]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
* block.h (struct block): Remove "gcc_compile_flag" member.
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37
38 /* Prototypes for exported functions. */
39
40 void _initialize_values (void);
41
42 struct value
43 {
44 /* Type of value; either not an lval, or one of the various
45 different possible kinds of lval. */
46 enum lval_type lval;
47
48 /* Is it modifiable? Only relevant if lval != not_lval. */
49 int modifiable;
50
51 /* Location of value (if lval). */
52 union
53 {
54 /* If lval == lval_memory, this is the address in the inferior.
55 If lval == lval_register, this is the byte offset into the
56 registers structure. */
57 CORE_ADDR address;
58
59 /* Pointer to internal variable. */
60 struct internalvar *internalvar;
61 } location;
62
63 /* Describes offset of a value within lval of a structure in bytes.
64 If lval == lval_memory, this is an offset to the address. If
65 lval == lval_register, this is a further offset from
66 location.address within the registers structure. Note also the
67 member embedded_offset below. */
68 int offset;
69
70 /* Only used for bitfields; number of bits contained in them. */
71 int bitsize;
72
73 /* Only used for bitfields; position of start of field. For
74 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
75 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
76 int bitpos;
77
78 /* Frame register value is relative to. This will be described in
79 the lval enum above as "lval_register". */
80 struct frame_id frame_id;
81
82 /* Type of the value. */
83 struct type *type;
84
85 /* If a value represents a C++ object, then the `type' field gives
86 the object's compile-time type. If the object actually belongs
87 to some class derived from `type', perhaps with other base
88 classes and additional members, then `type' is just a subobject
89 of the real thing, and the full object is probably larger than
90 `type' would suggest.
91
92 If `type' is a dynamic class (i.e. one with a vtable), then GDB
93 can actually determine the object's run-time type by looking at
94 the run-time type information in the vtable. When this
95 information is available, we may elect to read in the entire
96 object, for several reasons:
97
98 - When printing the value, the user would probably rather see the
99 full object, not just the limited portion apparent from the
100 compile-time type.
101
102 - If `type' has virtual base classes, then even printing `type'
103 alone may require reaching outside the `type' portion of the
104 object to wherever the virtual base class has been stored.
105
106 When we store the entire object, `enclosing_type' is the run-time
107 type -- the complete object -- and `embedded_offset' is the
108 offset of `type' within that larger type, in bytes. The
109 value_contents() macro takes `embedded_offset' into account, so
110 most GDB code continues to see the `type' portion of the value,
111 just as the inferior would.
112
113 If `type' is a pointer to an object, then `enclosing_type' is a
114 pointer to the object's run-time type, and `pointed_to_offset' is
115 the offset in bytes from the full object to the pointed-to object
116 -- that is, the value `embedded_offset' would have if we followed
117 the pointer and fetched the complete object. (I don't really see
118 the point. Why not just determine the run-time type when you
119 indirect, and avoid the special case? The contents don't matter
120 until you indirect anyway.)
121
122 If we're not doing anything fancy, `enclosing_type' is equal to
123 `type', and `embedded_offset' is zero, so everything works
124 normally. */
125 struct type *enclosing_type;
126 int embedded_offset;
127 int pointed_to_offset;
128
129 /* Values are stored in a chain, so that they can be deleted easily
130 over calls to the inferior. Values assigned to internal
131 variables or put into the value history are taken off this
132 list. */
133 struct value *next;
134
135 /* Register number if the value is from a register. */
136 short regnum;
137
138 /* If zero, contents of this value are in the contents field. If
139 nonzero, contents are in inferior memory at address in the
140 location.address field plus the offset field (and the lval field
141 should be lval_memory).
142
143 WARNING: This field is used by the code which handles watchpoints
144 (see breakpoint.c) to decide whether a particular value can be
145 watched by hardware watchpoints. If the lazy flag is set for
146 some member of a value chain, it is assumed that this member of
147 the chain doesn't need to be watched as part of watching the
148 value itself. This is how GDB avoids watching the entire struct
149 or array when the user wants to watch a single struct member or
150 array element. If you ever change the way lazy flag is set and
151 reset, be sure to consider this use as well! */
152 char lazy;
153
154 /* If nonzero, this is the value of a variable which does not
155 actually exist in the program. */
156 char optimized_out;
157
158 /* If value is a variable, is it initialized or not. */
159 int initialized;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 gdb_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176 };
177
178 /* Prototypes for local functions. */
179
180 static void show_values (char *, int);
181
182 static void show_convenience (char *, int);
183
184
185 /* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191 #define VALUE_HISTORY_CHUNK 60
192
193 struct value_history_chunk
194 {
195 struct value_history_chunk *next;
196 struct value *values[VALUE_HISTORY_CHUNK];
197 };
198
199 /* Chain of chunks now in use. */
200
201 static struct value_history_chunk *value_history_chain;
202
203 static int value_history_count; /* Abs number of last entry stored */
204 \f
205 /* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
209 static struct value *all_values;
210
211 /* Allocate a value that has the correct length for type TYPE. */
212
213 struct value *
214 allocate_value (struct type *type)
215 {
216 struct value *val;
217 struct type *atype = check_typedef (type);
218
219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220 val->next = all_values;
221 all_values = val;
222 val->type = type;
223 val->enclosing_type = type;
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
226 VALUE_FRAME_ID (val) = null_frame_id;
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
230 VALUE_REGNUM (val) = -1;
231 val->lazy = 0;
232 val->optimized_out = 0;
233 val->embedded_offset = 0;
234 val->pointed_to_offset = 0;
235 val->modifiable = 1;
