]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
Remove CHECK_TYPEDEF, use check_typedef instead
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43
44 /* Prototypes for exported functions. */
45
46 void _initialize_values (void);
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65 struct range
66 {
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72 };
73
74 typedef struct range range_s;
75
76 DEF_VEC_O(range_s);
77
78 /* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81 static int
82 ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84 {
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90 }
91
92 /* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97 static int
98 range_lessthan (const range_s *r1, const range_s *r2)
99 {
100 return r1->offset < r2->offset;
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (VEC(range_s) *ranges, int offset, int length)
108 {
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165 }
166
167 static struct cmd_list_element *functionlist;
168
169 /* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
172 struct value
173 {
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
203
204 /* If the value has been released. */
205 unsigned int released : 1;
206
207 /* Register number if the value is from a register. */
208 short regnum;
209
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
220
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
324
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
331 VEC(range_s) *unavailable;
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
341 };
342
343 int
344 value_bits_available (const struct value *value, int offset, int length)
345 {
346 gdb_assert (!value->lazy);
347
348 return !ranges_contain (value->unavailable, offset, length);
349 }
350
351 int
352 value_bytes_available (const struct value *value, int offset, int length)
353 {
354 return value_bits_available (value,
355 offset * TARGET_CHAR_BIT,
356 length * TARGET_CHAR_BIT);
357 }
358
359 int
360 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
361 {
362 gdb_assert (!value->lazy);
363
364 return ranges_contain (value->optimized_out, bit_offset, bit_length);
365 }
366
367 int
368 value_entirely_available (struct value *value)
369 {
370 /* We can only tell whether the whole value is available when we try
371 to read it. */
372 if (value->lazy)
373 value_fetch_lazy (value);
374
375 if (VEC_empty (range_s, value->unavailable))
376 return 1;
377 return 0;
378 }
379
380 /* Returns true if VALUE is entirely covered by RANGES. If the value
381 is lazy, it'll be read now. Note that RANGE is a pointer to
382 pointer because reading the value might change *RANGE. */
383
384 static int
385 value_entirely_covered_by_range_vector (struct value *value,
386 VEC(range_s) **ranges)
387 {
388 /* We can only tell whether the whole value is optimized out /
389 unavailable when we try to read it. */
390 if (value->lazy)
391 value_fetch_lazy (value);
392
393 if (VEC_length (range_s, *ranges) == 1)
394 {
395 struct range *t = VEC_index (range_s, *ranges, 0);
396
397 if (t->offset == 0
398 && t->length == (TARGET_CHAR_BIT
399 * TYPE_LENGTH (value_enclosing_type (value))))
400 return 1;
401 }
402
403 return 0;
404 }
405
406 int
407 value_entirely_unavailable (struct value *value)
408 {
409 return value_entirely_covered_by_range_vector (value, &value->unavailable);
410 }
411
412 int
413 value_entirely_optimized_out (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
416 }
417
418 /* Insert into the vector pointed to by VECTORP the bit range starting of
419 OFFSET bits, and extending for the next LENGTH bits. */
420
421 static void
422 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
423 {
424 range_s newr;
425 int i;
426
427 /* Insert the range sorted. If there's overlap or the new range
428 would be contiguous with an existing range, merge. */
429
430 newr.offset = offset;
431 newr.length = length;
432
433 /* Do a binary search for the position the given range would be
434 inserted if we only considered the starting OFFSET of ranges.
435 Call that position I. Since we also have LENGTH to care for
436 (this is a range afterall), we need to check if the _previous_
437 range overlaps the I range. E.g., calling R the new range:
438
439 #1 - overlaps with previous
440
441 R
442 |-...-|
443 |---| |---| |------| ... |--|
444 0 1 2 N
445
446 I=1
447
448 In the case #1 above, the binary search would return `I=1',
449 meaning, this OFFSET should be inserted at position 1, and the
450 current position 1 should be pushed further (and become 2). But,
451 note that `0' overlaps with R, so we want to merge them.
452
453 A similar consideration needs to be taken if the new range would
454 be contiguous with the previous range:
455
456 #2 - contiguous with previous
457
458 R
459 |-...-|
460 |--| |---| |------| ... |--|
461 0 1 2 N
462
463 I=1
464
465 If there's no overlap with the previous range, as in:
466
467 #3 - not overlapping and not contiguous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 or if I is 0:
477
478 #4 - R is the range with lowest offset
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=0
486
487 ... we just push the new range to I.
488
489 All the 4 cases above need to consider that the new range may
490 also overlap several of the ranges that follow, or that R may be
491 contiguous with the following range, and merge. E.g.,
492
493 #5 - overlapping following ranges
494
495 R
496 |------------------------|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=0
501
502 or:
503
504 R
505 |-------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=1
510
511 */
512
513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
514 if (i > 0)
515 {
516 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
517
518 if (ranges_overlap (bef->offset, bef->length, offset, length))
519 {
520 /* #1 */
521 ULONGEST l = min (bef->offset, offset);
522 ULONGEST h = max (bef->offset + bef->length, offset + length);
523
524 bef->offset = l;
525 bef->length = h - l;
526 i--;
527 }
528 else if (offset == bef->offset + bef->length)
529 {
530 /* #2 */
531 bef->length += length;
532 i--;
533 }
534 else
535 {
536 /* #3 */
537 VEC_safe_insert (range_s, *vectorp, i, &newr);
538 }
539 }
540 else
541 {
542 /* #4 */
543 VEC_safe_insert (range_s, *vectorp, i, &newr);
544 }
545
546 /* Check whether the ranges following the one we've just added or
547 touched can be folded in (#5 above). */
548 if (i + 1 < VEC_length (range_s, *vectorp))
549 {
550 struct range *t;
551 struct range *r;
552 int removed = 0;
553 int next = i + 1;
554
555 /* Get the range we just touched. */
556 t = VEC_index (range_s, *vectorp, i);
557 removed = 0;
558
559 i = next;
560 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
561 if (r->offset <= t->offset + t->length)
562 {
563 ULONGEST l, h;
564
565 l = min (t->offset, r->offset);
566 h = max (t->offset + t->length, r->offset + r->length);
567
568 t->offset = l;
569 t->length = h - l;
570
571 removed++;
572 }
573 else
574 {
575 /* If we couldn't merge this one, we won't be able to
576 merge following ones either, since the ranges are
577 always sorted by OFFSET. */
578 break;
579 }
580
581 if (removed != 0)
582 VEC_block_remove (range_s, *vectorp, next, removed);
583 }
584 }
585
586 void
587 mark_value_bits_unavailable (struct value *value, int offset, int length)
588 {
589 insert_into_bit_range_vector (&value->unavailable, offset, length);
590 }
591
592 void
593 mark_value_bytes_unavailable (struct value *value, int offset, int length)
594 {
595 mark_value_bits_unavailable (value,
596 offset * TARGET_CHAR_BIT,
597 length * TARGET_CHAR_BIT);
598 }
599
600 /* Find the first range in RANGES that overlaps the range defined by
601 OFFSET and LENGTH, starting at element POS in the RANGES vector,
602 Returns the index into RANGES where such overlapping range was
603 found, or -1 if none was found. */
604
605 static int
606 find_first_range_overlap (VEC(range_s) *ranges, int pos,
607 int offset, int length)
608 {
609 range_s *r;
610 int i;
611
612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
613 if (ranges_overlap (r->offset, r->length, offset, length))
614 return i;
615
616 return -1;
617 }
618
619 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
621 return non-zero.
622
623 It must always be the case that:
624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
625
626 It is assumed that memory can be accessed from:
627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
628 to:
629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
630 / TARGET_CHAR_BIT) */
631 static int
632 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
633 const gdb_byte *ptr2, size_t offset2_bits,
634 size_t length_bits)
635 {
636 gdb_assert (offset1_bits % TARGET_CHAR_BIT
637 == offset2_bits % TARGET_CHAR_BIT);
638
639 if (offset1_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 gdb_byte mask, b1, b2;
643
644 /* The offset from the base pointers PTR1 and PTR2 is not a complete
645 number of bytes. A number of bits up to either the next exact
646 byte boundary, or LENGTH_BITS (which ever is sooner) will be
647 compared. */
648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
650 mask = (1 << bits) - 1;
651
652 if (length_bits < bits)
653 {
654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
655 bits = length_bits;
656 }
657
658 /* Now load the two bytes and mask off the bits we care about. */
659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
661
662 if (b1 != b2)
663 return 1;
664
665 /* Now update the length and offsets to take account of the bits
666 we've just compared. */
667 length_bits -= bits;
668 offset1_bits += bits;
669 offset2_bits += bits;
670 }
671
672 if (length_bits % TARGET_CHAR_BIT != 0)
673 {
674 size_t bits;
675 size_t o1, o2;
676 gdb_byte mask, b1, b2;
677
678 /* The length is not an exact number of bytes. After the previous
679 IF.. block then the offsets are byte aligned, or the
680 length is zero (in which case this code is not reached). Compare
681 a number of bits at the end of the region, starting from an exact
682 byte boundary. */
683 bits = length_bits % TARGET_CHAR_BIT;
684 o1 = offset1_bits + length_bits - bits;
685 o2 = offset2_bits + length_bits - bits;
686
687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
689
690 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
691 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
692
693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 length_bits -= bits;
700 }
701
702 if (length_bits > 0)
703 {
704 /* We've now taken care of any stray "bits" at the start, or end of
705 the region to compare, the remainder can be covered with a simple
706 memcmp. */
707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
710
711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
712 ptr2 + offset2_bits / TARGET_CHAR_BIT,
713 length_bits / TARGET_CHAR_BIT);
714 }
715
716 /* Length is zero, regions match. */
717 return 0;
718 }
719
720 /* Helper struct for find_first_range_overlap_and_match and
721 value_contents_bits_eq. Keep track of which slot of a given ranges
722 vector have we last looked at. */
723
724 struct ranges_and_idx
725 {
726 /* The ranges. */
727 VEC(range_s) *ranges;
728
729 /* The range we've last found in RANGES. Given ranges are sorted,
730 we can start the next lookup here. */
731 int idx;
732 };
733
734 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
736 ranges starting at OFFSET2 bits. Return true if the ranges match
737 and fill in *L and *H with the overlapping window relative to
738 (both) OFFSET1 or OFFSET2. */
739
740 static int
741 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
742 struct ranges_and_idx *rp2,
743 int offset1, int offset2,
744 int length, ULONGEST *l, ULONGEST *h)
745 {
746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
747 offset1, length);
748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
749 offset2, length);
750
751 if (rp1->idx == -1 && rp2->idx == -1)
752 {
753 *l = length;
754 *h = length;
755 return 1;
756 }
757 else if (rp1->idx == -1 || rp2->idx == -1)
758 return 0;
759 else
760 {
761 range_s *r1, *r2;
762 ULONGEST l1, h1;
763 ULONGEST l2, h2;
764
765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
767
768 /* Get the unavailable windows intersected by the incoming
769 ranges. The first and last ranges that overlap the argument
770 range may be wider than said incoming arguments ranges. */
771 l1 = max (offset1, r1->offset);
772 h1 = min (offset1 + length, r1->offset + r1->length);
773
774 l2 = max (offset2, r2->offset);
775 h2 = min (offset2 + length, offset2 + r2->length);
776
777 /* Make them relative to the respective start offsets, so we can
778 compare them for equality. */
779 l1 -= offset1;
780 h1 -= offset1;
781
782 l2 -= offset2;
783 h2 -= offset2;
784
785 /* Different ranges, no match. */
786 if (l1 != l2 || h1 != h2)
787 return 0;
788
789 *h = h1;
790 *l = l1;
791 return 1;
792 }
793 }
794
795 /* Helper function for value_contents_eq. The only difference is that
796 this function is bit rather than byte based.
797
798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
800 Return true if the available bits match. */
801
802 static int
803 value_contents_bits_eq (const struct value *val1, int offset1,
804 const struct value *val2, int offset2,
805 int length)
806 {
807 /* Each array element corresponds to a ranges source (unavailable,
808 optimized out). '1' is for VAL1, '2' for VAL2. */
809 struct ranges_and_idx rp1[2], rp2[2];
810
811 /* See function description in value.h. */
812 gdb_assert (!val1->lazy && !val2->lazy);
813
814 /* We shouldn't be trying to compare past the end of the values. */
815 gdb_assert (offset1 + length
816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
817 gdb_assert (offset2 + length
818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
819
820 memset (&rp1, 0, sizeof (rp1));
821 memset (&rp2, 0, sizeof (rp2));
822 rp1[0].ranges = val1->unavailable;
823 rp2[0].ranges = val2->unavailable;
824 rp1[1].ranges = val1->optimized_out;
825 rp2[1].ranges = val2->optimized_out;
826
827 while (length > 0)
828 {
829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
830 int i;
831
832 for (i = 0; i < 2; i++)
833 {
834 ULONGEST l_tmp, h_tmp;
835
836 /* The contents only match equal if the invalid/unavailable
837 contents ranges match as well. */
838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
839 offset1, offset2, length,
840 &l_tmp, &h_tmp))
841 return 0;
842
843 /* We're interested in the lowest/first range found. */
844 if (i == 0 || l_tmp < l)
845 {
846 l = l_tmp;
847 h = h_tmp;
848 }
849 }
850
851 /* Compare the available/valid contents. */
852 if (memcmp_with_bit_offsets (val1->contents, offset1,
853 val2->contents, offset2, l) != 0)
854 return 0;
855
856 length -= h;
857 offset1 += h;
858 offset2 += h;
859 }
860
861 return 1;
862 }
863
864 int
865 value_contents_eq (const struct value *val1, int offset1,
866 const struct value *val2, int offset2,
867 int length)
868 {
869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
870 val2, offset2 * TARGET_CHAR_BIT,
871 length * TARGET_CHAR_BIT);
872 }
873
874 /* Prototypes for local functions. */
875
876 static void show_values (char *, int);
877
878 static void show_convenience (char *, int);
879
880
881 /* The value-history records all the values printed
882 by print commands during this session. Each chunk
883 records 60 consecutive values. The first chunk on
884 the chain records the most recent values.
