]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
gdb: remove TYPE_FIELD_NAME and FIELD_NAME macros
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46 #include "cli/cli-style.h"
47 #include "expop.h"
48 #include "inferior.h"
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 LONGEST offset;
71
72 /* Length of the range. */
73 LONGEST length;
74
75 /* Returns true if THIS is strictly less than OTHER, useful for
76 searching. We keep ranges sorted by offset and coalesce
77 overlapping and contiguous ranges, so this just compares the
78 starting offset. */
79
80 bool operator< (const range &other) const
81 {
82 return offset < other.offset;
83 }
84
85 /* Returns true if THIS is equal to OTHER. */
86 bool operator== (const range &other) const
87 {
88 return offset == other.offset && length == other.length;
89 }
90 };
91
92 /* Returns true if the ranges defined by [offset1, offset1+len1) and
93 [offset2, offset2+len2) overlap. */
94
95 static int
96 ranges_overlap (LONGEST offset1, LONGEST len1,
97 LONGEST offset2, LONGEST len2)
98 {
99 ULONGEST h, l;
100
101 l = std::max (offset1, offset2);
102 h = std::min (offset1 + len1, offset2 + len2);
103 return (l < h);
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
111 LONGEST length)
112 {
113 range what;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149
150 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
151
152 if (i > ranges.begin ())
153 {
154 const struct range &bef = *(i - 1);
155
156 if (ranges_overlap (bef.offset, bef.length, offset, length))
157 return 1;
158 }
159
160 if (i < ranges.end ())
161 {
162 const struct range &r = *i;
163
164 if (ranges_overlap (r.offset, r.length, offset, length))
165 return 1;
166 }
167
168 return 0;
169 }
170
171 static struct cmd_list_element *functionlist;
172
173 /* Note that the fields in this structure are arranged to save a bit
174 of memory. */
175
176 struct value
177 {
178 explicit value (struct type *type_)
179 : modifiable (1),
180 lazy (1),
181 initialized (1),
182 stack (0),
183 type (type_),
184 enclosing_type (type_)
185 {
186 }
187
188 ~value ()
189 {
190 if (VALUE_LVAL (this) == lval_computed)
191 {
192 const struct lval_funcs *funcs = location.computed.funcs;
193
194 if (funcs->free_closure)
195 funcs->free_closure (this);
196 }
197 else if (VALUE_LVAL (this) == lval_xcallable)
198 delete location.xm_worker;
199 }
200
201 DISABLE_COPY_AND_ASSIGN (value);
202
203 /* Type of value; either not an lval, or one of the various
204 different possible kinds of lval. */
205 enum lval_type lval = not_lval;
206
207 /* Is it modifiable? Only relevant if lval != not_lval. */
208 unsigned int modifiable : 1;
209
210 /* If zero, contents of this value are in the contents field. If
211 nonzero, contents are in inferior. If the lval field is lval_memory,
212 the contents are in inferior memory at location.address plus offset.
213 The lval field may also be lval_register.
214
215 WARNING: This field is used by the code which handles watchpoints
216 (see breakpoint.c) to decide whether a particular value can be
217 watched by hardware watchpoints. If the lazy flag is set for
218 some member of a value chain, it is assumed that this member of
219 the chain doesn't need to be watched as part of watching the
220 value itself. This is how GDB avoids watching the entire struct
221 or array when the user wants to watch a single struct member or
222 array element. If you ever change the way lazy flag is set and
223 reset, be sure to consider this use as well! */
224 unsigned int lazy : 1;
225
226 /* If value is a variable, is it initialized or not. */
227 unsigned int initialized : 1;
228
229 /* If value is from the stack. If this is set, read_stack will be
230 used instead of read_memory to enable extra caching. */
231 unsigned int stack : 1;
232
233 /* Location of value (if lval). */
234 union
235 {
236 /* If lval == lval_memory, this is the address in the inferior */
237 CORE_ADDR address;
238
239 /*If lval == lval_register, the value is from a register. */
240 struct
241 {
242 /* Register number. */
243 int regnum;
244 /* Frame ID of "next" frame to which a register value is relative.
245 If the register value is found relative to frame F, then the
246 frame id of F->next will be stored in next_frame_id. */
247 struct frame_id next_frame_id;
248 } reg;
249
250 /* Pointer to internal variable. */
251 struct internalvar *internalvar;
252
253 /* Pointer to xmethod worker. */
254 struct xmethod_worker *xm_worker;
255
256 /* If lval == lval_computed, this is a set of function pointers
257 to use to access and describe the value, and a closure pointer
258 for them to use. */
259 struct
260 {
261 /* Functions to call. */
262 const struct lval_funcs *funcs;
263
264 /* Closure for those functions to use. */
265 void *closure;
266 } computed;
267 } location {};
268
269 /* Describes offset of a value within lval of a structure in target
270 addressable memory units. Note also the member embedded_offset
271 below. */
272 LONGEST offset = 0;
273
274 /* Only used for bitfields; number of bits contained in them. */
275 LONGEST bitsize = 0;
276
277 /* Only used for bitfields; position of start of field. For
278 little-endian targets, it is the position of the LSB. For
279 big-endian targets, it is the position of the MSB. */
280 LONGEST bitpos = 0;
281
282 /* The number of references to this value. When a value is created,
283 the value chain holds a reference, so REFERENCE_COUNT is 1. If
284 release_value is called, this value is removed from the chain but
285 the caller of release_value now has a reference to this value.
286 The caller must arrange for a call to value_free later. */
287 int reference_count = 1;
288
289 /* Only used for bitfields; the containing value. This allows a
290 single read from the target when displaying multiple
291 bitfields. */
292 value_ref_ptr parent;
293
294 /* Type of the value. */
295 struct type *type;
296
297 /* If a value represents a C++ object, then the `type' field gives
298 the object's compile-time type. If the object actually belongs
299 to some class derived from `type', perhaps with other base
300 classes and additional members, then `type' is just a subobject
301 of the real thing, and the full object is probably larger than
302 `type' would suggest.
303
304 If `type' is a dynamic class (i.e. one with a vtable), then GDB
305 can actually determine the object's run-time type by looking at
306 the run-time type information in the vtable. When this
307 information is available, we may elect to read in the entire
308 object, for several reasons:
309
310 - When printing the value, the user would probably rather see the
311 full object, not just the limited portion apparent from the
312 compile-time type.
313
314 - If `type' has virtual base classes, then even printing `type'
315 alone may require reaching outside the `type' portion of the
316 object to wherever the virtual base class has been stored.
317
318 When we store the entire object, `enclosing_type' is the run-time
319 type -- the complete object -- and `embedded_offset' is the
320 offset of `type' within that larger type, in target addressable memory
321 units. The value_contents() macro takes `embedded_offset' into account,
322 so most GDB code continues to see the `type' portion of the value, just
323 as the inferior would.
324
325 If `type' is a pointer to an object, then `enclosing_type' is a
326 pointer to the object's run-time type, and `pointed_to_offset' is
327 the offset in target addressable memory units from the full object
328 to the pointed-to object -- that is, the value `embedded_offset' would
329 have if we followed the pointer and fetched the complete object.
330 (I don't really see the point. Why not just determine the
331 run-time type when you indirect, and avoid the special case? The
332 contents don't matter until you indirect anyway.)
333
334 If we're not doing anything fancy, `enclosing_type' is equal to
335 `type', and `embedded_offset' is zero, so everything works
336 normally. */
337 struct type *enclosing_type;
338 LONGEST embedded_offset = 0;
339 LONGEST pointed_to_offset = 0;
340
341 /* Actual contents of the value. Target byte-order. NULL or not
342 valid if lazy is nonzero. */
343 gdb::unique_xmalloc_ptr<gdb_byte> contents;
344
345 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
346 rather than available, since the common and default case is for a
347 value to be available. This is filled in at value read time.
348 The unavailable ranges are tracked in bits. Note that a contents
349 bit that has been optimized out doesn't really exist in the
350 program, so it can't be marked unavailable either. */
351 std::vector<range> unavailable;
352
353 /* Likewise, but for optimized out contents (a chunk of the value of
354 a variable that does not actually exist in the program). If LVAL
355 is lval_register, this is a register ($pc, $sp, etc., never a
356 program variable) that has not been saved in the frame. Not
357 saved registers and optimized-out program variables values are
358 treated pretty much the same, except not-saved registers have a
359 different string representation and related error strings. */
360 std::vector<range> optimized_out;
361 };
362
363 /* See value.h. */
364
365 struct gdbarch *
366 get_value_arch (const struct value *value)
367 {
368 return value_type (value)->arch ();
369 }
370
371 int
372 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
373 {
374 gdb_assert (!value->lazy);
375
376 return !ranges_contain (value->unavailable, offset, length);
377 }
378
379 int
380 value_bytes_available (const struct value *value,
381 LONGEST offset, LONGEST length)
382 {
383 return value_bits_available (value,
384 offset * TARGET_CHAR_BIT,
385 length * TARGET_CHAR_BIT);
386 }
387
388 int
389 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
390 {
391 gdb_assert (!value->lazy);
392
393 return ranges_contain (value->optimized_out, bit_offset, bit_length);
394 }
395
396 int
397 value_entirely_available (struct value *value)
398 {
399 /* We can only tell whether the whole value is available when we try
400 to read it. */
401 if (value->lazy)
402 value_fetch_lazy (value);
403
404 if (value->unavailable.empty ())
405 return 1;
406 return 0;
407 }
408
409 /* Returns true if VALUE is entirely covered by RANGES. If the value
410 is lazy, it'll be read now. Note that RANGE is a pointer to
411 pointer because reading the value might change *RANGE. */
412
413 static int
414 value_entirely_covered_by_range_vector (struct value *value,
415 const std::vector<range> &ranges)
416 {
417 /* We can only tell whether the whole value is optimized out /
418 unavailable when we try to read it. */
419 if (value->lazy)
420 value_fetch_lazy (value);
421
422 if (ranges.size () == 1)
423 {
424 const struct range &t = ranges[0];
425
426 if (t.offset == 0
427 && t.length == (TARGET_CHAR_BIT
428 * TYPE_LENGTH (value_enclosing_type (value))))
429 return 1;
430 }
431
432 return 0;
433 }
434
435 int
436 value_entirely_unavailable (struct value *value)
437 {
438 return value_entirely_covered_by_range_vector (value, value->unavailable);
439 }
440
441 int
442 value_entirely_optimized_out (struct value *value)
443 {
444 return value_entirely_covered_by_range_vector (value, value->optimized_out);
445 }
446
447 /* Insert into the vector pointed to by VECTORP the bit range starting of
448 OFFSET bits, and extending for the next LENGTH bits. */
449
450 static void
451 insert_into_bit_range_vector (std::vector<range> *vectorp,
452 LONGEST offset, LONGEST length)
453 {
454 range newr;
455
456 /* Insert the range sorted. If there's overlap or the new range
457 would be contiguous with an existing range, merge. */
458
459 newr.offset = offset;
460 newr.length = length;
461
462 /* Do a binary search for the position the given range would be
463 inserted if we only considered the starting OFFSET of ranges.
464 Call that position I. Since we also have LENGTH to care for
465 (this is a range afterall), we need to check if the _previous_
466 range overlaps the I range. E.g., calling R the new range:
467
468 #1 - overlaps with previous
469
470 R
471 |-...-|
472 |---| |---| |------| ... |--|
473 0 1 2 N
474
475 I=1
476
477 In the case #1 above, the binary search would return `I=1',
478 meaning, this OFFSET should be inserted at position 1, and the
479 current position 1 should be pushed further (and become 2). But,
480 note that `0' overlaps with R, so we want to merge them.
481
482 A similar consideration needs to be taken if the new range would
483 be contiguous with the previous range:
484
485 #2 - contiguous with previous
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=1
493
494 If there's no overlap with the previous range, as in:
495
496 #3 - not overlapping and not contiguous
497
498 R
499 |-...-|
500 |--| |---| |------| ... |--|
501 0 1 2 N
502
503 I=1
504
505 or if I is 0:
506
507 #4 - R is the range with lowest offset
508
509 R
510 |-...-|
511 |--| |---| |------| ... |--|
512 0 1 2 N
513
514 I=0
515
516 ... we just push the new range to I.
517
518 All the 4 cases above need to consider that the new range may
519 also overlap several of the ranges that follow, or that R may be
520 contiguous with the following range, and merge. E.g.,
521
522 #5 - overlapping following ranges
523
524 R
525 |------------------------|
526 |--| |---| |------| ... |--|
527 0 1 2 N
528
529 I=0
530
531 or:
532
533 R
534 |-------|
535 |--| |---| |------| ... |--|
536 0 1 2 N
537
538 I=1
539
540 */
541
542 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
543 if (i > vectorp->begin ())
544 {
545 struct range &bef = *(i - 1);
546
547 if (ranges_overlap (bef.offset, bef.length, offset, length))
548 {
549 /* #1 */
550 ULONGEST l = std::min (bef.offset, offset);
551 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
552
553 bef.offset = l;
554 bef.length = h - l;
555 i--;
556 }
557 else if (offset == bef.offset + bef.length)
558 {
559 /* #2 */
560 bef.length += length;
561 i--;
562 }
563 else
564 {
565 /* #3 */
566 i = vectorp->insert (i, newr);
567 }
568 }
569 else
570 {
571 /* #4 */
572 i = vectorp->insert (i, newr);
573 }
574
575 /* Check whether the ranges following the one we've just added or
576 touched can be folded in (#5 above). */
577 if (i != vectorp->end () && i + 1 < vectorp->end ())
578 {
579 int removed = 0;
580 auto next = i + 1;
581
582 /* Get the range we just touched. */
583 struct range &t = *i;
584 removed = 0;
585
586 i = next;
587 for (; i < vectorp->end (); i++)
588 {
589 struct range &r = *i;
590 if (r.offset <= t.offset + t.length)
591 {
592 ULONGEST l, h;
593
594 l = std::min (t.offset, r.offset);
595 h = std::max (t.offset + t.length, r.offset + r.length);
596
597 t.offset = l;
598 t.length = h - l;
599
600 removed++;
601 }
602 else
603 {
604 /* If we couldn't merge this one, we won't be able to
605 merge following ones either, since the ranges are
606 always sorted by OFFSET. */
607 break;
608 }
609 }
610
611 if (removed != 0)
612 vectorp->erase (next, next + removed);
613 }
614 }
615
616 void
617 mark_value_bits_unavailable (struct value *value,
618 LONGEST offset, LONGEST length)
619 {
620 insert_into_bit_range_vector (&value->unavailable, offset, length);
621 }
622
623 void
624 mark_value_bytes_unavailable (struct value *value,
625 LONGEST offset, LONGEST length)
626 {
627 mark_value_bits_unavailable (value,
628 offset * TARGET_CHAR_BIT,
629 length * TARGET_CHAR_BIT);
630 }
631
632 /* Find the first range in RANGES that overlaps the range defined by
633 OFFSET and LENGTH, starting at element POS in the RANGES vector,
634 Returns the index into RANGES where such overlapping range was
635 found, or -1 if none was found. */
636
637 static int
638 find_first_range_overlap (const std::vector<range> *ranges, int pos,
639 LONGEST offset, LONGEST length)
640 {
641 int i;
642
643 for (i = pos; i < ranges->size (); i++)
644 {
645 const range &r = (*ranges)[i];
646 if (ranges_overlap (r.offset, r.length, offset, length))
647 return i;
648 }
649
650 return -1;
651 }
652
653 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
654 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
655 return non-zero.
