]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
Switch the license of all .c files to GPLv3.
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37
38 /* Prototypes for exported functions. */
39
40 void _initialize_values (void);
41
42 struct value
43 {
44 /* Type of value; either not an lval, or one of the various
45 different possible kinds of lval. */
46 enum lval_type lval;
47
48 /* Is it modifiable? Only relevant if lval != not_lval. */
49 int modifiable;
50
51 /* Location of value (if lval). */
52 union
53 {
54 /* If lval == lval_memory, this is the address in the inferior.
55 If lval == lval_register, this is the byte offset into the
56 registers structure. */
57 CORE_ADDR address;
58
59 /* Pointer to internal variable. */
60 struct internalvar *internalvar;
61 } location;
62
63 /* Describes offset of a value within lval of a structure in bytes.
64 If lval == lval_memory, this is an offset to the address. If
65 lval == lval_register, this is a further offset from
66 location.address within the registers structure. Note also the
67 member embedded_offset below. */
68 int offset;
69
70 /* Only used for bitfields; number of bits contained in them. */
71 int bitsize;
72
73 /* Only used for bitfields; position of start of field. For
74 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
75 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
76 int bitpos;
77
78 /* Frame register value is relative to. This will be described in
79 the lval enum above as "lval_register". */
80 struct frame_id frame_id;
81
82 /* Type of the value. */
83 struct type *type;
84
85 /* If a value represents a C++ object, then the `type' field gives
86 the object's compile-time type. If the object actually belongs
87 to some class derived from `type', perhaps with other base
88 classes and additional members, then `type' is just a subobject
89 of the real thing, and the full object is probably larger than
90 `type' would suggest.
91
92 If `type' is a dynamic class (i.e. one with a vtable), then GDB
93 can actually determine the object's run-time type by looking at
94 the run-time type information in the vtable. When this
95 information is available, we may elect to read in the entire
96 object, for several reasons:
97
98 - When printing the value, the user would probably rather see the
99 full object, not just the limited portion apparent from the
100 compile-time type.
101
102 - If `type' has virtual base classes, then even printing `type'
103 alone may require reaching outside the `type' portion of the
104 object to wherever the virtual base class has been stored.
105
106 When we store the entire object, `enclosing_type' is the run-time
107 type -- the complete object -- and `embedded_offset' is the
108 offset of `type' within that larger type, in bytes. The
109 value_contents() macro takes `embedded_offset' into account, so
110 most GDB code continues to see the `type' portion of the value,
111 just as the inferior would.
112
113 If `type' is a pointer to an object, then `enclosing_type' is a
114 pointer to the object's run-time type, and `pointed_to_offset' is
115 the offset in bytes from the full object to the pointed-to object
116 -- that is, the value `embedded_offset' would have if we followed
117 the pointer and fetched the complete object. (I don't really see
118 the point. Why not just determine the run-time type when you
119 indirect, and avoid the special case? The contents don't matter
120 until you indirect anyway.)
121
122 If we're not doing anything fancy, `enclosing_type' is equal to
123 `type', and `embedded_offset' is zero, so everything works
124 normally. */
125 struct type *enclosing_type;
126 int embedded_offset;
127 int pointed_to_offset;
128
129 /* Values are stored in a chain, so that they can be deleted easily
130 over calls to the inferior. Values assigned to internal
131 variables or put into the value history are taken off this
132 list. */
133 struct value *next;
134
135 /* Register number if the value is from a register. */
136 short regnum;
137
138 /* If zero, contents of this value are in the contents field. If
139 nonzero, contents are in inferior memory at address in the
140 location.address field plus the offset field (and the lval field
141 should be lval_memory).
142
143 WARNING: This field is used by the code which handles watchpoints
144 (see breakpoint.c) to decide whether a particular value can be
145 watched by hardware watchpoints. If the lazy flag is set for
146 some member of a value chain, it is assumed that this member of
147 the chain doesn't need to be watched as part of watching the
148 value itself. This is how GDB avoids watching the entire struct
149 or array when the user wants to watch a single struct member or
150 array element. If you ever change the way lazy flag is set and
151 reset, be sure to consider this use as well! */
152 char lazy;
153
154 /* If nonzero, this is the value of a variable which does not
155 actually exist in the program. */
156 char optimized_out;
157
158 /* If value is a variable, is it initialized or not. */
159 int initialized;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 gdb_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176 };
177
178 /* Prototypes for local functions. */
179
180 static void show_values (char *, int);
181
182 static void show_convenience (char *, int);
183
184
185 /* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191 #define VALUE_HISTORY_CHUNK 60
192
193 struct value_history_chunk
194 {
195 struct value_history_chunk *next;
196 struct value *values[VALUE_HISTORY_CHUNK];
197 };
198
199 /* Chain of chunks now in use. */
200
201 static struct value_history_chunk *value_history_chain;
202
203 static int value_history_count; /* Abs number of last entry stored */
204 \f
205 /* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
209 static struct value *all_values;
210
211 /* Allocate a value that has the correct length for type TYPE. */
212
213 struct value *
214 allocate_value (struct type *type)
215 {
216 struct value *val;
217 struct type *atype = check_typedef (type);
218
219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
220 val->next = all_values;
221 all_values = val;
222 val->type = type;
223 val->enclosing_type = type;
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
226 VALUE_FRAME_ID (val) = null_frame_id;
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
230 VALUE_REGNUM (val) = -1;
231 val->lazy = 0;
232 val->optimized_out = 0;
233 val->embedded_offset = 0;
234 val->pointed_to_offset = 0;
235 val->modifiable = 1;
236 val->initialized = 1; /* Default to initialized. */
