opts,
106 char format)
107 {
108 *opts = user_print_options;
109 opts->format = format;
110 }
111
112 static void
113 show_print_max (struct ui_file *file, int from_tty,
114 struct cmd_list_element *c, const char *value)
115 {
116 fprintf_filtered (file, _("\
117 Limit on string chars or array elements to print is %s.\n"),
118 value);
119 }
120
121
122 /* Default input and output radixes, and output format letter. */
123
124 unsigned input_radix = 10;
125 static void
126 show_input_radix (struct ui_file *file, int from_tty,
127 struct cmd_list_element *c, const char *value)
128 {
129 fprintf_filtered (file, _("\
130 Default input radix for entering numbers is %s.\n"),
131 value);
132 }
133
134 unsigned output_radix = 10;
135 static void
136 show_output_radix (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("\
140 Default output radix for printing of values is %s.\n"),
141 value);
142 }
143
144 /* By default we print arrays without printing the index of each element in
145 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
146
147 static void
148 show_print_array_indexes (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
152 }
153
154 /* Print repeat counts if there are more than this many repetitions of an
155 element in an array. Referenced by the low level language dependent
156 print routines. */
157
158 static void
159 show_repeat_count_threshold (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
163 value);
164 }
165
166 /* If nonzero, stops printing of char arrays at first null. */
167
168 static void
169 show_stop_print_at_null (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("\
173 Printing of char arrays to stop at first null char is %s.\n"),
174 value);
175 }
176
177 /* Controls pretty printing of structures. */
178
179 static void
180 show_prettyprint_structs (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
184 }
185
186 /* Controls pretty printing of arrays. */
187
188 static void
189 show_prettyprint_arrays (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
193 }
194
195 /* If nonzero, causes unions inside structures or other unions to be
196 printed. */
197
198 static void
199 show_unionprint (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("\
203 Printing of unions interior to structures is %s.\n"),
204 value);
205 }
206
207 /* If nonzero, causes machine addresses to be printed in certain contexts. */
208
209 static void
210 show_addressprint (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
214 }
215 \f
216
217 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
218 (within GDB), which came from the inferior at address ADDRESS, onto
219 stdio stream STREAM according to OPTIONS.
220
221 If the data are a string pointer, returns the number of string characters
222 printed.
223
224 FIXME: The data at VALADDR is in target byte order. If gdb is ever
225 enhanced to be able to debug more than the single target it was compiled
226 for (specific CPU type and thus specific target byte ordering), then
227 either the print routines are going to have to take this into account,
228 or the data is going to have to be passed into here already converted
229 to the host byte ordering, whichever is more convenient. */
230
231
232 int
233 val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
234 CORE_ADDR address, struct ui_file *stream, int recurse,
235 const struct value_print_options *options,
236 const struct language_defn *language)
237 {
238 volatile struct gdb_exception except;
239 int ret = 0;
240 struct value_print_options local_opts = *options;
241 struct type *real_type = check_typedef (type);
242
243 if (local_opts.pretty == Val_pretty_default)
244 local_opts.pretty = (local_opts.prettyprint_structs
245 ? Val_prettyprint : Val_no_prettyprint);
246
247 QUIT;
248
249 /* Ensure that the type is complete and not just a stub. If the type is
250 only a stub and we can't find and substitute its complete type, then
251 print appropriate string and return. */
252
253 if (TYPE_STUB (real_type))
254 {
255 fprintf_filtered (stream, "<incomplete type>");
256 gdb_flush (stream);
257 return (0);
258 }
259
260 TRY_CATCH (except, RETURN_MASK_ERROR)
261 {
262 ret = language->la_val_print (type, valaddr, embedded_offset, address,
263 stream, recurse, &local_opts);
264 }
265 if (except.reason < 0)
266 fprintf_filtered (stream, _("<error reading variable>"));
267
268 return ret;
269 }
270
271 /* Check whether the value VAL is printable. Return 1 if it is;
272 return 0 and print an appropriate error message to STREAM if it
273 is not. */
274
275 static int
276 value_check_printable (struct value *val, struct ui_file *stream)
277 {
278 if (val == 0)
279 {
280 fprintf_filtered (stream, _("<address of value unknown>"));
281 return 0;
282 }
283
284 if (value_optimized_out (val))
285 {
286 fprintf_filtered (stream, _("<value optimized out>"));
287 return 0;
288 }
289
290 if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
291 {
292 fprintf_filtered (stream, _("<internal function %s>"),
293 value_internal_function_name (val));
294 return 0;
295 }
296
297 return 1;
298 }
299
300 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
301 to OPTIONS.
302
303 If the data are a string pointer, returns the number of string characters
304 printed.
305
306 This is a preferable interface to val_print, above, because it uses
307 GDB's value mechanism. */
308
309 int
310 common_val_print (struct value *val, struct ui_file *stream, int recurse,
311 const struct value_print_options *options,
312 const struct language_defn *language)
313 {
314 if (!value_check_printable (val, stream))
315 return 0;
316
317 return val_print (value_type (val), value_contents_all (val),
318 value_embedded_offset (val), VALUE_ADDRESS (val),
319 stream, recurse, options, language);