656
657 It must always be the case that:
658 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
659
660 It is assumed that memory can be accessed from:
661 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
662 to:
663 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
664 / TARGET_CHAR_BIT) */
665 static int
666 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
667 const gdb_byte *ptr2, size_t offset2_bits,
668 size_t length_bits)
669 {
670 gdb_assert (offset1_bits % TARGET_CHAR_BIT
671 == offset2_bits % TARGET_CHAR_BIT);
672
673 if (offset1_bits % TARGET_CHAR_BIT != 0)
674 {
675 size_t bits;
676 gdb_byte mask, b1, b2;
677
678 /* The offset from the base pointers PTR1 and PTR2 is not a complete
679 number of bytes. A number of bits up to either the next exact
680 byte boundary, or LENGTH_BITS (which ever is sooner) will be
681 compared. */
682 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
683 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
684 mask = (1 << bits) - 1;
685
686 if (length_bits < bits)
687 {
688 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
689 bits = length_bits;
690 }
691
692 /* Now load the two bytes and mask off the bits we care about. */
693 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
694 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
695
696 if (b1 != b2)
697 return 1;
698
699 /* Now update the length and offsets to take account of the bits
700 we've just compared. */
701 length_bits -= bits;
702 offset1_bits += bits;
703 offset2_bits += bits;
704 }
705
706 if (length_bits % TARGET_CHAR_BIT != 0)
707 {
708 size_t bits;
709 size_t o1, o2;
710 gdb_byte mask, b1, b2;
711
712 /* The length is not an exact number of bytes. After the previous
713 IF.. block then the offsets are byte aligned, or the
714 length is zero (in which case this code is not reached). Compare
715 a number of bits at the end of the region, starting from an exact
716 byte boundary. */
717 bits = length_bits % TARGET_CHAR_BIT;
718 o1 = offset1_bits + length_bits - bits;
719 o2 = offset2_bits + length_bits - bits;
720
721 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
722 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
723
724 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
725 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
726
727 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
728 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
729
730 if (b1 != b2)
731 return 1;
732
733 length_bits -= bits;
734 }
735
736 if (length_bits > 0)
737 {
738 /* We've now taken care of any stray "bits" at the start, or end of
739 the region to compare, the remainder can be covered with a simple
740 memcmp. */
741 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
742 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
743 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
744
745 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
746 ptr2 + offset2_bits / TARGET_CHAR_BIT,
747 length_bits / TARGET_CHAR_BIT);
748 }
749
750 /* Length is zero, regions match. */
751 return 0;
752 }
753
754 /* Helper struct for find_first_range_overlap_and_match and
755 value_contents_bits_eq. Keep track of which slot of a given ranges
756 vector have we last looked at. */
757
758 struct ranges_and_idx
759 {
760 /* The ranges. */
761 const std::vector<range> *ranges;
762
763 /* The range we've last found in RANGES. Given ranges are sorted,
764 we can start the next lookup here. */
765 int idx;
766 };
767
768 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
769 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
770 ranges starting at OFFSET2 bits. Return true if the ranges match
771 and fill in *L and *H with the overlapping window relative to
772 (both) OFFSET1 or OFFSET2. */
773
774 static int
775 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
776 struct ranges_and_idx *rp2,
777 LONGEST offset1, LONGEST offset2,
778 LONGEST length, ULONGEST *l, ULONGEST *h)
779 {
780 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
781 offset1, length);
782 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
783 offset2, length);
784
785 if (rp1->idx == -1 && rp2->idx == -1)
786 {
787 *l = length;
788 *h = length;
789 return 1;
790 }
791 else if (rp1->idx == -1 || rp2->idx == -1)
792 return 0;
793 else
794 {
795 const range *r1, *r2;
796 ULONGEST l1, h1;
797 ULONGEST l2, h2;
798
799 r1 = &(*rp1->ranges)[rp1->idx];
800 r2 = &(*rp2->ranges)[rp2->idx];
801
802 /* Get the unavailable windows intersected by the incoming
803 ranges. The first and last ranges that overlap the argument
804 range may be wider than said incoming arguments ranges. */
805 l1 = std::max (offset1, r1->offset);
806 h1 = std::min (offset1 + length, r1->offset + r1->length);
807
808 l2 = std::max (offset2, r2->offset);
809 h2 = std::min (offset2 + length, offset2 + r2->length);
810
811 /* Make them relative to the respective start offsets, so we can
812 compare them for equality. */
813 l1 -= offset1;
814 h1 -= offset1;
815
816 l2 -= offset2;
817 h2 -= offset2;
818
819 /* Different ranges, no match. */
820 if (l1 != l2 || h1 != h2)
821 return 0;
822
823 *h = h1;
824 *l = l1;
825 return 1;
826 }
827 }
828
829 /* Helper function for value_contents_eq. The only difference is that
830 this function is bit rather than byte based.
831
832 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
833 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
834 Return true if the available bits match. */
835
836 static bool
837 value_contents_bits_eq (const struct value *val1, int offset1,
838 const struct value *val2, int offset2,
839 int length)
840 {
841 /* Each array element corresponds to a ranges source (unavailable,
842 optimized out). '1' is for VAL1, '2' for VAL2. */
843 struct ranges_and_idx rp1[2], rp2[2];
844
845 /* See function description in value.h. */
846 gdb_assert (!val1->lazy && !val2->lazy);
847
848 /* We shouldn't be trying to compare past the end of the values. */
849 gdb_assert (offset1 + length
850 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
851 gdb_assert (offset2 + length
852 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
853
854 memset (&rp1, 0, sizeof (rp1));
855 memset (&rp2, 0, sizeof (rp2));
856 rp1[0].ranges = &val1->unavailable;
857 rp2[0].ranges = &val2->unavailable;
858 rp1[1].ranges = &val1->optimized_out;
859 rp2[1].ranges = &val2->optimized_out;
860
861 while (length > 0)
862 {
863 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
864 int i;
865
866 for (i = 0; i < 2; i++)
867 {
868 ULONGEST l_tmp, h_tmp;
869
870 /* The contents only match equal if the invalid/unavailable
871 contents ranges match as well. */
872 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
873 offset1, offset2, length,
874 &l_tmp, &h_tmp))
875 return false;
876
877 /* We're interested in the lowest/first range found. */
878 if (i == 0 || l_tmp < l)
879 {
880 l = l_tmp;
881 h = h_tmp;
882 }
883 }
884
885 /* Compare the available/valid contents. */
886 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
887 val2->contents.get (), offset2, l) != 0)
888 return false;
889
890 length -= h;
891 offset1 += h;
892 offset2 += h;
893 }
894
895 return true;
896 }
897
898 bool
899 value_contents_eq (const struct value *val1, LONGEST offset1,
900 const struct value *val2, LONGEST offset2,
901 LONGEST length)
902 {
903 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
904 val2, offset2 * TARGET_CHAR_BIT,
905 length * TARGET_CHAR_BIT);
906 }
907
908
909 /* The value-history records all the values printed by print commands
910 during this session. */
911
912 static std::vector<value_ref_ptr> value_history;
913
914 \f
915 /* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
919 static std::vector<value_ref_ptr> all_values;
920
921 /* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
924
925 struct value *
926 allocate_value_lazy (struct type *type)
927 {
928 struct value *val;
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
937
938 val = new struct value (type);
939
940 /* Values start out on the all_values chain. */
941 all_values.emplace_back (val);
942
943 return val;
944 }
945
946 /* The maximum size, in bytes, that GDB will try to allocate for a value.
947 The initial value of 64k was not selected for any specific reason, it is
948 just a reasonable starting point. */
949
950 static int max_value_size = 65536; /* 64k bytes */
951
952 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
953 LONGEST, otherwise GDB will not be able to parse integer values from the
954 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
955 be unable to parse "set max-value-size 2".
956
957 As we want a consistent GDB experience across hosts with different sizes
958 of LONGEST, this arbitrary minimum value was selected, so long as this
959 is bigger than LONGEST on all GDB supported hosts we're fine. */
960
961 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
962 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
963
964 /* Implement the "set max-value-size" command. */
965
966 static void
967 set_max_value_size (const char *args, int from_tty,
968 struct cmd_list_element *c)
969 {
970 gdb_assert (max_value_size == -1 || max_value_size >= 0);
971
972 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
973 {
974 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
975 error (_("max-value-size set too low, increasing to %d bytes"),
976 max_value_size);
977 }
978 }
979
980 /* Implement the "show max-value-size" command. */
981
982 static void
983 show_max_value_size (struct ui_file *file, int from_tty,
984 struct cmd_list_element *c, const char *value)
985 {
986 if (max_value_size == -1)
987 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
988 else
989 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
990 max_value_size);
991 }
992
993 /* Called before we attempt to allocate or reallocate a buffer for the
994 contents of a value. TYPE is the type of the value for which we are
995 allocating the buffer. If the buffer is too large (based on the user
996 controllable setting) then throw an error. If this function returns
997 then we should attempt to allocate the buffer. */
998
999 static void
1000 check_type_length_before_alloc (const struct type *type)
1001 {
1002 ULONGEST length = TYPE_LENGTH (type);
1003
1004 if (max_value_size > -1 && length > max_value_size)
1005 {
1006 if (type->name () != NULL)
1007 error (_("value of type `%s' requires %s bytes, which is more "
1008 "than max-value-size"), type->name (), pulongest (length));
1009 else
1010 error (_("value requires %s bytes, which is more than "
1011 "max-value-size"), pulongest (length));
1012 }
1013 }
1014
1015 /* Allocate the contents of VAL if it has not been allocated yet. */
1016
1017 static void
1018 allocate_value_contents (struct value *val)
1019 {
1020 if (!val->contents)
1021 {
1022 check_type_length_before_alloc (val->enclosing_type);
1023 val->contents.reset
1024 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1025 }
1026 }
1027
1028 /* Allocate a value and its contents for type TYPE. */
1029
1030 struct value *
1031 allocate_value (struct type *type)
1032 {
1033 struct value *val = allocate_value_lazy (type);
1034
1035 allocate_value_contents (val);
1036 val->lazy = 0;
1037 return val;
1038 }
1039
1040 /* Allocate a value that has the correct length
1041 for COUNT repetitions of type TYPE. */
1042
1043 struct value *
1044 allocate_repeat_value (struct type *type, int count)
1045 {
1046 /* Despite the fact that we are really creating an array of TYPE here, we
1047 use the string lower bound as the array lower bound. This seems to
1048 work fine for now. */
1049 int low_bound = current_language->string_lower_bound ();
1050 /* FIXME-type-allocation: need a way to free this type when we are
1051 done with it. */
1052 struct type *array_type
1053 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1054
1055 return allocate_value (array_type);
1056 }
1057
1058 struct value *
1059 allocate_computed_value (struct type *type,
1060 const struct lval_funcs *funcs,
1061 void *closure)
1062 {
1063 struct value *v = allocate_value_lazy (type);
1064
1065 VALUE_LVAL (v) = lval_computed;
1066 v->location.computed.funcs = funcs;
1067 v->location.computed.closure = closure;
1068
1069 return v;
1070 }
1071
1072 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1073
1074 struct value *
1075 allocate_optimized_out_value (struct type *type)
1076 {
1077 struct value *retval = allocate_value_lazy (type);
1078
1079 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1080 set_value_lazy (retval, 0);
1081 return retval;
1082 }
1083
1084 /* Accessor methods. */
1085
1086 struct type *
1087 value_type (const struct value *value)
1088 {
1089 return value->type;
1090 }
1091 void
1092 deprecated_set_value_type (struct value *value, struct type *type)
1093 {
1094 value->type = type;
1095 }
1096
1097 LONGEST
1098 value_offset (const struct value *value)
1099 {
1100 return value->offset;
1101 }
1102 void
1103 set_value_offset (struct value *value, LONGEST offset)
1104 {
1105 value->offset = offset;
1106 }
1107
1108 LONGEST
1109 value_bitpos (const struct value *value)
1110 {
1111 return value->bitpos;
1112 }
1113 void
1114 set_value_bitpos (struct value *value, LONGEST bit)
1115 {
1116 value->bitpos = bit;
1117 }
1118
1119 LONGEST
1120 value_bitsize (const struct value *value)
1121 {
1122 return value->bitsize;
1123 }
1124 void
1125 set_value_bitsize (struct value *value, LONGEST bit)
1126 {
1127 value->bitsize = bit;
1128 }
1129
1130 struct value *
1131 value_parent (const struct value *value)
1132 {
1133 return value->parent.get ();
1134 }
1135
1136 /* See value.h. */
1137
1138 void
1139 set_value_parent (struct value *value, struct value *parent)
1140 {
1141 value->parent = value_ref_ptr::new_reference (parent);
1142 }
1143
1144 gdb_byte *
1145 value_contents_raw (struct value *value)
1146 {
1147 struct gdbarch *arch = get_value_arch (value);
1148 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1149
1150 allocate_value_contents (value);
1151 return value->contents.get () + value->embedded_offset * unit_size;
1152 }
1153
1154 gdb_byte *
1155 value_contents_all_raw (struct value *value)
1156 {
1157 allocate_value_contents (value);
1158 return value->contents.get ();
1159 }
1160
1161 struct type *
1162 value_enclosing_type (const struct value *value)
1163 {
1164 return value->enclosing_type;
1165 }
1166
1167 /* Look at value.h for description. */
1168
1169 struct type *
1170 value_actual_type (struct value *value, int resolve_simple_types,
1171 int *real_type_found)
1172 {
1173 struct value_print_options opts;
1174 struct type *result;
1175
1176 get_user_print_options (&opts);
1177
1178 if (real_type_found)
1179 *real_type_found = 0;
1180 result = value_type (value);
1181 if (opts.objectprint)
1182 {
1183 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1184 fetch its rtti type. */
1185 if (result->is_pointer_or_reference ()
1186 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1187 == TYPE_CODE_STRUCT)
1188 && !value_optimized_out (value))
1189 {
1190 struct type *real_type;
1191
1192 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1193 if (real_type)
1194 {
1195 if (real_type_found)
1196 *real_type_found = 1;
1197 result = real_type;
1198 }
1199 }
1200 else if (resolve_simple_types)
1201 {
1202 if (real_type_found)
1203 *real_type_found = 1;
1204 result = value_enclosing_type (value);
1205 }
1206 }
1207
1208 return result;
1209 }
1210
1211 void
1212 error_value_optimized_out (void)
1213 {
1214 error (_("value has been optimized out"));
1215 }
1216
1217 static void
1218 require_not_optimized_out (const struct value *value)
1219 {
1220 if (!value->optimized_out.empty ())
1221 {
1222 if (value->lval == lval_register)
1223 error (_("register has not been saved in frame"));
1224 else
1225 error_value_optimized_out ();
1226 }
1227 }
1228
1229 static void
1230 require_available (const struct value *value)
1231 {
1232 if (!value->unavailable.empty ())
1233 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1234 }
1235
1236 const gdb_byte *
1237 value_contents_for_printing (struct value *value)
1238 {
1239 if (value->lazy)
1240 value_fetch_lazy (value);
1241 return value->contents.get ();
1242 }
1243
1244 const gdb_byte *
1245 value_contents_for_printing_const (const struct value *value)
1246 {
1247 gdb_assert (!value->lazy);
1248 return value->contents.get ();
1249 }
1250
1251 const gdb_byte *
1252 value_contents_all (struct value *value)
1253 {
1254 const gdb_byte *result = value_contents_for_printing (value);
1255 require_not_optimized_out (value);
1256 require_available (value);
1257 return result;
1258 }
1259
1260 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1261 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1262
1263 static void
1264 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1265 const std::vector<range> &src_range, int src_bit_offset,
1266 int bit_length)
1267 {
1268 for (const range &r : src_range)
1269 {
1270 ULONGEST h, l;
1271
1272 l = std::max (r.offset, (LONGEST) src_bit_offset);
1273 h = std::min (r.offset + r.length,
1274 (LONGEST) src_bit_offset + bit_length);
1275
1276 if (l < h)
1277 insert_into_bit_range_vector (dst_range,
1278 dst_bit_offset + (l - src_bit_offset),
1279 h - l);
1280 }
1281 }
1282
1283 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1284 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1285
1286 static void
1287 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1288 const struct value *src, int src_bit_offset,
1289 int bit_length)
1290 {
1291 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1292 src->unavailable, src_bit_offset,
1293 bit_length);
1294 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1295 src->optimized_out, src_bit_offset,
1296 bit_length);
1297 }
1298
1299 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1300 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1301 contents, starting at DST_OFFSET. If unavailable contents are
1302 being copied from SRC, the corresponding DST contents are marked
1303 unavailable accordingly. Neither DST nor SRC may be lazy
1304 values.