237 return val;
238 }
239
240 /* Allocate a value that has the correct length
241 for COUNT repetitions type TYPE. */
242
243 struct value *
244 allocate_repeat_value (struct type *type, int count)
245 {
246 int low_bound = current_language->string_lower_bound; /* ??? */
247 /* FIXME-type-allocation: need a way to free this type when we are
248 done with it. */
249 struct type *range_type
250 = create_range_type ((struct type *) NULL, builtin_type_int,
251 low_bound, count + low_bound - 1);
252 /* FIXME-type-allocation: need a way to free this type when we are
253 done with it. */
254 return allocate_value (create_array_type ((struct type *) NULL,
255 type, range_type));
256 }
257
258 /* Accessor methods. */
259
260 struct value *
261 value_next (struct value *value)
262 {
263 return value->next;
264 }
265
266 struct type *
267 value_type (struct value *value)
268 {
269 return value->type;
270 }
271 void
272 deprecated_set_value_type (struct value *value, struct type *type)
273 {
274 value->type = type;
275 }
276
277 int
278 value_offset (struct value *value)
279 {
280 return value->offset;
281 }
282 void
283 set_value_offset (struct value *value, int offset)
284 {
285 value->offset = offset;
286 }
287
288 int
289 value_bitpos (struct value *value)
290 {
291 return value->bitpos;
292 }
293 void
294 set_value_bitpos (struct value *value, int bit)
295 {
296 value->bitpos = bit;
297 }
298
299 int
300 value_bitsize (struct value *value)
301 {
302 return value->bitsize;
303 }
304 void
305 set_value_bitsize (struct value *value, int bit)
306 {
307 value->bitsize = bit;
308 }
309
310 gdb_byte *
311 value_contents_raw (struct value *value)
312 {
313 return value->aligner.contents + value->embedded_offset;
314 }
315
316 gdb_byte *
317 value_contents_all_raw (struct value *value)
318 {
319 return value->aligner.contents;
320 }
321
322 struct type *
323 value_enclosing_type (struct value *value)
324 {
325 return value->enclosing_type;
326 }
327
328 const gdb_byte *
329 value_contents_all (struct value *value)
330 {
331 if (value->lazy)
332 value_fetch_lazy (value);
333 return value->aligner.contents;
334 }
335
336 int
337 value_lazy (struct value *value)
338 {
339 return value->lazy;
340 }
341
342 void
343 set_value_lazy (struct value *value, int val)
344 {
345 value->lazy = val;
346 }
347
348 const gdb_byte *
349 value_contents (struct value *value)
350 {
351 return value_contents_writeable (value);
352 }
353
354 gdb_byte *
355 value_contents_writeable (struct value *value)
356 {
357 if (value->lazy)
358 value_fetch_lazy (value);
359 return value_contents_raw (value);
360 }
361
362 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
363 this function is different from value_equal; in C the operator ==
364 can return 0 even if the two values being compared are equal. */
365
366 int
367 value_contents_equal (struct value *val1, struct value *val2)
368 {
369 struct type *type1;
370 struct type *type2;
371 int len;
372
373 type1 = check_typedef (value_type (val1));
374 type2 = check_typedef (value_type (val2));
375 len = TYPE_LENGTH (type1);
376 if (len != TYPE_LENGTH (type2))
377 return 0;
378
379 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
380 }
381
382 int
383 value_optimized_out (struct value *value)
384 {
385 return value->optimized_out;
386 }
387
388 void
389 set_value_optimized_out (struct value *value, int val)
390 {
391 value->optimized_out = val;
392 }
393
394 int
395 value_embedded_offset (struct value *value)
396 {
397 return value->embedded_offset;
398 }
399
400 void
401 set_value_embedded_offset (struct value *value, int val)
402 {
403 value->embedded_offset = val;
404 }
405
406 int
407 value_pointed_to_offset (struct value *value)
408 {
409 return value->pointed_to_offset;
410 }
411
412 void
413 set_value_pointed_to_offset (struct value *value, int val)
414 {
415 value->pointed_to_offset = val;
416 }
417
418 enum lval_type *
419 deprecated_value_lval_hack (struct value *value)
420 {
421 return &value->lval;
422 }
423
424 CORE_ADDR *
425 deprecated_value_address_hack (struct value *value)
426 {
427 return &value->location.address;
428 }
429
430 struct internalvar **
431 deprecated_value_internalvar_hack (struct value *value)
432 {
433 return &value->location.internalvar;
434 }
435
436 struct frame_id *
437 deprecated_value_frame_id_hack (struct value *value)
438 {
439 return &value->frame_id;
440 }
441
442 short *
443 deprecated_value_regnum_hack (struct value *value)
444 {
445 return &value->regnum;
446 }
447
448 int
449 deprecated_value_modifiable (struct value *value)
450 {
451 return value->modifiable;
452 }
453 void
454 deprecated_set_value_modifiable (struct value *value, int modifiable)
455 {
456 value->modifiable = modifiable;
457 }
458 \f
459 /* Return a mark in the value chain. All values allocated after the
460 mark is obtained (except for those released) are subject to being freed
461 if a subsequent value_free_to_mark is passed the mark. */
462 struct value *
463 value_mark (void)
464 {
465 return all_values;
466 }
467
468 /* Free all values allocated since MARK was obtained by value_mark
469 (except for those released). */
470 void
471 value_free_to_mark (struct value *mark)
472 {
473 struct value *val;
474 struct value *next;
475
476 for (val = all_values; val && val != mark; val = next)
477 {
478 next = val->next;
479 value_free (val);
480 }
481 all_values = val;
482 }
483
484 /* Free all the values that have been allocated (except for those released).
485 Called after each command, successful or not. */
486
487 void
488 free_all_values (void)
489 {
490 struct value *val;
491 struct value *next;
492
493 for (val = all_values; val; val = next)
494 {
495 next = val->next;
496 value_free (val);
497 }
498
499 all_values = 0;
500 }
501
502 /* Remove VAL from the chain all_values
503 so it will not be freed automatically. */
504
505 void
506 release_value (struct value *val)
507 {
508 struct value *v;
509
510 if (all_values == val)
511 {
512 all_values = val->next;
513 return;
514 }
515
516 for (v = all_values; v; v = v->next)
517 {
518 if (v->next == val)
519 {
520 v->next = val->next;
521 break;
522 }
523 }
524 }
525
526 /* Release all values up to mark */
527 struct value *
528 value_release_to_mark (struct value *mark)
529 {
530 struct value *val;
531 struct value *next;
532
533 for (val = next = all_values; next; next = next->next)
534 if (next->next == mark)
535 {
536 all_values = next->next;
537 next->next = NULL;
538 return val;
539 }
540 all_values = 0;
541 return val;
542 }
543
544 /* Return a copy of the value ARG.