885 The total number of values is in value_history_count. */
886
887 #define VALUE_HISTORY_CHUNK 60
888
889 struct value_history_chunk
890 {
891 struct value_history_chunk *next;
892 struct value *values[VALUE_HISTORY_CHUNK];
893 };
894
895 /* Chain of chunks now in use. */
896
897 static struct value_history_chunk *value_history_chain;
898
899 static int value_history_count; /* Abs number of last entry stored. */
900
901 \f
902 /* List of all value objects currently allocated
903 (except for those released by calls to release_value)
904 This is so they can be freed after each command. */
905
906 static struct value *all_values;
907
908 /* Allocate a lazy value for type TYPE. Its actual content is
909 "lazily" allocated too: the content field of the return value is
910 NULL; it will be allocated when it is fetched from the target. */
911
912 struct value *
913 allocate_value_lazy (struct type *type)
914 {
915 struct value *val;
916
917 /* Call check_typedef on our type to make sure that, if TYPE
918 is a TYPE_CODE_TYPEDEF, its length is set to the length
919 of the target type instead of zero. However, we do not
920 replace the typedef type by the target type, because we want
921 to keep the typedef in order to be able to set the VAL's type
922 description correctly. */
923 check_typedef (type);
924
925 val = (struct value *) xzalloc (sizeof (struct value));
926 val->contents = NULL;
927 val->next = all_values;
928 all_values = val;
929 val->type = type;
930 val->enclosing_type = type;
931 VALUE_LVAL (val) = not_lval;
932 val->location.address = 0;
933 VALUE_FRAME_ID (val) = null_frame_id;
934 val->offset = 0;
935 val->bitpos = 0;
936 val->bitsize = 0;
937 VALUE_REGNUM (val) = -1;
938 val->lazy = 1;
939 val->embedded_offset = 0;
940 val->pointed_to_offset = 0;
941 val->modifiable = 1;
942 val->initialized = 1; /* Default to initialized. */
943
944 /* Values start out on the all_values chain. */
945 val->reference_count = 1;
946
947 return val;
948 }
949
950 /* Allocate the contents of VAL if it has not been allocated yet. */
951
952 static void
953 allocate_value_contents (struct value *val)
954 {
955 if (!val->contents)
956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
957 }
958
959 /* Allocate a value and its contents for type TYPE. */
960
961 struct value *
962 allocate_value (struct type *type)
963 {
964 struct value *val = allocate_value_lazy (type);
965
966 allocate_value_contents (val);
967 val->lazy = 0;
968 return val;
969 }
970
971 /* Allocate a value that has the correct length
972 for COUNT repetitions of type TYPE. */
973
974 struct value *
975 allocate_repeat_value (struct type *type, int count)
976 {
977 int low_bound = current_language->string_lower_bound; /* ??? */
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
980 struct type *array_type
981 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
982
983 return allocate_value (array_type);
984 }
985
986 struct value *
987 allocate_computed_value (struct type *type,
988 const struct lval_funcs *funcs,
989 void *closure)
990 {
991 struct value *v = allocate_value_lazy (type);
992
993 VALUE_LVAL (v) = lval_computed;
994 v->location.computed.funcs = funcs;
995 v->location.computed.closure = closure;
996
997 return v;
998 }
999
1000 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1001
1002 struct value *
1003 allocate_optimized_out_value (struct type *type)
1004 {
1005 struct value *retval = allocate_value_lazy (type);
1006
1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1008 set_value_lazy (retval, 0);
1009 return retval;
1010 }
1011
1012 /* Accessor methods. */
1013
1014 struct value *
1015 value_next (struct value *value)
1016 {
1017 return value->next;
1018 }
1019
1020 struct type *
1021 value_type (const struct value *value)
1022 {
1023 return value->type;
1024 }
1025 void
1026 deprecated_set_value_type (struct value *value, struct type *type)
1027 {
1028 value->type = type;
1029 }
1030
1031 int
1032 value_offset (const struct value *value)
1033 {
1034 return value->offset;
1035 }
1036 void
1037 set_value_offset (struct value *value, int offset)
1038 {
1039 value->offset = offset;
1040 }
1041
1042 int
1043 value_bitpos (const struct value *value)
1044 {
1045 return value->bitpos;
1046 }
1047 void
1048 set_value_bitpos (struct value *value, int bit)
1049 {
1050 value->bitpos = bit;
1051 }
1052
1053 int
1054 value_bitsize (const struct value *value)
1055 {
1056 return value->bitsize;
1057 }
1058 void
1059 set_value_bitsize (struct value *value, int bit)
1060 {
1061 value->bitsize = bit;
1062 }
1063
1064 struct value *
1065 value_parent (struct value *value)
1066 {
1067 return value->parent;
1068 }
1069
1070 /* See value.h. */
1071
1072 void
1073 set_value_parent (struct value *value, struct value *parent)
1074 {
1075 struct value *old = value->parent;
1076
1077 value->parent = parent;
1078 if (parent != NULL)
1079 value_incref (parent);
1080 value_free (old);
1081 }
1082
1083 gdb_byte *
1084 value_contents_raw (struct value *value)
1085 {
1086 allocate_value_contents (value);
1087 return value->contents + value->embedded_offset;
1088 }
1089
1090 gdb_byte *
1091 value_contents_all_raw (struct value *value)
1092 {
1093 allocate_value_contents (value);
1094 return value->contents;
1095 }
1096
1097 struct type *
1098 value_enclosing_type (struct value *value)
1099 {
1100 return value->enclosing_type;
1101 }
1102
1103 /* Look at value.h for description. */
1104
1105 struct type *
1106 value_actual_type (struct value *value, int resolve_simple_types,
1107 int *real_type_found)
1108 {
1109 struct value_print_options opts;
1110 struct type *result;
1111
1112 get_user_print_options (&opts);
1113
1114 if (real_type_found)
1115 *real_type_found = 0;
1116 result = value_type (value);
1117 if (opts.objectprint)
1118 {
1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1120 fetch its rtti type. */
1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR
1122 || TYPE_CODE (result) == TYPE_CODE_REF)
1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1124 == TYPE_CODE_STRUCT)
1125 {
1126 struct type *real_type;
1127
1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1129 if (real_type)
1130 {
1131 if (real_type_found)
1132 *real_type_found = 1;
1133 result = real_type;
1134 }
1135 }
1136 else if (resolve_simple_types)
1137 {
1138 if (real_type_found)
1139 *real_type_found = 1;
1140 result = value_enclosing_type (value);
1141 }
1142 }
1143
1144 return result;
1145 }
1146
1147 void
1148 error_value_optimized_out (void)
1149 {
1150 error (_("value has been optimized out"));
1151 }
1152
1153 static void
1154 require_not_optimized_out (const struct value *value)
1155 {
1156 if (!VEC_empty (range_s, value->optimized_out))
1157 {
1158 if (value->lval == lval_register)
1159 error (_("register has not been saved in frame"));
1160 else
1161 error_value_optimized_out ();
1162 }
1163 }
1164
1165 static void
1166 require_available (const struct value *value)
1167 {
1168 if (!VEC_empty (range_s, value->unavailable))
1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1170 }
1171
1172 const gdb_byte *
1173 value_contents_for_printing (struct value *value)
1174 {
1175 if (value->lazy)
1176 value_fetch_lazy (value);
1177 return value->contents;
1178 }
1179
1180 const gdb_byte *
1181 value_contents_for_printing_const (const struct value *value)
1182 {
1183 gdb_assert (!value->lazy);
1184 return value->contents;
1185 }
1186
1187 const gdb_byte *
1188 value_contents_all (struct value *value)
1189 {
1190 const gdb_byte *result = value_contents_for_printing (value);
1191 require_not_optimized_out (value);
1192 require_available (value);
1193 return result;
1194 }
1195
1196 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1198
1199 static void
1200 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1201 VEC (range_s) *src_range, int src_bit_offset,
1202 int bit_length)
1203 {
1204 range_s *r;
1205 int i;
1206
1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1208 {
1209 ULONGEST h, l;
1210
1211 l = max (r->offset, src_bit_offset);
1212 h = min (r->offset + r->length, src_bit_offset + bit_length);
1213
1214 if (l < h)
1215 insert_into_bit_range_vector (dst_range,
1216 dst_bit_offset + (l - src_bit_offset),
1217 h - l);
1218 }
1219 }
1220
1221 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1223
1224 static void
1225 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1226 const struct value *src, int src_bit_offset,
1227 int bit_length)
1228 {
1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1230 src->unavailable, src_bit_offset,
1231 bit_length);
1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1233 src->optimized_out, src_bit_offset,
1234 bit_length);
1235 }
1236
1237 /* Copy LENGTH bytes of SRC value's (all) contents
1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1239 contents, starting at DST_OFFSET. If unavailable contents are
1240 being copied from SRC, the corresponding DST contents are marked
1241 unavailable accordingly. Neither DST nor SRC may be lazy
1242 values.
1243
1244 It is assumed the contents of DST in the [DST_OFFSET,
1245 DST_OFFSET+LENGTH) range are wholly available. */
1246
1247 void
1248 value_contents_copy_raw (struct value *dst, int dst_offset,
1249 struct value *src, int src_offset, int length)
1250 {
1251 range_s *r;
1252 int i;
1253 int src_bit_offset, dst_bit_offset, bit_length;
1254
1255 /* A lazy DST would make that this copy operation useless, since as
1256 soon as DST's contents were un-lazied (by a later value_contents
1257 call, say), the contents would be overwritten. A lazy SRC would
1258 mean we'd be copying garbage. */
1259 gdb_assert (!dst->lazy && !src->lazy);
1260
1261 /* The overwritten DST range gets unavailability ORed in, not
1262 replaced. Make sure to remember to implement replacing if it
1263 turns out actually necessary. */
1264 gdb_assert (value_bytes_available (dst, dst_offset, length));
1265 gdb_assert (!value_bits_any_optimized_out (dst,
1266 TARGET_CHAR_BIT * dst_offset,
1267 TARGET_CHAR_BIT * length));
1268
1269 /* Copy the data. */
1270 memcpy (value_contents_all_raw (dst) + dst_offset,
1271 value_contents_all_raw (src) + src_offset,
1272 length);
1273
1274 /* Copy the meta-data, adjusted. */
1275 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1277 bit_length = length * TARGET_CHAR_BIT;
1278
1279 value_ranges_copy_adjusted (dst, dst_bit_offset,
1280 src, src_bit_offset,
1281 bit_length);
1282 }
1283
1284 /* Copy LENGTH bytes of SRC value's (all) contents
1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1286 (all) contents, starting at DST_OFFSET. If unavailable contents
1287 are being copied from SRC, the corresponding DST contents are
1288 marked unavailable accordingly. DST must not be lazy. If SRC is
1289 lazy, it will be fetched now.