320 }
321
322 /* Print the value VAL in C-ish syntax on stream STREAM according to
323 OPTIONS.
324 If the object printed is a string pointer, returns
325 the number of string bytes printed. */
326
327 int
328 value_print (struct value *val, struct ui_file *stream,
329 const struct value_print_options *options)
330 {
331 if (!value_check_printable (val, stream))
332 return 0;
333
334 return LA_VALUE_PRINT (val, stream, options);
335 }
336
337 /* Called by various <lang>_val_print routines to print
338 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
339 value. STREAM is where to print the value. */
340
341 void
342 val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
343 struct ui_file *stream)
344 {
345 enum bfd_endian byte_order = gdbarch_byte_order (current_gdbarch);
346
347 if (TYPE_LENGTH (type) > sizeof (LONGEST))
348 {
349 LONGEST val;
350
351 if (TYPE_UNSIGNED (type)
352 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
353 &val))
354 {
355 print_longest (stream, 'u', 0, val);
356 }
357 else
358 {
359 /* Signed, or we couldn't turn an unsigned value into a
360 LONGEST. For signed values, one could assume two's
361 complement (a reasonable assumption, I think) and do
362 better than this. */
363 print_hex_chars (stream, (unsigned char *) valaddr,
364 TYPE_LENGTH (type), byte_order);
365 }
366 }
367 else
368 {
369 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
370 unpack_long (type, valaddr));
371 }
372 }
373
374 void
375 val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
376 struct ui_file *stream)
377 {
378 ULONGEST val = unpack_long (type, valaddr);
379 int bitpos, nfields = TYPE_NFIELDS (type);
380
381 fputs_filtered ("[ ", stream);
382 for (bitpos = 0; bitpos < nfields; bitpos++)
383 {
384 if (TYPE_FIELD_BITPOS (type, bitpos) != -1
385 && (val & ((ULONGEST)1 << bitpos)))
386 {
387 if (TYPE_FIELD_NAME (type, bitpos))
388 fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
389 else
390 fprintf_filtered (stream, "#%d ", bitpos);
391 }
392 }
393 fputs_filtered ("]", stream);
394 }
395
396 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
397 The raison d'etre of this function is to consolidate printing of
398 LONG_LONG's into this one function. The format chars b,h,w,g are
399 from print_scalar_formatted(). Numbers are printed using C
400 format.
401
402 USE_C_FORMAT means to use C format in all cases. Without it,
403 'o' and 'x' format do not include the standard C radix prefix
404 (leading 0 or 0x).
405
406 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
407 and was intended to request formating according to the current
408 language and would be used for most integers that GDB prints. The
409 exceptional cases were things like protocols where the format of
410 the integer is a protocol thing, not a user-visible thing). The
411 parameter remains to preserve the information of what things might
412 be printed with language-specific format, should we ever resurrect
413 that capability. */
414
415 void
416 print_longest (struct ui_file *stream, int format, int use_c_format,
417 LONGEST val_long)
418 {
419 const char *val;
420
421 switch (format)
422 {
423 case 'd':
424 val = int_string (val_long, 10, 1, 0, 1); break;
425 case 'u':
426 val = int_string (val_long, 10, 0, 0, 1); break;
427 case 'x':
428 val = int_string (val_long, 16, 0, 0, use_c_format); break;
429 case 'b':
430 val = int_string (val_long, 16, 0, 2, 1); break;
431 case 'h':
432 val = int_string (val_long, 16, 0, 4, 1); break;
433 case 'w':
434 val = int_string (val_long, 16, 0, 8, 1); break;
435 case 'g':
436 val = int_string (val_long, 16, 0, 16, 1); break;
437 break;
438 case 'o':
439 val = int_string (val_long, 8, 0, 0, use_c_format); break;
440 default:
441 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
442 }
443 fputs_filtered (val, stream);
444 }
445
446 /* This used to be a macro, but I don't think it is called often enough
447 to merit such treatment. */
448 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
449 arguments to a function, number in a value history, register number, etc.)
450 where the value must not be larger than can fit in an int. */
451
452 int
453 longest_to_int (LONGEST arg)
454 {
455 /* Let the compiler do the work */
456 int rtnval = (int) arg;
457
458 /* Check for overflows or underflows */
459 if (sizeof (LONGEST) > sizeof (int))
460 {
461 if (rtnval != arg)
462 {
463 error (_("Value out of range."));
464 }
465 }
466 return (rtnval);
467 }
468
469 /* Print a floating point value of type TYPE (not always a
470 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
471
472 void
473 print_floating (const gdb_byte *valaddr, struct type *type,
474 struct ui_file *stream)
475 {
476 DOUBLEST doub;
477 int inv;
478 const struct floatformat *fmt = NULL;
479 unsigned len = TYPE_LENGTH (type);
480 enum float_kind kind;
481
482 /* If it is a floating-point, check for obvious problems. */
483 if (TYPE_CODE (type) == TYPE_CODE_FLT)
484 fmt = floatformat_from_type (type);
485 if (fmt != NULL)
486 {
487 kind = floatformat_classify (fmt, valaddr);
488 if (kind == float_nan)
489 {
490 if (floatformat_is_negative (fmt, valaddr))
491 fprintf_filtered (stream, "-");
492 fprintf_filtered (stream, "nan(");
493 fputs_filtered ("0x", stream);
494 fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
495 fprintf_filtered (stream, ")");
496 return;
497 }
498 else if (kind == float_infinite)
499 {
500 if (floatformat_is_negative (fmt, valaddr))
501 fputs_filtered ("-", stream);
502 fputs_filtered ("inf", stream);
503 return;
504 }
505 }
506
507 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
508 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
509 needs to be used as that takes care of any necessary type
510 conversions. Such conversions are of course direct to DOUBLEST
511 and disregard any possible target floating point limitations.