545 It contains the same contents, for same memory address,
546 but it's a different block of storage. */
547
548 struct value *
549 value_copy (struct value *arg)
550 {
551 struct type *encl_type = value_enclosing_type (arg);
552 struct value *val = allocate_value (encl_type);
553 val->type = arg->type;
554 VALUE_LVAL (val) = VALUE_LVAL (arg);
555 val->location = arg->location;
556 val->offset = arg->offset;
557 val->bitpos = arg->bitpos;
558 val->bitsize = arg->bitsize;
559 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
560 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
561 val->lazy = arg->lazy;
562 val->optimized_out = arg->optimized_out;
563 val->embedded_offset = value_embedded_offset (arg);
564 val->pointed_to_offset = arg->pointed_to_offset;
565 val->modifiable = arg->modifiable;
566 if (!value_lazy (val))
567 {
568 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
569 TYPE_LENGTH (value_enclosing_type (arg)));
570
571 }
572 return val;
573 }
574 \f
575 /* Access to the value history. */
576
577 /* Record a new value in the value history.
578 Returns the absolute history index of the entry.
579 Result of -1 indicates the value was not saved; otherwise it is the
580 value history index of this new item. */
581
582 int
583 record_latest_value (struct value *val)
584 {
585 int i;
586
587 /* We don't want this value to have anything to do with the inferior anymore.
588 In particular, "set $1 = 50" should not affect the variable from which
589 the value was taken, and fast watchpoints should be able to assume that
590 a value on the value history never changes. */
591 if (value_lazy (val))
592 value_fetch_lazy (val);
593 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
594 from. This is a bit dubious, because then *&$1 does not just return $1
595 but the current contents of that location. c'est la vie... */
596 val->modifiable = 0;
597 release_value (val);
598
599 /* Here we treat value_history_count as origin-zero
600 and applying to the value being stored now. */
601
602 i = value_history_count % VALUE_HISTORY_CHUNK;
603 if (i == 0)
604 {
605 struct value_history_chunk *new
606 = (struct value_history_chunk *)
607 xmalloc (sizeof (struct value_history_chunk));
608 memset (new->values, 0, sizeof new->values);
609 new->next = value_history_chain;
610 value_history_chain = new;
611 }
612
613 value_history_chain->values[i] = val;
614
615 /* Now we regard value_history_count as origin-one
616 and applying to the value just stored. */
617
618 return ++value_history_count;
619 }
620
621 /* Return a copy of the value in the history with sequence number NUM. */
622
623 struct value *
624 access_value_history (int num)
625 {
626 struct value_history_chunk *chunk;
627 int i;
628 int absnum = num;
629
630 if (absnum <= 0)
631 absnum += value_history_count;
632
633 if (absnum <= 0)
634 {
635 if (num == 0)
636 error (_("The history is empty."));
637 else if (num == 1)
638 error (_("There is only one value in the history."));
639 else
640 error (_("History does not go back to $$%d."), -num);
641 }
642 if (absnum > value_history_count)
643 error (_("History has not yet reached $%d."), absnum);
644
645 absnum--;
646
647 /* Now absnum is always absolute and origin zero. */
648
649 chunk = value_history_chain;
650 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
651 i > 0; i--)
652 chunk = chunk->next;
653
654 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
655 }
656
657 static void
658 show_values (char *num_exp, int from_tty)
659 {
660 int i;
661 struct value *val;
662 static int num = 1;
663
664 if (num_exp)
665 {
666 /* "info history +" should print from the stored position.
667 "info history <exp>" should print around value number <exp>. */
668 if (num_exp[0] != '+' || num_exp[1] != '\0')
669 num = parse_and_eval_long (num_exp) - 5;
670 }
671 else
672 {
673 /* "info history" means print the last 10 values. */
674 num = value_history_count - 9;
675 }
676
677 if (num <= 0)
678 num = 1;
679
680 for (i = num; i < num + 10 && i <= value_history_count; i++)
681 {
682 val = access_value_history (i);
683 printf_filtered (("$%d = "), i);
684 value_print (val, gdb_stdout, 0, Val_pretty_default);
685 printf_filtered (("\n"));
686 }
687
688 /* The next "info history +" should start after what we just printed. */
689 num += 10;
690
691 /* Hitting just return after this command should do the same thing as
692 "info history +". If num_exp is null, this is unnecessary, since
693 "info history +" is not useful after "info history". */
694 if (from_tty && num_exp)
695 {
696 num_exp[0] = '+';
697 num_exp[1] = '\0';
698 }
699 }
700 \f
701 /* Internal variables. These are variables within the debugger
702 that hold values assigned by debugger commands.
703 The user refers to them with a '$' prefix
704 that does not appear in the variable names stored internally. */
705
706 static struct internalvar *internalvars;
707
708 /* If the variable does not already exist create it and give it the value given.
709 If no value is given then the default is zero. */
710 static void
711 init_if_undefined_command (char* args, int from_tty)
712 {
713 struct internalvar* intvar;
714
715 /* Parse the expression - this is taken from set_command(). */
716 struct expression *expr = parse_expression (args);
717 register struct cleanup *old_chain =
718 make_cleanup (free_current_contents, &expr);
719
720 /* Validate the expression.
721 Was the expression an assignment?
722 Or even an expression at all? */
723 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
724 error (_("Init-if-undefined requires an assignment expression."));
725
726 /* Extract the variable from the parsed expression.
727 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
728 if (expr->elts[1].opcode != OP_INTERNALVAR)
729 error (_("The first parameter to init-if-undefined should be a GDB variable."));
730 intvar = expr->elts[2].internalvar;
731
732 /* Only evaluate the expression if the lvalue is void.
733 This may still fail if the expresssion is invalid. */
734 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
735 evaluate_expression (expr);
736
737 do_cleanups (old_chain);
738 }
739
740
741 /* Look up an internal variable with name NAME. NAME should not
742 normally include a dollar sign.