236 val->initialized = 1; /* Default to initialized. */
237 return val;
238 }
239
240 /* Allocate a value that has the correct length
241 for COUNT repetitions type TYPE. */
242
243 struct value *
244 allocate_repeat_value (struct type *type, int count)
245 {
246 int low_bound = current_language->string_lower_bound; /* ??? */
247 /* FIXME-type-allocation: need a way to free this type when we are
248 done with it. */
249 struct type *range_type
250 = create_range_type ((struct type *) NULL, builtin_type_int,
251 low_bound, count + low_bound - 1);
252 /* FIXME-type-allocation: need a way to free this type when we are
253 done with it. */
254 return allocate_value (create_array_type ((struct type *) NULL,
255 type, range_type));
256 }
257
258 /* Accessor methods. */
259
260 struct value *
261 value_next (struct value *value)
262 {
263 return value->next;
264 }
265
266 struct type *
267 value_type (struct value *value)
268 {
269 return value->type;
270 }
271 void
272 deprecated_set_value_type (struct value *value, struct type *type)
273 {
274 value->type = type;
275 }
276
277 int
278 value_offset (struct value *value)
279 {
280 return value->offset;
281 }
282 void
283 set_value_offset (struct value *value, int offset)
284 {
285 value->offset = offset;
286 }
287
288 int
289 value_bitpos (struct value *value)
290 {
291 return value->bitpos;
292 }
293 void
294 set_value_bitpos (struct value *value, int bit)
295 {
296 value->bitpos = bit;
297 }
298
299 int
300 value_bitsize (struct value *value)
301 {
302 return value->bitsize;
303 }
304 void
305 set_value_bitsize (struct value *value, int bit)
306 {
307 value->bitsize = bit;
308 }
309
310 gdb_byte *
311 value_contents_raw (struct value *value)
312 {
313 return value->aligner.contents + value->embedded_offset;
314 }
315
316 gdb_byte *
317 value_contents_all_raw (struct value *value)
318 {
319 return value->aligner.contents;
320 }
321
322 struct type *
323 value_enclosing_type (struct value *value)
324 {
325 return value->enclosing_type;
326 }
327
328 const gdb_byte *
329 value_contents_all (struct value *value)
330 {
331 if (value->lazy)
332 value_fetch_lazy (value);
333 return value->aligner.contents;
334 }
335
336 int
337 value_lazy (struct value *value)
338 {
339 return value->lazy;
340 }
341
342 void
343 set_value_lazy (struct value *value, int val)
344 {
345 value->lazy = val;
346 }
347
348 const gdb_byte *
349 value_contents (struct value *value)
350 {
351 return value_contents_writeable (value);
352 }
353
354 gdb_byte *
355 value_contents_writeable (struct value *value)
356 {
357 if (value->lazy)
358 value_fetch_lazy (value);
359 return value_contents_raw (value);
360 }
361
362 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
363 this function is different from value_equal; in C the operator ==
364 can return 0 even if the two values being compared are equal. */
365
366 int
367 value_contents_equal (struct value *val1, struct value *val2)
368 {
369 struct type *type1;
370 struct type *type2;
371 int len;
372
373 type1 = check_typedef (value_type (val1));
374 type2 = check_typedef (value_type (val2));
375 len = TYPE_LENGTH (type1);
376 if (len != TYPE_LENGTH (type2))
377 return 0;
378
379 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
380 }
381
382 int
383 value_optimized_out (struct value *value)
384 {
385 return value->optimized_out;
386 }
387
388 void
389 set_value_optimized_out (struct value *value, int val)
390 {
391 value->optimized_out = val;
392 }
393
394 int
395 value_embedded_offset (struct value *value)
396 {
397 return value->embedded_offset;
398 }
399
400 void
401 set_value_embedded_offset (struct value *value, int val)
402 {
403 value->embedded_offset = val;
404 }
405
406 int
407 value_pointed_to_offset (struct value *value)
408 {
409 return value->pointed_to_offset;
410 }
411
412 void
413 set_value_pointed_to_offset (struct value *value, int val)
414 {
415 value->pointed_to_offset = val;
416 }
417
418 enum lval_type *
419 deprecated_value_lval_hack (struct value *value)
420 {
421 return &value->lval;
422 }
423
424 CORE_ADDR *
425 deprecated_value_address_hack (struct value *value)
426 {
427 return &value->location.address;
428 }
429
430 struct internalvar **
431 deprecated_value_internalvar_hack (struct value *value)
432 {
433 return &value->location.internalvar;
434 }
435
436 struct frame_id *
437 deprecated_value_frame_id_hack (struct value *value)
438 {
439 return &value->frame_id;
440 }
441
442 short *
443 deprecated_value_regnum_hack (struct value *value)
444 {
445 return &value->regnum;
446 }
447
448 int
449 deprecated_value_modifiable (struct value *value)
450 {
451 return value->modifiable;
452 }
453 void
454 deprecated_set_value_modifiable (struct value *value, int modifiable)
455 {
456 value->modifiable = modifiable;
457 }
458 \f
459 /* Return a mark in the value chain. All values allocated after the
460 mark is obtained (except for those released) are subject to being freed
461 if a subsequent value_free_to_mark is passed the mark. */
462 struct value *
463 value_mark (void)
464 {
465 return all_values;
466 }
467
468 /* Free all values allocated since MARK was obtained by value_mark
469 (except for those released). */
470 void
471 value_free_to_mark (struct value *mark)
472 {
473 struct value *val;
474 struct value *next;
475
476 for (val = all_values; val && val != mark; val = next)
477 {
478 next = val->next;
479 value_free (val);
480 }
481 all_values = val;
482 }
483
484 /* Free all the values that have been allocated (except for those released).
485 Called after each command, successful or not. */
486
487 void
488 free_all_values (void)
489 {
490 struct value *val;
491 struct value *next;
492
493 for (val = all_values; val; val = next)
494 {
495 next = val->next;
496 value_free (val);
497 }
498
499 all_values = 0;
500 }
501
502 /* Remove VAL from the chain all_values
503 so it will not be freed automatically. */
504
505 void
506 release_value (struct value *val)
507 {
508 struct value *v;
509
510 if (all_values == val)
511 {
512 all_values = val->next;
513 return;
514 }
515
516 for (v = all_values; v; v = v->next)
517 {
518 if (v->next == val)
519 {
520 v->next = val->next;
521 break;
522 }
523 }
524 }
525
526 /* Release all values up to mark */
527 struct value *
528 value_release_to_mark (struct value *mark)
529 {
530 struct value *val;
531 struct value *next;
532
533 for (val = next = all_values; next; next = next->next)
534 if (next->next == mark)
535 {
536 all_values = next->next;
537 next->next = NULL;
538 return val;
539 }
540 all_values = 0;
541 return val;
542 }
543
544 /* Return a copy of the value ARG.