1290
1291 It is assumed the contents of DST in the [DST_OFFSET,
1292 DST_OFFSET+LENGTH) range are wholly available. */
1293
1294 void
1295 value_contents_copy (struct value *dst, int dst_offset,
1296 struct value *src, int src_offset, int length)
1297 {
1298 if (src->lazy)
1299 value_fetch_lazy (src);
1300
1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1302 }
1303
1304 int
1305 value_lazy (struct value *value)
1306 {
1307 return value->lazy;
1308 }
1309
1310 void
1311 set_value_lazy (struct value *value, int val)
1312 {
1313 value->lazy = val;
1314 }
1315
1316 int
1317 value_stack (struct value *value)
1318 {
1319 return value->stack;
1320 }
1321
1322 void
1323 set_value_stack (struct value *value, int val)
1324 {
1325 value->stack = val;
1326 }
1327
1328 const gdb_byte *
1329 value_contents (struct value *value)
1330 {
1331 const gdb_byte *result = value_contents_writeable (value);
1332 require_not_optimized_out (value);
1333 require_available (value);
1334 return result;
1335 }
1336
1337 gdb_byte *
1338 value_contents_writeable (struct value *value)
1339 {
1340 if (value->lazy)
1341 value_fetch_lazy (value);
1342 return value_contents_raw (value);
1343 }
1344
1345 int
1346 value_optimized_out (struct value *value)
1347 {
1348 /* We can only know if a value is optimized out once we have tried to
1349 fetch it. */
1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1351 value_fetch_lazy (value);
1352
1353 return !VEC_empty (range_s, value->optimized_out);
1354 }
1355
1356 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1357 the following LENGTH bytes. */
1358
1359 void
1360 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1361 {
1362 mark_value_bits_optimized_out (value,
1363 offset * TARGET_CHAR_BIT,
1364 length * TARGET_CHAR_BIT);
1365 }
1366
1367 /* See value.h. */
1368
1369 void
1370 mark_value_bits_optimized_out (struct value *value, int offset, int length)
1371 {
1372 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1373 }
1374
1375 int
1376 value_bits_synthetic_pointer (const struct value *value,
1377 int offset, int length)
1378 {
1379 if (value->lval != lval_computed
1380 || !value->location.computed.funcs->check_synthetic_pointer)
1381 return 0;
1382 return value->location.computed.funcs->check_synthetic_pointer (value,
1383 offset,
1384 length);
1385 }
1386
1387 int
1388 value_embedded_offset (struct value *value)
1389 {
1390 return value->embedded_offset;
1391 }
1392
1393 void
1394 set_value_embedded_offset (struct value *value, int val)
1395 {
1396 value->embedded_offset = val;
1397 }
1398
1399 int
1400 value_pointed_to_offset (struct value *value)
1401 {
1402 return value->pointed_to_offset;
1403 }
1404
1405 void
1406 set_value_pointed_to_offset (struct value *value, int val)
1407 {
1408 value->pointed_to_offset = val;
1409 }
1410
1411 const struct lval_funcs *
1412 value_computed_funcs (const struct value *v)
1413 {
1414 gdb_assert (value_lval_const (v) == lval_computed);
1415
1416 return v->location.computed.funcs;
1417 }
1418
1419 void *
1420 value_computed_closure (const struct value *v)
1421 {
1422 gdb_assert (v->lval == lval_computed);
1423
1424 return v->location.computed.closure;
1425 }
1426
1427 enum lval_type *
1428 deprecated_value_lval_hack (struct value *value)
1429 {
1430 return &value->lval;
1431 }
1432
1433 enum lval_type
1434 value_lval_const (const struct value *value)
1435 {
1436 return value->lval;
1437 }
1438
1439 CORE_ADDR
1440 value_address (const struct value *value)
1441 {
1442 if (value->lval == lval_internalvar
1443 || value->lval == lval_internalvar_component
1444 || value->lval == lval_xcallable)
1445 return 0;
1446 if (value->parent != NULL)
1447 return value_address (value->parent) + value->offset;
1448 else
1449 return value->location.address + value->offset;
1450 }
1451
1452 CORE_ADDR
1453 value_raw_address (struct value *value)
1454 {
1455 if (value->lval == lval_internalvar
1456 || value->lval == lval_internalvar_component
1457 || value->lval == lval_xcallable)
1458 return 0;
1459 return value->location.address;
1460 }
1461
1462 void
1463 set_value_address (struct value *value, CORE_ADDR addr)
1464 {
1465 gdb_assert (value->lval != lval_internalvar
1466 && value->lval != lval_internalvar_component
1467 && value->lval != lval_xcallable);
1468 value->location.address = addr;
1469 }
1470
1471 struct internalvar **
1472 deprecated_value_internalvar_hack (struct value *value)
1473 {
1474 return &value->location.internalvar;
1475 }
1476
1477 struct frame_id *
1478 deprecated_value_frame_id_hack (struct value *value)
1479 {
1480 return &value->frame_id;
1481 }
1482
1483 short *
1484 deprecated_value_regnum_hack (struct value *value)
1485 {
1486 return &value->regnum;
1487 }
1488
1489 int
1490 deprecated_value_modifiable (struct value *value)
1491 {
1492 return value->modifiable;
1493 }
1494 \f
1495 /* Return a mark in the value chain. All values allocated after the
1496 mark is obtained (except for those released) are subject to being freed
1497 if a subsequent value_free_to_mark is passed the mark. */
1498 struct value *
1499 value_mark (void)
1500 {
1501 return all_values;
1502 }
1503
1504 /* Take a reference to VAL. VAL will not be deallocated until all
1505 references are released. */
1506
1507 void
1508 value_incref (struct value *val)
1509 {
1510 val->reference_count++;
1511 }
1512
1513 /* Release a reference to VAL, which was acquired with value_incref.
1514 This function is also called to deallocate values from the value
1515 chain. */
1516
1517 void
1518 value_free (struct value *val)
1519 {
1520 if (val)
1521 {
1522 gdb_assert (val->reference_count > 0);
1523 val->reference_count--;
1524 if (val->reference_count > 0)
1525 return;
1526
1527 /* If there's an associated parent value, drop our reference to
1528 it. */
1529 if (val->parent != NULL)
1530 value_free (val->parent);
1531
1532 if (VALUE_LVAL (val) == lval_computed)
1533 {
1534 const struct lval_funcs *funcs = val->location.computed.funcs;
1535
1536 if (funcs->free_closure)
1537 funcs->free_closure (val);
1538 }
1539 else if (VALUE_LVAL (val) == lval_xcallable)
1540 free_xmethod_worker (val->location.xm_worker);
1541
1542 xfree (val->contents);
1543 VEC_free (range_s, val->unavailable);
1544 }
1545 xfree (val);
1546 }
1547
1548 /* Free all values allocated since MARK was obtained by value_mark
1549 (except for those released). */
1550 void
1551 value_free_to_mark (struct value *mark)
1552 {
1553 struct value *val;
1554 struct value *next;
1555
1556 for (val = all_values; val && val != mark; val = next)
1557 {
1558 next = val->next;
1559 val->released = 1;
1560 value_free (val);
1561 }
1562 all_values = val;
1563 }
1564
1565 /* Free all the values that have been allocated (except for those released).
1566 Call after each command, successful or not.
1567 In practice this is called before each command, which is sufficient. */
1568
1569 void
1570 free_all_values (void)
1571 {
1572 struct value *val;
1573 struct value *next;
1574
1575 for (val = all_values; val; val = next)
1576 {
1577 next = val->next;
1578 val->released = 1;
1579 value_free (val);
1580 }
1581
1582 all_values = 0;
1583 }
1584
1585 /* Frees all the elements in a chain of values. */
1586
1587 void
1588 free_value_chain (struct value *v)
1589 {
1590 struct value *next;
1591
1592 for (; v; v = next)
1593 {
1594 next = value_next (v);
1595 value_free (v);
1596 }
1597 }
1598
1599 /* Remove VAL from the chain all_values
1600 so it will not be freed automatically. */
1601
1602 void
1603 release_value (struct value *val)
1604 {
1605 struct value *v;
1606
1607 if (all_values == val)
1608 {
1609 all_values = val->next;
1610 val->next = NULL;
1611 val->released = 1;
1612 return;
1613 }
1614
1615 for (v = all_values; v; v = v->next)
1616 {
1617 if (v->next == val)
1618 {
1619 v->next = val->next;
1620 val->next = NULL;
1621 val->released = 1;
1622 break;
1623 }
1624 }
1625 }
1626
1627 /* If the value is not already released, release it.
1628 If the value is already released, increment its reference count.
1629 That is, this function ensures that the value is released from the
1630 value chain and that the caller owns a reference to it. */
1631
1632 void
1633 release_value_or_incref (struct value *val)
1634 {
1635 if (val->released)
1636 value_incref (val);
1637 else
1638 release_value (val);
1639 }
1640
1641 /* Release all values up to mark */
1642 struct value *
1643 value_release_to_mark (struct value *mark)
1644 {
1645 struct value *val;
1646 struct value *next;
1647
1648 for (val = next = all_values; next; next = next->next)
1649 {
1650 if (next->next == mark)
1651 {
1652 all_values = next->next;
1653 next->next = NULL;
1654 return val;
1655 }
1656 next->released = 1;
1657 }
1658 all_values = 0;
1659 return val;
1660 }
1661
1662 /* Return a copy of the value ARG.
1663 It contains the same contents, for same memory address,
1664 but it's a different block of storage. */
1665
1666 struct value *
1667 value_copy (struct value *arg)
1668 {
1669 struct type *encl_type = value_enclosing_type (arg);
1670 struct value *val;
1671
1672 if (value_lazy (arg))
1673 val = allocate_value_lazy (encl_type);
1674 else
1675 val = allocate_value (encl_type);
1676 val->type = arg->type;
1677 VALUE_LVAL (val) = VALUE_LVAL (arg);
1678 val->location = arg->location;
1679 val->offset = arg->offset;
1680 val->bitpos = arg->bitpos;
1681 val->bitsize = arg->bitsize;
1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1684 val->lazy = arg->lazy;
1685 val->embedded_offset = value_embedded_offset (arg);
1686 val->pointed_to_offset = arg->pointed_to_offset;
1687 val->modifiable = arg->modifiable;
1688 if (!value_lazy (val))
1689 {
1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1691 TYPE_LENGTH (value_enclosing_type (arg)));
1692
1693 }
1694 val->unavailable = VEC_copy (range_s, arg->unavailable);
1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1696 set_value_parent (val, arg->parent);
1697 if (VALUE_LVAL (val) == lval_computed)
1698 {
1699 const struct lval_funcs *funcs = val->location.computed.funcs;
1700
1701 if (funcs->copy_closure)
1702 val->location.computed.closure = funcs->copy_closure (val);
1703 }
1704 return val;
1705 }
1706
1707 /* Return a "const" and/or "volatile" qualified version of the value V.
1708 If CNST is true, then the returned value will be qualified with
1709 "const".
1710 if VOLTL is true, then the returned value will be qualified with
1711 "volatile". */
1712
1713 struct value *
1714 make_cv_value (int cnst, int voltl, struct value *v)
1715 {
1716 struct type *val_type = value_type (v);
1717 struct type *enclosing_type = value_enclosing_type (v);
1718 struct value *cv_val = value_copy (v);
1719
1720 deprecated_set_value_type (cv_val,
1721 make_cv_type (cnst, voltl, val_type, NULL));
1722 set_value_enclosing_type (cv_val,
1723 make_cv_type (cnst, voltl, enclosing_type, NULL));
1724
1725 return cv_val;
1726 }
1727
1728 /* Return a version of ARG that is non-lvalue. */
1729
1730 struct value *
1731 value_non_lval (struct value *arg)
1732 {
1733 if (VALUE_LVAL (arg) != not_lval)
1734 {
1735 struct type *enc_type = value_enclosing_type (arg);
1736 struct value *val = allocate_value (enc_type);
1737
1738 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1739 TYPE_LENGTH (enc_type));
1740 val->type = arg->type;
1741 set_value_embedded_offset (val, value_embedded_offset (arg));
1742 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1743 return val;
1744 }
1745 return arg;
1746 }
1747
1748 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1749
1750 void
1751 value_force_lval (struct value *v, CORE_ADDR addr)
1752 {
1753 gdb_assert (VALUE_LVAL (v) == not_lval);
1754
1755 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1756 v->lval = lval_memory;
1757 v->location.address = addr;
1758 }
1759
1760 void
1761 set_value_component_location (struct value *component,
1762 const struct value *whole)
1763 {
1764 gdb_assert (whole->lval != lval_xcallable);
1765
1766 if (whole->lval == lval_internalvar)
1767 VALUE_LVAL (component) = lval_internalvar_component;
1768 else
1769 VALUE_LVAL (component) = whole->lval;
1770
1771 component->location = whole->location;
1772 if (whole->lval == lval_computed)
1773 {
1774 const struct lval_funcs *funcs = whole->location.computed.funcs;
1775
1776 if (funcs->copy_closure)
1777 component->location.computed.closure = funcs->copy_closure (whole);
1778 }
1779 }
1780
1781 \f
1782 /* Access to the value history. */
1783
1784 /* Record a new value in the value history.
1785 Returns the absolute history index of the entry. */
1786
1787 int
1788 record_latest_value (struct value *val)
1789 {
1790 int i;
1791
1792 /* We don't want this value to have anything to do with the inferior anymore.