512 For instance, a u64 would be converted and displayed exactly on a
513 host with 80 bit DOUBLEST but with loss of information on a host
514 with 64 bit DOUBLEST. */
515
516 doub = unpack_double (type, valaddr, &inv);
517 if (inv)
518 {
519 fprintf_filtered (stream, "<invalid float value>");
520 return;
521 }
522
523 /* FIXME: kettenis/2001-01-20: The following code makes too much
524 assumptions about the host and target floating point format. */
525
526 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
527 not necessarily be a TYPE_CODE_FLT, the below ignores that and
528 instead uses the type's length to determine the precision of the
529 floating-point value being printed. */
530
531 if (len < sizeof (double))
532 fprintf_filtered (stream, "%.9g", (double) doub);
533 else if (len == sizeof (double))
534 fprintf_filtered (stream, "%.17g", (double) doub);
535 else
536 #ifdef PRINTF_HAS_LONG_DOUBLE
537 fprintf_filtered (stream, "%.35Lg", doub);
538 #else
539 /* This at least wins with values that are representable as
540 doubles. */
541 fprintf_filtered (stream, "%.17g", (double) doub);
542 #endif
543 }
544
545 void
546 print_decimal_floating (const gdb_byte *valaddr, struct type *type,
547 struct ui_file *stream)
548 {
549 char decstr[MAX_DECIMAL_STRING];
550 unsigned len = TYPE_LENGTH (type);
551
552 decimal_to_string (valaddr, len, decstr);
553 fputs_filtered (decstr, stream);
554 return;
555 }
556
557 void
558 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
559 unsigned len, enum bfd_endian byte_order)
560 {
561
562 #define BITS_IN_BYTES 8
563
564 const gdb_byte *p;
565 unsigned int i;
566 int b;
567
568 /* Declared "int" so it will be signed.
569 * This ensures that right shift will shift in zeros.
570 */
571 const int mask = 0x080;
572
573 /* FIXME: We should be not printing leading zeroes in most cases. */
574
575 if (byte_order == BFD_ENDIAN_BIG)
576 {
577 for (p = valaddr;
578 p < valaddr + len;
579 p++)
580 {
581 /* Every byte has 8 binary characters; peel off
582 * and print from the MSB end.
583 */
584 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
585 {
586 if (*p & (mask >> i))
587 b = 1;
588 else
589 b = 0;
590
591 fprintf_filtered (stream, "%1d", b);
592 }
593 }
594 }
595 else
596 {
597 for (p = valaddr + len - 1;
598 p >= valaddr;
599 p--)
600 {
601 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
602 {
603 if (*p & (mask >> i))
604 b = 1;
605 else
606 b = 0;
607
608 fprintf_filtered (stream, "%1d", b);
609 }
610 }
611 }
612 }
613
614 /* VALADDR points to an integer of LEN bytes.
615 * Print it in octal on stream or format it in buf.
616 */
617 void
618 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
619 unsigned len, enum bfd_endian byte_order)
620 {
621 const gdb_byte *p;
622 unsigned char octa1, octa2, octa3, carry;
623 int cycle;
624
625 /* FIXME: We should be not printing leading zeroes in most cases. */
626
627
628 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
629 * the extra bits, which cycle every three bytes:
630 *
631 * Byte side: 0 1 2 3
632 * | | | |
633 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
634 *
635 * Octal side: 0 1 carry 3 4 carry ...
636 *
637 * Cycle number: 0 1 2
638 *
639 * But of course we are printing from the high side, so we have to
640 * figure out where in the cycle we are so that we end up with no
641 * left over bits at the end.
642 */
643 #define BITS_IN_OCTAL 3
644 #define HIGH_ZERO 0340
645 #define LOW_ZERO 0016
646 #define CARRY_ZERO 0003
647 #define HIGH_ONE 0200
648 #define MID_ONE 0160
649 #define LOW_ONE 0016
650 #define CARRY_ONE 0001
651 #define HIGH_TWO 0300
652 #define MID_TWO 0070
653 #define LOW_TWO 0007
654
655 /* For 32 we start in cycle 2, with two bits and one bit carry;
656 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
657 */
658 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
659 carry = 0;
660
661 fputs_filtered ("0", stream);
662 if (byte_order == BFD_ENDIAN_BIG)
663 {
664 for (p = valaddr;
665 p < valaddr + len;
666 p++)
667 {
668 switch (cycle)
669 {
670 case 0:
671 /* No carry in, carry out two bits.
672 */
673 octa1 = (HIGH_ZERO & *p) >> 5;
674 octa2 = (LOW_ZERO & *p) >> 2;
675 carry = (CARRY_ZERO & *p);
676 fprintf_filtered (stream, "%o", octa1);
677 fprintf_filtered (stream, "%o", octa2);
678 break;
679
680 case 1:
681 /* Carry in two bits, carry out one bit.
682 */
683 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
684 octa2 = (MID_ONE & *p) >> 4;
685 octa3 = (LOW_ONE & *p) >> 1;
686 carry = (CARRY_ONE & *p);
687 fprintf_filtered (stream, "%o", octa1);
688 fprintf_filtered (stream, "%o", octa2);
689 fprintf_filtered (stream, "%o", octa3);
690 break;
691
692 case 2:
693 /* Carry in one bit, no carry out.
694 */
695 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
696 octa2 = (MID_TWO & *p) >> 3;
697 octa3 = (LOW_TWO & *p);
698 carry = 0;
699 fprintf_filtered (stream, "%o", octa1);
700 fprintf_filtered (stream, "%o", octa2);
701 fprintf_filtered (stream, "%o", octa3);
702 break;
703
704 default:
705 error (_("Internal error in octal conversion;"));
706 }
707
708 cycle++;
709 cycle = cycle % BITS_IN_OCTAL;
710 }
711 }
712 else
713 {
714 for (p = valaddr + len - 1;
715 p >= valaddr;
716 p--)
717 {
718 switch (cycle)
719 {
720 case 0:
721 /* Carry out, no carry in */
722 octa1 = (HIGH_ZERO & *p) >> 5;
723 octa2 = (LOW_ZERO & *p) >> 2;
724 carry = (CARRY_ZERO & *p);
725 fprintf_filtered (stream, "%o", octa1);
726 fprintf_filtered (stream, "%o", octa2);
727 break;
728
729 case 1:
730 /* Carry in, carry out */
731 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
732 octa2 = (MID_ONE & *p) >> 4;
733 octa3 = (LOW_ONE & *p) >> 1;
734 carry = (CARRY_ONE & *p);
735 fprintf_filtered (stream, "%o", octa1);
736 fprintf_filtered (stream, "%o", octa2);
737 fprintf_filtered (stream, "%o", octa3);
738 break;
739
740 case 2:
741 /* Carry in, no carry out */
742 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
743 octa2 = (MID_TWO & *p) >> 3;
744 octa3 = (LOW_TWO & *p);
745 carry = 0;
746 fprintf_filtered (stream, "%o", octa1);
747 fprintf_filtered (stream, "%o", octa2);
748 fprintf_filtered (stream, "%o", octa3);
749 break;
750
751 default:
752 error (_("Internal error in octal conversion;"));
753 }
754
755 cycle++;
756 cycle = cycle % BITS_IN_OCTAL;
757 }
758 }
759
760 }
761
762 /* VALADDR points to an integer of LEN bytes.