545 It contains the same contents, for same memory address,
546 but it's a different block of storage. */
547
548 struct value *
549 value_copy (struct value *arg)
550 {
551 struct type *encl_type = value_enclosing_type (arg);
552 struct value *val = allocate_value (encl_type);
553 val->type = arg->type;
554 VALUE_LVAL (val) = VALUE_LVAL (arg);
555 val->location = arg->location;
556 val->offset = arg->offset;
557 val->bitpos = arg->bitpos;
558 val->bitsize = arg->bitsize;
559 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
560 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
561 val->lazy = arg->lazy;
562 val->optimized_out = arg->optimized_out;
563 val->embedded_offset = value_embedded_offset (arg);
564 val->pointed_to_offset = arg->pointed_to_offset;
565 val->modifiable = arg->modifiable;
566 if (!value_lazy (val))
567 {
568 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
569 TYPE_LENGTH (value_enclosing_type (arg)));
570
571 }
572 return val;
573 }
574 \f
575 /* Access to the value history. */
576
577 /* Record a new value in the value history.
578 Returns the absolute history index of the entry.
579 Result of -1 indicates the value was not saved; otherwise it is the
580 value history index of this new item. */
581
582 int
583 record_latest_value (struct value *val)
584 {
585 int i;
586
587 /* We don't want this value to have anything to do with the inferior anymore.
588 In particular, "set $1 = 50" should not affect the variable from which
589 the value was taken, and fast watchpoints should be able to assume that
590 a value on the value history never changes. */
591 if (value_lazy (val))
592 value_fetch_lazy (val);
593 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
594 from. This is a bit dubious, because then *&$1 does not just return $1
595 but the current contents of that location. c'est la vie... */
596 val->modifiable = 0;
597 release_value (val);
598
599 /* Here we treat value_history_count as origin-zero
600 and applying to the value being stored now. */
601
602 i = value_history_count % VALUE_HISTORY_CHUNK;
603 if (i == 0)
604 {
605 struct value_history_chunk *new
606 = (struct value_history_chunk *)
607 xmalloc (sizeof (struct value_history_chunk));
608 memset (new->values, 0, sizeof new->values);
609 new->next = value_history_chain;
610 value_history_chain = new;
611 }
612
613 value_history_chain->values[i] = val;
614
615 /* Now we regard value_history_count as origin-one
616 and applying to the value just stored. */
617
618 return ++value_history_count;
619 }
620
621 /* Return a copy of the value in the history with sequence number NUM. */
622
623 struct value *
624 access_value_history (int num)
625 {
626 struct value_history_chunk *chunk;
627 int i;
628 int absnum = num;
629
630 if (absnum <= 0)
631 absnum += value_history_count;
632
633 if (absnum <= 0)
634 {
635 if (num == 0)
636 error (_("The history is empty."));
637 else if (num == 1)
638 error (_("There is only one value in the history."));
639 else
640 error (_("History does not go back to $$%d."), -num);
641 }
642 if (absnum > value_history_count)
643 error (_("History has not yet reached $%d."), absnum);
644
645 absnum--;
646
647 /* Now absnum is always absolute and origin zero. */
648
649 chunk = value_history_chain;
650 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
651 i > 0; i--)
652 chunk = chunk->next;
653
654 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
655 }
656
657 static void
658 show_values (char *num_exp, int from_tty)
659 {
660 int i;
661 struct value *val;
662 static int num = 1;
663
664 if (num_exp)
665 {
666 /* "info history +" should print from the stored position.
667 "info history <exp>" should print around value number <exp>. */
668 if (num_exp[0] != '+' || num_exp[1] != '\0')
669 num = parse_and_eval_long (num_exp) - 5;
670 }
671 else
672 {
673 /* "info history" means print the last 10 values. */
674 num = value_history_count - 9;
675 }
676
677 if (num <= 0)
678 num = 1;
679
680 for (i = num; i < num + 10 && i <= value_history_count; i++)
681 {
682 val = access_value_history (i);
683 printf_filtered (("$%d = "), i);
684 value_print (val, gdb_stdout, 0, Val_pretty_default);
685 printf_filtered (("\n"));
686 }
687
688 /* The next "info history +" should start after what we just printed. */
689 num += 10;
690
691 /* Hitting just return after this command should do the same thing as
692 "info history +". If num_exp is null, this is unnecessary, since
693 "info history +" is not useful after "info history". */
694 if (from_tty && num_exp)
695 {
696 num_exp[0] = '+';
697 num_exp[1] = '\0';
698 }
699 }
700 \f
701 /* Internal variables. These are variables within the debugger
702 that hold values assigned by debugger commands.
703 The user refers to them with a '$' prefix
704 that does not appear in the variable names stored internally. */
705
706 static struct internalvar *internalvars;
707
708 /* If the variable does not already exist create it and give it the value given.
709 If no value is given then the default is zero. */
710 static void
711 init_if_undefined_command (char* args, int from_tty)
712 {
713 struct internalvar* intvar;
714
715 /* Parse the expression - this is taken from set_command(). */
716 struct expression *expr = parse_expression (args);
717 register struct cleanup *old_chain =
718 make_cleanup (free_current_contents, &expr);
719
720 /* Validate the expression.
721 Was the expression an assignment?
722 Or even an expression at all? */
723 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
724 error (_("Init-if-undefined requires an assignment expression."));
725
726 /* Extract the variable from the parsed expression.
727 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
728 if (expr->elts[1].opcode != OP_INTERNALVAR)
729 error (_("The first parameter to init-if-undefined should be a GDB variable."));
730 intvar = expr->elts[2].internalvar;
731
732 /* Only evaluate the expression if the lvalue is void.
733 This may still fail if the expresssion is invalid. */
734 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
735 evaluate_expression (expr);
736
737 do_cleanups (old_chain);
738 }
739
740
741 /* Look up an internal variable with name NAME. NAME should not
742 normally include a dollar sign.
743
744 If the specified internal variable does not exist,
745 the return value is NULL. */
746
747 struct internalvar *
748 lookup_only_internalvar (char *name)
749 {
750 struct internalvar *var;
751
752 for (var = internalvars; var; var = var->next)
753 if (strcmp (var->name, name) == 0)
754 return var;
755
756 return NULL;
757 }
758
759
760 /* Create an internal variable with name NAME and with a void value.