1793 In particular, "set $1 = 50" should not affect the variable from which
1794 the value was taken, and fast watchpoints should be able to assume that
1795 a value on the value history never changes. */
1796 if (value_lazy (val))
1797 value_fetch_lazy (val);
1798 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1799 from. This is a bit dubious, because then *&$1 does not just return $1
1800 but the current contents of that location. c'est la vie... */
1801 val->modifiable = 0;
1802
1803 /* The value may have already been released, in which case we're adding a
1804 new reference for its entry in the history. That is why we call
1805 release_value_or_incref here instead of release_value. */
1806 release_value_or_incref (val);
1807
1808 /* Here we treat value_history_count as origin-zero
1809 and applying to the value being stored now. */
1810
1811 i = value_history_count % VALUE_HISTORY_CHUNK;
1812 if (i == 0)
1813 {
1814 struct value_history_chunk *newobj
1815 = (struct value_history_chunk *)
1816
1817 xmalloc (sizeof (struct value_history_chunk));
1818 memset (newobj->values, 0, sizeof newobj->values);
1819 newobj->next = value_history_chain;
1820 value_history_chain = newobj;
1821 }
1822
1823 value_history_chain->values[i] = val;
1824
1825 /* Now we regard value_history_count as origin-one
1826 and applying to the value just stored. */
1827
1828 return ++value_history_count;
1829 }
1830
1831 /* Return a copy of the value in the history with sequence number NUM. */
1832
1833 struct value *
1834 access_value_history (int num)
1835 {
1836 struct value_history_chunk *chunk;
1837 int i;
1838 int absnum = num;
1839
1840 if (absnum <= 0)
1841 absnum += value_history_count;
1842
1843 if (absnum <= 0)
1844 {
1845 if (num == 0)
1846 error (_("The history is empty."));
1847 else if (num == 1)
1848 error (_("There is only one value in the history."));
1849 else
1850 error (_("History does not go back to $$%d."), -num);
1851 }
1852 if (absnum > value_history_count)
1853 error (_("History has not yet reached $%d."), absnum);
1854
1855 absnum--;
1856
1857 /* Now absnum is always absolute and origin zero. */
1858
1859 chunk = value_history_chain;
1860 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1861 - absnum / VALUE_HISTORY_CHUNK;
1862 i > 0; i--)
1863 chunk = chunk->next;
1864
1865 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1866 }
1867
1868 static void
1869 show_values (char *num_exp, int from_tty)
1870 {
1871 int i;
1872 struct value *val;
1873 static int num = 1;
1874
1875 if (num_exp)
1876 {
1877 /* "show values +" should print from the stored position.
1878 "show values <exp>" should print around value number <exp>. */
1879 if (num_exp[0] != '+' || num_exp[1] != '\0')
1880 num = parse_and_eval_long (num_exp) - 5;
1881 }
1882 else
1883 {
1884 /* "show values" means print the last 10 values. */
1885 num = value_history_count - 9;
1886 }
1887
1888 if (num <= 0)
1889 num = 1;
1890
1891 for (i = num; i < num + 10 && i <= value_history_count; i++)
1892 {
1893 struct value_print_options opts;
1894
1895 val = access_value_history (i);
1896 printf_filtered (("$%d = "), i);
1897 get_user_print_options (&opts);
1898 value_print (val, gdb_stdout, &opts);
1899 printf_filtered (("\n"));
1900 }
1901
1902 /* The next "show values +" should start after what we just printed. */
1903 num += 10;
1904
1905 /* Hitting just return after this command should do the same thing as
1906 "show values +". If num_exp is null, this is unnecessary, since
1907 "show values +" is not useful after "show values". */
1908 if (from_tty && num_exp)
1909 {
1910 num_exp[0] = '+';
1911 num_exp[1] = '\0';
1912 }
1913 }
1914 \f
1915 enum internalvar_kind
1916 {
1917 /* The internal variable is empty. */
1918 INTERNALVAR_VOID,
1919
1920 /* The value of the internal variable is provided directly as
1921 a GDB value object. */
1922 INTERNALVAR_VALUE,
1923
1924 /* A fresh value is computed via a call-back routine on every
1925 access to the internal variable. */
1926 INTERNALVAR_MAKE_VALUE,
1927
1928 /* The internal variable holds a GDB internal convenience function. */
1929 INTERNALVAR_FUNCTION,
1930
1931 /* The variable holds an integer value. */
1932 INTERNALVAR_INTEGER,
1933
1934 /* The variable holds a GDB-provided string. */
1935 INTERNALVAR_STRING,
1936 };
1937
1938 union internalvar_data
1939 {
1940 /* A value object used with INTERNALVAR_VALUE. */
1941 struct value *value;
1942
1943 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1944 struct
1945 {
1946 /* The functions to call. */
1947 const struct internalvar_funcs *functions;
1948
1949 /* The function's user-data. */
1950 void *data;
1951 } make_value;
1952
1953 /* The internal function used with INTERNALVAR_FUNCTION. */
1954 struct
1955 {
1956 struct internal_function *function;
1957 /* True if this is the canonical name for the function. */
1958 int canonical;
1959 } fn;
1960
1961 /* An integer value used with INTERNALVAR_INTEGER. */
1962 struct
1963 {
1964 /* If type is non-NULL, it will be used as the type to generate
1965 a value for this internal variable. If type is NULL, a default
1966 integer type for the architecture is used. */
1967 struct type *type;
1968 LONGEST val;
1969 } integer;
1970
1971 /* A string value used with INTERNALVAR_STRING. */
1972 char *string;
1973 };
1974
1975 /* Internal variables. These are variables within the debugger
1976 that hold values assigned by debugger commands.
1977 The user refers to them with a '$' prefix
1978 that does not appear in the variable names stored internally. */
1979
1980 struct internalvar
1981 {
1982 struct internalvar *next;
1983 char *name;
1984
1985 /* We support various different kinds of content of an internal variable.
1986 enum internalvar_kind specifies the kind, and union internalvar_data
1987 provides the data associated with this particular kind. */
1988
1989 enum internalvar_kind kind;
1990
1991 union internalvar_data u;
1992 };
1993
1994 static struct internalvar *internalvars;
1995
1996 /* If the variable does not already exist create it and give it the
1997 value given. If no value is given then the default is zero. */
1998 static void
1999 init_if_undefined_command (char* args, int from_tty)
2000 {
2001 struct internalvar* intvar;
2002
2003 /* Parse the expression - this is taken from set_command(). */
2004 struct expression *expr = parse_expression (args);
2005 register struct cleanup *old_chain =
2006 make_cleanup (free_current_contents, &expr);
2007
2008 /* Validate the expression.
2009 Was the expression an assignment?
2010 Or even an expression at all? */
2011 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2012 error (_("Init-if-undefined requires an assignment expression."));
2013
2014 /* Extract the variable from the parsed expression.
2015 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2016 if (expr->elts[1].opcode != OP_INTERNALVAR)
2017 error (_("The first parameter to init-if-undefined "
2018 "should be a GDB variable."));
2019 intvar = expr->elts[2].internalvar;
2020
2021 /* Only evaluate the expression if the lvalue is void.
2022 This may still fail if the expresssion is invalid. */
2023 if (intvar->kind == INTERNALVAR_VOID)
2024 evaluate_expression (expr);
2025
2026 do_cleanups (old_chain);
2027 }
2028
2029
2030 /* Look up an internal variable with name NAME. NAME should not
2031 normally include a dollar sign.
2032
2033 If the specified internal variable does not exist,
2034 the return value is NULL. */
2035
2036 struct internalvar *
2037 lookup_only_internalvar (const char *name)
2038 {
2039 struct internalvar *var;
2040
2041 for (var = internalvars; var; var = var->next)
2042 if (strcmp (var->name, name) == 0)
2043 return var;
2044
2045 return NULL;
2046 }
2047
2048 /* Complete NAME by comparing it to the names of internal variables.
2049 Returns a vector of newly allocated strings, or NULL if no matches
2050 were found. */
2051
2052 VEC (char_ptr) *
2053 complete_internalvar (const char *name)
2054 {
2055 VEC (char_ptr) *result = NULL;
2056 struct internalvar *var;
2057 int len;
2058
2059 len = strlen (name);
2060
2061 for (var = internalvars; var; var = var->next)
2062 if (strncmp (var->name, name, len) == 0)
2063 {
2064 char *r = xstrdup (var->name);
2065
2066 VEC_safe_push (char_ptr, result, r);
2067 }
2068
2069 return result;
2070 }
2071
2072 /* Create an internal variable with name NAME and with a void value.
2073 NAME should not normally include a dollar sign. */
2074
2075 struct internalvar *
2076 create_internalvar (const char *name)
2077 {
2078 struct internalvar *var;
2079
2080 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
2081 var->name = concat (name, (char *)NULL);
2082 var->kind = INTERNALVAR_VOID;
2083 var->next = internalvars;
2084 internalvars = var;
2085 return var;
2086 }
2087
2088 /* Create an internal variable with name NAME and register FUN as the
2089 function that value_of_internalvar uses to create a value whenever
2090 this variable is referenced. NAME should not normally include a
2091 dollar sign. DATA is passed uninterpreted to FUN when it is
2092 called. CLEANUP, if not NULL, is called when the internal variable
2093 is destroyed. It is passed DATA as its only argument. */
2094
2095 struct internalvar *
2096 create_internalvar_type_lazy (const char *name,
2097 const struct internalvar_funcs *funcs,
2098 void *data)
2099 {
2100 struct internalvar *var = create_internalvar (name);
2101
2102 var->kind = INTERNALVAR_MAKE_VALUE;
2103 var->u.make_value.functions = funcs;
2104 var->u.make_value.data = data;
2105 return var;
2106 }
2107
2108 /* See documentation in value.h. */
2109
2110 int
2111 compile_internalvar_to_ax (struct internalvar *var,
2112 struct agent_expr *expr,
2113 struct axs_value *value)
2114 {
2115 if (var->kind != INTERNALVAR_MAKE_VALUE
2116 || var->u.make_value.functions->compile_to_ax == NULL)
2117 return 0;
2118
2119 var->u.make_value.functions->compile_to_ax (var, expr, value,
2120 var->u.make_value.data);
2121 return 1;
2122 }
2123
2124 /* Look up an internal variable with name NAME. NAME should not
2125 normally include a dollar sign.
2126
2127 If the specified internal variable does not exist,
2128 one is created, with a void value. */
2129
2130 struct internalvar *
2131 lookup_internalvar (const char *name)
2132 {
2133 struct internalvar *var;
2134
2135 var = lookup_only_internalvar (name);
2136 if (var)
2137 return var;
2138
2139 return create_internalvar (name);
2140 }
2141
2142 /* Return current value of internal variable VAR. For variables that
2143 are not inherently typed, use a value type appropriate for GDBARCH. */
2144
2145 struct value *
2146 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2147 {
2148 struct value *val;
2149 struct trace_state_variable *tsv;
2150
2151 /* If there is a trace state variable of the same name, assume that
2152 is what we really want to see. */
2153 tsv = find_trace_state_variable (var->name);
2154 if (tsv)
2155 {
2156 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2157 &(tsv->value));
2158 if (tsv->value_known)
2159 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2160 tsv->value);
2161 else
2162 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2163 return val;
2164 }
2165
2166 switch (var->kind)
2167 {
2168 case INTERNALVAR_VOID:
2169 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2170 break;
2171
2172 case INTERNALVAR_FUNCTION:
2173 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2174 break;
2175
2176 case INTERNALVAR_INTEGER:
2177 if (!var->u.integer.type)
2178 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2179 var->u.integer.val);
2180 else
2181 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2182 break;
2183
2184 case INTERNALVAR_STRING:
2185 val = value_cstring (var->u.string, strlen (var->u.string),
2186 builtin_type (gdbarch)->builtin_char);
2187 break;
2188
2189 case INTERNALVAR_VALUE:
2190 val = value_copy (var->u.value);
2191 if (value_lazy (val))
2192 value_fetch_lazy (val);
2193 break;
2194
2195 case INTERNALVAR_MAKE_VALUE:
2196 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2197 var->u.make_value.data);
2198 break;
2199
2200 default:
2201 internal_error (__FILE__, __LINE__, _("bad kind"));
2202 }
2203
2204 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2205 on this value go back to affect the original internal variable.
2206
2207 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2208 no underlying modifyable state in the internal variable.
2209
2210 Likewise, if the variable's value is a computed lvalue, we want
2211 references to it to produce another computed lvalue, where
2212 references and assignments actually operate through the
2213 computed value's functions.