1305
1306 It is assumed the contents of DST in the [DST_OFFSET,
1307 DST_OFFSET+LENGTH) range are wholly available. */
1308
1309 static void
1310 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1311 struct value *src, LONGEST src_offset, LONGEST length)
1312 {
1313 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1314 struct gdbarch *arch = get_value_arch (src);
1315 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1316
1317 /* A lazy DST would make that this copy operation useless, since as
1318 soon as DST's contents were un-lazied (by a later value_contents
1319 call, say), the contents would be overwritten. A lazy SRC would
1320 mean we'd be copying garbage. */
1321 gdb_assert (!dst->lazy && !src->lazy);
1322
1323 /* The overwritten DST range gets unavailability ORed in, not
1324 replaced. Make sure to remember to implement replacing if it
1325 turns out actually necessary. */
1326 gdb_assert (value_bytes_available (dst, dst_offset, length));
1327 gdb_assert (!value_bits_any_optimized_out (dst,
1328 TARGET_CHAR_BIT * dst_offset,
1329 TARGET_CHAR_BIT * length));
1330
1331 /* Copy the data. */
1332 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1333 value_contents_all_raw (src) + src_offset * unit_size,
1334 length * unit_size);
1335
1336 /* Copy the meta-data, adjusted. */
1337 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1338 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1339 bit_length = length * unit_size * HOST_CHAR_BIT;
1340
1341 value_ranges_copy_adjusted (dst, dst_bit_offset,
1342 src, src_bit_offset,
1343 bit_length);
1344 }
1345
1346 /* Copy LENGTH bytes of SRC value's (all) contents
1347 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1348 (all) contents, starting at DST_OFFSET. If unavailable contents
1349 are being copied from SRC, the corresponding DST contents are
1350 marked unavailable accordingly. DST must not be lazy. If SRC is
1351 lazy, it will be fetched now.
1352
1353 It is assumed the contents of DST in the [DST_OFFSET,
1354 DST_OFFSET+LENGTH) range are wholly available. */
1355
1356 void
1357 value_contents_copy (struct value *dst, LONGEST dst_offset,
1358 struct value *src, LONGEST src_offset, LONGEST length)
1359 {
1360 if (src->lazy)
1361 value_fetch_lazy (src);
1362
1363 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1364 }
1365
1366 int
1367 value_lazy (const struct value *value)
1368 {
1369 return value->lazy;
1370 }
1371
1372 void
1373 set_value_lazy (struct value *value, int val)
1374 {
1375 value->lazy = val;
1376 }
1377
1378 int
1379 value_stack (const struct value *value)
1380 {
1381 return value->stack;
1382 }
1383
1384 void
1385 set_value_stack (struct value *value, int val)
1386 {
1387 value->stack = val;
1388 }
1389
1390 const gdb_byte *
1391 value_contents (struct value *value)
1392 {
1393 const gdb_byte *result = value_contents_writeable (value);
1394 require_not_optimized_out (value);
1395 require_available (value);
1396 return result;
1397 }
1398
1399 gdb_byte *
1400 value_contents_writeable (struct value *value)
1401 {
1402 if (value->lazy)
1403 value_fetch_lazy (value);
1404 return value_contents_raw (value);
1405 }
1406
1407 int
1408 value_optimized_out (struct value *value)
1409 {
1410 /* We can only know if a value is optimized out once we have tried to
1411 fetch it. */
1412 if (value->optimized_out.empty () && value->lazy)
1413 {
1414 try
1415 {
1416 value_fetch_lazy (value);
1417 }
1418 catch (const gdb_exception_error &ex)
1419 {
1420 switch (ex.error)
1421 {
1422 case MEMORY_ERROR:
1423 case OPTIMIZED_OUT_ERROR:
1424 case NOT_AVAILABLE_ERROR:
1425 /* These can normally happen when we try to access an
1426 optimized out or unavailable register, either in a
1427 physical register or spilled to memory. */
1428 break;
1429 default:
1430 throw;
1431 }
1432 }
1433 }
1434
1435 return !value->optimized_out.empty ();
1436 }
1437
1438 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1439 the following LENGTH bytes. */
1440
1441 void
1442 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1443 {
1444 mark_value_bits_optimized_out (value,
1445 offset * TARGET_CHAR_BIT,
1446 length * TARGET_CHAR_BIT);
1447 }
1448
1449 /* See value.h. */
1450
1451 void
1452 mark_value_bits_optimized_out (struct value *value,
1453 LONGEST offset, LONGEST length)
1454 {
1455 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1456 }
1457
1458 int
1459 value_bits_synthetic_pointer (const struct value *value,
1460 LONGEST offset, LONGEST length)
1461 {
1462 if (value->lval != lval_computed
1463 || !value->location.computed.funcs->check_synthetic_pointer)
1464 return 0;
1465 return value->location.computed.funcs->check_synthetic_pointer (value,
1466 offset,
1467 length);
1468 }
1469
1470 LONGEST
1471 value_embedded_offset (const struct value *value)
1472 {
1473 return value->embedded_offset;
1474 }
1475
1476 void
1477 set_value_embedded_offset (struct value *value, LONGEST val)
1478 {
1479 value->embedded_offset = val;
1480 }
1481
1482 LONGEST
1483 value_pointed_to_offset (const struct value *value)
1484 {
1485 return value->pointed_to_offset;
1486 }
1487
1488 void
1489 set_value_pointed_to_offset (struct value *value, LONGEST val)
1490 {
1491 value->pointed_to_offset = val;
1492 }
1493
1494 const struct lval_funcs *
1495 value_computed_funcs (const struct value *v)
1496 {
1497 gdb_assert (value_lval_const (v) == lval_computed);
1498
1499 return v->location.computed.funcs;
1500 }
1501
1502 void *
1503 value_computed_closure (const struct value *v)
1504 {
1505 gdb_assert (v->lval == lval_computed);
1506
1507 return v->location.computed.closure;
1508 }
1509
1510 enum lval_type *
1511 deprecated_value_lval_hack (struct value *value)
1512 {
1513 return &value->lval;
1514 }
1515
1516 enum lval_type
1517 value_lval_const (const struct value *value)
1518 {
1519 return value->lval;
1520 }
1521
1522 CORE_ADDR
1523 value_address (const struct value *value)
1524 {
1525 if (value->lval != lval_memory)
1526 return 0;
1527 if (value->parent != NULL)
1528 return value_address (value->parent.get ()) + value->offset;
1529 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1530 {
1531 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1532 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1533 }
1534
1535 return value->location.address + value->offset;
1536 }
1537
1538 CORE_ADDR
1539 value_raw_address (const struct value *value)
1540 {
1541 if (value->lval != lval_memory)
1542 return 0;
1543 return value->location.address;
1544 }
1545
1546 void
1547 set_value_address (struct value *value, CORE_ADDR addr)
1548 {
1549 gdb_assert (value->lval == lval_memory);
1550 value->location.address = addr;
1551 }
1552
1553 struct internalvar **
1554 deprecated_value_internalvar_hack (struct value *value)
1555 {
1556 return &value->location.internalvar;
1557 }
1558
1559 struct frame_id *
1560 deprecated_value_next_frame_id_hack (struct value *value)
1561 {
1562 gdb_assert (value->lval == lval_register);
1563 return &value->location.reg.next_frame_id;
1564 }
1565
1566 int *
1567 deprecated_value_regnum_hack (struct value *value)
1568 {
1569 gdb_assert (value->lval == lval_register);
1570 return &value->location.reg.regnum;
1571 }
1572
1573 int
1574 deprecated_value_modifiable (const struct value *value)
1575 {
1576 return value->modifiable;
1577 }
1578 \f
1579 /* Return a mark in the value chain. All values allocated after the
1580 mark is obtained (except for those released) are subject to being freed
1581 if a subsequent value_free_to_mark is passed the mark. */
1582 struct value *
1583 value_mark (void)
1584 {
1585 if (all_values.empty ())
1586 return nullptr;
1587 return all_values.back ().get ();
1588 }
1589
1590 /* See value.h. */
1591
1592 void
1593 value_incref (struct value *val)
1594 {
1595 val->reference_count++;
1596 }
1597
1598 /* Release a reference to VAL, which was acquired with value_incref.
1599 This function is also called to deallocate values from the value
1600 chain. */
1601
1602 void
1603 value_decref (struct value *val)
1604 {
1605 if (val != nullptr)
1606 {
1607 gdb_assert (val->reference_count > 0);
1608 val->reference_count--;
1609 if (val->reference_count == 0)
1610 delete val;
1611 }
1612 }
1613
1614 /* Free all values allocated since MARK was obtained by value_mark
1615 (except for those released). */
1616 void
1617 value_free_to_mark (const struct value *mark)
1618 {
1619 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1620 if (iter == all_values.end ())
1621 all_values.clear ();
1622 else
1623 all_values.erase (iter + 1, all_values.end ());
1624 }
1625
1626 /* Remove VAL from the chain all_values
1627 so it will not be freed automatically. */
1628
1629 value_ref_ptr
1630 release_value (struct value *val)
1631 {
1632 if (val == nullptr)
1633 return value_ref_ptr ();
1634
1635 std::vector<value_ref_ptr>::reverse_iterator iter;
1636 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1637 {
1638 if (*iter == val)
1639 {
1640 value_ref_ptr result = *iter;
1641 all_values.erase (iter.base () - 1);
1642 return result;
1643 }
1644 }
1645
1646 /* We must always return an owned reference. Normally this happens
1647 because we transfer the reference from the value chain, but in
1648 this case the value was not on the chain. */
1649 return value_ref_ptr::new_reference (val);
1650 }
1651
1652 /* See value.h. */
1653
1654 std::vector<value_ref_ptr>
1655 value_release_to_mark (const struct value *mark)
1656 {
1657 std::vector<value_ref_ptr> result;
1658
1659 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1660 if (iter == all_values.end ())
1661 std::swap (result, all_values);
1662 else
1663 {
1664 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1665 all_values.erase (iter + 1, all_values.end ());
1666 }
1667 std::reverse (result.begin (), result.end ());
1668 return result;
1669 }
1670
1671 /* Return a copy of the value ARG.
1672 It contains the same contents, for same memory address,
1673 but it's a different block of storage. */
1674
1675 struct value *
1676 value_copy (struct value *arg)
1677 {
1678 struct type *encl_type = value_enclosing_type (arg);
1679 struct value *val;
1680
1681 if (value_lazy (arg))
1682 val = allocate_value_lazy (encl_type);
1683 else
1684 val = allocate_value (encl_type);
1685 val->type = arg->type;
1686 VALUE_LVAL (val) = VALUE_LVAL (arg);
1687 val->location = arg->location;
1688 val->offset = arg->offset;
1689 val->bitpos = arg->bitpos;
1690 val->bitsize = arg->bitsize;
1691 val->lazy = arg->lazy;
1692 val->embedded_offset = value_embedded_offset (arg);
1693 val->pointed_to_offset = arg->pointed_to_offset;
1694 val->modifiable = arg->modifiable;
1695 val->stack = arg->stack;
1696 val->initialized = arg->initialized;
1697 if (!value_lazy (val))
1698 {
1699 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1700 TYPE_LENGTH (value_enclosing_type (arg)));
1701
1702 }
1703 val->unavailable = arg->unavailable;
1704 val->optimized_out = arg->optimized_out;
1705 val->parent = arg->parent;
1706 if (VALUE_LVAL (val) == lval_computed)
1707 {
1708 const struct lval_funcs *funcs = val->location.computed.funcs;
1709
1710 if (funcs->copy_closure)
1711 val->location.computed.closure = funcs->copy_closure (val);
1712 }
1713 return val;
1714 }
1715
1716 /* Return a "const" and/or "volatile" qualified version of the value V.
1717 If CNST is true, then the returned value will be qualified with
1718 "const".
1719 if VOLTL is true, then the returned value will be qualified with
1720 "volatile". */
1721
1722 struct value *
1723 make_cv_value (int cnst, int voltl, struct value *v)
1724 {
1725 struct type *val_type = value_type (v);
1726 struct type *enclosing_type = value_enclosing_type (v);
1727 struct value *cv_val = value_copy (v);
1728
1729 deprecated_set_value_type (cv_val,
1730 make_cv_type (cnst, voltl, val_type, NULL));
1731 set_value_enclosing_type (cv_val,
1732 make_cv_type (cnst, voltl, enclosing_type, NULL));
1733
1734 return cv_val;
1735 }
1736
1737 /* Return a version of ARG that is non-lvalue. */
1738
1739 struct value *
1740 value_non_lval (struct value *arg)
1741 {
1742 if (VALUE_LVAL (arg) != not_lval)
1743 {
1744 struct type *enc_type = value_enclosing_type (arg);
1745 struct value *val = allocate_value (enc_type);
1746
1747 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1748 TYPE_LENGTH (enc_type));
1749 val->type = arg->type;
1750 set_value_embedded_offset (val, value_embedded_offset (arg));
1751 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1752 return val;
1753 }
1754 return arg;
1755 }
1756
1757 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1758
1759 void
1760 value_force_lval (struct value *v, CORE_ADDR addr)
1761 {
1762 gdb_assert (VALUE_LVAL (v) == not_lval);
1763
1764 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1765 v->lval = lval_memory;
1766 v->location.address = addr;
1767 }
1768
1769 void
1770 set_value_component_location (struct value *component,
1771 const struct value *whole)
1772 {
1773 struct type *type;
1774
1775 gdb_assert (whole->lval != lval_xcallable);
1776
1777 if (whole->lval == lval_internalvar)
1778 VALUE_LVAL (component) = lval_internalvar_component;
1779 else
1780 VALUE_LVAL (component) = whole->lval;
1781
1782 component->location = whole->location;
1783 if (whole->lval == lval_computed)
1784 {
1785 const struct lval_funcs *funcs = whole->location.computed.funcs;
1786
1787 if (funcs->copy_closure)
1788 component->location.computed.closure = funcs->copy_closure (whole);
1789 }
1790
1791 /* If the WHOLE value has a dynamically resolved location property then
1792 update the address of the COMPONENT. */
1793 type = value_type (whole);
1794 if (NULL != TYPE_DATA_LOCATION (type)
1795 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1796 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1797
1798 /* Similarly, if the COMPONENT value has a dynamically resolved location
1799 property then update its address. */
1800 type = value_type (component);
1801 if (NULL != TYPE_DATA_LOCATION (type)
1802 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1803 {
1804 /* If the COMPONENT has a dynamic location, and is an
1805 lval_internalvar_component, then we change it to a lval_memory.