761 NAME should not normally include a dollar sign. */
762
763 struct internalvar *
764 create_internalvar (char *name)
765 {
766 struct internalvar *var;
767 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
768 var->name = concat (name, (char *)NULL);
769 var->value = allocate_value (builtin_type_void);
770 var->endian = gdbarch_byte_order (current_gdbarch);
771 release_value (var->value);
772 var->next = internalvars;
773 internalvars = var;
774 return var;
775 }
776
777
778 /* Look up an internal variable with name NAME. NAME should not
779 normally include a dollar sign.
780
781 If the specified internal variable does not exist,
782 one is created, with a void value. */
783
784 struct internalvar *
785 lookup_internalvar (char *name)
786 {
787 struct internalvar *var;
788
789 var = lookup_only_internalvar (name);
790 if (var)
791 return var;
792
793 return create_internalvar (name);
794 }
795
796 struct value *
797 value_of_internalvar (struct internalvar *var)
798 {
799 struct value *val;
800 int i, j;
801 gdb_byte temp;
802
803 val = value_copy (var->value);
804 if (value_lazy (val))
805 value_fetch_lazy (val);
806 VALUE_LVAL (val) = lval_internalvar;
807 VALUE_INTERNALVAR (val) = var;
808
809 /* Values are always stored in the target's byte order. When connected to a
810 target this will most likely always be correct, so there's normally no
811 need to worry about it.
812
813 However, internal variables can be set up before the target endian is
814 known and so may become out of date. Fix it up before anybody sees.
815
816 Internal variables usually hold simple scalar values, and we can
817 correct those. More complex values (e.g. structures and floating
818 point types) are left alone, because they would be too complicated
819 to correct. */
820
821 if (var->endian != gdbarch_byte_order (current_gdbarch))
822 {
823 gdb_byte *array = value_contents_raw (val);
824 struct type *type = check_typedef (value_enclosing_type (val));
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_INT:
828 case TYPE_CODE_PTR:
829 /* Reverse the bytes. */
830 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
831 {
832 temp = array[j];
833 array[j] = array[i];
834 array[i] = temp;
835 }
836 break;
837 }
838 }
839
840 return val;
841 }
842
843 void
844 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
845 int bitsize, struct value *newval)
846 {
847 gdb_byte *addr = value_contents_writeable (var->value) + offset;
848
849 if (bitsize)
850 modify_field (addr, value_as_long (newval),
851 bitpos, bitsize);
852 else
853 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
854 }
855
856 void
857 set_internalvar (struct internalvar *var, struct value *val)
858 {
859 struct value *newval;
860
861 newval = value_copy (val);
862 newval->modifiable = 1;
863
864 /* Force the value to be fetched from the target now, to avoid problems
865 later when this internalvar is referenced and the target is gone or
866 has changed. */
867 if (value_lazy (newval))
868 value_fetch_lazy (newval);
869
870 /* Begin code which must not call error(). If var->value points to
871 something free'd, an error() obviously leaves a dangling pointer.
872 But we also get a danling pointer if var->value points to
873 something in the value chain (i.e., before release_value is
874 called), because after the error free_all_values will get called before
875 long. */
876 xfree (var->value);
877 var->value = newval;
878 var->endian = gdbarch_byte_order (current_gdbarch);
879 release_value (newval);
880 /* End code which must not call error(). */
881 }
882
883 char *
884 internalvar_name (struct internalvar *var)
885 {
886 return var->name;
887 }
888
889 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
890 prevent cycles / duplicates. */
891
892 static void
893 preserve_one_value (struct value *value, struct objfile *objfile,
894 htab_t copied_types)
895 {
896 if (TYPE_OBJFILE (value->type) == objfile)
897 value->type = copy_type_recursive (objfile, value->type, copied_types);
898
899 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
900 value->enclosing_type = copy_type_recursive (objfile,
901 value->enclosing_type,
902 copied_types);
903 }
904
905 /* Update the internal variables and value history when OBJFILE is
906 discarded; we must copy the types out of the objfile. New global types
907 will be created for every convenience variable which currently points to
908 this objfile's types, and the convenience variables will be adjusted to
909 use the new global types. */
910
911 void
912 preserve_values (struct objfile *objfile)
913 {
914 htab_t copied_types;
915 struct value_history_chunk *cur;
916 struct internalvar *var;
917 int i;
918
919 /* Create the hash table. We allocate on the objfile's obstack, since
920 it is soon to be deleted. */
921 copied_types = create_copied_types_hash (objfile);
922
923 for (cur = value_history_chain; cur; cur = cur->next)
924 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
925 if (cur->values[i])
926 preserve_one_value (cur->values[i], objfile, copied_types);
927
928 for (var = internalvars; var; var = var->next)
929 preserve_one_value (var->value, objfile, copied_types);
930
931 htab_delete (copied_types);
932 }
933
934 static void
935 show_convenience (char *ignore, int from_tty)
936 {
937 struct internalvar *var;
938 int varseen = 0;
939
940 for (var = internalvars; var; var = var->next)
941 {
942 if (!varseen)
943 {
944 varseen = 1;
945 }
946 printf_filtered (("$%s = "), var->name);
947 value_print (value_of_internalvar (var), gdb_stdout,
948 0, Val_pretty_default);
949 printf_filtered (("\n"));
950 }
951 if (!varseen)
952 printf_unfiltered (_("\
953 No debugger convenience variables now defined.\n\
954 Convenience variables have names starting with \"$\";\n\
955 use \"set\" as in \"set $foo = 5\" to define them.\n"));
956 }
957 \f
958 /* Extract a value as a C number (either long or double).
959 Knows how to convert fixed values to double, or
960 floating values to long.
961 Does not deallocate the value. */
962
963 LONGEST
964 value_as_long (struct value *val)
965 {
966 /* This coerces arrays and functions, which is necessary (e.g.
967 in disassemble_command). It also dereferences references, which
968 I suspect is the most logical thing to do. */
969 val = coerce_array (val);
970 return unpack_long (value_type (val), value_contents (val));
971 }
972
973 DOUBLEST
974 value_as_double (struct value *val)
975 {
976 DOUBLEST foo;
977 int inv;
978
979 foo = unpack_double (value_type (val), value_contents (val), &inv);
980 if (inv)
981 error (_("Invalid floating value found in program."));
982 return foo;
983 }
984 /* Extract a value as a C pointer. Does not deallocate the value.