2214
2215 This means that internal variables with computed values
2216 behave a little differently from other internal variables:
2217 assignments to them don't just replace the previous value
2218 altogether. At the moment, this seems like the behavior we
2219 want. */
2220
2221 if (var->kind != INTERNALVAR_MAKE_VALUE
2222 && val->lval != lval_computed)
2223 {
2224 VALUE_LVAL (val) = lval_internalvar;
2225 VALUE_INTERNALVAR (val) = var;
2226 }
2227
2228 return val;
2229 }
2230
2231 int
2232 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2233 {
2234 if (var->kind == INTERNALVAR_INTEGER)
2235 {
2236 *result = var->u.integer.val;
2237 return 1;
2238 }
2239
2240 if (var->kind == INTERNALVAR_VALUE)
2241 {
2242 struct type *type = check_typedef (value_type (var->u.value));
2243
2244 if (TYPE_CODE (type) == TYPE_CODE_INT)
2245 {
2246 *result = value_as_long (var->u.value);
2247 return 1;
2248 }
2249 }
2250
2251 return 0;
2252 }
2253
2254 static int
2255 get_internalvar_function (struct internalvar *var,
2256 struct internal_function **result)
2257 {
2258 switch (var->kind)
2259 {
2260 case INTERNALVAR_FUNCTION:
2261 *result = var->u.fn.function;
2262 return 1;
2263
2264 default:
2265 return 0;
2266 }
2267 }
2268
2269 void
2270 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
2271 int bitsize, struct value *newval)
2272 {
2273 gdb_byte *addr;
2274
2275 switch (var->kind)
2276 {
2277 case INTERNALVAR_VALUE:
2278 addr = value_contents_writeable (var->u.value);
2279
2280 if (bitsize)
2281 modify_field (value_type (var->u.value), addr + offset,
2282 value_as_long (newval), bitpos, bitsize);
2283 else
2284 memcpy (addr + offset, value_contents (newval),
2285 TYPE_LENGTH (value_type (newval)));
2286 break;
2287
2288 default:
2289 /* We can never get a component of any other kind. */
2290 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2291 }
2292 }
2293
2294 void
2295 set_internalvar (struct internalvar *var, struct value *val)
2296 {
2297 enum internalvar_kind new_kind;
2298 union internalvar_data new_data = { 0 };
2299
2300 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2301 error (_("Cannot overwrite convenience function %s"), var->name);
2302
2303 /* Prepare new contents. */
2304 switch (TYPE_CODE (check_typedef (value_type (val))))
2305 {
2306 case TYPE_CODE_VOID:
2307 new_kind = INTERNALVAR_VOID;
2308 break;
2309
2310 case TYPE_CODE_INTERNAL_FUNCTION:
2311 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2312 new_kind = INTERNALVAR_FUNCTION;
2313 get_internalvar_function (VALUE_INTERNALVAR (val),
2314 &new_data.fn.function);
2315 /* Copies created here are never canonical. */
2316 break;
2317
2318 default:
2319 new_kind = INTERNALVAR_VALUE;
2320 new_data.value = value_copy (val);
2321 new_data.value->modifiable = 1;
2322
2323 /* Force the value to be fetched from the target now, to avoid problems
2324 later when this internalvar is referenced and the target is gone or
2325 has changed. */
2326 if (value_lazy (new_data.value))
2327 value_fetch_lazy (new_data.value);
2328
2329 /* Release the value from the value chain to prevent it from being
2330 deleted by free_all_values. From here on this function should not
2331 call error () until new_data is installed into the var->u to avoid
2332 leaking memory. */
2333 release_value (new_data.value);
2334 break;
2335 }
2336
2337 /* Clean up old contents. */
2338 clear_internalvar (var);
2339
2340 /* Switch over. */
2341 var->kind = new_kind;
2342 var->u = new_data;
2343 /* End code which must not call error(). */
2344 }
2345
2346 void
2347 set_internalvar_integer (struct internalvar *var, LONGEST l)
2348 {
2349 /* Clean up old contents. */
2350 clear_internalvar (var);
2351
2352 var->kind = INTERNALVAR_INTEGER;
2353 var->u.integer.type = NULL;
2354 var->u.integer.val = l;
2355 }
2356
2357 void
2358 set_internalvar_string (struct internalvar *var, const char *string)
2359 {
2360 /* Clean up old contents. */
2361 clear_internalvar (var);
2362
2363 var->kind = INTERNALVAR_STRING;
2364 var->u.string = xstrdup (string);
2365 }
2366
2367 static void
2368 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2369 {
2370 /* Clean up old contents. */
2371 clear_internalvar (var);
2372
2373 var->kind = INTERNALVAR_FUNCTION;
2374 var->u.fn.function = f;
2375 var->u.fn.canonical = 1;
2376 /* Variables installed here are always the canonical version. */
2377 }
2378
2379 void
2380 clear_internalvar (struct internalvar *var)
2381 {
2382 /* Clean up old contents. */
2383 switch (var->kind)
2384 {
2385 case INTERNALVAR_VALUE:
2386 value_free (var->u.value);
2387 break;
2388
2389 case INTERNALVAR_STRING:
2390 xfree (var->u.string);
2391 break;
2392
2393 case INTERNALVAR_MAKE_VALUE:
2394 if (var->u.make_value.functions->destroy != NULL)
2395 var->u.make_value.functions->destroy (var->u.make_value.data);
2396 break;
2397
2398 default:
2399 break;
2400 }
2401
2402 /* Reset to void kind. */
2403 var->kind = INTERNALVAR_VOID;
2404 }
2405
2406 char *
2407 internalvar_name (struct internalvar *var)
2408 {
2409 return var->name;
2410 }
2411
2412 static struct internal_function *
2413 create_internal_function (const char *name,
2414 internal_function_fn handler, void *cookie)
2415 {
2416 struct internal_function *ifn = XNEW (struct internal_function);
2417
2418 ifn->name = xstrdup (name);
2419 ifn->handler = handler;
2420 ifn->cookie = cookie;
2421 return ifn;
2422 }
2423
2424 char *
2425 value_internal_function_name (struct value *val)
2426 {
2427 struct internal_function *ifn;
2428 int result;
2429
2430 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2431 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2432 gdb_assert (result);
2433
2434 return ifn->name;
2435 }
2436
2437 struct value *
2438 call_internal_function (struct gdbarch *gdbarch,
2439 const struct language_defn *language,
2440 struct value *func, int argc, struct value **argv)
2441 {
2442 struct internal_function *ifn;
2443 int result;
2444
2445 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2446 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2447 gdb_assert (result);
2448
2449 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2450 }
2451
2452 /* The 'function' command. This does nothing -- it is just a
2453 placeholder to let "help function NAME" work. This is also used as
2454 the implementation of the sub-command that is created when
2455 registering an internal function. */
2456 static void
2457 function_command (char *command, int from_tty)
2458 {
2459 /* Do nothing. */
2460 }
2461
2462 /* Clean up if an internal function's command is destroyed. */
2463 static void
2464 function_destroyer (struct cmd_list_element *self, void *ignore)
2465 {
2466 xfree ((char *) self->name);
2467 xfree ((char *) self->doc);
2468 }
2469
2470 /* Add a new internal function. NAME is the name of the function; DOC
2471 is a documentation string describing the function. HANDLER is
2472 called when the function is invoked. COOKIE is an arbitrary
2473 pointer which is passed to HANDLER and is intended for "user
2474 data". */
2475 void
2476 add_internal_function (const char *name, const char *doc,
2477 internal_function_fn handler, void *cookie)
2478 {
2479 struct cmd_list_element *cmd;
2480 struct internal_function *ifn;
2481 struct internalvar *var = lookup_internalvar (name);
2482
2483 ifn = create_internal_function (name, handler, cookie);
2484 set_internalvar_function (var, ifn);
2485
2486 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2487 &functionlist);
2488 cmd->destroyer = function_destroyer;
2489 }
2490
2491 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2492 prevent cycles / duplicates. */
2493
2494 void
2495 preserve_one_value (struct value *value, struct objfile *objfile,
2496 htab_t copied_types)
2497 {
2498 if (TYPE_OBJFILE (value->type) == objfile)
2499 value->type = copy_type_recursive (objfile, value->type, copied_types);
2500
2501 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2502 value->enclosing_type = copy_type_recursive (objfile,
2503 value->enclosing_type,
2504 copied_types);
2505 }
2506
2507 /* Likewise for internal variable VAR. */
2508
2509 static void
2510 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2511 htab_t copied_types)
2512 {
2513 switch (var->kind)
2514 {
2515 case INTERNALVAR_INTEGER:
2516 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2517 var->u.integer.type
2518 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2519 break;
2520
2521 case INTERNALVAR_VALUE:
2522 preserve_one_value (var->u.value, objfile, copied_types);
2523 break;
2524 }
2525 }
2526
2527 /* Update the internal variables and value history when OBJFILE is
2528 discarded; we must copy the types out of the objfile. New global types
2529 will be created for every convenience variable which currently points to
2530 this objfile's types, and the convenience variables will be adjusted to
2531 use the new global types. */
2532
2533 void
2534 preserve_values (struct objfile *objfile)
2535 {
2536 htab_t copied_types;
2537 struct value_history_chunk *cur;
2538 struct internalvar *var;
2539 int i;
2540
2541 /* Create the hash table. We allocate on the objfile's obstack, since
2542 it is soon to be deleted. */
2543 copied_types = create_copied_types_hash (objfile);
2544
2545 for (cur = value_history_chain; cur; cur = cur->next)
2546 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2547 if (cur->values[i])
2548 preserve_one_value (cur->values[i], objfile, copied_types);
2549
2550 for (var = internalvars; var; var = var->next)
2551 preserve_one_internalvar (var, objfile, copied_types);
2552
2553 preserve_ext_lang_values (objfile, copied_types);
2554
2555 htab_delete (copied_types);
2556 }
2557
2558 static void
2559 show_convenience (char *ignore, int from_tty)
2560 {
2561 struct gdbarch *gdbarch = get_current_arch ();
2562 struct internalvar *var;
2563 int varseen = 0;
2564 struct value_print_options opts;
2565
2566 get_user_print_options (&opts);
2567 for (var = internalvars; var; var = var->next)
2568 {
2569
2570 if (!varseen)
2571 {
2572 varseen = 1;
2573 }
2574 printf_filtered (("$%s = "), var->name);
2575
2576 TRY
2577 {
2578 struct value *val;
2579
2580 val = value_of_internalvar (gdbarch, var);
2581 value_print (val, gdb_stdout, &opts);
2582 }
2583 CATCH (ex, RETURN_MASK_ERROR)
2584 {
2585 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2586 }
2587 END_CATCH
2588
2589 printf_filtered (("\n"));
2590 }
2591 if (!varseen)
2592 {
2593 /* This text does not mention convenience functions on purpose.
2594 The user can't create them except via Python, and if Python support
2595 is installed this message will never be printed ($_streq will
2596 exist). */
2597 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2598 "Convenience variables have "
2599 "names starting with \"$\";\n"
2600 "use \"set\" as in \"set "
2601 "$foo = 5\" to define them.\n"));
2602 }
2603 }
2604 \f
2605 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2606
2607 struct value *
2608 value_of_xmethod (struct xmethod_worker *worker)
2609 {
2610 if (worker->value == NULL)
2611 {
2612 struct value *v;
2613
2614 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2615 v->lval = lval_xcallable;
2616 v->location.xm_worker = worker;
2617 v->modifiable = 0;
2618 worker->value = v;
2619 }
2620
2621 return worker->value;
2622 }
2623
2624 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2625
2626 struct type *
2627 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2628 {
2629 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2630 && method->lval == lval_xcallable && argc > 0);
2631
2632 return get_xmethod_result_type (method->location.xm_worker,
2633 argv[0], argv + 1, argc - 1);
2634 }
2635
2636 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2637
2638 struct value *
2639 call_xmethod (struct value *method, int argc, struct value **argv)
2640 {
2641 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2642 && method->lval == lval_xcallable && argc > 0);
2643
2644 return invoke_xmethod (method->location.xm_worker,
2645 argv[0], argv + 1, argc - 1);
2646 }
2647 \f
2648 /* Extract a value as a C number (either long or double).
2649 Knows how to convert fixed values to double, or
2650 floating values to long.
2651 Does not deallocate the value. */
2652
2653 LONGEST
2654 value_as_long (struct value *val)
2655 {
2656 /* This coerces arrays and functions, which is necessary (e.g.
2657 in disassemble_command). It also dereferences references, which
2658 I suspect is the most logical thing to do. */
2659 val = coerce_array (val);
2660 return unpack_long (value_type (val), value_contents (val));
2661 }
2662
2663 DOUBLEST
2664 value_as_double (struct value *val)
2665 {
2666 DOUBLEST foo;
2667 int inv;
2668
2669 foo = unpack_double (value_type (val), value_contents (val), &inv);
2670 if (inv)
2671 error (_("Invalid floating value found in program."));
2672 return foo;
2673 }
2674
2675 /* Extract a value as a C pointer. Does not deallocate the value.
2676 Note that val's type may not actually be a pointer; value_as_long
2677 handles all the cases. */
2678 CORE_ADDR
2679 value_as_address (struct value *val)
2680 {
2681 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2682
2683 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2684 whether we want this to be true eventually. */
2685 #if 0
2686 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2687 non-address (e.g. argument to "signal", "info break", etc.), or
2688 for pointers to char, in which the low bits *are* significant. */
2689 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2690 #else
2691
2692 /* There are several targets (IA-64, PowerPC, and others) which
2693 don't represent pointers to functions as simply the address of
2694 the function's entry point. For example, on the IA-64, a
2695 function pointer points to a two-word descriptor, generated by
2696 the linker, which contains the function's entry point, and the
2697 value the IA-64 "global pointer" register should have --- to
2698 support position-independent code. The linker generates
2699 descriptors only for those functions whose addresses are taken.
2700
2701 On such targets, it's difficult for GDB to convert an arbitrary
2702 function address into a function pointer; it has to either find
2703 an existing descriptor for that function, or call malloc and
2704 build its own. On some targets, it is impossible for GDB to
2705 build a descriptor at all: the descriptor must contain a jump
2706 instruction; data memory cannot be executed; and code memory
2707 cannot be modified.
2708
2709 Upon entry to this function, if VAL is a value of type `function'
2710 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2711 value_address (val) is the address of the function. This is what
2712 you'll get if you evaluate an expression like `main'. The call
2713 to COERCE_ARRAY below actually does all the usual unary
2714 conversions, which includes converting values of type `function'
2715 to `pointer to function'. This is the challenging conversion
2716 discussed above. Then, `unpack_long' will convert that pointer
2717 back into an address.