743
744 If the specified internal variable does not exist,
745 one is created, with a void value. */
746
747 struct internalvar *
748 lookup_internalvar (char *name)
749 {
750 struct internalvar *var;
751
752 for (var = internalvars; var; var = var->next)
753 if (strcmp (var->name, name) == 0)
754 return var;
755
756 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
757 var->name = concat (name, (char *)NULL);
758 var->value = allocate_value (builtin_type_void);
759 var->endian = gdbarch_byte_order (current_gdbarch);
760 release_value (var->value);
761 var->next = internalvars;
762 internalvars = var;
763 return var;
764 }
765
766 struct value *
767 value_of_internalvar (struct internalvar *var)
768 {
769 struct value *val;
770 int i, j;
771 gdb_byte temp;
772
773 val = value_copy (var->value);
774 if (value_lazy (val))
775 value_fetch_lazy (val);
776 VALUE_LVAL (val) = lval_internalvar;
777 VALUE_INTERNALVAR (val) = var;
778
779 /* Values are always stored in the target's byte order. When connected to a
780 target this will most likely always be correct, so there's normally no
781 need to worry about it.
782
783 However, internal variables can be set up before the target endian is
784 known and so may become out of date. Fix it up before anybody sees.
785
786 Internal variables usually hold simple scalar values, and we can
787 correct those. More complex values (e.g. structures and floating
788 point types) are left alone, because they would be too complicated
789 to correct. */
790
791 if (var->endian != gdbarch_byte_order (current_gdbarch))
792 {
793 gdb_byte *array = value_contents_raw (val);
794 struct type *type = check_typedef (value_enclosing_type (val));
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_INT:
798 case TYPE_CODE_PTR:
799 /* Reverse the bytes. */
800 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
801 {
802 temp = array[j];
803 array[j] = array[i];
804 array[i] = temp;
805 }
806 break;
807 }
808 }
809
810 return val;
811 }
812
813 void
814 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
815 int bitsize, struct value *newval)
816 {
817 gdb_byte *addr = value_contents_writeable (var->value) + offset;
818
819 if (bitsize)
820 modify_field (addr, value_as_long (newval),
821 bitpos, bitsize);
822 else
823 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
824 }
825
826 void
827 set_internalvar (struct internalvar *var, struct value *val)
828 {
829 struct value *newval;
830
831 newval = value_copy (val);
832 newval->modifiable = 1;
833
834 /* Force the value to be fetched from the target now, to avoid problems
835 later when this internalvar is referenced and the target is gone or
836 has changed. */
837 if (value_lazy (newval))
838 value_fetch_lazy (newval);
839
840 /* Begin code which must not call error(). If var->value points to
841 something free'd, an error() obviously leaves a dangling pointer.
842 But we also get a danling pointer if var->value points to
843 something in the value chain (i.e., before release_value is
844 called), because after the error free_all_values will get called before
845 long. */
846 xfree (var->value);
847 var->value = newval;
848 var->endian = gdbarch_byte_order (current_gdbarch);
849 release_value (newval);
850 /* End code which must not call error(). */
851 }
852
853 char *
854 internalvar_name (struct internalvar *var)
855 {
856 return var->name;
857 }
858
859 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
860 prevent cycles / duplicates. */
861
862 static void
863 preserve_one_value (struct value *value, struct objfile *objfile,
864 htab_t copied_types)
865 {
866 if (TYPE_OBJFILE (value->type) == objfile)
867 value->type = copy_type_recursive (objfile, value->type, copied_types);
868
869 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
870 value->enclosing_type = copy_type_recursive (objfile,
871 value->enclosing_type,
872 copied_types);
873 }
874
875 /* Update the internal variables and value history when OBJFILE is
876 discarded; we must copy the types out of the objfile. New global types
877 will be created for every convenience variable which currently points to
878 this objfile's types, and the convenience variables will be adjusted to
879 use the new global types. */
880
881 void
882 preserve_values (struct objfile *objfile)
883 {
884 htab_t copied_types;
885 struct value_history_chunk *cur;
886 struct internalvar *var;
887 int i;
888
889 /* Create the hash table. We allocate on the objfile's obstack, since
890 it is soon to be deleted. */
891 copied_types = create_copied_types_hash (objfile);
892
893 for (cur = value_history_chain; cur; cur = cur->next)
894 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
895 if (cur->values[i])
896 preserve_one_value (cur->values[i], objfile, copied_types);
897
898 for (var = internalvars; var; var = var->next)
899 preserve_one_value (var->value, objfile, copied_types);
900
901 htab_delete (copied_types);
902 }
903
904 static void
905 show_convenience (char *ignore, int from_tty)
906 {
907 struct internalvar *var;
908 int varseen = 0;
909
910 for (var = internalvars; var; var = var->next)
911 {
912 if (!varseen)
913 {
914 varseen = 1;
915 }
916 printf_filtered (("$%s = "), var->name);
917 value_print (value_of_internalvar (var), gdb_stdout,
918 0, Val_pretty_default);
919 printf_filtered (("\n"));
920 }
921 if (!varseen)
922 printf_unfiltered (_("\
923 No debugger convenience variables now defined.\n\
924 Convenience variables have names starting with \"$\";\n\
925 use \"set\" as in \"set $foo = 5\" to define them.\n"));
926 }
927 \f
928 /* Extract a value as a C number (either long or double).
929 Knows how to convert fixed values to double, or
930 floating values to long.
931 Does not deallocate the value. */
932
933 LONGEST
934 value_as_long (struct value *val)
935 {
936 /* This coerces arrays and functions, which is necessary (e.g.
937 in disassemble_command). It also dereferences references, which
938 I suspect is the most logical thing to do. */
939 val = coerce_array (val);
940 return unpack_long (value_type (val), value_contents (val));
941 }
942
943 DOUBLEST
944 value_as_double (struct value *val)
945 {
946 DOUBLEST foo;
947 int inv;
948
949 foo = unpack_double (value_type (val), value_contents (val), &inv);
950 if (inv)
951 error (_("Invalid floating value found in program."));
952 return foo;
953 }
954 /* Extract a value as a C pointer. Does not deallocate the value.