985 Note that val's type may not actually be a pointer; value_as_long
986 handles all the cases. */
987 CORE_ADDR
988 value_as_address (struct value *val)
989 {
990 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
991 whether we want this to be true eventually. */
992 #if 0
993 /* gdbarch_addr_bits_remove is wrong if we are being called for a
994 non-address (e.g. argument to "signal", "info break", etc.), or
995 for pointers to char, in which the low bits *are* significant. */
996 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
997 #else
998
999 /* There are several targets (IA-64, PowerPC, and others) which
1000 don't represent pointers to functions as simply the address of
1001 the function's entry point. For example, on the IA-64, a
1002 function pointer points to a two-word descriptor, generated by
1003 the linker, which contains the function's entry point, and the
1004 value the IA-64 "global pointer" register should have --- to
1005 support position-independent code. The linker generates
1006 descriptors only for those functions whose addresses are taken.
1007
1008 On such targets, it's difficult for GDB to convert an arbitrary
1009 function address into a function pointer; it has to either find
1010 an existing descriptor for that function, or call malloc and
1011 build its own. On some targets, it is impossible for GDB to
1012 build a descriptor at all: the descriptor must contain a jump
1013 instruction; data memory cannot be executed; and code memory
1014 cannot be modified.
1015
1016 Upon entry to this function, if VAL is a value of type `function'
1017 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1018 VALUE_ADDRESS (val) is the address of the function. This is what
1019 you'll get if you evaluate an expression like `main'. The call
1020 to COERCE_ARRAY below actually does all the usual unary
1021 conversions, which includes converting values of type `function'
1022 to `pointer to function'. This is the challenging conversion
1023 discussed above. Then, `unpack_long' will convert that pointer
1024 back into an address.
1025
1026 So, suppose the user types `disassemble foo' on an architecture
1027 with a strange function pointer representation, on which GDB
1028 cannot build its own descriptors, and suppose further that `foo'
1029 has no linker-built descriptor. The address->pointer conversion
1030 will signal an error and prevent the command from running, even
1031 though the next step would have been to convert the pointer
1032 directly back into the same address.
1033
1034 The following shortcut avoids this whole mess. If VAL is a
1035 function, just return its address directly. */
1036 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1037 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1038 return VALUE_ADDRESS (val);
1039
1040 val = coerce_array (val);
1041
1042 /* Some architectures (e.g. Harvard), map instruction and data
1043 addresses onto a single large unified address space. For
1044 instance: An architecture may consider a large integer in the
1045 range 0x10000000 .. 0x1000ffff to already represent a data
1046 addresses (hence not need a pointer to address conversion) while
1047 a small integer would still need to be converted integer to
1048 pointer to address. Just assume such architectures handle all
1049 integer conversions in a single function. */
1050
1051 /* JimB writes:
1052
1053 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1054 must admonish GDB hackers to make sure its behavior matches the
1055 compiler's, whenever possible.
1056
1057 In general, I think GDB should evaluate expressions the same way
1058 the compiler does. When the user copies an expression out of
1059 their source code and hands it to a `print' command, they should
1060 get the same value the compiler would have computed. Any
1061 deviation from this rule can cause major confusion and annoyance,
1062 and needs to be justified carefully. In other words, GDB doesn't
1063 really have the freedom to do these conversions in clever and
1064 useful ways.
1065
1066 AndrewC pointed out that users aren't complaining about how GDB
1067 casts integers to pointers; they are complaining that they can't
1068 take an address from a disassembly listing and give it to `x/i'.
1069 This is certainly important.
1070
1071 Adding an architecture method like integer_to_address() certainly
1072 makes it possible for GDB to "get it right" in all circumstances
1073 --- the target has complete control over how things get done, so
1074 people can Do The Right Thing for their target without breaking
1075 anyone else. The standard doesn't specify how integers get
1076 converted to pointers; usually, the ABI doesn't either, but
1077 ABI-specific code is a more reasonable place to handle it. */
1078
1079 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1080 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1081 && gdbarch_integer_to_address_p (current_gdbarch))
1082 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1083 value_contents (val));
1084
1085 return unpack_long (value_type (val), value_contents (val));
1086 #endif
1087 }
1088 \f
1089 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1090 as a long, or as a double, assuming the raw data is described
1091 by type TYPE. Knows how to convert different sizes of values
1092 and can convert between fixed and floating point. We don't assume
1093 any alignment for the raw data. Return value is in host byte order.
1094
1095 If you want functions and arrays to be coerced to pointers, and
1096 references to be dereferenced, call value_as_long() instead.
1097
1098 C++: It is assumed that the front-end has taken care of
1099 all matters concerning pointers to members. A pointer
1100 to member which reaches here is considered to be equivalent
1101 to an INT (or some size). After all, it is only an offset. */
1102
1103 LONGEST
1104 unpack_long (struct type *type, const gdb_byte *valaddr)
1105 {
1106 enum type_code code = TYPE_CODE (type);
1107 int len = TYPE_LENGTH (type);
1108 int nosign = TYPE_UNSIGNED (type);
1109
1110 switch (code)
1111 {
1112 case TYPE_CODE_TYPEDEF:
1113 return unpack_long (check_typedef (type), valaddr);
1114 case TYPE_CODE_ENUM:
1115 case TYPE_CODE_FLAGS:
1116 case TYPE_CODE_BOOL:
1117 case TYPE_CODE_INT:
1118 case TYPE_CODE_CHAR:
1119 case TYPE_CODE_RANGE:
1120 case TYPE_CODE_MEMBERPTR:
1121 if (nosign)
1122 return extract_unsigned_integer (valaddr, len);
1123 else
1124 return extract_signed_integer (valaddr, len);
1125
1126 case TYPE_CODE_FLT:
1127 return extract_typed_floating (valaddr, type);
1128
1129 case TYPE_CODE_PTR:
1130 case TYPE_CODE_REF:
1131 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1132 whether we want this to be true eventually. */
1133 return extract_typed_address (valaddr, type);
1134
1135 default:
1136 error (_("Value can't be converted to integer."));
1137 }
1138 return 0; /* Placate lint. */
1139 }
1140
1141 /* Return a double value from the specified type and address.