1806
1807 Usually a component of an internalvar is created non-lazy, and has
1808 its content immediately copied from the parent internalvar.
1809 However, for components with a dynamic location, the content of
1810 the component is not contained within the parent, but is instead
1811 accessed indirectly. Further, the component will be created as a
1812 lazy value.
1813
1814 By changing the type of the component to lval_memory we ensure
1815 that value_fetch_lazy can successfully load the component.
1816
1817 This solution isn't ideal, but a real fix would require values to
1818 carry around both the parent value contents, and the contents of
1819 any dynamic fields within the parent. This is a substantial
1820 change to how values work in GDB. */
1821 if (VALUE_LVAL (component) == lval_internalvar_component)
1822 {
1823 gdb_assert (value_lazy (component));
1824 VALUE_LVAL (component) = lval_memory;
1825 }
1826 else
1827 gdb_assert (VALUE_LVAL (component) == lval_memory);
1828 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1829 }
1830 }
1831
1832 /* Access to the value history. */
1833
1834 /* Record a new value in the value history.
1835 Returns the absolute history index of the entry. */
1836
1837 int
1838 record_latest_value (struct value *val)
1839 {
1840 /* We don't want this value to have anything to do with the inferior anymore.
1841 In particular, "set $1 = 50" should not affect the variable from which
1842 the value was taken, and fast watchpoints should be able to assume that
1843 a value on the value history never changes. */
1844 if (value_lazy (val))
1845 value_fetch_lazy (val);
1846 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1847 from. This is a bit dubious, because then *&$1 does not just return $1
1848 but the current contents of that location. c'est la vie... */
1849 val->modifiable = 0;
1850
1851 value_history.push_back (release_value (val));
1852
1853 return value_history.size ();
1854 }
1855
1856 /* Return a copy of the value in the history with sequence number NUM. */
1857
1858 struct value *
1859 access_value_history (int num)
1860 {
1861 int absnum = num;
1862
1863 if (absnum <= 0)
1864 absnum += value_history.size ();
1865
1866 if (absnum <= 0)
1867 {
1868 if (num == 0)
1869 error (_("The history is empty."));
1870 else if (num == 1)
1871 error (_("There is only one value in the history."));
1872 else
1873 error (_("History does not go back to $$%d."), -num);
1874 }
1875 if (absnum > value_history.size ())
1876 error (_("History has not yet reached $%d."), absnum);
1877
1878 absnum--;
1879
1880 return value_copy (value_history[absnum].get ());
1881 }
1882
1883 static void
1884 show_values (const char *num_exp, int from_tty)
1885 {
1886 int i;
1887 struct value *val;
1888 static int num = 1;
1889
1890 if (num_exp)
1891 {
1892 /* "show values +" should print from the stored position.
1893 "show values <exp>" should print around value number <exp>. */
1894 if (num_exp[0] != '+' || num_exp[1] != '\0')
1895 num = parse_and_eval_long (num_exp) - 5;
1896 }
1897 else
1898 {
1899 /* "show values" means print the last 10 values. */
1900 num = value_history.size () - 9;
1901 }
1902
1903 if (num <= 0)
1904 num = 1;
1905
1906 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1907 {
1908 struct value_print_options opts;
1909
1910 val = access_value_history (i);
1911 printf_filtered (("$%d = "), i);
1912 get_user_print_options (&opts);
1913 value_print (val, gdb_stdout, &opts);
1914 printf_filtered (("\n"));
1915 }
1916
1917 /* The next "show values +" should start after what we just printed. */
1918 num += 10;
1919
1920 /* Hitting just return after this command should do the same thing as
1921 "show values +". If num_exp is null, this is unnecessary, since
1922 "show values +" is not useful after "show values". */
1923 if (from_tty && num_exp)
1924 set_repeat_arguments ("+");
1925 }
1926 \f
1927 enum internalvar_kind
1928 {
1929 /* The internal variable is empty. */
1930 INTERNALVAR_VOID,
1931
1932 /* The value of the internal variable is provided directly as
1933 a GDB value object. */
1934 INTERNALVAR_VALUE,
1935
1936 /* A fresh value is computed via a call-back routine on every
1937 access to the internal variable. */
1938 INTERNALVAR_MAKE_VALUE,
1939
1940 /* The internal variable holds a GDB internal convenience function. */
1941 INTERNALVAR_FUNCTION,
1942
1943 /* The variable holds an integer value. */
1944 INTERNALVAR_INTEGER,
1945
1946 /* The variable holds a GDB-provided string. */
1947 INTERNALVAR_STRING,
1948 };
1949
1950 union internalvar_data
1951 {
1952 /* A value object used with INTERNALVAR_VALUE. */
1953 struct value *value;
1954
1955 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1956 struct
1957 {
1958 /* The functions to call. */
1959 const struct internalvar_funcs *functions;
1960
1961 /* The function's user-data. */
1962 void *data;
1963 } make_value;
1964
1965 /* The internal function used with INTERNALVAR_FUNCTION. */
1966 struct
1967 {
1968 struct internal_function *function;
1969 /* True if this is the canonical name for the function. */
1970 int canonical;
1971 } fn;
1972
1973 /* An integer value used with INTERNALVAR_INTEGER. */
1974 struct
1975 {
1976 /* If type is non-NULL, it will be used as the type to generate
1977 a value for this internal variable. If type is NULL, a default
1978 integer type for the architecture is used. */
1979 struct type *type;
1980 LONGEST val;
1981 } integer;
1982
1983 /* A string value used with INTERNALVAR_STRING. */
1984 char *string;
1985 };
1986
1987 /* Internal variables. These are variables within the debugger
1988 that hold values assigned by debugger commands.
1989 The user refers to them with a '$' prefix
1990 that does not appear in the variable names stored internally. */
1991
1992 struct internalvar
1993 {
1994 struct internalvar *next;
1995 char *name;
1996
1997 /* We support various different kinds of content of an internal variable.
1998 enum internalvar_kind specifies the kind, and union internalvar_data
1999 provides the data associated with this particular kind. */
2000
2001 enum internalvar_kind kind;
2002
2003 union internalvar_data u;
2004 };
2005
2006 static struct internalvar *internalvars;
2007
2008 /* If the variable does not already exist create it and give it the
2009 value given. If no value is given then the default is zero. */
2010 static void
2011 init_if_undefined_command (const char* args, int from_tty)
2012 {
2013 struct internalvar *intvar = nullptr;
2014
2015 /* Parse the expression - this is taken from set_command(). */
2016 expression_up expr = parse_expression (args);
2017
2018 /* Validate the expression.
2019 Was the expression an assignment?
2020 Or even an expression at all? */
2021 if (expr->first_opcode () != BINOP_ASSIGN)
2022 error (_("Init-if-undefined requires an assignment expression."));
2023
2024 /* Extract the variable from the parsed expression. */
2025 expr::assign_operation *assign
2026 = dynamic_cast<expr::assign_operation *> (expr->op.get ());
2027 if (assign != nullptr)
2028 {
2029 expr::operation *lhs = assign->get_lhs ();
2030 expr::internalvar_operation *ivarop
2031 = dynamic_cast<expr::internalvar_operation *> (lhs);
2032 if (ivarop != nullptr)
2033 intvar = ivarop->get_internalvar ();
2034 }
2035
2036 if (intvar == nullptr)
2037 error (_("The first parameter to init-if-undefined "
2038 "should be a GDB variable."));
2039
2040 /* Only evaluate the expression if the lvalue is void.
2041 This may still fail if the expression is invalid. */
2042 if (intvar->kind == INTERNALVAR_VOID)
2043 evaluate_expression (expr.get ());
2044 }
2045
2046
2047 /* Look up an internal variable with name NAME. NAME should not
2048 normally include a dollar sign.
2049
2050 If the specified internal variable does not exist,
2051 the return value is NULL. */
2052
2053 struct internalvar *
2054 lookup_only_internalvar (const char *name)
2055 {
2056 struct internalvar *var;
2057
2058 for (var = internalvars; var; var = var->next)
2059 if (strcmp (var->name, name) == 0)
2060 return var;
2061
2062 return NULL;
2063 }
2064
2065 /* Complete NAME by comparing it to the names of internal
2066 variables. */
2067
2068 void
2069 complete_internalvar (completion_tracker &tracker, const char *name)
2070 {
2071 struct internalvar *var;
2072 int len;
2073
2074 len = strlen (name);
2075
2076 for (var = internalvars; var; var = var->next)
2077 if (strncmp (var->name, name, len) == 0)
2078 tracker.add_completion (make_unique_xstrdup (var->name));
2079 }
2080
2081 /* Create an internal variable with name NAME and with a void value.
2082 NAME should not normally include a dollar sign. */
2083
2084 struct internalvar *
2085 create_internalvar (const char *name)
2086 {
2087 struct internalvar *var = XNEW (struct internalvar);
2088
2089 var->name = xstrdup (name);
2090 var->kind = INTERNALVAR_VOID;
2091 var->next = internalvars;
2092 internalvars = var;
2093 return var;
2094 }
2095
2096 /* Create an internal variable with name NAME and register FUN as the
2097 function that value_of_internalvar uses to create a value whenever
2098 this variable is referenced. NAME should not normally include a
2099 dollar sign. DATA is passed uninterpreted to FUN when it is
2100 called. CLEANUP, if not NULL, is called when the internal variable
2101 is destroyed. It is passed DATA as its only argument. */
2102
2103 struct internalvar *
2104 create_internalvar_type_lazy (const char *name,
2105 const struct internalvar_funcs *funcs,
2106 void *data)
2107 {
2108 struct internalvar *var = create_internalvar (name);
2109
2110 var->kind = INTERNALVAR_MAKE_VALUE;
2111 var->u.make_value.functions = funcs;
2112 var->u.make_value.data = data;
2113 return var;
2114 }
2115
2116 /* See documentation in value.h. */
2117
2118 int
2119 compile_internalvar_to_ax (struct internalvar *var,
2120 struct agent_expr *expr,
2121 struct axs_value *value)
2122 {
2123 if (var->kind != INTERNALVAR_MAKE_VALUE
2124 || var->u.make_value.functions->compile_to_ax == NULL)
2125 return 0;
2126
2127 var->u.make_value.functions->compile_to_ax (var, expr, value,
2128 var->u.make_value.data);
2129 return 1;
2130 }
2131
2132 /* Look up an internal variable with name NAME. NAME should not
2133 normally include a dollar sign.
2134
2135 If the specified internal variable does not exist,
2136 one is created, with a void value. */
2137
2138 struct internalvar *
2139 lookup_internalvar (const char *name)
2140 {
2141 struct internalvar *var;
2142
2143 var = lookup_only_internalvar (name);
2144 if (var)
2145 return var;
2146
2147 return create_internalvar (name);
2148 }
2149
2150 /* Return current value of internal variable VAR. For variables that
2151 are not inherently typed, use a value type appropriate for GDBARCH. */
2152
2153 struct value *
2154 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2155 {
2156 struct value *val;
2157 struct trace_state_variable *tsv;
2158
2159 /* If there is a trace state variable of the same name, assume that
2160 is what we really want to see. */
2161 tsv = find_trace_state_variable (var->name);
2162 if (tsv)
2163 {
2164 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2165 &(tsv->value));
2166 if (tsv->value_known)
2167 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2168 tsv->value);
2169 else
2170 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2171 return val;
2172 }
2173
2174 switch (var->kind)
2175 {
2176 case INTERNALVAR_VOID:
2177 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2178 break;
2179
2180 case INTERNALVAR_FUNCTION:
2181 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2182 break;
2183
2184 case INTERNALVAR_INTEGER:
2185 if (!var->u.integer.type)
2186 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2187 var->u.integer.val);
2188 else
2189 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2190 break;
2191
2192 case INTERNALVAR_STRING:
2193 val = value_cstring (var->u.string, strlen (var->u.string),
2194 builtin_type (gdbarch)->builtin_char);
2195 break;
2196
2197 case INTERNALVAR_VALUE:
2198 val = value_copy (var->u.value);
2199 if (value_lazy (val))
2200 value_fetch_lazy (val);
2201 break;
2202
2203 case INTERNALVAR_MAKE_VALUE:
2204 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2205 var->u.make_value.data);
2206 break;
2207
2208 default:
2209 internal_error (__FILE__, __LINE__, _("bad kind"));
2210 }
2211
2212 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2213 on this value go back to affect the original internal variable.
2214
2215 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2216 no underlying modifiable state in the internal variable.
2217
2218 Likewise, if the variable's value is a computed lvalue, we want
2219 references to it to produce another computed lvalue, where
2220 references and assignments actually operate through the
2221 computed value's functions.
2222
2223 This means that internal variables with computed values
2224 behave a little differently from other internal variables:
2225 assignments to them don't just replace the previous value
2226 altogether. At the moment, this seems like the behavior we
2227 want. */
2228
2229 if (var->kind != INTERNALVAR_MAKE_VALUE
2230 && val->lval != lval_computed)
2231 {
2232 VALUE_LVAL (val) = lval_internalvar;
2233 VALUE_INTERNALVAR (val) = var;
2234 }
2235
2236 return val;
2237 }
2238
2239 int
2240 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2241 {
2242 if (var->kind == INTERNALVAR_INTEGER)
2243 {
2244 *result = var->u.integer.val;
2245 return 1;
2246 }
2247
2248 if (var->kind == INTERNALVAR_VALUE)
2249 {
2250 struct type *type = check_typedef (value_type (var->u.value));
2251
2252 if (type->code () == TYPE_CODE_INT)
2253 {
2254 *result = value_as_long (var->u.value);
2255 return 1;
2256 }
2257 }
2258
2259 return 0;
2260 }
2261
2262 static int
2263 get_internalvar_function (struct internalvar *var,
2264 struct internal_function **result)
2265 {
2266 switch (var->kind)
2267 {
2268 case INTERNALVAR_FUNCTION:
2269 *result = var->u.fn.function;
2270 return 1;
2271
2272 default:
2273 return 0;
2274 }
2275 }
2276
2277 void
2278 set_internalvar_component (struct internalvar *var,
2279 LONGEST offset, LONGEST bitpos,
2280 LONGEST bitsize, struct value *newval)
2281 {
2282 gdb_byte *addr;
2283 struct gdbarch *arch;
2284 int unit_size;
2285
2286 switch (var->kind)
2287 {
2288 case INTERNALVAR_VALUE:
2289 addr = value_contents_writeable (var->u.value);
2290 arch = get_value_arch (var->u.value);
2291 unit_size = gdbarch_addressable_memory_unit_size (arch);
2292
2293 if (bitsize)
2294 modify_field (value_type (var->u.value), addr + offset,
2295 value_as_long (newval), bitpos, bitsize);
2296 else
2297 memcpy (addr + offset * unit_size, value_contents (newval),
2298 TYPE_LENGTH (value_type (newval)));
2299 break;
2300
2301 default:
2302 /* We can never get a component of any other kind. */
2303 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2304 }
2305 }
2306
2307 void
2308 set_internalvar (struct internalvar *var, struct value *val)
2309 {
2310 enum internalvar_kind new_kind;
2311 union internalvar_data new_data = { 0 };
2312
2313 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2314 error (_("Cannot overwrite convenience function %s"), var->name);
2315
2316 /* Prepare new contents. */
2317 switch (check_typedef (value_type (val))->code ())
2318 {
2319 case TYPE_CODE_VOID:
2320 new_kind = INTERNALVAR_VOID;
2321 break;
2322
2323 case TYPE_CODE_INTERNAL_FUNCTION:
2324 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2325 new_kind = INTERNALVAR_FUNCTION;
2326 get_internalvar_function (VALUE_INTERNALVAR (val),
2327 &new_data.fn.function);
2328 /* Copies created here are never canonical. */
2329 break;
2330
2331 default:
2332 new_kind = INTERNALVAR_VALUE;
2333 struct value *copy = value_copy (val);
2334 copy->modifiable = 1;
2335
2336 /* Force the value to be fetched from the target now, to avoid problems
2337 later when this internalvar is referenced and the target is gone or
2338 has changed. */
2339 if (value_lazy (copy))
2340 value_fetch_lazy (copy);
2341
2342 /* Release the value from the value chain to prevent it from being
2343 deleted by free_all_values. From here on this function should not
2344 call error () until new_data is installed into the var->u to avoid
2345 leaking memory. */
2346 new_data.value = release_value (copy).release ();
2347
2348 /* Internal variables which are created from values with a dynamic
2349 location don't need the location property of the origin anymore.