763 * Print it in decimal on stream or format it in buf.
764 */
765 void
766 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
767 unsigned len, enum bfd_endian byte_order)
768 {
769 #define TEN 10
770 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
771 #define CARRY_LEFT( x ) ((x) % TEN)
772 #define SHIFT( x ) ((x) << 4)
773 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
774 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
775
776 const gdb_byte *p;
777 unsigned char *digits;
778 int carry;
779 int decimal_len;
780 int i, j, decimal_digits;
781 int dummy;
782 int flip;
783
784 /* Base-ten number is less than twice as many digits
785 * as the base 16 number, which is 2 digits per byte.
786 */
787 decimal_len = len * 2 * 2;
788 digits = xmalloc (decimal_len);
789
790 for (i = 0; i < decimal_len; i++)
791 {
792 digits[i] = 0;
793 }
794
795 /* Ok, we have an unknown number of bytes of data to be printed in
796 * decimal.
797 *
798 * Given a hex number (in nibbles) as XYZ, we start by taking X and
799 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
800 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
801 *
802 * The trick is that "digits" holds a base-10 number, but sometimes
803 * the individual digits are > 10.
804 *
805 * Outer loop is per nibble (hex digit) of input, from MSD end to
806 * LSD end.
807 */
808 decimal_digits = 0; /* Number of decimal digits so far */
809 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
810 flip = 0;
811 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
812 {
813 /*
814 * Multiply current base-ten number by 16 in place.
815 * Each digit was between 0 and 9, now is between
816 * 0 and 144.
817 */
818 for (j = 0; j < decimal_digits; j++)
819 {
820 digits[j] = SHIFT (digits[j]);
821 }
822
823 /* Take the next nibble off the input and add it to what
824 * we've got in the LSB position. Bottom 'digit' is now
825 * between 0 and 159.
826 *
827 * "flip" is used to run this loop twice for each byte.
828 */
829 if (flip == 0)
830 {
831 /* Take top nibble.
832 */
833 digits[0] += HIGH_NIBBLE (*p);
834 flip = 1;
835 }
836 else
837 {
838 /* Take low nibble and bump our pointer "p".
839 */
840 digits[0] += LOW_NIBBLE (*p);
841 if (byte_order == BFD_ENDIAN_BIG)
842 p++;
843 else
844 p--;
845 flip = 0;
846 }
847
848 /* Re-decimalize. We have to do this often enough
849 * that we don't overflow, but once per nibble is
850 * overkill. Easier this way, though. Note that the
851 * carry is often larger than 10 (e.g. max initial
852 * carry out of lowest nibble is 15, could bubble all
853 * the way up greater than 10). So we have to do
854 * the carrying beyond the last current digit.
855 */
856 carry = 0;
857 for (j = 0; j < decimal_len - 1; j++)
858 {
859 digits[j] += carry;
860
861 /* "/" won't handle an unsigned char with
862 * a value that if signed would be negative.
863 * So extend to longword int via "dummy".
864 */
865 dummy = digits[j];
866 carry = CARRY_OUT (dummy);
867 digits[j] = CARRY_LEFT (dummy);
868
869 if (j >= decimal_digits && carry == 0)
870 {
871 /*
872 * All higher digits are 0 and we
873 * no longer have a carry.
874 *
875 * Note: "j" is 0-based, "decimal_digits" is
876 * 1-based.
877 */
878 decimal_digits = j + 1;
879 break;
880 }
881 }
882 }
883
884 /* Ok, now "digits" is the decimal representation, with
885 * the "decimal_digits" actual digits. Print!
886 */
887 for (i = decimal_digits - 1; i >= 0; i--)
888 {
889 fprintf_filtered (stream, "%1d", digits[i]);
890 }
891 xfree (digits);
892 }
893
894 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
895
896 void
897 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
898 unsigned len, enum bfd_endian byte_order)
899 {
900 const gdb_byte *p;
901
902 /* FIXME: We should be not printing leading zeroes in most cases. */
903
904 fputs_filtered ("0x", stream);
905 if (byte_order == BFD_ENDIAN_BIG)
906 {
907 for (p = valaddr;
908 p < valaddr + len;
909 p++)
910 {
911 fprintf_filtered (stream, "%02x", *p);
912 }
913 }
914 else
915 {
916 for (p = valaddr + len - 1;
917 p >= valaddr;
918 p--)
919 {
920 fprintf_filtered (stream, "%02x", *p);
921 }
922 }
923 }
924
925 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
926 Omit any leading zero chars. */
927
928 void
929 print_char_chars (struct ui_file *stream, struct type *type,
930 const gdb_byte *valaddr,
931 unsigned len, enum bfd_endian byte_order)
932 {
933 const gdb_byte *p;
934
935 if (byte_order == BFD_ENDIAN_BIG)
936 {
937 p = valaddr;
938 while (p < valaddr + len - 1 && *p == 0)
939 ++p;
940
941 while (p < valaddr + len)
942 {
943 LA_EMIT_CHAR (*p, type, stream, '\'');
944 ++p;
945 }
946 }
947 else
948 {
949 p = valaddr + len - 1;
950 while (p > valaddr && *p == 0)
951 --p;
952
953 while (p >= valaddr)
954 {
955 LA_EMIT_CHAR (*p, type, stream, '\'');
956 --p;
957 }
958 }
959 }
960
961 /* Assuming TYPE is a simple, non-empty array type, compute its upper
962 and lower bound. Save the low bound into LOW_BOUND if not NULL.
