]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2005-02-07 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Hack so that value.h can detect when it's being included by
25 value.c. */
26 #define VALUE_C
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "value.h"
33 #include "gdbcore.h"
34 #include "command.h"
35 #include "gdbcmd.h"
36 #include "target.h"
37 #include "language.h"
38 #include "scm-lang.h"
39 #include "demangle.h"
40 #include "doublest.h"
41 #include "gdb_assert.h"
42 #include "regcache.h"
43 #include "block.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Prototypes for local functions. */
50
51 static void show_values (char *, int);
52
53 static void show_convenience (char *, int);
54
55
56 /* The value-history records all the values printed
57 by print commands during this session. Each chunk
58 records 60 consecutive values. The first chunk on
59 the chain records the most recent values.
60 The total number of values is in value_history_count. */
61
62 #define VALUE_HISTORY_CHUNK 60
63
64 struct value_history_chunk
65 {
66 struct value_history_chunk *next;
67 struct value *values[VALUE_HISTORY_CHUNK];
68 };
69
70 /* Chain of chunks now in use. */
71
72 static struct value_history_chunk *value_history_chain;
73
74 static int value_history_count; /* Abs number of last entry stored */
75 \f
76 /* List of all value objects currently allocated
77 (except for those released by calls to release_value)
78 This is so they can be freed after each command. */
79
80 static struct value *all_values;
81
82 /* Allocate a value that has the correct length for type TYPE. */
83
84 struct value *
85 allocate_value (struct type *type)
86 {
87 struct value *val;
88 struct type *atype = check_typedef (type);
89
90 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
91 val->next = all_values;
92 all_values = val;
93 val->type = type;
94 val->enclosing_type = type;
95 VALUE_LVAL (val) = not_lval;
96 VALUE_ADDRESS (val) = 0;
97 VALUE_FRAME_ID (val) = null_frame_id;
98 val->offset = 0;
99 val->bitpos = 0;
100 val->bitsize = 0;
101 VALUE_REGNUM (val) = -1;
102 val->lazy = 0;
103 val->optimized_out = 0;
104 val->embedded_offset = 0;
105 val->pointed_to_offset = 0;
106 val->modifiable = 1;
107 return val;
108 }
109
110 /* Allocate a value that has the correct length
111 for COUNT repetitions type TYPE. */
112
113 struct value *
114 allocate_repeat_value (struct type *type, int count)
115 {
116 int low_bound = current_language->string_lower_bound; /* ??? */
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 struct type *range_type
120 = create_range_type ((struct type *) NULL, builtin_type_int,
121 low_bound, count + low_bound - 1);
122 /* FIXME-type-allocation: need a way to free this type when we are
123 done with it. */
124 return allocate_value (create_array_type ((struct type *) NULL,
125 type, range_type));
126 }
127
128 /* Accessor methods. */
129
130 struct type *
131 value_type (struct value *value)
132 {
133 return value->type;
134 }
135 void
136 deprecated_set_value_type (struct value *value, struct type *type)
137 {
138 value->type = type;
139 }
140
141 int
142 value_offset (struct value *value)
143 {
144 return value->offset;
145 }
146
147 int
148 value_bitpos (struct value *value)
149 {
150 return value->bitpos;
151 }
152
153 int
154 value_bitsize (struct value *value)
155 {
156 return value->bitsize;
157 }
158
159 bfd_byte *
160 value_contents_raw (struct value *value)
161 {
162 return value->aligner.contents + value->embedded_offset;
163 }
164
165 bfd_byte *
166 value_contents_all_raw (struct value *value)
167 {
168 return value->aligner.contents;
169 }
170
171 struct type *
172 value_enclosing_type (struct value *value)
173 {
174 return value->enclosing_type;
175 }
176
177 const bfd_byte *
178 value_contents_all (struct value *value)
179 {
180 if (value->lazy)
181 value_fetch_lazy (value);
182 return value->aligner.contents;
183 }
184
185 int
186 value_lazy (struct value *value)
187 {
188 return value->lazy;
189 }
190
191 void
192 set_value_lazy (struct value *value, int val)
193 {
194 value->lazy = val;
195 }
196
197 const bfd_byte *
198 value_contents (struct value *value)
199 {
200 return value_contents_writeable (value);
201 }
202
203 bfd_byte *
204 value_contents_writeable (struct value *value)
205 {
206 if (value->lazy)
207 value_fetch_lazy (value);
208 return value->aligner.contents;
209 }
210
211 int
212 value_optimized_out (struct value *value)
213 {
214 return value->optimized_out;
215 }
216
217 void
218 set_value_optimized_out (struct value *value, int val)
219 {
220 value->optimized_out = val;
221 }
222
223 int
224 value_embedded_offset (struct value *value)
225 {
226 return value->embedded_offset;
227 }
228
229 void
230 set_value_embedded_offset (struct value *value, int val)
231 {
232 value->embedded_offset = val;
233 }
234
235 int
236 value_pointed_to_offset (struct value *value)
237 {
238 return value->pointed_to_offset;
239 }
240
241 void
242 set_value_pointed_to_offset (struct value *value, int val)
243 {
244 value->pointed_to_offset = val;
245 }
246
247 enum lval_type *
248 deprecated_value_lval_hack (struct value *value)
249 {
250 return &value->lval;
251 }
252
253 CORE_ADDR *
254 deprecated_value_address_hack (struct value *value)
255 {
256 return &value->location.address;
257 }
258
259 struct internalvar **
260 deprecated_value_internalvar_hack (struct value *value)
261 {
262 return &value->location.internalvar;
263 }
264
265 struct frame_id *
266 deprecated_value_frame_id_hack (struct value *value)
267 {
268 return &value->frame_id;
269 }
270
271 short *
272 deprecated_value_regnum_hack (struct value *value)
273 {
274 return &value->regnum;
275 }
276 \f
277 /* Return a mark in the value chain. All values allocated after the
278 mark is obtained (except for those released) are subject to being freed
279 if a subsequent value_free_to_mark is passed the mark. */
280 struct value *
281 value_mark (void)
282 {
283 return all_values;
284 }
285
286 /* Free all values allocated since MARK was obtained by value_mark
287 (except for those released). */
288 void
289 value_free_to_mark (struct value *mark)
290 {
291 struct value *val;
292 struct value *next;
293
294 for (val = all_values; val && val != mark; val = next)
295 {
296 next = val->next;
297 value_free (val);
298 }
299 all_values = val;
300 }
301
302 /* Free all the values that have been allocated (except for those released).