2350 The resolved dynamic location is used prior then any other address
2351 when accessing the value.
2352 If we keep it, we would still refer to the origin value.
2353 Remove the location property in case it exist. */
2354 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
2355
2356 break;
2357 }
2358
2359 /* Clean up old contents. */
2360 clear_internalvar (var);
2361
2362 /* Switch over. */
2363 var->kind = new_kind;
2364 var->u = new_data;
2365 /* End code which must not call error(). */
2366 }
2367
2368 void
2369 set_internalvar_integer (struct internalvar *var, LONGEST l)
2370 {
2371 /* Clean up old contents. */
2372 clear_internalvar (var);
2373
2374 var->kind = INTERNALVAR_INTEGER;
2375 var->u.integer.type = NULL;
2376 var->u.integer.val = l;
2377 }
2378
2379 void
2380 set_internalvar_string (struct internalvar *var, const char *string)
2381 {
2382 /* Clean up old contents. */
2383 clear_internalvar (var);
2384
2385 var->kind = INTERNALVAR_STRING;
2386 var->u.string = xstrdup (string);
2387 }
2388
2389 static void
2390 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2391 {
2392 /* Clean up old contents. */
2393 clear_internalvar (var);
2394
2395 var->kind = INTERNALVAR_FUNCTION;
2396 var->u.fn.function = f;
2397 var->u.fn.canonical = 1;
2398 /* Variables installed here are always the canonical version. */
2399 }
2400
2401 void
2402 clear_internalvar (struct internalvar *var)
2403 {
2404 /* Clean up old contents. */
2405 switch (var->kind)
2406 {
2407 case INTERNALVAR_VALUE:
2408 value_decref (var->u.value);
2409 break;
2410
2411 case INTERNALVAR_STRING:
2412 xfree (var->u.string);
2413 break;
2414
2415 case INTERNALVAR_MAKE_VALUE:
2416 if (var->u.make_value.functions->destroy != NULL)
2417 var->u.make_value.functions->destroy (var->u.make_value.data);
2418 break;
2419
2420 default:
2421 break;
2422 }
2423
2424 /* Reset to void kind. */
2425 var->kind = INTERNALVAR_VOID;
2426 }
2427
2428 const char *
2429 internalvar_name (const struct internalvar *var)
2430 {
2431 return var->name;
2432 }
2433
2434 static struct internal_function *
2435 create_internal_function (const char *name,
2436 internal_function_fn handler, void *cookie)
2437 {
2438 struct internal_function *ifn = XNEW (struct internal_function);
2439
2440 ifn->name = xstrdup (name);
2441 ifn->handler = handler;
2442 ifn->cookie = cookie;
2443 return ifn;
2444 }
2445
2446 const char *
2447 value_internal_function_name (struct value *val)
2448 {
2449 struct internal_function *ifn;
2450 int result;
2451
2452 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2453 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2454 gdb_assert (result);
2455
2456 return ifn->name;
2457 }
2458
2459 struct value *
2460 call_internal_function (struct gdbarch *gdbarch,
2461 const struct language_defn *language,
2462 struct value *func, int argc, struct value **argv)
2463 {
2464 struct internal_function *ifn;
2465 int result;
2466
2467 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2468 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2469 gdb_assert (result);
2470
2471 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2472 }
2473
2474 /* The 'function' command. This does nothing -- it is just a
2475 placeholder to let "help function NAME" work. This is also used as
2476 the implementation of the sub-command that is created when
2477 registering an internal function. */
2478 static void
2479 function_command (const char *command, int from_tty)
2480 {
2481 /* Do nothing. */
2482 }
2483
2484 /* Helper function that does the work for add_internal_function. */
2485
2486 static struct cmd_list_element *
2487 do_add_internal_function (const char *name, const char *doc,
2488 internal_function_fn handler, void *cookie)
2489 {
2490 struct internal_function *ifn;
2491 struct internalvar *var = lookup_internalvar (name);
2492
2493 ifn = create_internal_function (name, handler, cookie);
2494 set_internalvar_function (var, ifn);
2495
2496 return add_cmd (name, no_class, function_command, doc, &functionlist);
2497 }
2498
2499 /* See value.h. */
2500
2501 void
2502 add_internal_function (const char *name, const char *doc,
2503 internal_function_fn handler, void *cookie)
2504 {
2505 do_add_internal_function (name, doc, handler, cookie);
2506 }
2507
2508 /* See value.h. */
2509
2510 void
2511 add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2512 gdb::unique_xmalloc_ptr<char> &&doc,
2513 internal_function_fn handler, void *cookie)
2514 {
2515 struct cmd_list_element *cmd
2516 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
2517 doc.release ();
2518 cmd->doc_allocated = 1;
2519 name.release ();
2520 cmd->name_allocated = 1;
2521 }
2522
2523 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2524 prevent cycles / duplicates. */
2525
2526 void
2527 preserve_one_value (struct value *value, struct objfile *objfile,
2528 htab_t copied_types)
2529 {
2530 if (value->type->objfile_owner () == objfile)
2531 value->type = copy_type_recursive (objfile, value->type, copied_types);
2532
2533 if (value->enclosing_type->objfile_owner () == objfile)
2534 value->enclosing_type = copy_type_recursive (objfile,
2535 value->enclosing_type,
2536 copied_types);
2537 }
2538
2539 /* Likewise for internal variable VAR. */
2540
2541 static void
2542 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2543 htab_t copied_types)
2544 {
2545 switch (var->kind)
2546 {
2547 case INTERNALVAR_INTEGER:
2548 if (var->u.integer.type
2549 && var->u.integer.type->objfile_owner () == objfile)
2550 var->u.integer.type
2551 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2552 break;
2553
2554 case INTERNALVAR_VALUE:
2555 preserve_one_value (var->u.value, objfile, copied_types);
2556 break;
2557 }
2558 }
2559
2560 /* Update the internal variables and value history when OBJFILE is
2561 discarded; we must copy the types out of the objfile. New global types
2562 will be created for every convenience variable which currently points to
2563 this objfile's types, and the convenience variables will be adjusted to
2564 use the new global types. */
2565
2566 void
2567 preserve_values (struct objfile *objfile)
2568 {
2569 struct internalvar *var;
2570
2571 /* Create the hash table. We allocate on the objfile's obstack, since
2572 it is soon to be deleted. */
2573 htab_up copied_types = create_copied_types_hash (objfile);
2574
2575 for (const value_ref_ptr &item : value_history)
2576 preserve_one_value (item.get (), objfile, copied_types.get ());
2577
2578 for (var = internalvars; var; var = var->next)
2579 preserve_one_internalvar (var, objfile, copied_types.get ());
2580
2581 preserve_ext_lang_values (objfile, copied_types.get ());
2582 }
2583
2584 static void
2585 show_convenience (const char *ignore, int from_tty)
2586 {
2587 struct gdbarch *gdbarch = get_current_arch ();
2588 struct internalvar *var;
2589 int varseen = 0;
2590 struct value_print_options opts;
2591
2592 get_user_print_options (&opts);
2593 for (var = internalvars; var; var = var->next)
2594 {
2595
2596 if (!varseen)
2597 {
2598 varseen = 1;
2599 }
2600 printf_filtered (("$%s = "), var->name);
2601
2602 try
2603 {
2604 struct value *val;
2605
2606 val = value_of_internalvar (gdbarch, var);
2607 value_print (val, gdb_stdout, &opts);
2608 }
2609 catch (const gdb_exception_error &ex)
2610 {
2611 fprintf_styled (gdb_stdout, metadata_style.style (),
2612 _("<error: %s>"), ex.what ());
2613 }
2614
2615 printf_filtered (("\n"));
2616 }
2617 if (!varseen)
2618 {
2619 /* This text does not mention convenience functions on purpose.
2620 The user can't create them except via Python, and if Python support
2621 is installed this message will never be printed ($_streq will
2622 exist). */
2623 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2624 "Convenience variables have "
2625 "names starting with \"$\";\n"
2626 "use \"set\" as in \"set "
2627 "$foo = 5\" to define them.\n"));
2628 }
2629 }
2630 \f
2631
2632 /* See value.h. */
2633
2634 struct value *
2635 value_from_xmethod (xmethod_worker_up &&worker)
2636 {
2637 struct value *v;
2638
2639 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2640 v->lval = lval_xcallable;
2641 v->location.xm_worker = worker.release ();
2642 v->modifiable = 0;
2643
2644 return v;
2645 }
2646
2647 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2648
2649 struct type *
2650 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2651 {
2652 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2653 && method->lval == lval_xcallable && !argv.empty ());
2654
2655 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2656 }
2657
2658 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2659
2660 struct value *
2661 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2662 {
2663 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2664 && method->lval == lval_xcallable && !argv.empty ());
2665
2666 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2667 }
2668 \f
2669 /* Extract a value as a C number (either long or double).
2670 Knows how to convert fixed values to double, or
2671 floating values to long.
2672 Does not deallocate the value. */
2673
2674 LONGEST
2675 value_as_long (struct value *val)
2676 {
2677 /* This coerces arrays and functions, which is necessary (e.g.
2678 in disassemble_command). It also dereferences references, which
2679 I suspect is the most logical thing to do. */
2680 val = coerce_array (val);
2681 return unpack_long (value_type (val), value_contents (val));
2682 }
2683
2684 /* Extract a value as a C pointer. Does not deallocate the value.
2685 Note that val's type may not actually be a pointer; value_as_long
2686 handles all the cases. */
2687 CORE_ADDR
2688 value_as_address (struct value *val)
2689 {
2690 struct gdbarch *gdbarch = value_type (val)->arch ();
2691
2692 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2693 whether we want this to be true eventually. */
2694 #if 0
2695 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2696 non-address (e.g. argument to "signal", "info break", etc.), or
2697 for pointers to char, in which the low bits *are* significant. */
2698 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2699 #else
2700
2701 /* There are several targets (IA-64, PowerPC, and others) which
2702 don't represent pointers to functions as simply the address of
2703 the function's entry point. For example, on the IA-64, a
2704 function pointer points to a two-word descriptor, generated by
2705 the linker, which contains the function's entry point, and the
2706 value the IA-64 "global pointer" register should have --- to
2707 support position-independent code. The linker generates
2708 descriptors only for those functions whose addresses are taken.
2709
2710 On such targets, it's difficult for GDB to convert an arbitrary
2711 function address into a function pointer; it has to either find
2712 an existing descriptor for that function, or call malloc and
2713 build its own. On some targets, it is impossible for GDB to
2714 build a descriptor at all: the descriptor must contain a jump
2715 instruction; data memory cannot be executed; and code memory
2716 cannot be modified.
2717
2718 Upon entry to this function, if VAL is a value of type `function'
2719 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2720 value_address (val) is the address of the function. This is what
2721 you'll get if you evaluate an expression like `main'. The call
2722 to COERCE_ARRAY below actually does all the usual unary
2723 conversions, which includes converting values of type `function'
2724 to `pointer to function'. This is the challenging conversion
2725 discussed above. Then, `unpack_long' will convert that pointer
2726 back into an address.
2727
2728 So, suppose the user types `disassemble foo' on an architecture
2729 with a strange function pointer representation, on which GDB
2730 cannot build its own descriptors, and suppose further that `foo'
2731 has no linker-built descriptor. The address->pointer conversion
2732 will signal an error and prevent the command from running, even
2733 though the next step would have been to convert the pointer
2734 directly back into the same address.
2735
2736 The following shortcut avoids this whole mess. If VAL is a
2737 function, just return its address directly. */
2738 if (value_type (val)->code () == TYPE_CODE_FUNC
2739 || value_type (val)->code () == TYPE_CODE_METHOD)
2740 return value_address (val);
2741
2742 val = coerce_array (val);
2743
2744 /* Some architectures (e.g. Harvard), map instruction and data
2745 addresses onto a single large unified address space. For
2746 instance: An architecture may consider a large integer in the
2747 range 0x10000000 .. 0x1000ffff to already represent a data
2748 addresses (hence not need a pointer to address conversion) while
2749 a small integer would still need to be converted integer to
2750 pointer to address. Just assume such architectures handle all
2751 integer conversions in a single function. */
2752
2753 /* JimB writes:
2754
2755 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2756 must admonish GDB hackers to make sure its behavior matches the
2757 compiler's, whenever possible.
2758
2759 In general, I think GDB should evaluate expressions the same way
2760 the compiler does. When the user copies an expression out of
2761 their source code and hands it to a `print' command, they should
2762 get the same value the compiler would have computed. Any
2763 deviation from this rule can cause major confusion and annoyance,
2764 and needs to be justified carefully. In other words, GDB doesn't
2765 really have the freedom to do these conversions in clever and
2766 useful ways.
2767
2768 AndrewC pointed out that users aren't complaining about how GDB
2769 casts integers to pointers; they are complaining that they can't
2770 take an address from a disassembly listing and give it to `x/i'.
2771 This is certainly important.
2772
2773 Adding an architecture method like integer_to_address() certainly
2774 makes it possible for GDB to "get it right" in all circumstances
2775 --- the target has complete control over how things get done, so
2776 people can Do The Right Thing for their target without breaking
2777 anyone else. The standard doesn't specify how integers get
2778 converted to pointers; usually, the ABI doesn't either, but
2779 ABI-specific code is a more reasonable place to handle it. */
2780
2781 if (!value_type (val)->is_pointer_or_reference ()
2782 && gdbarch_integer_to_address_p (gdbarch))
2783 return gdbarch_integer_to_address (gdbarch, value_type (val),
2784 value_contents (val));
2785
2786 return unpack_long (value_type (val), value_contents (val));
2787 #endif
2788 }
2789 \f
2790 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2791 as a long, or as a double, assuming the raw data is described
2792 by type TYPE. Knows how to convert different sizes of values
2793 and can convert between fixed and floating point. We don't assume
2794 any alignment for the raw data. Return value is in host byte order.
2795
2796 If you want functions and arrays to be coerced to pointers, and
2797 references to be dereferenced, call value_as_long() instead.