2718
2719 So, suppose the user types `disassemble foo' on an architecture
2720 with a strange function pointer representation, on which GDB
2721 cannot build its own descriptors, and suppose further that `foo'
2722 has no linker-built descriptor. The address->pointer conversion
2723 will signal an error and prevent the command from running, even
2724 though the next step would have been to convert the pointer
2725 directly back into the same address.
2726
2727 The following shortcut avoids this whole mess. If VAL is a
2728 function, just return its address directly. */
2729 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2730 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2731 return value_address (val);
2732
2733 val = coerce_array (val);
2734
2735 /* Some architectures (e.g. Harvard), map instruction and data
2736 addresses onto a single large unified address space. For
2737 instance: An architecture may consider a large integer in the
2738 range 0x10000000 .. 0x1000ffff to already represent a data
2739 addresses (hence not need a pointer to address conversion) while
2740 a small integer would still need to be converted integer to
2741 pointer to address. Just assume such architectures handle all
2742 integer conversions in a single function. */
2743
2744 /* JimB writes:
2745
2746 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2747 must admonish GDB hackers to make sure its behavior matches the
2748 compiler's, whenever possible.
2749
2750 In general, I think GDB should evaluate expressions the same way
2751 the compiler does. When the user copies an expression out of
2752 their source code and hands it to a `print' command, they should
2753 get the same value the compiler would have computed. Any
2754 deviation from this rule can cause major confusion and annoyance,
2755 and needs to be justified carefully. In other words, GDB doesn't
2756 really have the freedom to do these conversions in clever and
2757 useful ways.
2758
2759 AndrewC pointed out that users aren't complaining about how GDB
2760 casts integers to pointers; they are complaining that they can't
2761 take an address from a disassembly listing and give it to `x/i'.
2762 This is certainly important.
2763
2764 Adding an architecture method like integer_to_address() certainly
2765 makes it possible for GDB to "get it right" in all circumstances
2766 --- the target has complete control over how things get done, so
2767 people can Do The Right Thing for their target without breaking
2768 anyone else. The standard doesn't specify how integers get
2769 converted to pointers; usually, the ABI doesn't either, but
2770 ABI-specific code is a more reasonable place to handle it. */
2771
2772 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2773 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2774 && gdbarch_integer_to_address_p (gdbarch))
2775 return gdbarch_integer_to_address (gdbarch, value_type (val),
2776 value_contents (val));
2777
2778 return unpack_long (value_type (val), value_contents (val));
2779 #endif
2780 }
2781 \f
2782 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2783 as a long, or as a double, assuming the raw data is described
2784 by type TYPE. Knows how to convert different sizes of values
2785 and can convert between fixed and floating point. We don't assume
2786 any alignment for the raw data. Return value is in host byte order.
2787
2788 If you want functions and arrays to be coerced to pointers, and
2789 references to be dereferenced, call value_as_long() instead.
2790
2791 C++: It is assumed that the front-end has taken care of
2792 all matters concerning pointers to members. A pointer
2793 to member which reaches here is considered to be equivalent
2794 to an INT (or some size). After all, it is only an offset. */
2795
2796 LONGEST
2797 unpack_long (struct type *type, const gdb_byte *valaddr)
2798 {
2799 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2800 enum type_code code = TYPE_CODE (type);
2801 int len = TYPE_LENGTH (type);
2802 int nosign = TYPE_UNSIGNED (type);
2803
2804 switch (code)
2805 {
2806 case TYPE_CODE_TYPEDEF:
2807 return unpack_long (check_typedef (type), valaddr);
2808 case TYPE_CODE_ENUM:
2809 case TYPE_CODE_FLAGS:
2810 case TYPE_CODE_BOOL:
2811 case TYPE_CODE_INT:
2812 case TYPE_CODE_CHAR:
2813 case TYPE_CODE_RANGE:
2814 case TYPE_CODE_MEMBERPTR:
2815 if (nosign)
2816 return extract_unsigned_integer (valaddr, len, byte_order);
2817 else
2818 return extract_signed_integer (valaddr, len, byte_order);
2819
2820 case TYPE_CODE_FLT:
2821 return extract_typed_floating (valaddr, type);
2822
2823 case TYPE_CODE_DECFLOAT:
2824 /* libdecnumber has a function to convert from decimal to integer, but
2825 it doesn't work when the decimal number has a fractional part. */
2826 return decimal_to_doublest (valaddr, len, byte_order);
2827
2828 case TYPE_CODE_PTR:
2829 case TYPE_CODE_REF:
2830 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2831 whether we want this to be true eventually. */
2832 return extract_typed_address (valaddr, type);
2833
2834 default:
2835 error (_("Value can't be converted to integer."));
2836 }
2837 return 0; /* Placate lint. */
2838 }
2839
2840 /* Return a double value from the specified type and address.
2841 INVP points to an int which is set to 0 for valid value,
2842 1 for invalid value (bad float format). In either case,
2843 the returned double is OK to use. Argument is in target
2844 format, result is in host format. */
2845
2846 DOUBLEST
2847 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2848 {
2849 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2850 enum type_code code;
2851 int len;
2852 int nosign;
2853
2854 *invp = 0; /* Assume valid. */
2855 type = check_typedef (type);
2856 code = TYPE_CODE (type);
2857 len = TYPE_LENGTH (type);
2858 nosign = TYPE_UNSIGNED (type);
2859 if (code == TYPE_CODE_FLT)
2860 {
2861 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2862 floating-point value was valid (using the macro
2863 INVALID_FLOAT). That test/macro have been removed.
2864
2865 It turns out that only the VAX defined this macro and then
2866 only in a non-portable way. Fixing the portability problem
2867 wouldn't help since the VAX floating-point code is also badly
2868 bit-rotten. The target needs to add definitions for the
2869 methods gdbarch_float_format and gdbarch_double_format - these
2870 exactly describe the target floating-point format. The
2871 problem here is that the corresponding floatformat_vax_f and
2872 floatformat_vax_d values these methods should be set to are
2873 also not defined either. Oops!
2874
2875 Hopefully someone will add both the missing floatformat
2876 definitions and the new cases for floatformat_is_valid (). */
2877
2878 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2879 {
2880 *invp = 1;
2881 return 0.0;
2882 }
2883
2884 return extract_typed_floating (valaddr, type);
2885 }
2886 else if (code == TYPE_CODE_DECFLOAT)
2887 return decimal_to_doublest (valaddr, len, byte_order);
2888 else if (nosign)
2889 {
2890 /* Unsigned -- be sure we compensate for signed LONGEST. */
2891 return (ULONGEST) unpack_long (type, valaddr);
2892 }
2893 else
2894 {
2895 /* Signed -- we are OK with unpack_long. */
2896 return unpack_long (type, valaddr);
2897 }
2898 }
2899
2900 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2901 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2902 We don't assume any alignment for the raw data. Return value is in
2903 host byte order.
2904
2905 If you want functions and arrays to be coerced to pointers, and
2906 references to be dereferenced, call value_as_address() instead.
2907
2908 C++: It is assumed that the front-end has taken care of
2909 all matters concerning pointers to members. A pointer
2910 to member which reaches here is considered to be equivalent
2911 to an INT (or some size). After all, it is only an offset. */
2912
2913 CORE_ADDR
2914 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2915 {
2916 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2917 whether we want this to be true eventually. */
2918 return unpack_long (type, valaddr);
2919 }
2920
2921 \f
2922 /* Get the value of the FIELDNO'th field (which must be static) of
2923 TYPE. */
2924
2925 struct value *
2926 value_static_field (struct type *type, int fieldno)
2927 {
2928 struct value *retval;
2929
2930 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2931 {
2932 case FIELD_LOC_KIND_PHYSADDR:
2933 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2934 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2935 break;
2936 case FIELD_LOC_KIND_PHYSNAME:
2937 {
2938 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2939 /* TYPE_FIELD_NAME (type, fieldno); */
2940 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2941
2942 if (sym == NULL)
2943 {
2944 /* With some compilers, e.g. HP aCC, static data members are
2945 reported as non-debuggable symbols. */
2946 struct bound_minimal_symbol msym
2947 = lookup_minimal_symbol (phys_name, NULL, NULL);
2948
2949 if (!msym.minsym)
2950 return allocate_optimized_out_value (type);
2951 else
2952 {
2953 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2954 BMSYMBOL_VALUE_ADDRESS (msym));
2955 }
2956 }
2957 else
2958 retval = value_of_variable (sym, NULL);
2959 break;
2960 }
2961 default:
2962 gdb_assert_not_reached ("unexpected field location kind");
2963 }
2964
2965 return retval;
2966 }
2967
2968 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2969 You have to be careful here, since the size of the data area for the value
2970 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2971 than the old enclosing type, you have to allocate more space for the
2972 data. */
2973
2974 void
2975 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2976 {
2977 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2978 val->contents =
2979 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2980
2981 val->enclosing_type = new_encl_type;
2982 }
2983
2984 /* Given a value ARG1 (offset by OFFSET bytes)
2985 of a struct or union type ARG_TYPE,
2986 extract and return the value of one of its (non-static) fields.
2987 FIELDNO says which field. */
2988
2989 struct value *
2990 value_primitive_field (struct value *arg1, int offset,
2991 int fieldno, struct type *arg_type)
2992 {
2993 struct value *v;
2994 struct type *type;
2995
2996 arg_type = check_typedef (arg_type);
2997 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2998
2999 /* Call check_typedef on our type to make sure that, if TYPE
3000 is a TYPE_CODE_TYPEDEF, its length is set to the length
3001 of the target type instead of zero. However, we do not
3002 replace the typedef type by the target type, because we want
3003 to keep the typedef in order to be able to print the type
3004 description correctly. */
3005 check_typedef (type);
3006
3007 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3008 {
3009 /* Handle packed fields.
3010
3011 Create a new value for the bitfield, with bitpos and bitsize
3012 set. If possible, arrange offset and bitpos so that we can
3013 do a single aligned read of the size of the containing type.
3014 Otherwise, adjust offset to the byte containing the first
3015 bit. Assume that the address, offset, and embedded offset
3016 are sufficiently aligned. */
3017
3018 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3019 int container_bitsize = TYPE_LENGTH (type) * 8;
3020
3021 v = allocate_value_lazy (type);
3022 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3023 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3024 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3025 v->bitpos = bitpos % container_bitsize;
3026 else
3027 v->bitpos = bitpos % 8;
3028 v->offset = (value_embedded_offset (arg1)
3029 + offset
3030 + (bitpos - v->bitpos) / 8);
3031 set_value_parent (v, arg1);
3032 if (!value_lazy (arg1))
3033 value_fetch_lazy (v);
3034 }
3035 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3036 {
3037 /* This field is actually a base subobject, so preserve the
3038 entire object's contents for later references to virtual
3039 bases, etc. */
3040 int boffset;
3041
3042 /* Lazy register values with offsets are not supported. */
3043 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3044 value_fetch_lazy (arg1);
3045
3046 /* We special case virtual inheritance here because this
3047 requires access to the contents, which we would rather avoid
3048 for references to ordinary fields of unavailable values. */
3049 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3050 boffset = baseclass_offset (arg_type, fieldno,
3051 value_contents (arg1),
3052 value_embedded_offset (arg1),
3053 value_address (arg1),
3054 arg1);
3055 else
3056 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3057
3058 if (value_lazy (arg1))
3059 v = allocate_value_lazy (value_enclosing_type (arg1));
3060 else
3061 {
3062 v = allocate_value (value_enclosing_type (arg1));
3063 value_contents_copy_raw (v, 0, arg1, 0,
3064 TYPE_LENGTH (value_enclosing_type (arg1)));
3065 }
3066 v->type = type;
3067 v->offset = value_offset (arg1);
3068 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3069 }
3070 else
3071 {
3072 /* Plain old data member */
3073 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3074
3075 /* Lazy register values with offsets are not supported. */
3076 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3077 value_fetch_lazy (arg1);
3078
3079 if (value_lazy (arg1))
3080 v = allocate_value_lazy (type);
3081 else
3082 {
3083 v = allocate_value (type);
3084 value_contents_copy_raw (v, value_embedded_offset (v),
3085 arg1, value_embedded_offset (arg1) + offset,
3086 TYPE_LENGTH (type));
3087 }
3088 v->offset = (value_offset (arg1) + offset
3089 + value_embedded_offset (arg1));
3090 }
3091 set_value_component_location (v, arg1);
3092 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
3093 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
3094 return v;
3095 }
3096
3097 /* Given a value ARG1 of a struct or union type,
3098 extract and return the value of one of its (non-static) fields.
3099 FIELDNO says which field. */
3100
3101 struct value *
3102 value_field (struct value *arg1, int fieldno)
3103 {
3104 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3105 }
3106
3107 /* Return a non-virtual function as a value.