1142 INVP points to an int which is set to 0 for valid value,
1143 1 for invalid value (bad float format). In either case,
1144 the returned double is OK to use. Argument is in target
1145 format, result is in host format. */
1146
1147 DOUBLEST
1148 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1149 {
1150 enum type_code code;
1151 int len;
1152 int nosign;
1153
1154 *invp = 0; /* Assume valid. */
1155 CHECK_TYPEDEF (type);
1156 code = TYPE_CODE (type);
1157 len = TYPE_LENGTH (type);
1158 nosign = TYPE_UNSIGNED (type);
1159 if (code == TYPE_CODE_FLT)
1160 {
1161 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1162 floating-point value was valid (using the macro
1163 INVALID_FLOAT). That test/macro have been removed.
1164
1165 It turns out that only the VAX defined this macro and then
1166 only in a non-portable way. Fixing the portability problem
1167 wouldn't help since the VAX floating-point code is also badly
1168 bit-rotten. The target needs to add definitions for the
1169 methods gdbarch_float_format and gdbarch_double_format - these
1170 exactly describe the target floating-point format. The
1171 problem here is that the corresponding floatformat_vax_f and
1172 floatformat_vax_d values these methods should be set to are
1173 also not defined either. Oops!
1174
1175 Hopefully someone will add both the missing floatformat
1176 definitions and the new cases for floatformat_is_valid (). */
1177
1178 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1179 {
1180 *invp = 1;
1181 return 0.0;
1182 }
1183
1184 return extract_typed_floating (valaddr, type);
1185 }
1186 else if (nosign)
1187 {
1188 /* Unsigned -- be sure we compensate for signed LONGEST. */
1189 return (ULONGEST) unpack_long (type, valaddr);
1190 }
1191 else
1192 {
1193 /* Signed -- we are OK with unpack_long. */
1194 return unpack_long (type, valaddr);
1195 }
1196 }
1197
1198 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1199 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1200 We don't assume any alignment for the raw data. Return value is in
1201 host byte order.
1202
1203 If you want functions and arrays to be coerced to pointers, and
1204 references to be dereferenced, call value_as_address() instead.
1205
1206 C++: It is assumed that the front-end has taken care of
1207 all matters concerning pointers to members. A pointer
1208 to member which reaches here is considered to be equivalent
1209 to an INT (or some size). After all, it is only an offset. */
1210
1211 CORE_ADDR
1212 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1213 {
1214 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1215 whether we want this to be true eventually. */
1216 return unpack_long (type, valaddr);
1217 }
1218
1219 \f
1220 /* Get the value of the FIELDN'th field (which must be static) of
1221 TYPE. Return NULL if the field doesn't exist or has been
1222 optimized out. */
1223
1224 struct value *
1225 value_static_field (struct type *type, int fieldno)
1226 {
1227 struct value *retval;
1228
1229 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1230 {
1231 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1232 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1233 }
1234 else
1235 {
1236 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1237 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1238 if (sym == NULL)
1239 {
1240 /* With some compilers, e.g. HP aCC, static data members are reported
1241 as non-debuggable symbols */
1242 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1243 if (!msym)
1244 return NULL;
1245 else
1246 {
1247 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1248 SYMBOL_VALUE_ADDRESS (msym));
1249 }
1250 }
1251 else
1252 {
1253 /* SYM should never have a SYMBOL_CLASS which will require
1254 read_var_value to use the FRAME parameter. */
1255 if (symbol_read_needs_frame (sym))
1256 warning (_("static field's value depends on the current "
1257 "frame - bad debug info?"));
1258 retval = read_var_value (sym, NULL);
1259 }
1260 if (retval && VALUE_LVAL (retval) == lval_memory)
1261 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1262 VALUE_ADDRESS (retval));
1263 }
1264 return retval;
1265 }
1266
1267 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1268 You have to be careful here, since the size of the data area for the value
1269 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1270 than the old enclosing type, you have to allocate more space for the data.
1271 The return value is a pointer to the new version of this value structure. */
1272
1273 struct value *
1274 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1275 {
1276 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1277 {
1278 val->enclosing_type = new_encl_type;
1279 return val;
1280 }
1281 else
1282 {
1283 struct value *new_val;
1284 struct value *prev;
1285
1286 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1287
1288 new_val->enclosing_type = new_encl_type;
1289
1290 /* We have to make sure this ends up in the same place in the value
1291 chain as the original copy, so it's clean-up behavior is the same.
1292 If the value has been released, this is a waste of time, but there
1293 is no way to tell that in advance, so... */
1294
1295 if (val != all_values)
1296 {
1297 for (prev = all_values; prev != NULL; prev = prev->next)
1298 {
1299 if (prev->next == val)
1300 {
1301 prev->next = new_val;
1302 break;
1303 }
1304 }
1305 }
1306
1307 return new_val;
1308 }
1309 }
1310
1311 /* Given a value ARG1 (offset by OFFSET bytes)
1312 of a struct or union type ARG_TYPE,
1313 extract and return the value of one of its (non-static) fields.
1314 FIELDNO says which field. */
1315
1316 struct value *
1317 value_primitive_field (struct value *arg1, int offset,
1318 int fieldno, struct type *arg_type)
1319 {
1320 struct value *v;
1321 struct type *type;
1322
1323 CHECK_TYPEDEF (arg_type);
1324 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1325
1326 /* Handle packed fields */
1327
1328 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1329 {
1330 v = value_from_longest (type,
1331 unpack_field_as_long (arg_type,
1332 value_contents (arg1)
1333 + offset,
1334 fieldno));
1335 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1336 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1337 v->offset = value_offset (arg1) + offset
1338 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1339 }
1340 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1341 {
1342 /* This field is actually a base subobject, so preserve the
1343 entire object's contents for later references to virtual
1344 bases, etc. */
1345 v = allocate_value (value_enclosing_type (arg1));
1346 v->type = type;
1347 if (value_lazy (arg1))
1348 set_value_lazy (v, 1);
1349 else
1350 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1351 TYPE_LENGTH (value_enclosing_type (arg1)));
1352 v->offset = value_offset (arg1);
1353 v->embedded_offset = (offset + value_embedded_offset (arg1)
1354 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1355 }
1356 else
1357 {
1358 /* Plain old data member */
1359 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1360 v = allocate_value (type);
1361 if (value_lazy (arg1))
1362 set_value_lazy (v, 1);
1363 else
1364 memcpy (value_contents_raw (v),
1365 value_contents_raw (arg1) + offset,
1366 TYPE_LENGTH (type));
1367 v->offset = (value_offset (arg1) + offset
1368 + value_embedded_offset (arg1));
1369 }
1370 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1371 if (VALUE_LVAL (arg1) == lval_internalvar)
1372 VALUE_LVAL (v) = lval_internalvar_component;
1373 v->location = arg1->location;
1374 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1375 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1376 return v;
1377 }
1378
1379 /* Given a value ARG1 of a struct or union type,
1380 extract and return the value of one of its (non-static) fields.