2798
2799 C++: It is assumed that the front-end has taken care of
2800 all matters concerning pointers to members. A pointer
2801 to member which reaches here is considered to be equivalent
2802 to an INT (or some size). After all, it is only an offset. */
2803
2804 LONGEST
2805 unpack_long (struct type *type, const gdb_byte *valaddr)
2806 {
2807 if (is_fixed_point_type (type))
2808 type = type->fixed_point_type_base_type ();
2809
2810 enum bfd_endian byte_order = type_byte_order (type);
2811 enum type_code code = type->code ();
2812 int len = TYPE_LENGTH (type);
2813 int nosign = type->is_unsigned ();
2814
2815 switch (code)
2816 {
2817 case TYPE_CODE_TYPEDEF:
2818 return unpack_long (check_typedef (type), valaddr);
2819 case TYPE_CODE_ENUM:
2820 case TYPE_CODE_FLAGS:
2821 case TYPE_CODE_BOOL:
2822 case TYPE_CODE_INT:
2823 case TYPE_CODE_CHAR:
2824 case TYPE_CODE_RANGE:
2825 case TYPE_CODE_MEMBERPTR:
2826 {
2827 LONGEST result;
2828
2829 if (type->bit_size_differs_p ())
2830 {
2831 unsigned bit_off = type->bit_offset ();
2832 unsigned bit_size = type->bit_size ();
2833 if (bit_size == 0)
2834 {
2835 /* unpack_bits_as_long doesn't handle this case the
2836 way we'd like, so handle it here. */
2837 result = 0;
2838 }
2839 else
2840 result = unpack_bits_as_long (type, valaddr, bit_off, bit_size);
2841 }
2842 else
2843 {
2844 if (nosign)
2845 result = extract_unsigned_integer (valaddr, len, byte_order);
2846 else
2847 result = extract_signed_integer (valaddr, len, byte_order);
2848 }
2849 if (code == TYPE_CODE_RANGE)
2850 result += type->bounds ()->bias;
2851 return result;
2852 }
2853
2854 case TYPE_CODE_FLT:
2855 case TYPE_CODE_DECFLOAT:
2856 return target_float_to_longest (valaddr, type);
2857
2858 case TYPE_CODE_FIXED_POINT:
2859 {
2860 gdb_mpq vq;
2861 vq.read_fixed_point (gdb::make_array_view (valaddr, len),
2862 byte_order, nosign,
2863 type->fixed_point_scaling_factor ());
2864
2865 gdb_mpz vz;
2866 mpz_tdiv_q (vz.val, mpq_numref (vq.val), mpq_denref (vq.val));
2867 return vz.as_integer<LONGEST> ();
2868 }
2869
2870 case TYPE_CODE_PTR:
2871 case TYPE_CODE_REF:
2872 case TYPE_CODE_RVALUE_REF:
2873 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2874 whether we want this to be true eventually. */
2875 return extract_typed_address (valaddr, type);
2876
2877 default:
2878 error (_("Value can't be converted to integer."));
2879 }
2880 }
2881
2882 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2883 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2884 We don't assume any alignment for the raw data. Return value is in
2885 host byte order.
2886
2887 If you want functions and arrays to be coerced to pointers, and
2888 references to be dereferenced, call value_as_address() instead.
2889
2890 C++: It is assumed that the front-end has taken care of
2891 all matters concerning pointers to members. A pointer
2892 to member which reaches here is considered to be equivalent
2893 to an INT (or some size). After all, it is only an offset. */
2894
2895 CORE_ADDR
2896 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2897 {
2898 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2899 whether we want this to be true eventually. */
2900 return unpack_long (type, valaddr);
2901 }
2902
2903 bool
2904 is_floating_value (struct value *val)
2905 {
2906 struct type *type = check_typedef (value_type (val));
2907
2908 if (is_floating_type (type))
2909 {
2910 if (!target_float_is_valid (value_contents (val), type))
2911 error (_("Invalid floating value found in program."));
2912 return true;
2913 }
2914
2915 return false;
2916 }
2917
2918 \f
2919 /* Get the value of the FIELDNO'th field (which must be static) of
2920 TYPE. */
2921
2922 struct value *
2923 value_static_field (struct type *type, int fieldno)
2924 {
2925 struct value *retval;
2926
2927 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2928 {
2929 case FIELD_LOC_KIND_PHYSADDR:
2930 retval = value_at_lazy (type->field (fieldno).type (),
2931 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2932 break;
2933 case FIELD_LOC_KIND_PHYSNAME:
2934 {
2935 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2936 /* type->field (fieldno).name (); */
2937 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2938
2939 if (sym.symbol == NULL)
2940 {
2941 /* With some compilers, e.g. HP aCC, static data members are
2942 reported as non-debuggable symbols. */
2943 struct bound_minimal_symbol msym
2944 = lookup_minimal_symbol (phys_name, NULL, NULL);
2945 struct type *field_type = type->field (fieldno).type ();
2946
2947 if (!msym.minsym)
2948 retval = allocate_optimized_out_value (field_type);
2949 else
2950 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2951 }
2952 else
2953 retval = value_of_variable (sym.symbol, sym.block);
2954 break;
2955 }
2956 default:
2957 gdb_assert_not_reached ("unexpected field location kind");
2958 }
2959
2960 return retval;
2961 }
2962
2963 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2964 You have to be careful here, since the size of the data area for the value
2965 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2966 than the old enclosing type, you have to allocate more space for the
2967 data. */
2968
2969 void
2970 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2971 {
2972 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2973 {
2974 check_type_length_before_alloc (new_encl_type);
2975 val->contents
2976 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2977 TYPE_LENGTH (new_encl_type)));
2978 }
2979
2980 val->enclosing_type = new_encl_type;
2981 }
2982
2983 /* Given a value ARG1 (offset by OFFSET bytes)
2984 of a struct or union type ARG_TYPE,
2985 extract and return the value of one of its (non-static) fields.
2986 FIELDNO says which field. */
2987
2988 struct value *
2989 value_primitive_field (struct value *arg1, LONGEST offset,
2990 int fieldno, struct type *arg_type)
2991 {
2992 struct value *v;
2993 struct type *type;
2994 struct gdbarch *arch = get_value_arch (arg1);
2995 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2996
2997 arg_type = check_typedef (arg_type);
2998 type = arg_type->field (fieldno).type ();
2999
3000 /* Call check_typedef on our type to make sure that, if TYPE
3001 is a TYPE_CODE_TYPEDEF, its length is set to the length
3002 of the target type instead of zero. However, we do not
3003 replace the typedef type by the target type, because we want
3004 to keep the typedef in order to be able to print the type
3005 description correctly. */
3006 check_typedef (type);
3007
3008 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3009 {
3010 /* Handle packed fields.
3011
3012 Create a new value for the bitfield, with bitpos and bitsize
3013 set. If possible, arrange offset and bitpos so that we can
3014 do a single aligned read of the size of the containing type.
3015 Otherwise, adjust offset to the byte containing the first
3016 bit. Assume that the address, offset, and embedded offset
3017 are sufficiently aligned. */
3018
3019 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3020 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3021
3022 v = allocate_value_lazy (type);
3023 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3024 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3025 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3026 v->bitpos = bitpos % container_bitsize;
3027 else
3028 v->bitpos = bitpos % 8;
3029 v->offset = (value_embedded_offset (arg1)
3030 + offset
3031 + (bitpos - v->bitpos) / 8);
3032 set_value_parent (v, arg1);
3033 if (!value_lazy (arg1))
3034 value_fetch_lazy (v);
3035 }
3036 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3037 {
3038 /* This field is actually a base subobject, so preserve the
3039 entire object's contents for later references to virtual
3040 bases, etc. */
3041 LONGEST boffset;
3042
3043 /* Lazy register values with offsets are not supported. */
3044 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3045 value_fetch_lazy (arg1);
3046
3047 /* We special case virtual inheritance here because this
3048 requires access to the contents, which we would rather avoid
3049 for references to ordinary fields of unavailable values. */
3050 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3051 boffset = baseclass_offset (arg_type, fieldno,
3052 value_contents (arg1),
3053 value_embedded_offset (arg1),
3054 value_address (arg1),
3055 arg1);
3056 else
3057 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3058
3059 if (value_lazy (arg1))
3060 v = allocate_value_lazy (value_enclosing_type (arg1));
3061 else
3062 {
3063 v = allocate_value (value_enclosing_type (arg1));
3064 value_contents_copy_raw (v, 0, arg1, 0,
3065 TYPE_LENGTH (value_enclosing_type (arg1)));
3066 }
3067 v->type = type;
3068 v->offset = value_offset (arg1);
3069 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3070 }
3071 else if (NULL != TYPE_DATA_LOCATION (type))
3072 {
3073 /* Field is a dynamic data member. */
3074
3075 gdb_assert (0 == offset);
3076 /* We expect an already resolved data location. */
3077 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3078 /* For dynamic data types defer memory allocation
3079 until we actual access the value. */
3080 v = allocate_value_lazy (type);
3081 }
3082 else
3083 {
3084 /* Plain old data member */
3085 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3086 / (HOST_CHAR_BIT * unit_size));
3087
3088 /* Lazy register values with offsets are not supported. */
3089 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3090 value_fetch_lazy (arg1);
3091
3092 if (value_lazy (arg1))
3093 v = allocate_value_lazy (type);
3094 else
3095 {
3096 v = allocate_value (type);
3097 value_contents_copy_raw (v, value_embedded_offset (v),
3098 arg1, value_embedded_offset (arg1) + offset,
3099 type_length_units (type));
3100 }
3101 v->offset = (value_offset (arg1) + offset
3102 + value_embedded_offset (arg1));
3103 }
3104 set_value_component_location (v, arg1);
3105 return v;
3106 }
3107
3108 /* Given a value ARG1 of a struct or union type,
3109 extract and return the value of one of its (non-static) fields.
3110 FIELDNO says which field. */
3111
3112 struct value *
3113 value_field (struct value *arg1, int fieldno)
3114 {
3115 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3116 }
3117
3118 /* Return a non-virtual function as a value.
3119 F is the list of member functions which contains the desired method.
3120 J is an index into F which provides the desired method.
3121
3122 We only use the symbol for its address, so be happy with either a
3123 full symbol or a minimal symbol. */
3124
3125 struct value *
3126 value_fn_field (struct value **arg1p, struct fn_field *f,
3127 int j, struct type *type,
3128 LONGEST offset)
3129 {
3130 struct value *v;
3131 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3132 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3133 struct symbol *sym;
3134 struct bound_minimal_symbol msym;
3135
3136 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3137 if (sym != NULL)
3138 {
3139 memset (&msym, 0, sizeof (msym));
3140 }
3141 else
3142 {
3143 gdb_assert (sym == NULL);
3144 msym = lookup_bound_minimal_symbol (physname);
3145 if (msym.minsym == NULL)
3146 return NULL;
3147 }
3148
3149 v = allocate_value (ftype);
3150 VALUE_LVAL (v) = lval_memory;
3151 if (sym)
3152 {
3153 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3154 }
3155 else
3156 {
3157 /* The minimal symbol might point to a function descriptor;
3158 resolve it to the actual code address instead. */
3159 struct objfile *objfile = msym.objfile;
3160 struct gdbarch *gdbarch = objfile->arch ();
3161
3162 set_value_address (v,
3163 gdbarch_convert_from_func_ptr_addr
3164 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym),
3165 current_inferior ()->top_target ()));
3166 }
3167
3168 if (arg1p)
3169 {
3170 if (type != value_type (*arg1p))
3171 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3172 value_addr (*arg1p)));
3173
3174 /* Move the `this' pointer according to the offset.
3175 VALUE_OFFSET (*arg1p) += offset; */
3176 }
3177
3178 return v;
3179 }
3180
3181 \f
3182
3183 /* See value.h. */
3184
3185 LONGEST
3186 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3187 LONGEST bitpos, LONGEST bitsize)
3188 {
3189 enum bfd_endian byte_order = type_byte_order (field_type);
3190 ULONGEST val;
3191 ULONGEST valmask;
3192 int lsbcount;
3193 LONGEST bytes_read;
3194 LONGEST read_offset;
3195
3196 /* Read the minimum number of bytes required; there may not be
3197 enough bytes to read an entire ULONGEST. */
3198 field_type = check_typedef (field_type);
3199 if (bitsize)
3200 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3201 else
3202 {
3203 bytes_read = TYPE_LENGTH (field_type);
3204 bitsize = 8 * bytes_read;
3205 }
3206
3207 read_offset = bitpos / 8;
3208
3209 val = extract_unsigned_integer (valaddr + read_offset,
3210 bytes_read, byte_order);
3211
3212 /* Extract bits. See comment above. */
3213
3214 if (byte_order == BFD_ENDIAN_BIG)
3215 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3216 else
3217 lsbcount = (bitpos % 8);
3218 val >>= lsbcount;
3219
3220 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3221 If the field is signed, and is negative, then sign extend. */
3222
3223 if (bitsize < 8 * (int) sizeof (val))
3224 {
3225 valmask = (((ULONGEST) 1) << bitsize) - 1;
3226 val &= valmask;
3227 if (!field_type->is_unsigned ())
3228 {
3229 if (val & (valmask ^ (valmask >> 1)))
3230 {
3231 val |= ~valmask;
3232 }
3233 }
3234 }
3235
3236 return val;
3237 }
3238
3239 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3240 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3241 ORIGINAL_VALUE, which must not be NULL. See
3242 unpack_value_bits_as_long for more details. */
3243
3244 int
3245 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3246 LONGEST embedded_offset, int fieldno,
3247 const struct value *val, LONGEST *result)
3248 {
3249 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3250 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3251 struct type *field_type = type->field (fieldno).type ();
3252 int bit_offset;
3253
3254 gdb_assert (val != NULL);
3255
3256 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3257 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3258 || !value_bits_available (val, bit_offset, bitsize))
3259 return 0;
3260
3261 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3262 bitpos, bitsize);
3263 return 1;
3264 }
3265
3266 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3267 object at VALADDR. See unpack_bits_as_long for more details. */
3268
3269 LONGEST
3270 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3271 {
3272 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3273 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3274 struct type *field_type = type->field (fieldno).type ();
3275
3276 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3277 }
3278
3279 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3280 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3281 the contents in DEST_VAL, zero or sign extending if the type of
3282 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3283 VAL. If the VAL's contents required to extract the bitfield from
3284 are unavailable/optimized out, DEST_VAL is correspondingly
3285 marked unavailable/optimized out. */
3286
3287 void
3288 unpack_value_bitfield (struct value *dest_val,
3289 LONGEST bitpos, LONGEST bitsize,
3290 const gdb_byte *valaddr, LONGEST embedded_offset,
3291 const struct value *val)
3292 {
3293 enum bfd_endian byte_order;
3294 int src_bit_offset;
3295 int dst_bit_offset;
3296 struct type *field_type = value_type (dest_val);
3297
3298 byte_order = type_byte_order (field_type);
3299
3300 /* First, unpack and sign extend the bitfield as if it was wholly
3301 valid. Optimized out/unavailable bits are read as zero, but
3302 that's OK, as they'll end up marked below. If the VAL is
3303 wholly-invalid we may have skipped allocating its contents,
3304 though. See allocate_optimized_out_value. */
3305 if (valaddr != NULL)
3306 {
3307 LONGEST num;
3308
3309 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3310 bitpos, bitsize);
3311 store_signed_integer (value_contents_raw (dest_val),
3312 TYPE_LENGTH (field_type), byte_order, num);
3313 }
3314
3315 /* Now copy the optimized out / unavailability ranges to the right
3316 bits. */
3317 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3318 if (byte_order == BFD_ENDIAN_BIG)
3319 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3320 else
3321 dst_bit_offset = 0;
3322 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3323 val, src_bit_offset, bitsize);
3324 }
3325
3326 /* Return a new value with type TYPE, which is FIELDNO field of the
3327 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3328 of VAL. If the VAL's contents required to extract the bitfield
3329 from are unavailable/optimized out, the new value is
3330 correspondingly marked unavailable/optimized out. */
3331
3332 struct value *
3333 value_field_bitfield (struct type *type, int fieldno,
3334 const gdb_byte *valaddr,
3335 LONGEST embedded_offset, const struct value *val)
3336 {
3337 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3338 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3339 struct value *res_val = allocate_value (type->field (fieldno).type ());
3340
3341 unpack_value_bitfield (res_val, bitpos, bitsize,
3342 valaddr, embedded_offset, val);
3343
3344 return res_val;
3345 }
3346
3347 /* Modify the value of a bitfield. ADDR points to a block of memory in
3348 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3349 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3350 indicate which bits (in target bit order) comprise the bitfield.