963 Save the high bound into HIGH_BOUND if not NULL.
964
965 Return 1 if the operation was successful. Return zero otherwise,
966 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
967
968 Computing the array upper and lower bounds is pretty easy, but this
969 function does some additional verifications before returning them.
970 If something incorrect is detected, it is better to return a status
971 rather than throwing an error, making it easier for the caller to
972 implement an error-recovery plan. For instance, it may decide to
973 warn the user that the bounds were not found and then use some
974 default values instead. */
975
976 int
977 get_array_bounds (struct type *type, long *low_bound, long *high_bound)
978 {
979 struct type *index = TYPE_INDEX_TYPE (type);
980 long low = 0;
981 long high = 0;
982
983 if (index == NULL)
984 return 0;
985
986 if (TYPE_CODE (index) == TYPE_CODE_RANGE)
987 {
988 low = TYPE_LOW_BOUND (index);
989 high = TYPE_HIGH_BOUND (index);
990 }
991 else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
992 {
993 const int n_enums = TYPE_NFIELDS (index);
994
995 low = TYPE_FIELD_BITPOS (index, 0);
996 high = TYPE_FIELD_BITPOS (index, n_enums - 1);
997 }
998 else
999 return 0;
1000
1001 /* Abort if the lower bound is greater than the higher bound, except
1002 when low = high + 1. This is a very common idiom used in Ada when
1003 defining empty ranges (for instance "range 1 .. 0"). */
1004 if (low > high + 1)
1005 return 0;
1006
1007 if (low_bound)
1008 *low_bound = low;
1009
1010 if (high_bound)
1011 *high_bound = high;
1012
1013 return 1;
1014 }
1015
1016 /* Print on STREAM using the given OPTIONS the index for the element
1017 at INDEX of an array whose index type is INDEX_TYPE. */
1018
1019 void
1020 maybe_print_array_index (struct type *index_type, LONGEST index,
1021 struct ui_file *stream,
1022 const struct value_print_options *options)
1023 {
1024 struct value *index_value;
1025
1026 if (!options->print_array_indexes)
1027 return;
1028
1029 index_value = value_from_longest (index_type, index);
1030
1031 LA_PRINT_ARRAY_INDEX (index_value, stream, options);
1032 }
1033
1034 /* Called by various <lang>_val_print routines to print elements of an
1035 array in the form "<elem1>, <elem2>, <elem3>, ...".
1036
1037 (FIXME?) Assumes array element separator is a comma, which is correct
1038 for all languages currently handled.
1039 (FIXME?) Some languages have a notation for repeated array elements,
1040 perhaps we should try to use that notation when appropriate.
1041 */
1042
1043 void
1044 val_print_array_elements (struct type *type, const gdb_byte *valaddr,
1045 CORE_ADDR address, struct ui_file *stream,
1046 int recurse,
1047 const struct value_print_options *options,
1048 unsigned int i)
1049 {
1050 unsigned int things_printed = 0;
1051 unsigned len;
1052 struct type *elttype, *index_type;
1053 unsigned eltlen;
1054 /* Position of the array element we are examining to see
1055 whether it is repeated. */
1056 unsigned int rep1;
1057 /* Number of repetitions we have detected so far. */
1058 unsigned int reps;
1059 long low_bound_index = 0;
1060
1061 elttype = TYPE_TARGET_TYPE (type);
1062 eltlen = TYPE_LENGTH (check_typedef (elttype));
1063 index_type = TYPE_INDEX_TYPE (type);
1064
1065 /* Compute the number of elements in the array. On most arrays,
1066 the size of its elements is not zero, and so the number of elements
1067 is simply the size of the array divided by the size of the elements.
1068 But for arrays of elements whose size is zero, we need to look at
1069 the bounds. */
1070 if (eltlen != 0)
1071 len = TYPE_LENGTH (type) / eltlen;
1072 else
1073 {
1074 long low, hi;
1075 if (get_array_bounds (type, &low, &hi))
1076 len = hi - low + 1;
1077 else
1078 {
1079 warning (_("unable to get bounds of array, assuming null array"));
1080 len = 0;
1081 }
1082 }
1083
1084 /* Get the array low bound. This only makes sense if the array
1085 has one or more element in it. */
1086 if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
1087 {
1088 warning (_("unable to get low bound of array, using zero as default"));
1089 low_bound_index = 0;
1090 }
1091
1092 annotate_array_section_begin (i, elttype);
1093
1094 for (; i < len && things_printed < options->print_max; i++)
1095 {
1096 if (i != 0)
1097 {
1098 if (options->prettyprint_arrays)
1099 {
1100 fprintf_filtered (stream, ",\n");
1101 print_spaces_filtered (2 + 2 * recurse, stream);
1102 }
1103 else
1104 {
1105 fprintf_filtered (stream, ", ");
1106 }
1107 }
1108 wrap_here (n_spaces (2 + 2 * recurse));
1109 maybe_print_array_index (index_type, i + low_bound_index,
1110 stream, options);
1111
1112 rep1 = i + 1;
1113 reps = 1;
1114 while ((rep1 < len) &&
1115 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1116 {
1117 ++reps;
1118 ++rep1;
1119 }
1120
1121 if (reps > options->repeat_count_threshold)
1122 {
1123 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1124 stream, recurse + 1, options, current_language);
1125 annotate_elt_rep (reps);
1126 fprintf_filtered (stream, " <repeats %u times>", reps);
1127 annotate_elt_rep_end ();
1128
1129 i = rep1 - 1;
1130 things_printed += options->repeat_count_threshold;
1131 }
1132 else
1133 {
1134 val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
1135 stream, recurse + 1, options, current_language);
1136 annotate_elt ();
1137 things_printed++;
1138 }
1139 }
1140 annotate_array_section_end ();
1141 if (i < len)
1142 {
1143 fprintf_filtered (stream, "...");
1144 }
1145 }
1146
1147 /* Read LEN bytes of target memory at address MEMADDR, placing the
1148 results in GDB's memory at MYADDR. Returns a count of the bytes
1149 actually read, and optionally an errno value in the location
1150 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1151
1152 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1153 function be eliminated. */
1154
1155 static int
1156 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
1157 {
1158 int nread; /* Number of bytes actually read. */
1159 int errcode; /* Error from last read. */
1160
1161 /* First try a complete read. */
1162 errcode = target_read_memory (memaddr, myaddr, len);
1163 if (errcode == 0)
1164 {
1165 /* Got it all. */
1166 nread = len;
1167 }
1168 else
1169 {
1170 /* Loop, reading one byte at a time until we get as much as we can. */
1171 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1172 {
1173 errcode = target_read_memory (memaddr++, myaddr++, 1);
1174 }
1175 /* If an error, the last read was unsuccessful, so adjust count. */
1176 if (errcode != 0)
1177 {
1178 nread--;
1179 }
1180 }
1181 if (errnoptr != NULL)
1182 {
1183 *errnoptr = errcode;
1184 }
1185 return (nread);
1186 }
1187
1188 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1189 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1190 allocated buffer containing the string, which the caller is responsible to
1191 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1192 success, or errno on failure.