303 Called after each command, successful or not. */
304
305 void
306 free_all_values (void)
307 {
308 struct value *val;
309 struct value *next;
310
311 for (val = all_values; val; val = next)
312 {
313 next = val->next;
314 value_free (val);
315 }
316
317 all_values = 0;
318 }
319
320 /* Remove VAL from the chain all_values
321 so it will not be freed automatically. */
322
323 void
324 release_value (struct value *val)
325 {
326 struct value *v;
327
328 if (all_values == val)
329 {
330 all_values = val->next;
331 return;
332 }
333
334 for (v = all_values; v; v = v->next)
335 {
336 if (v->next == val)
337 {
338 v->next = val->next;
339 break;
340 }
341 }
342 }
343
344 /* Release all values up to mark */
345 struct value *
346 value_release_to_mark (struct value *mark)
347 {
348 struct value *val;
349 struct value *next;
350
351 for (val = next = all_values; next; next = next->next)
352 if (next->next == mark)
353 {
354 all_values = next->next;
355 next->next = NULL;
356 return val;
357 }
358 all_values = 0;
359 return val;
360 }
361
362 /* Return a copy of the value ARG.
363 It contains the same contents, for same memory address,
364 but it's a different block of storage. */
365
366 struct value *
367 value_copy (struct value *arg)
368 {
369 struct type *encl_type = value_enclosing_type (arg);
370 struct value *val = allocate_value (encl_type);
371 val->type = arg->type;
372 VALUE_LVAL (val) = VALUE_LVAL (arg);
373 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
374 val->offset = arg->offset;
375 val->bitpos = arg->bitpos;
376 val->bitsize = arg->bitsize;
377 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
378 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
379 val->lazy = arg->lazy;
380 val->optimized_out = arg->optimized_out;
381 val->embedded_offset = value_embedded_offset (arg);
382 val->pointed_to_offset = arg->pointed_to_offset;
383 val->modifiable = arg->modifiable;
384 if (!value_lazy (val))
385 {
386 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
387 TYPE_LENGTH (value_enclosing_type (arg)));
388
389 }
390 return val;
391 }
392 \f
393 /* Access to the value history. */
394
395 /* Record a new value in the value history.
396 Returns the absolute history index of the entry.
397 Result of -1 indicates the value was not saved; otherwise it is the
398 value history index of this new item. */
399
400 int
401 record_latest_value (struct value *val)
402 {
403 int i;
404
405 /* We don't want this value to have anything to do with the inferior anymore.
406 In particular, "set $1 = 50" should not affect the variable from which
407 the value was taken, and fast watchpoints should be able to assume that
408 a value on the value history never changes. */
409 if (value_lazy (val))
410 value_fetch_lazy (val);
411 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
412 from. This is a bit dubious, because then *&$1 does not just return $1
413 but the current contents of that location. c'est la vie... */
414 val->modifiable = 0;
415 release_value (val);
416
417 /* Here we treat value_history_count as origin-zero
418 and applying to the value being stored now. */
419
420 i = value_history_count % VALUE_HISTORY_CHUNK;
421 if (i == 0)
422 {
423 struct value_history_chunk *new
424 = (struct value_history_chunk *)
425 xmalloc (sizeof (struct value_history_chunk));
426 memset (new->values, 0, sizeof new->values);
427 new->next = value_history_chain;
428 value_history_chain = new;
429 }
430
431 value_history_chain->values[i] = val;
432
433 /* Now we regard value_history_count as origin-one
434 and applying to the value just stored. */
435
436 return ++value_history_count;
437 }
438
439 /* Return a copy of the value in the history with sequence number NUM. */
440
441 struct value *
442 access_value_history (int num)
443 {
444 struct value_history_chunk *chunk;
445 int i;
446 int absnum = num;
447
448 if (absnum <= 0)
449 absnum += value_history_count;
450
451 if (absnum <= 0)
452 {
453 if (num == 0)
454 error ("The history is empty.");
455 else if (num == 1)
456 error ("There is only one value in the history.");
457 else
458 error ("History does not go back to $$%d.", -num);
459 }
460 if (absnum > value_history_count)
461 error ("History has not yet reached $%d.", absnum);
462
463 absnum--;
464
465 /* Now absnum is always absolute and origin zero. */
466
467 chunk = value_history_chain;
468 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
469 i > 0; i--)
470 chunk = chunk->next;
471
472 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
473 }
474
475 /* Clear the value history entirely.