3108 F is the list of member functions which contains the desired method.
3109 J is an index into F which provides the desired method.
3110
3111 We only use the symbol for its address, so be happy with either a
3112 full symbol or a minimal symbol. */
3113
3114 struct value *
3115 value_fn_field (struct value **arg1p, struct fn_field *f,
3116 int j, struct type *type,
3117 int offset)
3118 {
3119 struct value *v;
3120 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3121 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3122 struct symbol *sym;
3123 struct bound_minimal_symbol msym;
3124
3125 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
3126 if (sym != NULL)
3127 {
3128 memset (&msym, 0, sizeof (msym));
3129 }
3130 else
3131 {
3132 gdb_assert (sym == NULL);
3133 msym = lookup_bound_minimal_symbol (physname);
3134 if (msym.minsym == NULL)
3135 return NULL;
3136 }
3137
3138 v = allocate_value (ftype);
3139 if (sym)
3140 {
3141 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3142 }
3143 else
3144 {
3145 /* The minimal symbol might point to a function descriptor;
3146 resolve it to the actual code address instead. */
3147 struct objfile *objfile = msym.objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149
3150 set_value_address (v,
3151 gdbarch_convert_from_func_ptr_addr
3152 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3153 }
3154
3155 if (arg1p)
3156 {
3157 if (type != value_type (*arg1p))
3158 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3159 value_addr (*arg1p)));
3160
3161 /* Move the `this' pointer according to the offset.
3162 VALUE_OFFSET (*arg1p) += offset; */
3163 }
3164
3165 return v;
3166 }
3167
3168 \f
3169
3170 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3171 VALADDR, and store the result in *RESULT.
3172 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3173
3174 Extracting bits depends on endianness of the machine. Compute the
3175 number of least significant bits to discard. For big endian machines,
3176 we compute the total number of bits in the anonymous object, subtract
3177 off the bit count from the MSB of the object to the MSB of the
3178 bitfield, then the size of the bitfield, which leaves the LSB discard
3179 count. For little endian machines, the discard count is simply the
3180 number of bits from the LSB of the anonymous object to the LSB of the
3181 bitfield.
3182
3183 If the field is signed, we also do sign extension. */
3184
3185 static LONGEST
3186 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3187 int bitpos, int bitsize)
3188 {
3189 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3190 ULONGEST val;
3191 ULONGEST valmask;
3192 int lsbcount;
3193 int bytes_read;
3194 int read_offset;
3195
3196 /* Read the minimum number of bytes required; there may not be
3197 enough bytes to read an entire ULONGEST. */
3198 field_type = check_typedef (field_type);
3199 if (bitsize)
3200 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3201 else
3202 bytes_read = TYPE_LENGTH (field_type);
3203
3204 read_offset = bitpos / 8;
3205
3206 val = extract_unsigned_integer (valaddr + read_offset,
3207 bytes_read, byte_order);
3208
3209 /* Extract bits. See comment above. */
3210
3211 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3212 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3213 else
3214 lsbcount = (bitpos % 8);
3215 val >>= lsbcount;
3216
3217 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3218 If the field is signed, and is negative, then sign extend. */
3219
3220 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3221 {
3222 valmask = (((ULONGEST) 1) << bitsize) - 1;
3223 val &= valmask;
3224 if (!TYPE_UNSIGNED (field_type))
3225 {
3226 if (val & (valmask ^ (valmask >> 1)))
3227 {
3228 val |= ~valmask;
3229 }
3230 }
3231 }
3232
3233 return val;
3234 }
3235
3236 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3237 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3238 ORIGINAL_VALUE, which must not be NULL. See
3239 unpack_value_bits_as_long for more details. */
3240
3241 int
3242 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3243 int embedded_offset, int fieldno,
3244 const struct value *val, LONGEST *result)
3245 {
3246 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3247 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3248 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3249 int bit_offset;
3250
3251 gdb_assert (val != NULL);
3252
3253 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3254 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3255 || !value_bits_available (val, bit_offset, bitsize))
3256 return 0;
3257
3258 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3259 bitpos, bitsize);
3260 return 1;
3261 }
3262
3263 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3264 object at VALADDR. See unpack_bits_as_long for more details. */
3265
3266 LONGEST
3267 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3268 {
3269 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3270 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3271 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3272
3273 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3274 }
3275
3276 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3277 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3278 the contents in DEST_VAL, zero or sign extending if the type of
3279 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3280 VAL. If the VAL's contents required to extract the bitfield from
3281 are unavailable/optimized out, DEST_VAL is correspondingly
3282 marked unavailable/optimized out. */
3283
3284 void
3285 unpack_value_bitfield (struct value *dest_val,
3286 int bitpos, int bitsize,
3287 const gdb_byte *valaddr, int embedded_offset,
3288 const struct value *val)
3289 {
3290 enum bfd_endian byte_order;
3291 int src_bit_offset;
3292 int dst_bit_offset;
3293 LONGEST num;
3294 struct type *field_type = value_type (dest_val);
3295
3296 /* First, unpack and sign extend the bitfield as if it was wholly
3297 available. Invalid/unavailable bits are read as zero, but that's
3298 OK, as they'll end up marked below. */
3299 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3300 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3301 bitpos, bitsize);
3302 store_signed_integer (value_contents_raw (dest_val),
3303 TYPE_LENGTH (field_type), byte_order, num);
3304
3305 /* Now copy the optimized out / unavailability ranges to the right
3306 bits. */
3307 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3308 if (byte_order == BFD_ENDIAN_BIG)
3309 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3310 else
3311 dst_bit_offset = 0;
3312 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3313 val, src_bit_offset, bitsize);
3314 }
3315
3316 /* Return a new value with type TYPE, which is FIELDNO field of the
3317 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3318 of VAL. If the VAL's contents required to extract the bitfield
3319 from are unavailable/optimized out, the new value is
3320 correspondingly marked unavailable/optimized out. */
3321
3322 struct value *
3323 value_field_bitfield (struct type *type, int fieldno,
3324 const gdb_byte *valaddr,
3325 int embedded_offset, const struct value *val)
3326 {
3327 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3328 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3329 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3330
3331 unpack_value_bitfield (res_val, bitpos, bitsize,
3332 valaddr, embedded_offset, val);
3333
3334 return res_val;
3335 }
3336
3337 /* Modify the value of a bitfield. ADDR points to a block of memory in
3338 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3339 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3340 indicate which bits (in target bit order) comprise the bitfield.
3341 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3342 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3343
3344 void
3345 modify_field (struct type *type, gdb_byte *addr,
3346 LONGEST fieldval, int bitpos, int bitsize)
3347 {
3348 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3349 ULONGEST oword;
3350 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3351 int bytesize;
3352
3353 /* Normalize BITPOS. */
3354 addr += bitpos / 8;
3355 bitpos %= 8;
3356
3357 /* If a negative fieldval fits in the field in question, chop
3358 off the sign extension bits. */
3359 if ((~fieldval & ~(mask >> 1)) == 0)
3360 fieldval &= mask;
3361
3362 /* Warn if value is too big to fit in the field in question. */
3363 if (0 != (fieldval & ~mask))
3364 {
3365 /* FIXME: would like to include fieldval in the message, but
3366 we don't have a sprintf_longest. */
3367 warning (_("Value does not fit in %d bits."), bitsize);
3368
3369 /* Truncate it, otherwise adjoining fields may be corrupted. */
3370 fieldval &= mask;
3371 }
3372
3373 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3374 false valgrind reports. */
3375
3376 bytesize = (bitpos + bitsize + 7) / 8;
3377 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3378
3379 /* Shifting for bit field depends on endianness of the target machine. */
3380 if (gdbarch_bits_big_endian (get_type_arch (type)))
3381 bitpos = bytesize * 8 - bitpos - bitsize;
3382
3383 oword &= ~(mask << bitpos);
3384 oword |= fieldval << bitpos;
3385
3386 store_unsigned_integer (addr, bytesize, byte_order, oword);
3387 }
3388 \f
3389 /* Pack NUM into BUF using a target format of TYPE. */
3390
3391 void
3392 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3393 {
3394 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3395 int len;
3396
3397 type = check_typedef (type);
3398 len = TYPE_LENGTH (type);
3399
3400 switch (TYPE_CODE (type))
3401 {
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_ENUM:
3405 case TYPE_CODE_FLAGS:
3406 case TYPE_CODE_BOOL:
3407 case TYPE_CODE_RANGE:
3408 case TYPE_CODE_MEMBERPTR:
3409 store_signed_integer (buf, len, byte_order, num);
3410 break;
3411
3412 case TYPE_CODE_REF:
3413 case TYPE_CODE_PTR:
3414 store_typed_address (buf, type, (CORE_ADDR) num);
3415 break;
3416
3417 default:
3418 error (_("Unexpected type (%d) encountered for integer constant."),
3419 TYPE_CODE (type));
3420 }
3421 }
3422
3423
3424 /* Pack NUM into BUF using a target format of TYPE. */
3425
3426 static void
3427 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3428 {
3429 int len;
3430 enum bfd_endian byte_order;
3431
3432 type = check_typedef (type);
3433 len = TYPE_LENGTH (type);
3434 byte_order = gdbarch_byte_order (get_type_arch (type));
3435
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_INT:
3439 case TYPE_CODE_CHAR:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_FLAGS:
3442 case TYPE_CODE_BOOL:
3443 case TYPE_CODE_RANGE:
3444 case TYPE_CODE_MEMBERPTR:
3445 store_unsigned_integer (buf, len, byte_order, num);
3446 break;
3447
3448 case TYPE_CODE_REF:
3449 case TYPE_CODE_PTR:
3450 store_typed_address (buf, type, (CORE_ADDR) num);
3451 break;
3452
3453 default:
3454 error (_("Unexpected type (%d) encountered "
3455 "for unsigned integer constant."),
3456 TYPE_CODE (type));
3457 }
3458 }
3459
3460
3461 /* Convert C numbers into newly allocated values. */
3462
3463 struct value *
3464 value_from_longest (struct type *type, LONGEST num)
3465 {
3466 struct value *val = allocate_value (type);
3467
3468 pack_long (value_contents_raw (val), type, num);
3469 return val;
3470 }
3471
3472
3473 /* Convert C unsigned numbers into newly allocated values. */
3474
3475 struct value *
3476 value_from_ulongest (struct type *type, ULONGEST num)
3477 {
3478 struct value *val = allocate_value (type);
3479
3480 pack_unsigned_long (value_contents_raw (val), type, num);
3481
3482 return val;
3483 }
3484
3485
3486 /* Create a value representing a pointer of type TYPE to the address
3487 ADDR. */
3488
3489 struct value *
3490 value_from_pointer (struct type *type, CORE_ADDR addr)
3491 {
3492 struct value *val = allocate_value (type);
3493
3494 store_typed_address (value_contents_raw (val),
3495 check_typedef (type), addr);
3496 return val;
3497 }
3498
3499
3500 /* Create a value of type TYPE whose contents come from VALADDR, if it
3501 is non-null, and whose memory address (in the inferior) is
3502 ADDRESS. The type of the created value may differ from the passed
3503 type TYPE. Make sure to retrieve values new type after this call.
3504 Note that TYPE is not passed through resolve_dynamic_type; this is
3505 a special API intended for use only by Ada. */
3506
3507 struct value *
3508 value_from_contents_and_address_unresolved (struct type *type,
3509 const gdb_byte *valaddr,
3510 CORE_ADDR address)
3511 {
3512 struct value *v;
3513
3514 if (valaddr == NULL)
3515 v = allocate_value_lazy (type);
3516 else
3517 v = value_from_contents (type, valaddr);
3518 set_value_address (v, address);
3519 VALUE_LVAL (v) = lval_memory;
3520 return v;
3521 }
3522
3523 /* Create a value of type TYPE whose contents come from VALADDR, if it
3524 is non-null, and whose memory address (in the inferior) is
3525 ADDRESS. The type of the created value may differ from the passed
3526 type TYPE. Make sure to retrieve values new type after this call. */
3527
3528 struct value *
3529 value_from_contents_and_address (struct type *type,
3530 const gdb_byte *valaddr,
3531 CORE_ADDR address)
3532 {
3533 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3534 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3535 struct value *v;
3536
3537 if (valaddr == NULL)
3538 v = allocate_value_lazy (resolved_type);
3539 else
3540 v = value_from_contents (resolved_type, valaddr);
3541 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3542 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3543 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3544 set_value_address (v, address);
3545 VALUE_LVAL (v) = lval_memory;
3546 return v;
3547 }
3548
3549 /* Create a value of type TYPE holding the contents CONTENTS.