955 Note that val's type may not actually be a pointer; value_as_long
956 handles all the cases. */
957 CORE_ADDR
958 value_as_address (struct value *val)
959 {
960 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
961 whether we want this to be true eventually. */
962 #if 0
963 /* gdbarch_addr_bits_remove is wrong if we are being called for a
964 non-address (e.g. argument to "signal", "info break", etc.), or
965 for pointers to char, in which the low bits *are* significant. */
966 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
967 #else
968
969 /* There are several targets (IA-64, PowerPC, and others) which
970 don't represent pointers to functions as simply the address of
971 the function's entry point. For example, on the IA-64, a
972 function pointer points to a two-word descriptor, generated by
973 the linker, which contains the function's entry point, and the
974 value the IA-64 "global pointer" register should have --- to
975 support position-independent code. The linker generates
976 descriptors only for those functions whose addresses are taken.
977
978 On such targets, it's difficult for GDB to convert an arbitrary
979 function address into a function pointer; it has to either find
980 an existing descriptor for that function, or call malloc and
981 build its own. On some targets, it is impossible for GDB to
982 build a descriptor at all: the descriptor must contain a jump
983 instruction; data memory cannot be executed; and code memory
984 cannot be modified.
985
986 Upon entry to this function, if VAL is a value of type `function'
987 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
988 VALUE_ADDRESS (val) is the address of the function. This is what
989 you'll get if you evaluate an expression like `main'. The call
990 to COERCE_ARRAY below actually does all the usual unary
991 conversions, which includes converting values of type `function'
992 to `pointer to function'. This is the challenging conversion
993 discussed above. Then, `unpack_long' will convert that pointer
994 back into an address.
995
996 So, suppose the user types `disassemble foo' on an architecture
997 with a strange function pointer representation, on which GDB
998 cannot build its own descriptors, and suppose further that `foo'
999 has no linker-built descriptor. The address->pointer conversion
1000 will signal an error and prevent the command from running, even
1001 though the next step would have been to convert the pointer
1002 directly back into the same address.
1003
1004 The following shortcut avoids this whole mess. If VAL is a
1005 function, just return its address directly. */
1006 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1007 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1008 return VALUE_ADDRESS (val);
1009
1010 val = coerce_array (val);
1011
1012 /* Some architectures (e.g. Harvard), map instruction and data
1013 addresses onto a single large unified address space. For
1014 instance: An architecture may consider a large integer in the
1015 range 0x10000000 .. 0x1000ffff to already represent a data
1016 addresses (hence not need a pointer to address conversion) while
1017 a small integer would still need to be converted integer to
1018 pointer to address. Just assume such architectures handle all
1019 integer conversions in a single function. */
1020
1021 /* JimB writes:
1022
1023 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1024 must admonish GDB hackers to make sure its behavior matches the
1025 compiler's, whenever possible.
1026
1027 In general, I think GDB should evaluate expressions the same way
1028 the compiler does. When the user copies an expression out of
1029 their source code and hands it to a `print' command, they should
1030 get the same value the compiler would have computed. Any
1031 deviation from this rule can cause major confusion and annoyance,
1032 and needs to be justified carefully. In other words, GDB doesn't
1033 really have the freedom to do these conversions in clever and
1034 useful ways.
1035
1036 AndrewC pointed out that users aren't complaining about how GDB
1037 casts integers to pointers; they are complaining that they can't
1038 take an address from a disassembly listing and give it to `x/i'.
1039 This is certainly important.
1040
1041 Adding an architecture method like integer_to_address() certainly
1042 makes it possible for GDB to "get it right" in all circumstances
1043 --- the target has complete control over how things get done, so
1044 people can Do The Right Thing for their target without breaking
1045 anyone else. The standard doesn't specify how integers get
1046 converted to pointers; usually, the ABI doesn't either, but
1047 ABI-specific code is a more reasonable place to handle it. */
1048
1049 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1050 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1051 && gdbarch_integer_to_address_p (current_gdbarch))
1052 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1053 value_contents (val));
1054
1055 return unpack_long (value_type (val), value_contents (val));
1056 #endif
1057 }
1058 \f
1059 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1060 as a long, or as a double, assuming the raw data is described
1061 by type TYPE. Knows how to convert different sizes of values
1062 and can convert between fixed and floating point. We don't assume
1063 any alignment for the raw data. Return value is in host byte order.
1064
1065 If you want functions and arrays to be coerced to pointers, and
1066 references to be dereferenced, call value_as_long() instead.
1067
1068 C++: It is assumed that the front-end has taken care of
1069 all matters concerning pointers to members. A pointer
1070 to member which reaches here is considered to be equivalent
1071 to an INT (or some size). After all, it is only an offset. */
1072
1073 LONGEST
1074 unpack_long (struct type *type, const gdb_byte *valaddr)
1075 {
1076 enum type_code code = TYPE_CODE (type);
1077 int len = TYPE_LENGTH (type);
1078 int nosign = TYPE_UNSIGNED (type);
1079
1080 switch (code)
1081 {
1082 case TYPE_CODE_TYPEDEF:
1083 return unpack_long (check_typedef (type), valaddr);
1084 case TYPE_CODE_ENUM:
1085 case TYPE_CODE_FLAGS:
1086 case TYPE_CODE_BOOL:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_CHAR:
1089 case TYPE_CODE_RANGE:
1090 case TYPE_CODE_MEMBERPTR:
1091 if (nosign)
1092 return extract_unsigned_integer (valaddr, len);
1093 else
1094 return extract_signed_integer (valaddr, len);
1095
1096 case TYPE_CODE_FLT:
1097 return extract_typed_floating (valaddr, type);
1098
1099 case TYPE_CODE_PTR:
1100 case TYPE_CODE_REF:
1101 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1102 whether we want this to be true eventually. */
1103 return extract_typed_address (valaddr, type);
1104
1105 default:
1106 error (_("Value can't be converted to integer."));
1107 }
1108 return 0; /* Placate lint. */
1109 }
1110
1111 /* Return a double value from the specified type and address.