1193
1194 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1195 the middle or end of the string). If LEN is -1, stops at the first
1196 null character (not necessarily the first null byte) up to a maximum
1197 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1198 characters as possible from the string.
1199
1200 Unless an exception is thrown, BUFFER will always be allocated, even on
1201 failure. In this case, some characters might have been read before the
1202 failure happened. Check BYTES_READ to recognize this situation.
1203
1204 Note: There was a FIXME asking to make this code use target_read_string,
1205 but this function is more general (can read past null characters, up to
1206 given LEN). Besides, it is used much more often than target_read_string
1207 so it is more tested. Perhaps callers of target_read_string should use
1208 this function instead? */
1209
1210 int
1211 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
1212 gdb_byte **buffer, int *bytes_read)
1213 {
1214 int found_nul; /* Non-zero if we found the nul char. */
1215 int errcode; /* Errno returned from bad reads. */
1216 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1217 unsigned int chunksize; /* Size of each fetch, in chars. */
1218 gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
1219 gdb_byte *limit; /* First location past end of fetch buffer. */
1220 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1221
1222 /* Decide how large of chunks to try to read in one operation. This
1223 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1224 so we might as well read them all in one operation. If LEN is -1, we
1225 are looking for a NUL terminator to end the fetching, so we might as
1226 well read in blocks that are large enough to be efficient, but not so
1227 large as to be slow if fetchlimit happens to be large. So we choose the
1228 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1229 200 is way too big for remote debugging over a serial line. */
1230
1231 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1232
1233 /* Loop until we either have all the characters, or we encounter
1234 some error, such as bumping into the end of the address space. */
1235
1236 found_nul = 0;
1237 *buffer = NULL;
1238
1239 old_chain = make_cleanup (free_current_contents, buffer);
1240
1241 if (len > 0)
1242 {
1243 *buffer = (gdb_byte *) xmalloc (len * width);
1244 bufptr = *buffer;
1245
1246 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1247 / width;
1248 addr += nfetch * width;
1249 bufptr += nfetch * width;
1250 }
1251 else if (len == -1)
1252 {
1253 unsigned long bufsize = 0;
1254
1255 do
1256 {
1257 QUIT;
1258 nfetch = min (chunksize, fetchlimit - bufsize);
1259
1260 if (*buffer == NULL)
1261 *buffer = (gdb_byte *) xmalloc (nfetch * width);
1262 else
1263 *buffer = (gdb_byte *) xrealloc (*buffer,
1264 (nfetch + bufsize) * width);
1265
1266 bufptr = *buffer + bufsize * width;
1267 bufsize += nfetch;
1268
1269 /* Read as much as we can. */
1270 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1271 / width;
1272
1273 /* Scan this chunk for the null character that terminates the string
1274 to print. If found, we don't need to fetch any more. Note
1275 that bufptr is explicitly left pointing at the next character
1276 after the null character, or at the next character after the end
1277 of the buffer. */
1278
1279 limit = bufptr + nfetch * width;
1280 while (bufptr < limit)
1281 {
1282 unsigned long c;
1283
1284 c = extract_unsigned_integer (bufptr, width);
1285 addr += width;
1286 bufptr += width;
1287 if (c == 0)
1288 {
1289 /* We don't care about any error which happened after
1290 the NUL terminator. */
1291 errcode = 0;
1292 found_nul = 1;
1293 break;
1294 }
1295 }
1296 }
1297 while (errcode == 0 /* no error */
1298 && bufptr - *buffer < fetchlimit * width /* no overrun */
1299 && !found_nul); /* haven't found NUL yet */
1300 }
1301 else
1302 { /* Length of string is really 0! */
1303 /* We always allocate *buffer. */
1304 *buffer = bufptr = xmalloc (1);
1305 errcode = 0;
1306 }
1307
1308 /* bufptr and addr now point immediately beyond the last byte which we
1309 consider part of the string (including a '\0' which ends the string). */
1310 *bytes_read = bufptr - *buffer;
1311
1312 QUIT;
1313
1314 discard_cleanups (old_chain);
1315
1316 return errcode;
1317 }
1318
1319 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1320 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1321 stops at the first null byte, otherwise printing proceeds (including null
1322 bytes) until either print_max or LEN characters have been printed,
1323 whichever is smaller. */
1324
1325 int
1326 val_print_string (struct type *elttype, CORE_ADDR addr, int len,
1327 struct ui_file *stream,
1328 const struct value_print_options *options)
1329 {
1330 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1331 int errcode; /* Errno returned from bad reads. */
1332 int found_nul; /* Non-zero if we found the nul char */
1333 unsigned int fetchlimit; /* Maximum number of chars to print. */
1334 int bytes_read;
1335 gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
1336 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1337 int width = TYPE_LENGTH (elttype);
1338
1339 /* First we need to figure out the limit on the number of characters we are