3550 The new value is `not_lval'. */
3551
3552 struct value *
3553 value_from_contents (struct type *type, const gdb_byte *contents)
3554 {
3555 struct value *result;
3556
3557 result = allocate_value (type);
3558 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3559 return result;
3560 }
3561
3562 struct value *
3563 value_from_double (struct type *type, DOUBLEST num)
3564 {
3565 struct value *val = allocate_value (type);
3566 struct type *base_type = check_typedef (type);
3567 enum type_code code = TYPE_CODE (base_type);
3568
3569 if (code == TYPE_CODE_FLT)
3570 {
3571 store_typed_floating (value_contents_raw (val), base_type, num);
3572 }
3573 else
3574 error (_("Unexpected type encountered for floating constant."));
3575
3576 return val;
3577 }
3578
3579 struct value *
3580 value_from_decfloat (struct type *type, const gdb_byte *dec)
3581 {
3582 struct value *val = allocate_value (type);
3583
3584 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3585 return val;
3586 }
3587
3588 /* Extract a value from the history file. Input will be of the form
3589 $digits or $$digits. See block comment above 'write_dollar_variable'
3590 for details. */
3591
3592 struct value *
3593 value_from_history_ref (const char *h, const char **endp)
3594 {
3595 int index, len;
3596
3597 if (h[0] == '$')
3598 len = 1;
3599 else
3600 return NULL;
3601
3602 if (h[1] == '$')
3603 len = 2;
3604
3605 /* Find length of numeral string. */
3606 for (; isdigit (h[len]); len++)
3607 ;
3608
3609 /* Make sure numeral string is not part of an identifier. */
3610 if (h[len] == '_' || isalpha (h[len]))
3611 return NULL;
3612
3613 /* Now collect the index value. */
3614 if (h[1] == '$')
3615 {
3616 if (len == 2)
3617 {
3618 /* For some bizarre reason, "$$" is equivalent to "$$1",
3619 rather than to "$$0" as it ought to be! */
3620 index = -1;
3621 *endp += len;
3622 }
3623 else
3624 {
3625 char *local_end;
3626
3627 index = -strtol (&h[2], &local_end, 10);
3628 *endp = local_end;
3629 }
3630 }
3631 else
3632 {
3633 if (len == 1)
3634 {
3635 /* "$" is equivalent to "$0". */
3636 index = 0;
3637 *endp += len;
3638 }
3639 else
3640 {
3641 char *local_end;
3642
3643 index = strtol (&h[1], &local_end, 10);
3644 *endp = local_end;
3645 }
3646 }
3647
3648 return access_value_history (index);
3649 }
3650
3651 struct value *
3652 coerce_ref_if_computed (const struct value *arg)
3653 {
3654 const struct lval_funcs *funcs;
3655
3656 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3657 return NULL;
3658
3659 if (value_lval_const (arg) != lval_computed)
3660 return NULL;
3661
3662 funcs = value_computed_funcs (arg);
3663 if (funcs->coerce_ref == NULL)
3664 return NULL;
3665
3666 return funcs->coerce_ref (arg);
3667 }
3668
3669 /* Look at value.h for description. */
3670
3671 struct value *
3672 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3673 struct type *original_type,
3674 struct value *original_value)
3675 {
3676 /* Re-adjust type. */
3677 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3678
3679 /* Add embedding info. */
3680 set_value_enclosing_type (value, enc_type);
3681 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3682
3683 /* We may be pointing to an object of some derived type. */
3684 return value_full_object (value, NULL, 0, 0, 0);
3685 }
3686
3687 struct value *
3688 coerce_ref (struct value *arg)
3689 {
3690 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3691 struct value *retval;
3692 struct type *enc_type;
3693
3694 retval = coerce_ref_if_computed (arg);
3695 if (retval)
3696 return retval;
3697
3698 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3699 return arg;
3700
3701 enc_type = check_typedef (value_enclosing_type (arg));
3702 enc_type = TYPE_TARGET_TYPE (enc_type);
3703
3704 retval = value_at_lazy (enc_type,
3705 unpack_pointer (value_type (arg),
3706 value_contents (arg)));
3707 enc_type = value_type (retval);
3708 return readjust_indirect_value_type (retval, enc_type,
3709 value_type_arg_tmp, arg);
3710 }
3711
3712 struct value *
3713 coerce_array (struct value *arg)
3714 {
3715 struct type *type;
3716
3717 arg = coerce_ref (arg);
3718 type = check_typedef (value_type (arg));
3719
3720 switch (TYPE_CODE (type))
3721 {
3722 case TYPE_CODE_ARRAY:
3723 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3724 arg = value_coerce_array (arg);
3725 break;
3726 case TYPE_CODE_FUNC:
3727 arg = value_coerce_function (arg);
3728 break;
3729 }
3730 return arg;
3731 }
3732 \f
3733
3734 /* Return the return value convention that will be used for the
3735 specified type. */
3736
3737 enum return_value_convention
3738 struct_return_convention (struct gdbarch *gdbarch,
3739 struct value *function, struct type *value_type)
3740 {
3741 enum type_code code = TYPE_CODE (value_type);
3742
3743 if (code == TYPE_CODE_ERROR)
3744 error (_("Function return type unknown."));
3745
3746 /* Probe the architecture for the return-value convention. */
3747 return gdbarch_return_value (gdbarch, function, value_type,
3748 NULL, NULL, NULL);
3749 }
3750
3751 /* Return true if the function returning the specified type is using
3752 the convention of returning structures in memory (passing in the
3753 address as a hidden first parameter). */
3754
3755 int
3756 using_struct_return (struct gdbarch *gdbarch,
3757 struct value *function, struct type *value_type)
3758 {
3759 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3760 /* A void return value is never in memory. See also corresponding
3761 code in "print_return_value". */
3762 return 0;
3763
3764 return (struct_return_convention (gdbarch, function, value_type)
3765 != RETURN_VALUE_REGISTER_CONVENTION);
3766 }
3767
3768 /* Set the initialized field in a value struct. */
3769
3770 void
3771 set_value_initialized (struct value *val, int status)
3772 {
3773 val->initialized = status;
3774 }
3775
3776 /* Return the initialized field in a value struct. */
3777
3778 int
3779 value_initialized (struct value *val)
3780 {
3781 return val->initialized;
3782 }
3783
3784 /* Load the actual content of a lazy value. Fetch the data from the
3785 user's process and clear the lazy flag to indicate that the data in
3786 the buffer is valid.
3787
3788 If the value is zero-length, we avoid calling read_memory, which
3789 would abort. We mark the value as fetched anyway -- all 0 bytes of
3790 it. */
3791
3792 void
3793 value_fetch_lazy (struct value *val)
3794 {
3795 gdb_assert (value_lazy (val));
3796 allocate_value_contents (val);
3797 /* A value is either lazy, or fully fetched. The
3798 availability/validity is only established as we try to fetch a
3799 value. */
3800 gdb_assert (VEC_empty (range_s, val->optimized_out));
3801 gdb_assert (VEC_empty (range_s, val->unavailable));
3802 if (value_bitsize (val))
3803 {
3804 /* To read a lazy bitfield, read the entire enclosing value. This
3805 prevents reading the same block of (possibly volatile) memory once
3806 per bitfield. It would be even better to read only the containing
3807 word, but we have no way to record that just specific bits of a
3808 value have been fetched. */
3809 struct type *type = check_typedef (value_type (val));
3810 struct value *parent = value_parent (val);
3811
3812 if (value_lazy (parent))
3813 value_fetch_lazy (parent);
3814
3815 unpack_value_bitfield (val,
3816 value_bitpos (val), value_bitsize (val),
3817 value_contents_for_printing (parent),
3818 value_offset (val), parent);
3819 }
3820 else if (VALUE_LVAL (val) == lval_memory)
3821 {
3822 CORE_ADDR addr = value_address (val);
3823 struct type *type = check_typedef (value_enclosing_type (val));
3824
3825 if (TYPE_LENGTH (type))
3826 read_value_memory (val, 0, value_stack (val),
3827 addr, value_contents_all_raw (val),
3828 TYPE_LENGTH (type));
3829 }
3830 else if (VALUE_LVAL (val) == lval_register)
3831 {
3832 struct frame_info *frame;
3833 int regnum;
3834 struct type *type = check_typedef (value_type (val));
3835 struct value *new_val = val, *mark = value_mark ();
3836
3837 /* Offsets are not supported here; lazy register values must
3838 refer to the entire register. */
3839 gdb_assert (value_offset (val) == 0);
3840
3841 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3842 {
3843 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3844
3845 frame = frame_find_by_id (frame_id);
3846 regnum = VALUE_REGNUM (new_val);
3847
3848 gdb_assert (frame != NULL);
3849
3850 /* Convertible register routines are used for multi-register
3851 values and for interpretation in different types
3852 (e.g. float or int from a double register). Lazy
3853 register values should have the register's natural type,
3854 so they do not apply. */
3855 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3856 regnum, type));
3857
3858 new_val = get_frame_register_value (frame, regnum);
3859
3860 /* If we get another lazy lval_register value, it means the
3861 register is found by reading it from the next frame.
3862 get_frame_register_value should never return a value with
3863 the frame id pointing to FRAME. If it does, it means we
3864 either have two consecutive frames with the same frame id
3865 in the frame chain, or some code is trying to unwind
3866 behind get_prev_frame's back (e.g., a frame unwind
3867 sniffer trying to unwind), bypassing its validations. In
3868 any case, it should always be an internal error to end up
3869 in this situation. */
3870 if (VALUE_LVAL (new_val) == lval_register
3871 && value_lazy (new_val)
3872 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3873 internal_error (__FILE__, __LINE__,
3874 _("infinite loop while fetching a register"));
3875 }
3876
3877 /* If it's still lazy (for instance, a saved register on the
3878 stack), fetch it. */
3879 if (value_lazy (new_val))
3880 value_fetch_lazy (new_val);
3881
3882 /* Copy the contents and the unavailability/optimized-out
3883 meta-data from NEW_VAL to VAL. */
3884 set_value_lazy (val, 0);
3885 value_contents_copy (val, value_embedded_offset (val),
3886 new_val, value_embedded_offset (new_val),
3887 TYPE_LENGTH (type));
3888
3889 if (frame_debug)
3890 {
3891 struct gdbarch *gdbarch;
3892 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3893 regnum = VALUE_REGNUM (val);
3894 gdbarch = get_frame_arch (frame);
3895
3896 fprintf_unfiltered (gdb_stdlog,
3897 "{ value_fetch_lazy "
3898 "(frame=%d,regnum=%d(%s),...) ",
3899 frame_relative_level (frame), regnum,
3900 user_reg_map_regnum_to_name (gdbarch, regnum));
3901
3902 fprintf_unfiltered (gdb_stdlog, "->");
3903 if (value_optimized_out (new_val))
3904 {
3905 fprintf_unfiltered (gdb_stdlog, " ");
3906 val_print_optimized_out (new_val, gdb_stdlog);
3907 }
3908 else
3909 {
3910 int i;
3911 const gdb_byte *buf = value_contents (new_val);
3912
3913 if (VALUE_LVAL (new_val) == lval_register)
3914 fprintf_unfiltered (gdb_stdlog, " register=%d",
3915 VALUE_REGNUM (new_val));
3916 else if (VALUE_LVAL (new_val) == lval_memory)
3917 fprintf_unfiltered (gdb_stdlog, " address=%s",
3918 paddress (gdbarch,
3919 value_address (new_val)));
3920 else
3921 fprintf_unfiltered (gdb_stdlog, " computed");
3922
3923 fprintf_unfiltered (gdb_stdlog, " bytes=");
3924 fprintf_unfiltered (gdb_stdlog, "[");
3925 for (i = 0; i < register_size (gdbarch, regnum); i++)
3926 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3927 fprintf_unfiltered (gdb_stdlog, "]");
3928 }
3929
3930 fprintf_unfiltered (gdb_stdlog, " }\n");
3931 }
3932
3933 /* Dispose of the intermediate values. This prevents
3934 watchpoints from trying to watch the saved frame pointer. */
3935 value_free_to_mark (mark);
3936 }
3937 else if (VALUE_LVAL (val) == lval_computed
3938 && value_computed_funcs (val)->read != NULL)
3939 value_computed_funcs (val)->read (val);
3940 else
3941 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3942
3943 set_value_lazy (val, 0);
3944 }
3945
3946 /* Implementation of the convenience function $_isvoid. */
3947
3948 static struct value *
3949 isvoid_internal_fn (struct gdbarch *gdbarch,
3950 const struct language_defn *language,
3951 void *cookie, int argc, struct value **argv)
3952 {
3953 int ret;
3954
3955 if (argc != 1)
3956 error (_("You must provide one argument for $_isvoid."));
3957
3958 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3959
3960 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3961 }
3962
3963 void
3964 _initialize_values (void)
3965 {
3966 add_cmd ("convenience", no_class, show_convenience, _("\
3967 Debugger convenience (\"$foo\") variables and functions.\n\
3968 Convenience variables are created when you assign them values;\n\
3969 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3970 \n\
3971 A few convenience variables are given values automatically:\n\
3972 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3973 \"$__\" holds the contents of the last address examined with \"x\"."
3974 #ifdef HAVE_PYTHON
3975 "\n\n\
3976 Convenience functions are defined via the Python API."
3977 #endif
3978 ), &showlist);
3979 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3980
3981 add_cmd ("values", no_set_class, show_values, _("\
3982 Elements of value history around item number IDX (or last ten)."),
3983 &showlist);
3984
3985 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3986 Initialize a convenience variable if necessary.\n\
3987 init-if-undefined VARIABLE = EXPRESSION\n\
3988 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3989 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3990 VARIABLE is already initialized."));
3991
3992 add_prefix_cmd ("function", no_class, function_command, _("\
3993 Placeholder command for showing help on convenience functions."),
3994 &functionlist, "function ", 0, &cmdlist);
3995
3996 add_internal_function ("_isvoid", _("\
3997 Check whether an expression is void.\n\
3998 Usage: $_isvoid (expression)\n\
3999 Return 1 if the expression is void, zero otherwise."),
4000 isvoid_internal_fn, NULL);
4001 }