476 Must be done when new symbol tables are loaded,
477 because the type pointers become invalid. */
478
479 void
480 clear_value_history (void)
481 {
482 struct value_history_chunk *next;
483 int i;
484 struct value *val;
485
486 while (value_history_chain)
487 {
488 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
489 if ((val = value_history_chain->values[i]) != NULL)
490 xfree (val);
491 next = value_history_chain->next;
492 xfree (value_history_chain);
493 value_history_chain = next;
494 }
495 value_history_count = 0;
496 }
497
498 static void
499 show_values (char *num_exp, int from_tty)
500 {
501 int i;
502 struct value *val;
503 static int num = 1;
504
505 if (num_exp)
506 {
507 /* "info history +" should print from the stored position.
508 "info history <exp>" should print around value number <exp>. */
509 if (num_exp[0] != '+' || num_exp[1] != '\0')
510 num = parse_and_eval_long (num_exp) - 5;
511 }
512 else
513 {
514 /* "info history" means print the last 10 values. */
515 num = value_history_count - 9;
516 }
517
518 if (num <= 0)
519 num = 1;
520
521 for (i = num; i < num + 10 && i <= value_history_count; i++)
522 {
523 val = access_value_history (i);
524 printf_filtered ("$%d = ", i);
525 value_print (val, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528
529 /* The next "info history +" should start after what we just printed. */
530 num += 10;
531
532 /* Hitting just return after this command should do the same thing as
533 "info history +". If num_exp is null, this is unnecessary, since
534 "info history +" is not useful after "info history". */
535 if (from_tty && num_exp)
536 {
537 num_exp[0] = '+';
538 num_exp[1] = '\0';
539 }
540 }
541 \f
542 /* Internal variables. These are variables within the debugger
543 that hold values assigned by debugger commands.
544 The user refers to them with a '$' prefix
545 that does not appear in the variable names stored internally. */
546
547 static struct internalvar *internalvars;
548
549 /* Look up an internal variable with name NAME. NAME should not
550 normally include a dollar sign.
551
552 If the specified internal variable does not exist,
553 one is created, with a void value. */
554
555 struct internalvar *
556 lookup_internalvar (char *name)
557 {
558 struct internalvar *var;
559
560 for (var = internalvars; var; var = var->next)
561 if (strcmp (var->name, name) == 0)
562 return var;
563
564 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
565 var->name = concat (name, NULL);
566 var->value = allocate_value (builtin_type_void);
567 release_value (var->value);
568 var->next = internalvars;
569 internalvars = var;
570 return var;
571 }
572
573 struct value *
574 value_of_internalvar (struct internalvar *var)
575 {
576 struct value *val;
577
578 val = value_copy (var->value);
579 if (value_lazy (val))
580 value_fetch_lazy (val);
581 VALUE_LVAL (val) = lval_internalvar;
582 VALUE_INTERNALVAR (val) = var;
583 return val;
584 }
585
586 void
587 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
588 int bitsize, struct value *newval)
589 {
590 bfd_byte *addr = value_contents_writeable (var->value) + offset;
591
592 if (bitsize)
593 modify_field (addr, value_as_long (newval),
594 bitpos, bitsize);
595 else
596 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
597 }
598
599 void
600 set_internalvar (struct internalvar *var, struct value *val)
601 {
602 struct value *newval;
603
604 newval = value_copy (val);
605 newval->modifiable = 1;
606
607 /* Force the value to be fetched from the target now, to avoid problems
608 later when this internalvar is referenced and the target is gone or
609 has changed. */
610 if (value_lazy (newval))
611 value_fetch_lazy (newval);
612
613 /* Begin code which must not call error(). If var->value points to
614 something free'd, an error() obviously leaves a dangling pointer.