1340 going to attempt to fetch and print. This is actually pretty simple. If
1341 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1342 LEN is -1, then the limit is print_max. This is true regardless of
1343 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1344 because finding the null byte (or available memory) is what actually
1345 limits the fetch. */
1346
1347 fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
1348
1349 errcode = read_string (addr, len, width, fetchlimit, &buffer, &bytes_read);
1350 old_chain = make_cleanup (xfree, buffer);
1351
1352 addr += bytes_read;
1353
1354 /* We now have either successfully filled the buffer to fetchlimit, or
1355 terminated early due to an error or finding a null char when LEN is -1. */
1356
1357 /* Determine found_nul by looking at the last character read. */
1358 found_nul = extract_unsigned_integer (buffer + bytes_read - width, width) == 0;
1359
1360 if (len == -1 && !found_nul)
1361 {
1362 gdb_byte *peekbuf;
1363
1364 /* We didn't find a NUL terminator we were looking for. Attempt
1365 to peek at the next character. If not successful, or it is not
1366 a null byte, then force ellipsis to be printed. */
1367
1368 peekbuf = (gdb_byte *) alloca (width);
1369
1370 if (target_read_memory (addr, peekbuf, width) == 0
1371 && extract_unsigned_integer (peekbuf, width) != 0)
1372 force_ellipsis = 1;
1373 }
1374 else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
1375 {
1376 /* Getting an error when we have a requested length, or fetching less
1377 than the number of characters actually requested, always make us
1378 print ellipsis. */
1379 force_ellipsis = 1;
1380 }
1381
1382 /* If we get an error before fetching anything, don't print a string.
1383 But if we fetch something and then get an error, print the string
1384 and then the error message. */
1385 if (errcode == 0 || bytes_read > 0)
1386 {
1387 if (options->addressprint)
1388 {
1389 fputs_filtered (" ", stream);
1390 }
1391 LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, force_ellipsis, options);
1392 }
1393
1394 if (errcode != 0)
1395 {
1396 if (errcode == EIO)
1397 {
1398 fprintf_filtered (stream, " <Address ");
1399 fputs_filtered (paddress (addr), stream);
1400 fprintf_filtered (stream, " out of bounds>");
1401 }
1402 else
1403 {
1404 fprintf_filtered (stream, " <Error reading address ");
1405 fputs_filtered (paddress (addr), stream);
1406 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1407 }
1408 }
1409
1410 gdb_flush (stream);
1411 do_cleanups (old_chain);
1412
1413 return (bytes_read / width);
1414 }
1415 \f
1416
1417 /* The 'set input-radix' command writes to this auxiliary variable.
1418 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1419 it is left unchanged. */
1420
1421 static unsigned input_radix_1 = 10;
1422
1423 /* Validate an input or output radix setting, and make sure the user
1424 knows what they really did here. Radix setting is confusing, e.g.
1425 setting the input radix to "10" never changes it! */
1426
1427 static void
1428 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1429 {
1430 set_input_radix_1 (from_tty, input_radix_1);
1431 }
1432
1433 static void
1434 set_input_radix_1 (int from_tty, unsigned radix)
1435 {
1436 /* We don't currently disallow any input radix except 0 or 1, which don't
1437 make any mathematical sense. In theory, we can deal with any input
1438 radix greater than 1, even if we don't have unique digits for every
1439 value from 0 to radix-1, but in practice we lose on large radix values.
1440 We should either fix the lossage or restrict the radix range more.
1441 (FIXME). */
1442
1443 if (radix < 2)
1444 {
1445 input_radix_1 = input_radix;
1446 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1447 radix);
1448 }
1449 input_radix_1 = input_radix = radix;
1450 if (from_tty)
1451 {
1452 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1453 radix, radix, radix);
1454 }
1455 }
1456
1457 /* The 'set output-radix' command writes to this auxiliary variable.
1458 If the requested radix is valid, OUTPUT_RADIX is updated,
1459 otherwise, it is left unchanged. */
1460
1461 static unsigned output_radix_1 = 10;
1462
1463 static void
1464 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1465 {
1466 set_output_radix_1 (from_tty, output_radix_1);
1467 }
1468
1469 static void
1470 set_output_radix_1 (int from_tty, unsigned radix)
1471 {
1472 /* Validate the radix and disallow ones that we aren't prepared to
1473 handle correctly, leaving the radix unchanged. */
1474 switch (radix)
1475 {
1476 case 16:
1477 user_print_options.output_format = 'x'; /* hex */
1478 break;
1479 case 10:
1480 user_print_options.output_format = 0; /* decimal */
1481 break;
1482 case 8:
1483 user_print_options.output_format = 'o'; /* octal */
1484 break;
1485 default:
1486 output_radix_1 = output_radix;
1487 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1488 radix);
1489 }
1490 output_radix_1 = output_radix = radix;
1491 if (from_tty)
1492 {
1493 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1494 radix, radix, radix);
1495 }
1496 }
1497
1498 /* Set both the input and output radix at once. Try to set the output radix
1499 first, since it has the most restrictive range. An radix that is valid as
1500 an output radix is also valid as an input radix.