3351 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3352 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3353
3354 void
3355 modify_field (struct type *type, gdb_byte *addr,
3356 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3357 {
3358 enum bfd_endian byte_order = type_byte_order (type);
3359 ULONGEST oword;
3360 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3361 LONGEST bytesize;
3362
3363 /* Normalize BITPOS. */
3364 addr += bitpos / 8;
3365 bitpos %= 8;
3366
3367 /* If a negative fieldval fits in the field in question, chop
3368 off the sign extension bits. */
3369 if ((~fieldval & ~(mask >> 1)) == 0)
3370 fieldval &= mask;
3371
3372 /* Warn if value is too big to fit in the field in question. */
3373 if (0 != (fieldval & ~mask))
3374 {
3375 /* FIXME: would like to include fieldval in the message, but
3376 we don't have a sprintf_longest. */
3377 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3378
3379 /* Truncate it, otherwise adjoining fields may be corrupted. */
3380 fieldval &= mask;
3381 }
3382
3383 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3384 false valgrind reports. */
3385
3386 bytesize = (bitpos + bitsize + 7) / 8;
3387 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3388
3389 /* Shifting for bit field depends on endianness of the target machine. */
3390 if (byte_order == BFD_ENDIAN_BIG)
3391 bitpos = bytesize * 8 - bitpos - bitsize;
3392
3393 oword &= ~(mask << bitpos);
3394 oword |= fieldval << bitpos;
3395
3396 store_unsigned_integer (addr, bytesize, byte_order, oword);
3397 }
3398 \f
3399 /* Pack NUM into BUF using a target format of TYPE. */
3400
3401 void
3402 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3403 {
3404 enum bfd_endian byte_order = type_byte_order (type);
3405 LONGEST len;
3406
3407 type = check_typedef (type);
3408 len = TYPE_LENGTH (type);
3409
3410 switch (type->code ())
3411 {
3412 case TYPE_CODE_RANGE:
3413 num -= type->bounds ()->bias;
3414 /* Fall through. */
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_CHAR:
3417 case TYPE_CODE_ENUM:
3418 case TYPE_CODE_FLAGS:
3419 case TYPE_CODE_BOOL:
3420 case TYPE_CODE_MEMBERPTR:
3421 if (type->bit_size_differs_p ())
3422 {
3423 unsigned bit_off = type->bit_offset ();
3424 unsigned bit_size = type->bit_size ();
3425 num &= ((ULONGEST) 1 << bit_size) - 1;
3426 num <<= bit_off;
3427 }
3428 store_signed_integer (buf, len, byte_order, num);
3429 break;
3430
3431 case TYPE_CODE_REF:
3432 case TYPE_CODE_RVALUE_REF:
3433 case TYPE_CODE_PTR:
3434 store_typed_address (buf, type, (CORE_ADDR) num);
3435 break;
3436
3437 case TYPE_CODE_FLT:
3438 case TYPE_CODE_DECFLOAT:
3439 target_float_from_longest (buf, type, num);
3440 break;
3441
3442 default:
3443 error (_("Unexpected type (%d) encountered for integer constant."),
3444 type->code ());
3445 }
3446 }
3447
3448
3449 /* Pack NUM into BUF using a target format of TYPE. */
3450
3451 static void
3452 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3453 {
3454 LONGEST len;
3455 enum bfd_endian byte_order;
3456
3457 type = check_typedef (type);
3458 len = TYPE_LENGTH (type);
3459 byte_order = type_byte_order (type);
3460
3461 switch (type->code ())
3462 {
3463 case TYPE_CODE_INT:
3464 case TYPE_CODE_CHAR:
3465 case TYPE_CODE_ENUM:
3466 case TYPE_CODE_FLAGS:
3467 case TYPE_CODE_BOOL:
3468 case TYPE_CODE_RANGE:
3469 case TYPE_CODE_MEMBERPTR:
3470 if (type->bit_size_differs_p ())
3471 {
3472 unsigned bit_off = type->bit_offset ();
3473 unsigned bit_size = type->bit_size ();
3474 num &= ((ULONGEST) 1 << bit_size) - 1;
3475 num <<= bit_off;
3476 }
3477 store_unsigned_integer (buf, len, byte_order, num);
3478 break;
3479
3480 case TYPE_CODE_REF:
3481 case TYPE_CODE_RVALUE_REF:
3482 case TYPE_CODE_PTR:
3483 store_typed_address (buf, type, (CORE_ADDR) num);
3484 break;
3485
3486 case TYPE_CODE_FLT:
3487 case TYPE_CODE_DECFLOAT:
3488 target_float_from_ulongest (buf, type, num);
3489 break;
3490
3491 default:
3492 error (_("Unexpected type (%d) encountered "
3493 "for unsigned integer constant."),
3494 type->code ());
3495 }
3496 }
3497
3498
3499 /* Convert C numbers into newly allocated values. */
3500
3501 struct value *
3502 value_from_longest (struct type *type, LONGEST num)
3503 {
3504 struct value *val = allocate_value (type);
3505
3506 pack_long (value_contents_raw (val), type, num);
3507 return val;
3508 }
3509
3510
3511 /* Convert C unsigned numbers into newly allocated values. */
3512
3513 struct value *
3514 value_from_ulongest (struct type *type, ULONGEST num)
3515 {
3516 struct value *val = allocate_value (type);
3517
3518 pack_unsigned_long (value_contents_raw (val), type, num);
3519
3520 return val;
3521 }
3522
3523
3524 /* Create a value representing a pointer of type TYPE to the address
3525 ADDR. */
3526
3527 struct value *
3528 value_from_pointer (struct type *type, CORE_ADDR addr)
3529 {
3530 struct value *val = allocate_value (type);
3531
3532 store_typed_address (value_contents_raw (val),
3533 check_typedef (type), addr);
3534 return val;
3535 }
3536
3537 /* Create and return a value object of TYPE containing the value D. The
3538 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3539 it is converted to target format. */
3540
3541 struct value *
3542 value_from_host_double (struct type *type, double d)
3543 {
3544 struct value *value = allocate_value (type);
3545 gdb_assert (type->code () == TYPE_CODE_FLT);
3546 target_float_from_host_double (value_contents_raw (value),
3547 value_type (value), d);
3548 return value;
3549 }
3550
3551 /* Create a value of type TYPE whose contents come from VALADDR, if it
3552 is non-null, and whose memory address (in the inferior) is
3553 ADDRESS. The type of the created value may differ from the passed
3554 type TYPE. Make sure to retrieve values new type after this call.
3555 Note that TYPE is not passed through resolve_dynamic_type; this is
3556 a special API intended for use only by Ada. */
3557
3558 struct value *
3559 value_from_contents_and_address_unresolved (struct type *type,
3560 const gdb_byte *valaddr,
3561 CORE_ADDR address)
3562 {
3563 struct value *v;
3564
3565 if (valaddr == NULL)
3566 v = allocate_value_lazy (type);
3567 else
3568 v = value_from_contents (type, valaddr);
3569 VALUE_LVAL (v) = lval_memory;
3570 set_value_address (v, address);
3571 return v;
3572 }
3573
3574 /* Create a value of type TYPE whose contents come from VALADDR, if it
3575 is non-null, and whose memory address (in the inferior) is
3576 ADDRESS. The type of the created value may differ from the passed
3577 type TYPE. Make sure to retrieve values new type after this call. */
3578
3579 struct value *
3580 value_from_contents_and_address (struct type *type,
3581 const gdb_byte *valaddr,
3582 CORE_ADDR address)
3583 {
3584 gdb::array_view<const gdb_byte> view;
3585 if (valaddr != nullptr)
3586 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3587 struct type *resolved_type = resolve_dynamic_type (type, view, address);
3588 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3589 struct value *v;
3590
3591 if (valaddr == NULL)
3592 v = allocate_value_lazy (resolved_type);
3593 else
3594 v = value_from_contents (resolved_type, valaddr);
3595 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3596 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3597 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3598 VALUE_LVAL (v) = lval_memory;
3599 set_value_address (v, address);
3600 return v;
3601 }
3602
3603 /* Create a value of type TYPE holding the contents CONTENTS.
3604 The new value is `not_lval'. */
3605
3606 struct value *
3607 value_from_contents (struct type *type, const gdb_byte *contents)
3608 {
3609 struct value *result;
3610
3611 result = allocate_value (type);
3612 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3613 return result;
3614 }
3615
3616 /* Extract a value from the history file. Input will be of the form
3617 $digits or $$digits. See block comment above 'write_dollar_variable'
3618 for details. */
3619
3620 struct value *
3621 value_from_history_ref (const char *h, const char **endp)
3622 {
3623 int index, len;
3624
3625 if (h[0] == '$')
3626 len = 1;
3627 else
3628 return NULL;
3629
3630 if (h[1] == '$')
3631 len = 2;
3632
3633 /* Find length of numeral string. */
3634 for (; isdigit (h[len]); len++)
3635 ;
3636
3637 /* Make sure numeral string is not part of an identifier. */
3638 if (h[len] == '_' || isalpha (h[len]))
3639 return NULL;
3640
3641 /* Now collect the index value. */
3642 if (h[1] == '$')
3643 {
3644 if (len == 2)
3645 {
3646 /* For some bizarre reason, "$$" is equivalent to "$$1",
3647 rather than to "$$0" as it ought to be! */
3648 index = -1;
3649 *endp += len;
3650 }
3651 else
3652 {
3653 char *local_end;
3654
3655 index = -strtol (&h[2], &local_end, 10);
3656 *endp = local_end;
3657 }
3658 }
3659 else
3660 {
3661 if (len == 1)
3662 {
3663 /* "$" is equivalent to "$0". */
3664 index = 0;
3665 *endp += len;
3666 }
3667 else
3668 {
3669 char *local_end;
3670
3671 index = strtol (&h[1], &local_end, 10);
3672 *endp = local_end;
3673 }
3674 }
3675
3676 return access_value_history (index);
3677 }
3678
3679 /* Get the component value (offset by OFFSET bytes) of a struct or
3680 union WHOLE. Component's type is TYPE. */
3681
3682 struct value *
3683 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3684 {
3685 struct value *v;
3686
3687 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3688 v = allocate_value_lazy (type);
3689 else
3690 {
3691 v = allocate_value (type);
3692 value_contents_copy (v, value_embedded_offset (v),
3693 whole, value_embedded_offset (whole) + offset,
3694 type_length_units (type));
3695 }
3696 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3697 set_value_component_location (v, whole);
3698
3699 return v;
3700 }
3701
3702 struct value *
3703 coerce_ref_if_computed (const struct value *arg)
3704 {
3705 const struct lval_funcs *funcs;
3706
3707 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3708 return NULL;
3709
3710 if (value_lval_const (arg) != lval_computed)
3711 return NULL;
3712
3713 funcs = value_computed_funcs (arg);
3714 if (funcs->coerce_ref == NULL)
3715 return NULL;
3716
3717 return funcs->coerce_ref (arg);
3718 }
3719
3720 /* Look at value.h for description. */
3721
3722 struct value *
3723 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3724 const struct type *original_type,
3725 struct value *original_value,
3726 CORE_ADDR original_value_address)
3727 {
3728 gdb_assert (original_type->is_pointer_or_reference ());
3729
3730 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3731 gdb::array_view<const gdb_byte> view;
3732 struct type *resolved_original_target_type
3733 = resolve_dynamic_type (original_target_type, view,
3734 original_value_address);
3735
3736 /* Re-adjust type. */
3737 deprecated_set_value_type (value, resolved_original_target_type);
3738
3739 /* Add embedding info. */
3740 set_value_enclosing_type (value, enc_type);
3741 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3742
3743 /* We may be pointing to an object of some derived type. */
3744 return value_full_object (value, NULL, 0, 0, 0);
3745 }
3746
3747 struct value *
3748 coerce_ref (struct value *arg)
3749 {
3750 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3751 struct value *retval;
3752 struct type *enc_type;
3753
3754 retval = coerce_ref_if_computed (arg);
3755 if (retval)
3756 return retval;
3757
3758 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3759 return arg;
3760
3761 enc_type = check_typedef (value_enclosing_type (arg));
3762 enc_type = TYPE_TARGET_TYPE (enc_type);
3763
3764 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3765 retval = value_at_lazy (enc_type, addr);
3766 enc_type = value_type (retval);
3767 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3768 arg, addr);
3769 }
3770
3771 struct value *
3772 coerce_array (struct value *arg)
3773 {
3774 struct type *type;
3775
3776 arg = coerce_ref (arg);
3777 type = check_typedef (value_type (arg));
3778
3779 switch (type->code ())
3780 {
3781 case TYPE_CODE_ARRAY:
3782 if (!type->is_vector () && current_language->c_style_arrays_p ())
3783 arg = value_coerce_array (arg);
3784 break;
3785 case TYPE_CODE_FUNC:
3786 arg = value_coerce_function (arg);
3787 break;
3788 }
3789 return arg;
3790 }
3791 \f
3792
3793 /* Return the return value convention that will be used for the
3794 specified type. */
3795
3796 enum return_value_convention
3797 struct_return_convention (struct gdbarch *gdbarch,
3798 struct value *function, struct type *value_type)
3799 {
3800 enum type_code code = value_type->code ();
3801
3802 if (code == TYPE_CODE_ERROR)
3803 error (_("Function return type unknown."));
3804
3805 /* Probe the architecture for the return-value convention. */
3806 return gdbarch_return_value (gdbarch, function, value_type,
3807 NULL, NULL, NULL);
3808 }
3809
3810 /* Return true if the function returning the specified type is using
3811 the convention of returning structures in memory (passing in the
3812 address as a hidden first parameter). */
3813
3814 int
3815 using_struct_return (struct gdbarch *gdbarch,
3816 struct value *function, struct type *value_type)
3817 {
3818 if (value_type->code () == TYPE_CODE_VOID)
3819 /* A void return value is never in memory. See also corresponding
3820 code in "print_return_value". */
3821 return 0;
3822
3823 return (struct_return_convention (gdbarch, function, value_type)
3824 != RETURN_VALUE_REGISTER_CONVENTION);
3825 }
3826
3827 /* Set the initialized field in a value struct. */
3828
3829 void
3830 set_value_initialized (struct value *val, int status)
3831 {
3832 val->initialized = status;
3833 }
3834
3835 /* Return the initialized field in a value struct. */
3836
3837 int
3838 value_initialized (const struct value *val)
3839 {
3840 return val->initialized;
3841 }
3842
3843 /* Helper for value_fetch_lazy when the value is a bitfield. */
3844
3845 static void
3846 value_fetch_lazy_bitfield (struct value *val)
3847 {
3848 gdb_assert (value_bitsize (val) != 0);
3849
3850 /* To read a lazy bitfield, read the entire enclosing value. This
3851 prevents reading the same block of (possibly volatile) memory once
3852 per bitfield. It would be even better to read only the containing
3853 word, but we have no way to record that just specific bits of a
3854 value have been fetched. */
3855 struct value *parent = value_parent (val);
3856
3857 if (value_lazy (parent))
3858 value_fetch_lazy (parent);
3859
3860 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3861 value_contents_for_printing (parent),
3862 value_offset (val), parent);
3863 }
3864
3865 /* Helper for value_fetch_lazy when the value is in memory. */
3866
3867 static void
3868 value_fetch_lazy_memory (struct value *val)
3869 {
3870 gdb_assert (VALUE_LVAL (val) == lval_memory);
3871
3872 CORE_ADDR addr = value_address (val);
3873 struct type *type = check_typedef (value_enclosing_type (val));
3874
3875 if (TYPE_LENGTH (type))
3876 read_value_memory (val, 0, value_stack (val),
3877 addr, value_contents_all_raw (val),
3878 type_length_units (type));
3879 }
3880
3881 /* Helper for value_fetch_lazy when the value is in a register. */
3882
3883 static void
3884 value_fetch_lazy_register (struct value *val)
3885 {
3886 struct frame_info *next_frame;
3887 int regnum;
3888 struct type *type = check_typedef (value_type (val));
3889 struct value *new_val = val, *mark = value_mark ();
3890
3891 /* Offsets are not supported here; lazy register values must
3892 refer to the entire register. */
3893 gdb_assert (value_offset (val) == 0);
3894
3895 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3896 {
3897 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3898
3899 next_frame = frame_find_by_id (next_frame_id);
3900 regnum = VALUE_REGNUM (new_val);
3901
3902 gdb_assert (next_frame != NULL);
3903
3904 /* Convertible register routines are used for multi-register
3905 values and for interpretation in different types
3906 (e.g. float or int from a double register). Lazy
3907 register values should have the register's natural type,
3908 so they do not apply. */
3909 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3910 regnum, type));
3911
3912 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3913 Since a "->next" operation was performed when setting
3914 this field, we do not need to perform a "next" operation
3915 again when unwinding the register. That's why
3916 frame_unwind_register_value() is called here instead of
3917 get_frame_register_value(). */
3918 new_val = frame_unwind_register_value (next_frame, regnum);
3919
3920 /* If we get another lazy lval_register value, it means the
3921 register is found by reading it from NEXT_FRAME's next frame.