615 But we also get a danling pointer if var->value points to
616 something in the value chain (i.e., before release_value is
617 called), because after the error free_all_values will get called before
618 long. */
619 xfree (var->value);
620 var->value = newval;
621 release_value (newval);
622 /* End code which must not call error(). */
623 }
624
625 char *
626 internalvar_name (struct internalvar *var)
627 {
628 return var->name;
629 }
630
631 /* Free all internalvars. Done when new symtabs are loaded,
632 because that makes the values invalid. */
633
634 void
635 clear_internalvars (void)
636 {
637 struct internalvar *var;
638
639 while (internalvars)
640 {
641 var = internalvars;
642 internalvars = var->next;
643 xfree (var->name);
644 xfree (var->value);
645 xfree (var);
646 }
647 }
648
649 static void
650 show_convenience (char *ignore, int from_tty)
651 {
652 struct internalvar *var;
653 int varseen = 0;
654
655 for (var = internalvars; var; var = var->next)
656 {
657 if (!varseen)
658 {
659 varseen = 1;
660 }
661 printf_filtered ("$%s = ", var->name);
662 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
663 printf_filtered ("\n");
664 }
665 if (!varseen)
666 printf_unfiltered ("No debugger convenience variables now defined.\n\
667 Convenience variables have names starting with \"$\";\n\
668 use \"set\" as in \"set $foo = 5\" to define them.\n");
669 }
670 \f
671 /* Extract a value as a C number (either long or double).
672 Knows how to convert fixed values to double, or
673 floating values to long.
674 Does not deallocate the value. */
675
676 LONGEST
677 value_as_long (struct value *val)
678 {
679 /* This coerces arrays and functions, which is necessary (e.g.
680 in disassemble_command). It also dereferences references, which
681 I suspect is the most logical thing to do. */
682 val = coerce_array (val);
683 return unpack_long (value_type (val), value_contents (val));
684 }
685
686 DOUBLEST
687 value_as_double (struct value *val)
688 {
689 DOUBLEST foo;
690 int inv;
691
692 foo = unpack_double (value_type (val), value_contents (val), &inv);
693 if (inv)
694 error ("Invalid floating value found in program.");
695 return foo;
696 }
697 /* Extract a value as a C pointer. Does not deallocate the value.
698 Note that val's type may not actually be a pointer; value_as_long
699 handles all the cases. */
700 CORE_ADDR
701 value_as_address (struct value *val)
702 {
703 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
704 whether we want this to be true eventually. */
705 #if 0
706 /* ADDR_BITS_REMOVE is wrong if we are being called for a
707 non-address (e.g. argument to "signal", "info break", etc.), or
708 for pointers to char, in which the low bits *are* significant. */
709 return ADDR_BITS_REMOVE (value_as_long (val));
710 #else
711
712 /* There are several targets (IA-64, PowerPC, and others) which
713 don't represent pointers to functions as simply the address of
714 the function's entry point. For example, on the IA-64, a
715 function pointer points to a two-word descriptor, generated by
716 the linker, which contains the function's entry point, and the
717 value the IA-64 "global pointer" register should have --- to
718 support position-independent code. The linker generates
719 descriptors only for those functions whose addresses are taken.
720
721 On such targets, it's difficult for GDB to convert an arbitrary
722 function address into a function pointer; it has to either find
723 an existing descriptor for that function, or call malloc and
724 build its own. On some targets, it is impossible for GDB to
725 build a descriptor at all: the descriptor must contain a jump
726 instruction; data memory cannot be executed; and code memory
727 cannot be modified.
728
729 Upon entry to this function, if VAL is a value of type `function'
730 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
731 VALUE_ADDRESS (val) is the address of the function. This is what
732 you'll get if you evaluate an expression like `main'. The call
733 to COERCE_ARRAY below actually does all the usual unary
734 conversions, which includes converting values of type `function'
735 to `pointer to function'. This is the challenging conversion
736 discussed above. Then, `unpack_long' will convert that pointer
737 back into an address.
738
739 So, suppose the user types `disassemble foo' on an architecture
740 with a strange function pointer representation, on which GDB
741 cannot build its own descriptors, and suppose further that `foo'
742 has no linker-built descriptor. The address->pointer conversion
743 will signal an error and prevent the command from running, even
744 though the next step would have been to convert the pointer
745 directly back into the same address.
746
747 The following shortcut avoids this whole mess. If VAL is a
748 function, just return its address directly. */
749 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
750 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
751 return VALUE_ADDRESS (val);
752
753 val = coerce_array (val);
754
755 /* Some architectures (e.g. Harvard), map instruction and data
756 addresses onto a single large unified address space. For
757 instance: An architecture may consider a large integer in the
758 range 0x10000000 .. 0x1000ffff to already represent a data
759 addresses (hence not need a pointer to address conversion) while
760 a small integer would still need to be converted integer to
761 pointer to address. Just assume such architectures handle all
762 integer conversions in a single function. */
763
764 /* JimB writes:
765
766 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
767 must admonish GDB hackers to make sure its behavior matches the
768 compiler's, whenever possible.
769
770 In general, I think GDB should evaluate expressions the same way
771 the compiler does. When the user copies an expression out of
772 their source code and hands it to a `print' command, they should
773 get the same value the compiler would have computed. Any
774 deviation from this rule can cause major confusion and annoyance,
775 and needs to be justified carefully. In other words, GDB doesn't
776 really have the freedom to do these conversions in clever and
777 useful ways.
778
779 AndrewC pointed out that users aren't complaining about how GDB
780 casts integers to pointers; they are complaining that they can't
781 take an address from a disassembly listing and give it to `x/i'.