1501
1502 It may be useful to have an unusual input radix. If the user wishes to
1503 set an input radix that is not valid as an output radix, he needs to use
1504 the 'set input-radix' command. */
1505
1506 static void
1507 set_radix (char *arg, int from_tty)
1508 {
1509 unsigned radix;
1510
1511 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1512 set_output_radix_1 (0, radix);
1513 set_input_radix_1 (0, radix);
1514 if (from_tty)
1515 {
1516 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1517 radix, radix, radix);
1518 }
1519 }
1520
1521 /* Show both the input and output radices. */
1522
1523 static void
1524 show_radix (char *arg, int from_tty)
1525 {
1526 if (from_tty)
1527 {
1528 if (input_radix == output_radix)
1529 {
1530 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1531 input_radix, input_radix, input_radix);
1532 }
1533 else
1534 {
1535 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1536 input_radix, input_radix, input_radix);
1537 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1538 output_radix, output_radix, output_radix);
1539 }
1540 }
1541 }
1542 \f
1543
1544 static void
1545 set_print (char *arg, int from_tty)
1546 {
1547 printf_unfiltered (
1548 "\"set print\" must be followed by the name of a print subcommand.\n");
1549 help_list (setprintlist, "set print ", -1, gdb_stdout);
1550 }
1551
1552 static void
1553 show_print (char *args, int from_tty)
1554 {
1555 cmd_show_list (showprintlist, from_tty, "");
1556 }
1557 \f
1558 void
1559 _initialize_valprint (void)
1560 {
1561 struct cmd_list_element *c;
1562
1563 add_prefix_cmd ("print", no_class, set_print,
1564 _("Generic command for setting how things print."),
1565 &setprintlist, "set print ", 0, &setlist);
1566 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1567 /* prefer set print to set prompt */
1568 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1569
1570 add_prefix_cmd ("print", no_class, show_print,
1571 _("Generic command for showing print settings."),
1572 &showprintlist, "show print ", 0, &showlist);
1573 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1574 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1575
1576 add_setshow_uinteger_cmd ("elements", no_class,
1577 &user_print_options.print_max, _("\
1578 Set limit on string chars or array elements to print."), _("\
1579 Show limit on string chars or array elements to print."), _("\
1580 \"set print elements 0\" causes there to be no limit."),
1581 NULL,
1582 show_print_max,
1583 &setprintlist, &showprintlist);
1584
1585 add_setshow_boolean_cmd ("null-stop", no_class,
1586 &user_print_options.stop_print_at_null, _("\
1587 Set printing of char arrays to stop at first null char."), _("\
1588 Show printing of char arrays to stop at first null char."), NULL,
1589 NULL,
1590 show_stop_print_at_null,
1591 &setprintlist, &showprintlist);
1592
1593 add_setshow_uinteger_cmd ("repeats", no_class,
1594 &user_print_options.repeat_count_threshold, _("\
1595 Set threshold for repeated print elements."), _("\
1596 Show threshold for repeated print elements."), _("\
1597 \"set print repeats 0\" causes all elements to be individually printed."),
1598 NULL,
1599 show_repeat_count_threshold,
1600 &setprintlist, &showprintlist);
1601
1602 add_setshow_boolean_cmd ("pretty", class_support,
1603 &user_print_options.prettyprint_structs, _("\
1604 Set prettyprinting of structures."), _("\
1605 Show prettyprinting of structures."), NULL,
1606 NULL,
1607 show_prettyprint_structs,
1608 &setprintlist, &showprintlist);
1609
1610 add_setshow_boolean_cmd ("union", class_support,
1611 &user_print_options.unionprint, _("\
1612 Set printing of unions interior to structures."), _("\
1613 Show printing of unions interior to structures."), NULL,
1614 NULL,
1615 show_unionprint,
1616 &setprintlist, &showprintlist);
1617
1618 add_setshow_boolean_cmd ("array", class_support,
1619 &user_print_options.prettyprint_arrays, _("\
1620 Set prettyprinting of arrays."), _("\
1621 Show prettyprinting of arrays."), NULL,
1622 NULL,
1623 show_prettyprint_arrays,
1624 &setprintlist, &showprintlist);
1625
1626 add_setshow_boolean_cmd ("address", class_support,
1627 &user_print_options.addressprint, _("\
1628 Set printing of addresses."), _("\
1629 Show printing of addresses."), NULL,
1630 NULL,
1631 show_addressprint,
1632 &setprintlist, &showprintlist);
1633
1634 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
1635 _("\
1636 Set default input radix for entering numbers."), _("\
1637 Show default input radix for entering numbers."), NULL,
1638 set_input_radix,
1639 show_input_radix,
1640 &setlist, &showlist);
1641
1642 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
1643 _("\
1644 Set default output radix for printing of values."), _("\
1645 Show default output radix for printing of values."), NULL,
1646 set_output_radix,
1647 show_output_radix,
1648 &setlist, &showlist);
1649
1650 /* The "set radix" and "show radix" commands are special in that
1651 they are like normal set and show commands but allow two normally
1652 independent variables to be either set or shown with a single
1653 command. So the usual deprecated_add_set_cmd() and [deleted]
1654 add_show_from_set() commands aren't really appropriate. */
1655 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1656 longer true - show can display anything. */
1657 add_cmd ("radix", class_support, set_radix, _("\
1658 Set default input and output number radices.\n\
1659 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1660 Without an argument, sets both radices back to the default value of 10."),
1661 &setlist);
1662 add_cmd ("radix", class_support, show_radix, _("\
1663 Show the default input and output number radices.\n\
1664 Use 'show input-radix' or 'show output-radix' to independently show each."),
1665 &showlist);
1666
1667 add_setshow_boolean_cmd ("array-indexes", class_support,
1668 &user_print_options.print_array_indexes, _("\
1669 Set printing of array indexes."), _("\
1670 Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
1671 &setprintlist, &showprintlist);
1672 }