]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311 }
312
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
315
316 struct value *
317 allocate_repeat_value (struct type *type, int count)
318 {
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
324
325 return allocate_value (array_type);
326 }
327
328 struct value *
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332 {
333 struct value *v = allocate_value (type);
334
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341 }
342
343 /* Accessor methods. */
344
345 struct value *
346 value_next (struct value *value)
347 {
348 return value->next;
349 }
350
351 struct type *
352 value_type (const struct value *value)
353 {
354 return value->type;
355 }
356 void
357 deprecated_set_value_type (struct value *value, struct type *type)
358 {
359 value->type = type;
360 }
361
362 int
363 value_offset (const struct value *value)
364 {
365 return value->offset;
366 }
367 void
368 set_value_offset (struct value *value, int offset)
369 {
370 value->offset = offset;
371 }
372
373 int
374 value_bitpos (const struct value *value)
375 {
376 return value->bitpos;
377 }
378 void
379 set_value_bitpos (struct value *value, int bit)
380 {
381 value->bitpos = bit;
382 }
383
384 int
385 value_bitsize (const struct value *value)
386 {
387 return value->bitsize;
388 }
389 void
390 set_value_bitsize (struct value *value, int bit)
391 {
392 value->bitsize = bit;
393 }
394
395 struct value *
396 value_parent (struct value *value)
397 {
398 return value->parent;
399 }
400
401 gdb_byte *
402 value_contents_raw (struct value *value)
403 {
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
406 }
407
408 gdb_byte *
409 value_contents_all_raw (struct value *value)
410 {
411 allocate_value_contents (value);
412 return value->contents;
413 }
414
415 struct type *
416 value_enclosing_type (struct value *value)
417 {
418 return value->enclosing_type;
419 }
420
421 static void
422 require_not_optimized_out (struct value *value)
423 {
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426 }
427
428 const gdb_byte *
429 value_contents_for_printing (struct value *value)
430 {
431 if (value->lazy)
432 value_fetch_lazy (value);
433 return value->contents;
434 }
435
436 const gdb_byte *
437 value_contents_all (struct value *value)
438 {
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442 }
443
444 int
445 value_lazy (struct value *value)
446 {
447 return value->lazy;
448 }
449
450 void
451 set_value_lazy (struct value *value, int val)
452 {
453 value->lazy = val;
454 }
455
456 int
457 value_stack (struct value *value)
458 {
459 return value->stack;
460 }
461
462 void
463 set_value_stack (struct value *value, int val)
464 {
465 value->stack = val;
466 }
467
468 const gdb_byte *
469 value_contents (struct value *value)
470 {
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
474 }
475
476 gdb_byte *
477 value_contents_writeable (struct value *value)
478 {
479 if (value->lazy)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
482 }
483
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488 int
489 value_contents_equal (struct value *val1, struct value *val2)
490 {
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502 }
503
504 int
505 value_optimized_out (struct value *value)
506 {
507 return value->optimized_out;
508 }
509
510 void
511 set_value_optimized_out (struct value *value, int val)
512 {
513 value->optimized_out = val;
514 }
515
516 int
517 value_entirely_optimized_out (const struct value *value)
518 {
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
524 return !value->location.computed.funcs->check_any_valid (value);
525 }
526
527 int
528 value_bits_valid (const struct value *value, int offset, int length)
529 {
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537 }
538
539 int
540 value_embedded_offset (struct value *value)
541 {
542 return value->embedded_offset;
543 }
544
545 void
546 set_value_embedded_offset (struct value *value, int val)
547 {
548 value->embedded_offset = val;
549 }
550
551 int
552 value_pointed_to_offset (struct value *value)
553 {
554 return value->pointed_to_offset;
555 }
556
557 void
558 set_value_pointed_to_offset (struct value *value, int val)
559 {
560 value->pointed_to_offset = val;
561 }
562
563 struct lval_funcs *
564 value_computed_funcs (struct value *v)
565 {
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569 }
570
571 void *
572 value_computed_closure (const struct value *v)
573 {
574 gdb_assert (v->lval == lval_computed);
575
576 return v->location.computed.closure;
577 }
578
579 enum lval_type *
580 deprecated_value_lval_hack (struct value *value)
581 {
582 return &value->lval;
583 }
584
585 CORE_ADDR
586 value_address (struct value *value)
587 {
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592 }
593
594 CORE_ADDR
595 value_raw_address (struct value *value)
596 {
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601 }