782 This is certainly important.
783
784 Adding an architecture method like integer_to_address() certainly
785 makes it possible for GDB to "get it right" in all circumstances
786 --- the target has complete control over how things get done, so
787 people can Do The Right Thing for their target without breaking
788 anyone else. The standard doesn't specify how integers get
789 converted to pointers; usually, the ABI doesn't either, but
790 ABI-specific code is a more reasonable place to handle it. */
791
792 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
793 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
794 && gdbarch_integer_to_address_p (current_gdbarch))
795 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
796 value_contents (val));
797
798 return unpack_long (value_type (val), value_contents (val));
799 #endif
800 }
801 \f
802 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
803 as a long, or as a double, assuming the raw data is described
804 by type TYPE. Knows how to convert different sizes of values
805 and can convert between fixed and floating point. We don't assume
806 any alignment for the raw data. Return value is in host byte order.
807
808 If you want functions and arrays to be coerced to pointers, and
809 references to be dereferenced, call value_as_long() instead.
810
811 C++: It is assumed that the front-end has taken care of
812 all matters concerning pointers to members. A pointer
813 to member which reaches here is considered to be equivalent
814 to an INT (or some size). After all, it is only an offset. */
815
816 LONGEST
817 unpack_long (struct type *type, const char *valaddr)
818 {
819 enum type_code code = TYPE_CODE (type);
820 int len = TYPE_LENGTH (type);
821 int nosign = TYPE_UNSIGNED (type);
822
823 if (current_language->la_language == language_scm
824 && is_scmvalue_type (type))
825 return scm_unpack (type, valaddr, TYPE_CODE_INT);
826
827 switch (code)
828 {
829 case TYPE_CODE_TYPEDEF:
830 return unpack_long (check_typedef (type), valaddr);
831 case TYPE_CODE_ENUM:
832 case TYPE_CODE_BOOL:
833 case TYPE_CODE_INT:
834 case TYPE_CODE_CHAR:
835 case TYPE_CODE_RANGE:
836 if (nosign)
837 return extract_unsigned_integer (valaddr, len);
838 else
839 return extract_signed_integer (valaddr, len);
840
841 case TYPE_CODE_FLT:
842 return extract_typed_floating (valaddr, type);
843
844 case TYPE_CODE_PTR:
845 case TYPE_CODE_REF:
846 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
847 whether we want this to be true eventually. */
848 return extract_typed_address (valaddr, type);
849
850 case TYPE_CODE_MEMBER:
851 error ("not implemented: member types in unpack_long");
852
853 default:
854 error ("Value can't be converted to integer.");
855 }
856 return 0; /* Placate lint. */
857 }
858
859 /* Return a double value from the specified type and address.
860 INVP points to an int which is set to 0 for valid value,
861 1 for invalid value (bad float format). In either case,
862 the returned double is OK to use. Argument is in target
863 format, result is in host format. */
864
865 DOUBLEST
866 unpack_double (struct type *type, const char *valaddr, int *invp)
867 {
868 enum type_code code;
869 int len;
870 int nosign;
871
872 *invp = 0; /* Assume valid. */
873 CHECK_TYPEDEF (type);
874 code = TYPE_CODE (type);
875 len = TYPE_LENGTH (type);
876 nosign = TYPE_UNSIGNED (type);
877 if (code == TYPE_CODE_FLT)
878 {
879 /* NOTE: cagney/2002-02-19: There was a test here to see if the
880 floating-point value was valid (using the macro
881 INVALID_FLOAT). That test/macro have been removed.
882
883 It turns out that only the VAX defined this macro and then
884 only in a non-portable way. Fixing the portability problem
885 wouldn't help since the VAX floating-point code is also badly
886 bit-rotten. The target needs to add definitions for the
887 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
888 exactly describe the target floating-point format. The
889 problem here is that the corresponding floatformat_vax_f and
890 floatformat_vax_d values these methods should be set to are
891 also not defined either. Oops!
892
893 Hopefully someone will add both the missing floatformat
894 definitions and the new cases for floatformat_is_valid (). */
895
896 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
897 {
898 *invp = 1;
899 return 0.0;
900 }
901
902 return extract_typed_floating (valaddr, type);
903 }
904 else if (nosign)
905 {
906 /* Unsigned -- be sure we compensate for signed LONGEST. */
907 return (ULONGEST) unpack_long (type, valaddr);
908 }
909 else
910 {
911 /* Signed -- we are OK with unpack_long. */
912 return unpack_long (type, valaddr);
913 }
914 }
915
916 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
917 as a CORE_ADDR, assuming the raw data is described by type TYPE.
918 We don't assume any alignment for the raw data. Return value is in
919 host byte order.
920
921 If you want functions and arrays to be coerced to pointers, and
922 references to be dereferenced, call value_as_address() instead.