1381 FIELDNO says which field. */
1382
1383 struct value *
1384 value_field (struct value *arg1, int fieldno)
1385 {
1386 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1387 }
1388
1389 /* Return a non-virtual function as a value.
1390 F is the list of member functions which contains the desired method.
1391 J is an index into F which provides the desired method.
1392
1393 We only use the symbol for its address, so be happy with either a
1394 full symbol or a minimal symbol.
1395 */
1396
1397 struct value *
1398 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1399 int offset)
1400 {
1401 struct value *v;
1402 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1403 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1404 struct symbol *sym;
1405 struct minimal_symbol *msym;
1406
1407 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1408 if (sym != NULL)
1409 {
1410 msym = NULL;
1411 }
1412 else
1413 {
1414 gdb_assert (sym == NULL);
1415 msym = lookup_minimal_symbol (physname, NULL, NULL);
1416 if (msym == NULL)
1417 return NULL;
1418 }
1419
1420 v = allocate_value (ftype);
1421 if (sym)
1422 {
1423 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1424 }
1425 else
1426 {
1427 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1428 }
1429
1430 if (arg1p)
1431 {
1432 if (type != value_type (*arg1p))
1433 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1434 value_addr (*arg1p)));
1435
1436 /* Move the `this' pointer according to the offset.
1437 VALUE_OFFSET (*arg1p) += offset;
1438 */
1439 }
1440
1441 return v;
1442 }
1443
1444 \f
1445 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1446 VALADDR.
1447
1448 Extracting bits depends on endianness of the machine. Compute the
1449 number of least significant bits to discard. For big endian machines,
1450 we compute the total number of bits in the anonymous object, subtract
1451 off the bit count from the MSB of the object to the MSB of the
1452 bitfield, then the size of the bitfield, which leaves the LSB discard
1453 count. For little endian machines, the discard count is simply the
1454 number of bits from the LSB of the anonymous object to the LSB of the
1455 bitfield.
1456
1457 If the field is signed, we also do sign extension. */
1458
1459 LONGEST
1460 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1461 {
1462 ULONGEST val;
1463 ULONGEST valmask;
1464 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1465 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1466 int lsbcount;
1467 struct type *field_type;
1468
1469 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1470 field_type = TYPE_FIELD_TYPE (type, fieldno);
1471 CHECK_TYPEDEF (field_type);
1472
1473 /* Extract bits. See comment above. */
1474
1475 if (BITS_BIG_ENDIAN)
1476 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1477 else
1478 lsbcount = (bitpos % 8);
1479 val >>= lsbcount;
1480
1481 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1482 If the field is signed, and is negative, then sign extend. */
1483
1484 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1485 {
1486 valmask = (((ULONGEST) 1) << bitsize) - 1;
1487 val &= valmask;
1488 if (!TYPE_UNSIGNED (field_type))
1489 {
1490 if (val & (valmask ^ (valmask >> 1)))
1491 {
1492 val |= ~valmask;
1493 }
1494 }
1495 }
1496 return (val);
1497 }
1498
1499 /* Modify the value of a bitfield. ADDR points to a block of memory in
1500 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1501 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1502 indicate which bits (in target bit order) comprise the bitfield.
1503 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1504 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1505
1506 void
1507 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1508 {
1509 ULONGEST oword;
1510 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1511
1512 /* If a negative fieldval fits in the field in question, chop
1513 off the sign extension bits. */
1514 if ((~fieldval & ~(mask >> 1)) == 0)
1515 fieldval &= mask;
1516
1517 /* Warn if value is too big to fit in the field in question. */
1518 if (0 != (fieldval & ~mask))
1519 {
1520 /* FIXME: would like to include fieldval in the message, but
1521 we don't have a sprintf_longest. */
1522 warning (_("Value does not fit in %d bits."), bitsize);
1523
1524 /* Truncate it, otherwise adjoining fields may be corrupted. */
1525 fieldval &= mask;
1526 }
1527
1528 oword = extract_unsigned_integer (addr, sizeof oword);
1529
1530 /* Shifting for bit field depends on endianness of the target machine. */
1531 if (BITS_BIG_ENDIAN)
1532 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1533
1534 oword &= ~(mask << bitpos);
1535 oword |= fieldval << bitpos;
1536
1537 store_unsigned_integer (addr, sizeof oword, oword);
1538 }
1539 \f
1540 /* Pack NUM into BUF using a target format of TYPE. */
1541
1542 void
1543 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1544 {
1545 int len;
1546
1547 type = check_typedef (type);
1548 len = TYPE_LENGTH (type);
1549
1550 switch (TYPE_CODE (type))
1551 {
1552 case TYPE_CODE_INT:
1553 case TYPE_CODE_CHAR:
1554 case TYPE_CODE_ENUM:
1555 case TYPE_CODE_FLAGS:
1556 case TYPE_CODE_BOOL:
1557 case TYPE_CODE_RANGE:
1558 case TYPE_CODE_MEMBERPTR:
1559 store_signed_integer (buf, len, num);
1560 break;
1561
1562 case TYPE_CODE_REF:
1563 case TYPE_CODE_PTR:
1564 store_typed_address (buf, type, (CORE_ADDR) num);
1565 break;
1566
1567 default:
1568 error (_("Unexpected type (%d) encountered for integer constant."),
1569 TYPE_CODE (type));
1570 }
1571 }
1572
1573
1574 /* Convert C numbers into newly allocated values. */
1575
1576 struct value *
1577 value_from_longest (struct type *type, LONGEST num)
1578 {
1579 struct value *val = allocate_value (type);
1580
1581 pack_long (value_contents_raw (val), type, num);
1582
1583 return val;
1584 }
1585
1586
1587 /* Create a value representing a pointer of type TYPE to the address
1588 ADDR. */
1589 struct value *
1590 value_from_pointer (struct type *type, CORE_ADDR addr)
1591 {
1592 struct value *val = allocate_value (type);
1593 store_typed_address (value_contents_raw (val), type, addr);
1594 return val;
1595 }
1596
1597
1598 /* Create a value for a string constant to be stored locally
1599 (not in the inferior's memory space, but in GDB memory).