1112 INVP points to an int which is set to 0 for valid value,
1113 1 for invalid value (bad float format). In either case,
1114 the returned double is OK to use. Argument is in target
1115 format, result is in host format. */
1116
1117 DOUBLEST
1118 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1119 {
1120 enum type_code code;
1121 int len;
1122 int nosign;
1123
1124 *invp = 0; /* Assume valid. */
1125 CHECK_TYPEDEF (type);
1126 code = TYPE_CODE (type);
1127 len = TYPE_LENGTH (type);
1128 nosign = TYPE_UNSIGNED (type);
1129 if (code == TYPE_CODE_FLT)
1130 {
1131 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1132 floating-point value was valid (using the macro
1133 INVALID_FLOAT). That test/macro have been removed.
1134
1135 It turns out that only the VAX defined this macro and then
1136 only in a non-portable way. Fixing the portability problem
1137 wouldn't help since the VAX floating-point code is also badly
1138 bit-rotten. The target needs to add definitions for the
1139 methods gdbarch_float_format and gdbarch_double_format - these
1140 exactly describe the target floating-point format. The
1141 problem here is that the corresponding floatformat_vax_f and
1142 floatformat_vax_d values these methods should be set to are
1143 also not defined either. Oops!
1144
1145 Hopefully someone will add both the missing floatformat
1146 definitions and the new cases for floatformat_is_valid (). */
1147
1148 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1149 {
1150 *invp = 1;
1151 return 0.0;
1152 }
1153
1154 return extract_typed_floating (valaddr, type);
1155 }
1156 else if (nosign)
1157 {
1158 /* Unsigned -- be sure we compensate for signed LONGEST. */
1159 return (ULONGEST) unpack_long (type, valaddr);
1160 }
1161 else
1162 {
1163 /* Signed -- we are OK with unpack_long. */
1164 return unpack_long (type, valaddr);
1165 }
1166 }
1167
1168 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1169 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1170 We don't assume any alignment for the raw data. Return value is in
1171 host byte order.
1172
1173 If you want functions and arrays to be coerced to pointers, and
1174 references to be dereferenced, call value_as_address() instead.
1175
1176 C++: It is assumed that the front-end has taken care of
1177 all matters concerning pointers to members. A pointer
1178 to member which reaches here is considered to be equivalent
1179 to an INT (or some size). After all, it is only an offset. */
1180
1181 CORE_ADDR
1182 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1183 {
1184 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1185 whether we want this to be true eventually. */
1186 return unpack_long (type, valaddr);
1187 }
1188
1189 \f
1190 /* Get the value of the FIELDN'th field (which must be static) of
1191 TYPE. Return NULL if the field doesn't exist or has been
1192 optimized out. */
1193
1194 struct value *
1195 value_static_field (struct type *type, int fieldno)
1196 {
1197 struct value *retval;
1198
1199 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1200 {
1201 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1202 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1203 }
1204 else
1205 {
1206 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1207 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
1208 if (sym == NULL)
1209 {
1210 /* With some compilers, e.g. HP aCC, static data members are reported
1211 as non-debuggable symbols */
1212 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1213 if (!msym)
1214 return NULL;
1215 else
1216 {
1217 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1218 SYMBOL_VALUE_ADDRESS (msym));
1219 }
1220 }
1221 else
1222 {
1223 /* SYM should never have a SYMBOL_CLASS which will require
1224 read_var_value to use the FRAME parameter. */
1225 if (symbol_read_needs_frame (sym))
1226 warning (_("static field's value depends on the current "
1227 "frame - bad debug info?"));
1228 retval = read_var_value (sym, NULL);
1229 }
1230 if (retval && VALUE_LVAL (retval) == lval_memory)
1231 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1232 VALUE_ADDRESS (retval));
1233 }
1234 return retval;
1235 }
1236
1237 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1238 You have to be careful here, since the size of the data area for the value
1239 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1240 than the old enclosing type, you have to allocate more space for the data.
1241 The return value is a pointer to the new version of this value structure. */
1242
1243 struct value *
1244 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1245 {
1246 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1247 {
1248 val->enclosing_type = new_encl_type;
1249 return val;
1250 }
1251 else
1252 {
1253 struct value *new_val;
1254 struct value *prev;
1255
1256 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1257
1258 new_val->enclosing_type = new_encl_type;
1259
1260 /* We have to make sure this ends up in the same place in the value
1261 chain as the original copy, so it's clean-up behavior is the same.
1262 If the value has been released, this is a waste of time, but there
1263 is no way to tell that in advance, so... */
1264
1265 if (val != all_values)
1266 {
1267 for (prev = all_values; prev != NULL; prev = prev->next)
1268 {
1269 if (prev->next == val)
1270 {
1271 prev->next = new_val;
1272 break;
1273 }
1274 }
1275 }
1276
1277 return new_val;
1278 }
1279 }
1280
1281 /* Given a value ARG1 (offset by OFFSET bytes)
1282 of a struct or union type ARG_TYPE,
1283 extract and return the value of one of its (non-static) fields.
1284 FIELDNO says which field. */
1285
1286 struct value *
1287 value_primitive_field (struct value *arg1, int offset,
1288 int fieldno, struct type *arg_type)
1289 {
1290 struct value *v;
1291 struct type *type;
1292
1293 CHECK_TYPEDEF (arg_type);
1294 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1295
1296 /* Handle packed fields */
1297
1298 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1299 {
1300 v = value_from_longest (type,
1301 unpack_field_as_long (arg_type,
1302 value_contents (arg1)
1303 + offset,
1304 fieldno));
1305 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1306 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1307 v->offset = value_offset (arg1) + offset
1308 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1309 }
1310 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1311 {
1312 /* This field is actually a base subobject, so preserve the
1313 entire object's contents for later references to virtual
1314 bases, etc. */
1315 v = allocate_value (value_enclosing_type (arg1));
1316 v->type = type;
1317 if (value_lazy (arg1))
1318 set_value_lazy (v, 1);
1319 else
1320 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1321 TYPE_LENGTH (value_enclosing_type (arg1)));
1322 v->offset = value_offset (arg1);
1323 v->embedded_offset = (offset + value_embedded_offset (arg1)
1324 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1325 }
1326 else
1327 {
1328 /* Plain old data member */
1329 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1330 v = allocate_value (type);
1331 if (value_lazy (arg1))
1332 set_value_lazy (v, 1);
1333 else
1334 memcpy (value_contents_raw (v),
1335 value_contents_raw (arg1) + offset,
1336 TYPE_LENGTH (type));
1337 v->offset = (value_offset (arg1) + offset
1338 + value_embedded_offset (arg1));
1339 }
1340 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1341 if (VALUE_LVAL (arg1) == lval_internalvar)
1342 VALUE_LVAL (v) = lval_internalvar_component;
1343 v->location = arg1->location;
1344 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1345 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1346 return v;
1347 }
1348
1349 /* Given a value ARG1 of a struct or union type,
1350 extract and return the value of one of its (non-static) fields.