923
924 C++: It is assumed that the front-end has taken care of
925 all matters concerning pointers to members. A pointer
926 to member which reaches here is considered to be equivalent
927 to an INT (or some size). After all, it is only an offset. */
928
929 CORE_ADDR
930 unpack_pointer (struct type *type, const char *valaddr)
931 {
932 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
933 whether we want this to be true eventually. */
934 return unpack_long (type, valaddr);
935 }
936
937 \f
938 /* Get the value of the FIELDN'th field (which must be static) of
939 TYPE. Return NULL if the field doesn't exist or has been
940 optimized out. */
941
942 struct value *
943 value_static_field (struct type *type, int fieldno)
944 {
945 struct value *retval;
946
947 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
948 {
949 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
950 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
951 }
952 else
953 {
954 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
955 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
956 if (sym == NULL)
957 {
958 /* With some compilers, e.g. HP aCC, static data members are reported
959 as non-debuggable symbols */
960 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
961 if (!msym)
962 return NULL;
963 else
964 {
965 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
966 SYMBOL_VALUE_ADDRESS (msym));
967 }
968 }
969 else
970 {
971 /* SYM should never have a SYMBOL_CLASS which will require
972 read_var_value to use the FRAME parameter. */
973 if (symbol_read_needs_frame (sym))
974 warning ("static field's value depends on the current "
975 "frame - bad debug info?");
976 retval = read_var_value (sym, NULL);
977 }
978 if (retval && VALUE_LVAL (retval) == lval_memory)
979 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
980 VALUE_ADDRESS (retval));
981 }
982 return retval;
983 }
984
985 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
986 You have to be careful here, since the size of the data area for the value
987 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
988 than the old enclosing type, you have to allocate more space for the data.
989 The return value is a pointer to the new version of this value structure. */
990
991 struct value *
992 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
993 {
994 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
995 {
996 val->enclosing_type = new_encl_type;
997 return val;
998 }
999 else
1000 {
1001 struct value *new_val;
1002 struct value *prev;
1003
1004 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1005
1006 new_val->enclosing_type = new_encl_type;
1007
1008 /* We have to make sure this ends up in the same place in the value
1009 chain as the original copy, so it's clean-up behavior is the same.
1010 If the value has been released, this is a waste of time, but there
1011 is no way to tell that in advance, so... */
1012
1013 if (val != all_values)
1014 {
1015 for (prev = all_values; prev != NULL; prev = prev->next)
1016 {
1017 if (prev->next == val)
1018 {
1019 prev->next = new_val;
1020 break;
1021 }
1022 }
1023 }
1024
1025 return new_val;
1026 }
1027 }
1028
1029 /* Given a value ARG1 (offset by OFFSET bytes)
1030 of a struct or union type ARG_TYPE,
1031 extract and return the value of one of its (non-static) fields.
1032 FIELDNO says which field. */
1033
1034 struct value *
1035 value_primitive_field (struct value *arg1, int offset,
1036 int fieldno, struct type *arg_type)
1037 {
1038 struct value *v;
1039 struct type *type;
1040
1041 CHECK_TYPEDEF (arg_type);
1042 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1043
1044 /* Handle packed fields */
1045
1046 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1047 {
1048 v = value_from_longest (type,
1049 unpack_field_as_long (arg_type,
1050 value_contents (arg1)
1051 + offset,
1052 fieldno));
1053 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1054 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1055 v->offset = value_offset (arg1) + offset
1056 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1057 }
1058 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1059 {
1060 /* This field is actually a base subobject, so preserve the
1061 entire object's contents for later references to virtual
1062 bases, etc. */
1063 v = allocate_value (value_enclosing_type (arg1));
1064 v->type = type;
1065 if (value_lazy (arg1))
1066 set_value_lazy (v, 1);
1067 else
1068 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1069 TYPE_LENGTH (value_enclosing_type (arg1)));
1070 v->offset = value_offset (arg1);
1071 v->embedded_offset = (offset + value_embedded_offset (arg1)
1072 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1073 }
1074 else
1075 {
1076 /* Plain old data member */
1077 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1078 v = allocate_value (type);
1079 if (value_lazy (arg1))
1080 set_value_lazy (v, 1);
1081 else
1082 memcpy (value_contents_raw (v),
1083 value_contents_raw (arg1) + offset,
1084 TYPE_LENGTH (type));
1085 v->offset = (value_offset (arg1) + offset
1086 + value_embedded_offset (arg1));
1087 }
1088 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1089 if (VALUE_LVAL (arg1) == lval_internalvar)
1090 VALUE_LVAL (v) = lval_internalvar_component;
1091 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1092 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1093 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1094 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1095 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1096 return v;
1097 }
1098
1099 /* Given a value ARG1 of a struct or union type,
1100 extract and return the value of one of its (non-static) fields.
1101 FIELDNO says which field. */
1102
1103 struct value *
1104 value_field (struct value *arg1, int fieldno)
1105 {
1106 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1107 }
1108
1109 /* Return a non-virtual function as a value.
1110 F is the list of member functions which contains the desired method.
1111 J is an index into F which provides the desired method.
1112
1113 We only use the symbol for its address, so be happy with either a
1114 full symbol or a minimal symbol.