3922 frame_unwind_register_value should never return a value with
3923 the frame id pointing to NEXT_FRAME. If it does, it means we
3924 either have two consecutive frames with the same frame id
3925 in the frame chain, or some code is trying to unwind
3926 behind get_prev_frame's back (e.g., a frame unwind
3927 sniffer trying to unwind), bypassing its validations. In
3928 any case, it should always be an internal error to end up
3929 in this situation. */
3930 if (VALUE_LVAL (new_val) == lval_register
3931 && value_lazy (new_val)
3932 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3933 internal_error (__FILE__, __LINE__,
3934 _("infinite loop while fetching a register"));
3935 }
3936
3937 /* If it's still lazy (for instance, a saved register on the
3938 stack), fetch it. */
3939 if (value_lazy (new_val))
3940 value_fetch_lazy (new_val);
3941
3942 /* Copy the contents and the unavailability/optimized-out
3943 meta-data from NEW_VAL to VAL. */
3944 set_value_lazy (val, 0);
3945 value_contents_copy (val, value_embedded_offset (val),
3946 new_val, value_embedded_offset (new_val),
3947 type_length_units (type));
3948
3949 if (frame_debug)
3950 {
3951 struct gdbarch *gdbarch;
3952 struct frame_info *frame;
3953 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
3954 frame = get_prev_frame_always (frame);
3955 regnum = VALUE_REGNUM (val);
3956 gdbarch = get_frame_arch (frame);
3957
3958 string_file debug_file;
3959 fprintf_unfiltered (&debug_file,
3960 "(frame=%d, regnum=%d(%s), ...) ",
3961 frame_relative_level (frame), regnum,
3962 user_reg_map_regnum_to_name (gdbarch, regnum));
3963
3964 fprintf_unfiltered (&debug_file, "->");
3965 if (value_optimized_out (new_val))
3966 {
3967 fprintf_unfiltered (&debug_file, " ");
3968 val_print_optimized_out (new_val, &debug_file);
3969 }
3970 else
3971 {
3972 int i;
3973 const gdb_byte *buf = value_contents (new_val);
3974
3975 if (VALUE_LVAL (new_val) == lval_register)
3976 fprintf_unfiltered (&debug_file, " register=%d",
3977 VALUE_REGNUM (new_val));
3978 else if (VALUE_LVAL (new_val) == lval_memory)
3979 fprintf_unfiltered (&debug_file, " address=%s",
3980 paddress (gdbarch,
3981 value_address (new_val)));
3982 else
3983 fprintf_unfiltered (&debug_file, " computed");
3984
3985 fprintf_unfiltered (&debug_file, " bytes=");
3986 fprintf_unfiltered (&debug_file, "[");
3987 for (i = 0; i < register_size (gdbarch, regnum); i++)
3988 fprintf_unfiltered (&debug_file, "%02x", buf[i]);
3989 fprintf_unfiltered (&debug_file, "]");
3990 }
3991
3992 frame_debug_printf ("%s", debug_file.c_str ());
3993 }
3994
3995 /* Dispose of the intermediate values. This prevents
3996 watchpoints from trying to watch the saved frame pointer. */
3997 value_free_to_mark (mark);
3998 }
3999
4000 /* Load the actual content of a lazy value. Fetch the data from the
4001 user's process and clear the lazy flag to indicate that the data in
4002 the buffer is valid.
4003
4004 If the value is zero-length, we avoid calling read_memory, which
4005 would abort. We mark the value as fetched anyway -- all 0 bytes of
4006 it. */
4007
4008 void
4009 value_fetch_lazy (struct value *val)
4010 {
4011 gdb_assert (value_lazy (val));
4012 allocate_value_contents (val);
4013 /* A value is either lazy, or fully fetched. The
4014 availability/validity is only established as we try to fetch a
4015 value. */
4016 gdb_assert (val->optimized_out.empty ());
4017 gdb_assert (val->unavailable.empty ());
4018 if (value_bitsize (val))
4019 value_fetch_lazy_bitfield (val);
4020 else if (VALUE_LVAL (val) == lval_memory)
4021 value_fetch_lazy_memory (val);
4022 else if (VALUE_LVAL (val) == lval_register)
4023 value_fetch_lazy_register (val);
4024 else if (VALUE_LVAL (val) == lval_computed
4025 && value_computed_funcs (val)->read != NULL)
4026 value_computed_funcs (val)->read (val);
4027 else
4028 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4029
4030 set_value_lazy (val, 0);
4031 }
4032
4033 /* Implementation of the convenience function $_isvoid. */
4034
4035 static struct value *
4036 isvoid_internal_fn (struct gdbarch *gdbarch,
4037 const struct language_defn *language,
4038 void *cookie, int argc, struct value **argv)
4039 {
4040 int ret;
4041
4042 if (argc != 1)
4043 error (_("You must provide one argument for $_isvoid."));
4044
4045 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
4046
4047 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4048 }
4049
4050 /* Implementation of the convenience function $_creal. Extracts the
4051 real part from a complex number. */
4052
4053 static struct value *
4054 creal_internal_fn (struct gdbarch *gdbarch,
4055 const struct language_defn *language,
4056 void *cookie, int argc, struct value **argv)
4057 {
4058 if (argc != 1)
4059 error (_("You must provide one argument for $_creal."));
4060
4061 value *cval = argv[0];
4062 type *ctype = check_typedef (value_type (cval));
4063 if (ctype->code () != TYPE_CODE_COMPLEX)
4064 error (_("expected a complex number"));
4065 return value_real_part (cval);
4066 }
4067
4068 /* Implementation of the convenience function $_cimag. Extracts the
4069 imaginary part from a complex number. */
4070
4071 static struct value *
4072 cimag_internal_fn (struct gdbarch *gdbarch,
4073 const struct language_defn *language,
4074 void *cookie, int argc,
4075 struct value **argv)
4076 {
4077 if (argc != 1)
4078 error (_("You must provide one argument for $_cimag."));
4079
4080 value *cval = argv[0];
4081 type *ctype = check_typedef (value_type (cval));
4082 if (ctype->code () != TYPE_CODE_COMPLEX)
4083 error (_("expected a complex number"));
4084 return value_imaginary_part (cval);
4085 }
4086
4087 #if GDB_SELF_TEST
4088 namespace selftests
4089 {
4090
4091 /* Test the ranges_contain function. */
4092
4093 static void
4094 test_ranges_contain ()
4095 {
4096 std::vector<range> ranges;
4097 range r;
4098
4099 /* [10, 14] */
4100 r.offset = 10;
4101 r.length = 5;
4102 ranges.push_back (r);
4103
4104 /* [20, 24] */
4105 r.offset = 20;
4106 r.length = 5;
4107 ranges.push_back (r);
4108
4109 /* [2, 6] */
4110 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4111 /* [9, 13] */
4112 SELF_CHECK (ranges_contain (ranges, 9, 5));
4113 /* [10, 11] */
4114 SELF_CHECK (ranges_contain (ranges, 10, 2));
4115 /* [10, 14] */
4116 SELF_CHECK (ranges_contain (ranges, 10, 5));
4117 /* [13, 18] */
4118 SELF_CHECK (ranges_contain (ranges, 13, 6));
4119 /* [14, 18] */
4120 SELF_CHECK (ranges_contain (ranges, 14, 5));
4121 /* [15, 18] */
4122 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4123 /* [16, 19] */
4124 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4125 /* [16, 21] */
4126 SELF_CHECK (ranges_contain (ranges, 16, 6));
4127 /* [21, 21] */
4128 SELF_CHECK (ranges_contain (ranges, 21, 1));
4129 /* [21, 25] */
4130 SELF_CHECK (ranges_contain (ranges, 21, 5));
4131 /* [26, 28] */
4132 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4133 }
4134
4135 /* Check that RANGES contains the same ranges as EXPECTED. */
4136
4137 static bool
4138 check_ranges_vector (gdb::array_view<const range> ranges,
4139 gdb::array_view<const range> expected)
4140 {
4141 return ranges == expected;
4142 }
4143
4144 /* Test the insert_into_bit_range_vector function. */
4145
4146 static void
4147 test_insert_into_bit_range_vector ()
4148 {
4149 std::vector<range> ranges;
4150
4151 /* [10, 14] */
4152 {
4153 insert_into_bit_range_vector (&ranges, 10, 5);
4154 static const range expected[] = {
4155 {10, 5}
4156 };
4157 SELF_CHECK (check_ranges_vector (ranges, expected));
4158 }
4159
4160 /* [10, 14] */
4161 {
4162 insert_into_bit_range_vector (&ranges, 11, 4);
4163 static const range expected = {10, 5};
4164 SELF_CHECK (check_ranges_vector (ranges, expected));
4165 }
4166
4167 /* [10, 14] [20, 24] */
4168 {
4169 insert_into_bit_range_vector (&ranges, 20, 5);
4170 static const range expected[] = {
4171 {10, 5},
4172 {20, 5},
4173 };
4174 SELF_CHECK (check_ranges_vector (ranges, expected));
4175 }
4176
4177 /* [10, 14] [17, 24] */
4178 {
4179 insert_into_bit_range_vector (&ranges, 17, 5);
4180 static const range expected[] = {
4181 {10, 5},
4182 {17, 8},
4183 };
4184 SELF_CHECK (check_ranges_vector (ranges, expected));
4185 }
4186
4187 /* [2, 8] [10, 14] [17, 24] */
4188 {
4189 insert_into_bit_range_vector (&ranges, 2, 7);
4190 static const range expected[] = {
4191 {2, 7},
4192 {10, 5},
4193 {17, 8},
4194 };
4195 SELF_CHECK (check_ranges_vector (ranges, expected));
4196 }
4197
4198 /* [2, 14] [17, 24] */
4199 {
4200 insert_into_bit_range_vector (&ranges, 9, 1);
4201 static const range expected[] = {
4202 {2, 13},
4203 {17, 8},
4204 };
4205 SELF_CHECK (check_ranges_vector (ranges, expected));
4206 }
4207
4208 /* [2, 14] [17, 24] */
4209 {
4210 insert_into_bit_range_vector (&ranges, 9, 1);
4211 static const range expected[] = {
4212 {2, 13},
4213 {17, 8},
4214 };
4215 SELF_CHECK (check_ranges_vector (ranges, expected));
4216 }
4217
4218 /* [2, 33] */
4219 {
4220 insert_into_bit_range_vector (&ranges, 4, 30);
4221 static const range expected = {2, 32};
4222 SELF_CHECK (check_ranges_vector (ranges, expected));
4223 }
4224 }
4225
4226 } /* namespace selftests */
4227 #endif /* GDB_SELF_TEST */
4228
4229 void _initialize_values ();
4230 void
4231 _initialize_values ()
4232 {
4233 cmd_list_element *show_convenience_cmd
4234 = add_cmd ("convenience", no_class, show_convenience, _("\
4235 Debugger convenience (\"$foo\") variables and functions.\n\
4236 Convenience variables are created when you assign them values;\n\
4237 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4238 \n\
4239 A few convenience variables are given values automatically:\n\
4240 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4241 \"$__\" holds the contents of the last address examined with \"x\"."
4242 #ifdef HAVE_PYTHON
4243 "\n\n\
4244 Convenience functions are defined via the Python API."
4245 #endif
4246 ), &showlist);
4247 add_alias_cmd ("conv", show_convenience_cmd, no_class, 1, &showlist);
4248
4249 add_cmd ("values", no_set_class, show_values, _("\
4250 Elements of value history around item number IDX (or last ten)."),
4251 &showlist);
4252
4253 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4254 Initialize a convenience variable if necessary.\n\
4255 init-if-undefined VARIABLE = EXPRESSION\n\
4256 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4257 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4258 VARIABLE is already initialized."));
4259
4260 add_prefix_cmd ("function", no_class, function_command, _("\
4261 Placeholder command for showing help on convenience functions."),
4262 &functionlist, 0, &cmdlist);
4263
4264 add_internal_function ("_isvoid", _("\
4265 Check whether an expression is void.\n\
4266 Usage: $_isvoid (expression)\n\
4267 Return 1 if the expression is void, zero otherwise."),
4268 isvoid_internal_fn, NULL);
4269
4270 add_internal_function ("_creal", _("\
4271 Extract the real part of a complex number.\n\
4272 Usage: $_creal (expression)\n\
4273 Return the real part of a complex number, the type depends on the\n\
4274 type of a complex number."),
4275 creal_internal_fn, NULL);
4276
4277 add_internal_function ("_cimag", _("\
4278 Extract the imaginary part of a complex number.\n\
4279 Usage: $_cimag (expression)\n\
4280 Return the imaginary part of a complex number, the type depends on the\n\
4281 type of a complex number."),
4282 cimag_internal_fn, NULL);
4283
4284 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4285 class_support, &max_value_size, _("\
4286 Set maximum sized value gdb will load from the inferior."), _("\
4287 Show maximum sized value gdb will load from the inferior."), _("\
4288 Use this to control the maximum size, in bytes, of a value that gdb\n\
4289 will load from the inferior. Setting this value to 'unlimited'\n\
4290 disables checking.\n\
4291 Setting this does not invalidate already allocated values, it only\n\
4292 prevents future values, larger than this size, from being allocated."),
4293 set_max_value_size,
4294 show_max_value_size,
4295 &setlist, &showlist);
4296 #if GDB_SELF_TEST
4297 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4298 selftests::register_test ("insert_into_bit_range_vector",
4299 selftests::test_insert_into_bit_range_vector);
4300 #endif
4301 }
4302
4303 /* See value.h. */
4304
4305 void
4306 finalize_values ()
4307 {
4308 all_values.clear ();
4309 }