1351 FIELDNO says which field. */
1352
1353 struct value *
1354 value_field (struct value *arg1, int fieldno)
1355 {
1356 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1357 }
1358
1359 /* Return a non-virtual function as a value.
1360 F is the list of member functions which contains the desired method.
1361 J is an index into F which provides the desired method.
1362
1363 We only use the symbol for its address, so be happy with either a
1364 full symbol or a minimal symbol.
1365 */
1366
1367 struct value *
1368 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1369 int offset)
1370 {
1371 struct value *v;
1372 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1373 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1374 struct symbol *sym;
1375 struct minimal_symbol *msym;
1376
1377 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1378 if (sym != NULL)
1379 {
1380 msym = NULL;
1381 }
1382 else
1383 {
1384 gdb_assert (sym == NULL);
1385 msym = lookup_minimal_symbol (physname, NULL, NULL);
1386 if (msym == NULL)
1387 return NULL;
1388 }
1389
1390 v = allocate_value (ftype);
1391 if (sym)
1392 {
1393 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1394 }
1395 else
1396 {
1397 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1398 }
1399
1400 if (arg1p)
1401 {
1402 if (type != value_type (*arg1p))
1403 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1404 value_addr (*arg1p)));
1405
1406 /* Move the `this' pointer according to the offset.
1407 VALUE_OFFSET (*arg1p) += offset;
1408 */
1409 }
1410
1411 return v;
1412 }
1413
1414 \f
1415 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1416 VALADDR.
1417
1418 Extracting bits depends on endianness of the machine. Compute the
1419 number of least significant bits to discard. For big endian machines,
1420 we compute the total number of bits in the anonymous object, subtract
1421 off the bit count from the MSB of the object to the MSB of the
1422 bitfield, then the size of the bitfield, which leaves the LSB discard
1423 count. For little endian machines, the discard count is simply the
1424 number of bits from the LSB of the anonymous object to the LSB of the
1425 bitfield.
1426
1427 If the field is signed, we also do sign extension. */
1428
1429 LONGEST
1430 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1431 {
1432 ULONGEST val;
1433 ULONGEST valmask;
1434 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1435 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1436 int lsbcount;
1437 struct type *field_type;
1438
1439 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1440 field_type = TYPE_FIELD_TYPE (type, fieldno);
1441 CHECK_TYPEDEF (field_type);
1442
1443 /* Extract bits. See comment above. */
1444
1445 if (BITS_BIG_ENDIAN)
1446 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1447 else
1448 lsbcount = (bitpos % 8);
1449 val >>= lsbcount;
1450
1451 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1452 If the field is signed, and is negative, then sign extend. */
1453
1454 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1455 {
1456 valmask = (((ULONGEST) 1) << bitsize) - 1;
1457 val &= valmask;
1458 if (!TYPE_UNSIGNED (field_type))
1459 {
1460 if (val & (valmask ^ (valmask >> 1)))
1461 {
1462 val |= ~valmask;
1463 }
1464 }
1465 }
1466 return (val);
1467 }
1468
1469 /* Modify the value of a bitfield. ADDR points to a block of memory in
1470 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1471 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1472 indicate which bits (in target bit order) comprise the bitfield.
1473 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1474 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1475
1476 void
1477 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1478 {
1479 ULONGEST oword;
1480 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1481
1482 /* If a negative fieldval fits in the field in question, chop
1483 off the sign extension bits. */
1484 if ((~fieldval & ~(mask >> 1)) == 0)
1485 fieldval &= mask;
1486
1487 /* Warn if value is too big to fit in the field in question. */
1488 if (0 != (fieldval & ~mask))
1489 {
1490 /* FIXME: would like to include fieldval in the message, but
1491 we don't have a sprintf_longest. */
1492 warning (_("Value does not fit in %d bits."), bitsize);
1493
1494 /* Truncate it, otherwise adjoining fields may be corrupted. */
1495 fieldval &= mask;
1496 }
1497
1498 oword = extract_unsigned_integer (addr, sizeof oword);
1499
1500 /* Shifting for bit field depends on endianness of the target machine. */
1501 if (BITS_BIG_ENDIAN)
1502 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1503
1504 oword &= ~(mask << bitpos);
1505 oword |= fieldval << bitpos;
1506
1507 store_unsigned_integer (addr, sizeof oword, oword);
1508 }
1509 \f
1510 /* Pack NUM into BUF using a target format of TYPE. */
1511
1512 void
1513 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1514 {
1515 int len;
1516
1517 type = check_typedef (type);
1518 len = TYPE_LENGTH (type);
1519
1520 switch (TYPE_CODE (type))
1521 {
1522 case TYPE_CODE_INT:
1523 case TYPE_CODE_CHAR:
1524 case TYPE_CODE_ENUM:
1525 case TYPE_CODE_FLAGS:
1526 case TYPE_CODE_BOOL:
1527 case TYPE_CODE_RANGE:
1528 case TYPE_CODE_MEMBERPTR:
1529 store_signed_integer (buf, len, num);
1530 break;
1531
1532 case TYPE_CODE_REF:
1533 case TYPE_CODE_PTR:
1534 store_typed_address (buf, type, (CORE_ADDR) num);
1535 break;
1536
1537 default:
1538 error (_("Unexpected type (%d) encountered for integer constant."),
1539 TYPE_CODE (type));
1540 }
1541 }
1542
1543
1544 /* Convert C numbers into newly allocated values. */
1545
1546 struct value *
1547 value_from_longest (struct type *type, LONGEST num)
1548 {
1549 struct value *val = allocate_value (type);
1550
1551 pack_long (value_contents_raw (val), type, num);
1552
1553 return val;
1554 }
1555
1556
1557 /* Create a value representing a pointer of type TYPE to the address
1558 ADDR. */
1559 struct value *
1560 value_from_pointer (struct type *type, CORE_ADDR addr)
1561 {
1562 struct value *val = allocate_value (type);
1563 store_typed_address (value_contents_raw (val), type, addr);
1564 return val;
1565 }
1566
1567
1568 /* Create a value for a string constant to be stored locally
1569 (not in the inferior's memory space, but in GDB memory).