1600 This is analogous to value_from_longest, which also does not
1601 use inferior memory. String shall NOT contain embedded nulls. */
1602
1603 struct value *
1604 value_from_string (char *ptr)
1605 {
1606 struct value *val;
1607 int len = strlen (ptr);
1608 int lowbound = current_language->string_lower_bound;
1609 struct type *string_char_type;
1610 struct type *rangetype;
1611 struct type *stringtype;
1612
1613 rangetype = create_range_type ((struct type *) NULL,
1614 builtin_type_int,
1615 lowbound, len + lowbound - 1);
1616 string_char_type = language_string_char_type (current_language,
1617 current_gdbarch);
1618 stringtype = create_array_type ((struct type *) NULL,
1619 string_char_type,
1620 rangetype);
1621 val = allocate_value (stringtype);
1622 memcpy (value_contents_raw (val), ptr, len);
1623 return val;
1624 }
1625
1626 struct value *
1627 value_from_double (struct type *type, DOUBLEST num)
1628 {
1629 struct value *val = allocate_value (type);
1630 struct type *base_type = check_typedef (type);
1631 enum type_code code = TYPE_CODE (base_type);
1632 int len = TYPE_LENGTH (base_type);
1633
1634 if (code == TYPE_CODE_FLT)
1635 {
1636 store_typed_floating (value_contents_raw (val), base_type, num);
1637 }
1638 else
1639 error (_("Unexpected type encountered for floating constant."));
1640
1641 return val;
1642 }
1643
1644 struct value *
1645 coerce_ref (struct value *arg)
1646 {
1647 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1648 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1649 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1650 unpack_pointer (value_type (arg),
1651 value_contents (arg)));
1652 return arg;
1653 }
1654
1655 struct value *
1656 coerce_array (struct value *arg)
1657 {
1658 arg = coerce_ref (arg);
1659 if (current_language->c_style_arrays
1660 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1661 arg = value_coerce_array (arg);
1662 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1663 arg = value_coerce_function (arg);
1664 return arg;
1665 }
1666
1667 struct value *
1668 coerce_number (struct value *arg)
1669 {
1670 arg = coerce_array (arg);
1671 arg = coerce_enum (arg);
1672 return arg;
1673 }
1674
1675 struct value *
1676 coerce_enum (struct value *arg)
1677 {
1678 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1679 arg = value_cast (builtin_type_unsigned_int, arg);
1680 return arg;
1681 }
1682 \f
1683
1684 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1685 gdbarch_extract_return_value? GCC_P is true if compiled with gcc and TYPE
1686 is the type (which is known to be struct, union or array).
1687
1688 On most machines, the struct convention is used unless we are
1689 using gcc and the type is of a special size. */
1690 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1691 native compiler. GCC 2.3.3 was the last release that did it the
1692 old way. Since gcc2_compiled was not changed, we have no
1693 way to correctly win in all cases, so we just do the right thing
1694 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1695 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1696 would cause more chaos than dealing with some struct returns being
1697 handled wrong. */
1698 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1699 dead. */
1700
1701 int
1702 generic_use_struct_convention (int gcc_p, struct type *value_type)
1703 {
1704 return !(TYPE_LENGTH (value_type) == 1
1705 || TYPE_LENGTH (value_type) == 2
1706 || TYPE_LENGTH (value_type) == 4
1707 || TYPE_LENGTH (value_type) == 8);
1708 }
1709
1710 /* Return true if the function returning the specified type is using
1711 the convention of returning structures in memory (passing in the
1712 address as a hidden first parameter). */
1713
1714 int
1715 using_struct_return (struct type *value_type)
1716 {
1717 enum type_code code = TYPE_CODE (value_type);
1718
1719 if (code == TYPE_CODE_ERROR)
1720 error (_("Function return type unknown."));
1721
1722 if (code == TYPE_CODE_VOID)
1723 /* A void return value is never in memory. See also corresponding
1724 code in "print_return_value". */
1725 return 0;
1726
1727 /* Probe the architecture for the return-value convention. */
1728 return (gdbarch_return_value (current_gdbarch, value_type,
1729 NULL, NULL, NULL)
1730 != RETURN_VALUE_REGISTER_CONVENTION);
1731 }
1732
1733 /* Set the initialized field in a value struct. */
1734
1735 void
1736 set_value_initialized (struct value *val, int status)
1737 {
1738 val->initialized = status;
1739 }
1740
1741 /* Return the initialized field in a value struct. */
1742
1743 int
1744 value_initialized (struct value *val)
1745 {
1746 return val->initialized;
1747 }
1748
1749 void
1750 _initialize_values (void)
1751 {
1752 add_cmd ("convenience", no_class, show_convenience, _("\
1753 Debugger convenience (\"$foo\") variables.\n\
1754 These variables are created when you assign them values;\n\
1755 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1756 \n\
1757 A few convenience variables are given values automatically:\n\
1758 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1759 \"$__\" holds the contents of the last address examined with \"x\"."),
1760 &showlist);
1761
1762 add_cmd ("values", no_class, show_values,
1763 _("Elements of value history around item number IDX (or last ten)."),
1764 &showlist);
1765
1766 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1767 Initialize a convenience variable if necessary.\n\
1768 init-if-undefined VARIABLE = EXPRESSION\n\
1769 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1770 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1771 VARIABLE is already initialized."));
1772 }