1115 */
1116
1117 struct value *
1118 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1119 int offset)
1120 {
1121 struct value *v;
1122 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1123 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1124 struct symbol *sym;
1125 struct minimal_symbol *msym;
1126
1127 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1128 if (sym != NULL)
1129 {
1130 msym = NULL;
1131 }
1132 else
1133 {
1134 gdb_assert (sym == NULL);
1135 msym = lookup_minimal_symbol (physname, NULL, NULL);
1136 if (msym == NULL)
1137 return NULL;
1138 }
1139
1140 v = allocate_value (ftype);
1141 if (sym)
1142 {
1143 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1144 }
1145 else
1146 {
1147 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1148 }
1149
1150 if (arg1p)
1151 {
1152 if (type != value_type (*arg1p))
1153 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1154 value_addr (*arg1p)));
1155
1156 /* Move the `this' pointer according to the offset.
1157 VALUE_OFFSET (*arg1p) += offset;
1158 */
1159 }
1160
1161 return v;
1162 }
1163
1164 \f
1165 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1166 VALADDR.
1167
1168 Extracting bits depends on endianness of the machine. Compute the
1169 number of least significant bits to discard. For big endian machines,
1170 we compute the total number of bits in the anonymous object, subtract
1171 off the bit count from the MSB of the object to the MSB of the
1172 bitfield, then the size of the bitfield, which leaves the LSB discard
1173 count. For little endian machines, the discard count is simply the
1174 number of bits from the LSB of the anonymous object to the LSB of the
1175 bitfield.
1176
1177 If the field is signed, we also do sign extension. */
1178
1179 LONGEST
1180 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1181 {
1182 ULONGEST val;
1183 ULONGEST valmask;
1184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1186 int lsbcount;
1187 struct type *field_type;
1188
1189 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1190 field_type = TYPE_FIELD_TYPE (type, fieldno);
1191 CHECK_TYPEDEF (field_type);
1192
1193 /* Extract bits. See comment above. */
1194
1195 if (BITS_BIG_ENDIAN)
1196 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1197 else
1198 lsbcount = (bitpos % 8);
1199 val >>= lsbcount;
1200
1201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1202 If the field is signed, and is negative, then sign extend. */
1203
1204 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1205 {
1206 valmask = (((ULONGEST) 1) << bitsize) - 1;
1207 val &= valmask;
1208 if (!TYPE_UNSIGNED (field_type))
1209 {
1210 if (val & (valmask ^ (valmask >> 1)))
1211 {
1212 val |= ~valmask;
1213 }
1214 }
1215 }
1216 return (val);
1217 }
1218
1219 /* Modify the value of a bitfield. ADDR points to a block of memory in
1220 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1221 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1222 indicate which bits (in target bit order) comprise the bitfield.
1223 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1224 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1225
1226 void
1227 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1228 {
1229 ULONGEST oword;
1230 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1231
1232 /* If a negative fieldval fits in the field in question, chop
1233 off the sign extension bits. */
1234 if ((~fieldval & ~(mask >> 1)) == 0)
1235 fieldval &= mask;
1236
1237 /* Warn if value is too big to fit in the field in question. */
1238 if (0 != (fieldval & ~mask))
1239 {
1240 /* FIXME: would like to include fieldval in the message, but
1241 we don't have a sprintf_longest. */
1242 warning ("Value does not fit in %d bits.", bitsize);
1243
1244 /* Truncate it, otherwise adjoining fields may be corrupted. */
1245 fieldval &= mask;
1246 }
1247
1248 oword = extract_unsigned_integer (addr, sizeof oword);
1249
1250 /* Shifting for bit field depends on endianness of the target machine. */
1251 if (BITS_BIG_ENDIAN)
1252 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1253
1254 oword &= ~(mask << bitpos);
1255 oword |= fieldval << bitpos;
1256
1257 store_unsigned_integer (addr, sizeof oword, oword);
1258 }
1259 \f
1260 /* Convert C numbers into newly allocated values */
1261
1262 struct value *
1263 value_from_longest (struct type *type, LONGEST num)
1264 {
1265 struct value *val = allocate_value (type);
1266 enum type_code code;
1267 int len;
1268 retry:
1269 code = TYPE_CODE (type);
1270 len = TYPE_LENGTH (type);
1271
1272 switch (code)
1273 {
1274 case TYPE_CODE_TYPEDEF:
1275 type = check_typedef (type);
1276 goto retry;
1277 case TYPE_CODE_INT:
1278 case TYPE_CODE_CHAR:
1279 case TYPE_CODE_ENUM:
1280 case TYPE_CODE_BOOL:
1281 case TYPE_CODE_RANGE:
1282 store_signed_integer (value_contents_raw (val), len, num);
1283 break;
1284
1285 case TYPE_CODE_REF:
1286 case TYPE_CODE_PTR:
1287 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1288 break;
1289
1290 default:
1291 error ("Unexpected type (%d) encountered for integer constant.", code);
1292 }
1293 return val;
1294 }
1295
1296
1297 /* Create a value representing a pointer of type TYPE to the address
1298 ADDR. */
1299 struct value *
1300 value_from_pointer (struct type *type, CORE_ADDR addr)
1301 {
1302 struct value *val = allocate_value (type);
1303 store_typed_address (value_contents_raw (val), type, addr);
1304 return val;
1305 }
1306
1307
1308 /* Create a value for a string constant to be stored locally
1309 (not in the inferior's memory space, but in GDB memory).