1570 This is analogous to value_from_longest, which also does not
1571 use inferior memory. String shall NOT contain embedded nulls. */
1572
1573 struct value *
1574 value_from_string (char *ptr)
1575 {
1576 struct value *val;
1577 int len = strlen (ptr);
1578 int lowbound = current_language->string_lower_bound;
1579 struct type *string_char_type;
1580 struct type *rangetype;
1581 struct type *stringtype;
1582
1583 rangetype = create_range_type ((struct type *) NULL,
1584 builtin_type_int,
1585 lowbound, len + lowbound - 1);
1586 string_char_type = language_string_char_type (current_language,
1587 current_gdbarch);
1588 stringtype = create_array_type ((struct type *) NULL,
1589 string_char_type,
1590 rangetype);
1591 val = allocate_value (stringtype);
1592 memcpy (value_contents_raw (val), ptr, len);
1593 return val;
1594 }
1595
1596 struct value *
1597 value_from_double (struct type *type, DOUBLEST num)
1598 {
1599 struct value *val = allocate_value (type);
1600 struct type *base_type = check_typedef (type);
1601 enum type_code code = TYPE_CODE (base_type);
1602 int len = TYPE_LENGTH (base_type);
1603
1604 if (code == TYPE_CODE_FLT)
1605 {
1606 store_typed_floating (value_contents_raw (val), base_type, num);
1607 }
1608 else
1609 error (_("Unexpected type encountered for floating constant."));
1610
1611 return val;
1612 }
1613
1614 struct value *
1615 coerce_ref (struct value *arg)
1616 {
1617 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1618 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1619 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1620 unpack_pointer (value_type (arg),
1621 value_contents (arg)));
1622 return arg;
1623 }
1624
1625 struct value *
1626 coerce_array (struct value *arg)
1627 {
1628 arg = coerce_ref (arg);
1629 if (current_language->c_style_arrays
1630 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1631 arg = value_coerce_array (arg);
1632 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1633 arg = value_coerce_function (arg);
1634 return arg;
1635 }
1636
1637 struct value *
1638 coerce_number (struct value *arg)
1639 {
1640 arg = coerce_array (arg);
1641 arg = coerce_enum (arg);
1642 return arg;
1643 }
1644
1645 struct value *
1646 coerce_enum (struct value *arg)
1647 {
1648 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1649 arg = value_cast (builtin_type_unsigned_int, arg);
1650 return arg;
1651 }
1652 \f
1653
1654 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1655 gdbarch_extract_return_value? GCC_P is true if compiled with gcc and TYPE
1656 is the type (which is known to be struct, union or array).
1657
1658 On most machines, the struct convention is used unless we are
1659 using gcc and the type is of a special size. */
1660 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1661 native compiler. GCC 2.3.3 was the last release that did it the
1662 old way. Since gcc2_compiled was not changed, we have no
1663 way to correctly win in all cases, so we just do the right thing
1664 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1665 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1666 would cause more chaos than dealing with some struct returns being
1667 handled wrong. */
1668 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1669 dead. */
1670
1671 int
1672 generic_use_struct_convention (int gcc_p, struct type *value_type)
1673 {
1674 return !(TYPE_LENGTH (value_type) == 1
1675 || TYPE_LENGTH (value_type) == 2
1676 || TYPE_LENGTH (value_type) == 4
1677 || TYPE_LENGTH (value_type) == 8);
1678 }
1679
1680 /* Return true if the function returning the specified type is using
1681 the convention of returning structures in memory (passing in the
1682 address as a hidden first parameter). GCC_P is nonzero if compiled
1683 with GCC. */
1684
1685 int
1686 using_struct_return (struct type *value_type, int gcc_p)
1687 {
1688 enum type_code code = TYPE_CODE (value_type);
1689
1690 if (code == TYPE_CODE_ERROR)
1691 error (_("Function return type unknown."));
1692
1693 if (code == TYPE_CODE_VOID)
1694 /* A void return value is never in memory. See also corresponding
1695 code in "print_return_value". */
1696 return 0;
1697
1698 /* Probe the architecture for the return-value convention. */
1699 return (gdbarch_return_value (current_gdbarch, value_type,
1700 NULL, NULL, NULL)
1701 != RETURN_VALUE_REGISTER_CONVENTION);
1702 }
1703
1704 /* Set the initialized field in a value struct. */
1705
1706 void
1707 set_value_initialized (struct value *val, int status)
1708 {
1709 val->initialized = status;
1710 }
1711
1712 /* Return the initialized field in a value struct. */
1713
1714 int
1715 value_initialized (struct value *val)
1716 {
1717 return val->initialized;
1718 }
1719
1720 void
1721 _initialize_values (void)
1722 {
1723 add_cmd ("convenience", no_class, show_convenience, _("\
1724 Debugger convenience (\"$foo\") variables.\n\
1725 These variables are created when you assign them values;\n\
1726 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1727 \n\
1728 A few convenience variables are given values automatically:\n\
1729 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1730 \"$__\" holds the contents of the last address examined with \"x\"."),
1731 &showlist);
1732
1733 add_cmd ("values", no_class, show_values,
1734 _("Elements of value history around item number IDX (or last ten)."),
1735 &showlist);
1736
1737 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1738 Initialize a convenience variable if necessary.\n\
1739 init-if-undefined VARIABLE = EXPRESSION\n\
1740 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1741 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1742 VARIABLE is already initialized."));
1743 }