1310 This is analogous to value_from_longest, which also does not
1311 use inferior memory. String shall NOT contain embedded nulls. */
1312
1313 struct value *
1314 value_from_string (char *ptr)
1315 {
1316 struct value *val;
1317 int len = strlen (ptr);
1318 int lowbound = current_language->string_lower_bound;
1319 struct type *string_char_type;
1320 struct type *rangetype;
1321 struct type *stringtype;
1322
1323 rangetype = create_range_type ((struct type *) NULL,
1324 builtin_type_int,
1325 lowbound, len + lowbound - 1);
1326 string_char_type = language_string_char_type (current_language,
1327 current_gdbarch);
1328 stringtype = create_array_type ((struct type *) NULL,
1329 string_char_type,
1330 rangetype);
1331 val = allocate_value (stringtype);
1332 memcpy (value_contents_raw (val), ptr, len);
1333 return val;
1334 }
1335
1336 struct value *
1337 value_from_double (struct type *type, DOUBLEST num)
1338 {
1339 struct value *val = allocate_value (type);
1340 struct type *base_type = check_typedef (type);
1341 enum type_code code = TYPE_CODE (base_type);
1342 int len = TYPE_LENGTH (base_type);
1343
1344 if (code == TYPE_CODE_FLT)
1345 {
1346 store_typed_floating (value_contents_raw (val), base_type, num);
1347 }
1348 else
1349 error ("Unexpected type encountered for floating constant.");
1350
1351 return val;
1352 }
1353
1354 struct value *
1355 coerce_ref (struct value *arg)
1356 {
1357 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1358 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1359 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1360 unpack_pointer (value_type (arg),
1361 value_contents (arg)));
1362 return arg;
1363 }
1364
1365 struct value *
1366 coerce_array (struct value *arg)
1367 {
1368 arg = coerce_ref (arg);
1369 if (current_language->c_style_arrays
1370 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1371 arg = value_coerce_array (arg);
1372 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1373 arg = value_coerce_function (arg);
1374 return arg;
1375 }
1376
1377 struct value *
1378 coerce_number (struct value *arg)
1379 {
1380 arg = coerce_array (arg);
1381 arg = coerce_enum (arg);
1382 return arg;
1383 }
1384
1385 struct value *
1386 coerce_enum (struct value *arg)
1387 {
1388 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1389 arg = value_cast (builtin_type_unsigned_int, arg);
1390 return arg;
1391 }
1392 \f
1393
1394 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1395 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1396 is the type (which is known to be struct, union or array).
1397
1398 On most machines, the struct convention is used unless we are
1399 using gcc and the type is of a special size. */
1400 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1401 native compiler. GCC 2.3.3 was the last release that did it the
1402 old way. Since gcc2_compiled was not changed, we have no
1403 way to correctly win in all cases, so we just do the right thing
1404 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1405 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1406 would cause more chaos than dealing with some struct returns being
1407 handled wrong. */
1408 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1409 dead. */
1410
1411 int
1412 generic_use_struct_convention (int gcc_p, struct type *value_type)
1413 {
1414 return !(TYPE_LENGTH (value_type) == 1
1415 || TYPE_LENGTH (value_type) == 2
1416 || TYPE_LENGTH (value_type) == 4
1417 || TYPE_LENGTH (value_type) == 8);
1418 }
1419
1420 /* Return true if the function returning the specified type is using
1421 the convention of returning structures in memory (passing in the
1422 address as a hidden first parameter). GCC_P is nonzero if compiled
1423 with GCC. */
1424
1425 int
1426 using_struct_return (struct type *value_type, int gcc_p)
1427 {
1428 enum type_code code = TYPE_CODE (value_type);
1429
1430 if (code == TYPE_CODE_ERROR)
1431 error ("Function return type unknown.");
1432
1433 if (code == TYPE_CODE_VOID)
1434 /* A void return value is never in memory. See also corresponding
1435 code in "print_return_value". */
1436 return 0;
1437
1438 /* Probe the architecture for the return-value convention. */
1439 return (gdbarch_return_value (current_gdbarch, value_type,
1440 NULL, NULL, NULL)
1441 != RETURN_VALUE_REGISTER_CONVENTION);
1442 }
1443
1444 void
1445 _initialize_values (void)
1446 {
1447 add_cmd ("convenience", no_class, show_convenience,
1448 "Debugger convenience (\"$foo\") variables.\n\
1449 These variables are created when you assign them values;\n\
1450 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1451 A few convenience variables are given values automatically:\n\
1452 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1453 \"$__\" holds the contents of the last address examined with \"x\".",
1454 &showlist);
1455
1456 add_cmd ("values", no_class, show_values,
1457 "Elements of value history around item number IDX (or last ten).",
1458 &showlist);
1459 }