602
603 void
604 set_value_address (struct value *value, CORE_ADDR addr)
605 {
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
609 }
610
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
613 {
614 return &value->location.internalvar;
615 }
616
617 struct frame_id *
618 deprecated_value_frame_id_hack (struct value *value)
619 {
620 return &value->frame_id;
621 }
622
623 short *
624 deprecated_value_regnum_hack (struct value *value)
625 {
626 return &value->regnum;
627 }
628
629 int
630 deprecated_value_modifiable (struct value *value)
631 {
632 return value->modifiable;
633 }
634 void
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
636 {
637 value->modifiable = modifiable;
638 }
639 \f
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
643 struct value *
644 value_mark (void)
645 {
646 return all_values;
647 }
648
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652 void
653 value_incref (struct value *val)
654 {
655 val->reference_count++;
656 }
657
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
662 void
663 value_free (struct value *val)
664 {
665 if (val)
666 {
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
687 xfree (val);
688 }
689
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692 void
693 value_free_to_mark (struct value *mark)
694 {
695 struct value *val;
696 struct value *next;
697
698 for (val = all_values; val && val != mark; val = next)
699 {
700 next = val->next;
701 value_free (val);
702 }
703 all_values = val;
704 }
705
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
709
710 void
711 free_all_values (void)
712 {
713 struct value *val;
714 struct value *next;
715
716 for (val = all_values; val; val = next)
717 {
718 next = val->next;
719 value_free (val);
720 }
721
722 all_values = 0;
723 }
724
725 /* Frees all the elements in a chain of values. */
726
727 void
728 free_value_chain (struct value *v)
729 {
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737 }
738
739 /* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742 void
743 release_value (struct value *val)
744 {
745 struct value *v;
746
747 if (all_values == val)
748 {
749 all_values = val->next;
750 val->next = NULL;
751 return;
752 }
753
754 for (v = all_values; v; v = v->next)
755 {
756 if (v->next == val)
757 {
758 v->next = val->next;
759 val->next = NULL;
760 break;
761 }
762 }
763 }
764
765 /* Release all values up to mark */
766 struct value *
767 value_release_to_mark (struct value *mark)
768 {
769 struct value *val;
770 struct value *next;
771
772 for (val = next = all_values; next; next = next->next)
773 if (next->next == mark)
774 {
775 all_values = next->next;
776 next->next = NULL;
777 return val;
778 }
779 all_values = 0;
780 return val;
781 }
782
783 /* Return a copy of the value ARG.
784 It contains the same contents, for same memory address,
785 but it's a different block of storage. */
786
787 struct value *
788 value_copy (struct value *arg)
789 {
790 struct type *encl_type = value_enclosing_type (arg);
791 struct value *val;
792
793 if (value_lazy (arg))
794 val = allocate_value_lazy (encl_type);
795 else
796 val = allocate_value (encl_type);
797 val->type = arg->type;
798 VALUE_LVAL (val) = VALUE_LVAL (arg);
799 val->location = arg->location;
800 val->offset = arg->offset;
801 val->bitpos = arg->bitpos;
802 val->bitsize = arg->bitsize;
803 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
804 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
805 val->lazy = arg->lazy;
806 val->optimized_out = arg->optimized_out;
807 val->embedded_offset = value_embedded_offset (arg);
808 val->pointed_to_offset = arg->pointed_to_offset;
809 val->modifiable = arg->modifiable;
810 if (!value_lazy (val))
811 {
812 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
813 TYPE_LENGTH (value_enclosing_type (arg)));
814
815 }
816 val->parent = arg->parent;
817 if (val->parent)
818 value_incref (val->parent);
819 if (VALUE_LVAL (val) == lval_computed)
820 {
821 struct lval_funcs *funcs = val->location.computed.funcs;
822
823 if (funcs->copy_closure)
824 val->location.computed.closure = funcs->copy_closure (val);
825 }
826 return val;
827 }
828
829 /* Return a version of ARG that is non-lvalue. */
830
831 struct value *
832 value_non_lval (struct value *arg)
833 {
834 if (VALUE_LVAL (arg) != not_lval)
835 {
836 struct type *enc_type = value_enclosing_type (arg);
837 struct value *val = allocate_value (enc_type);
838
839 memcpy (value_contents_all_raw (val), value_contents_all (arg),
840 TYPE_LENGTH (enc_type));
841 val->type = arg->type;
842 set_value_embedded_offset (val, value_embedded_offset (arg));
843 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
844 return val;
845 }
846 return arg;
847 }
848
849 void
850 set_value_component_location (struct value *component,
851 const struct value *whole)
852 {
853 if (whole->lval == lval_internalvar)
854 VALUE_LVAL (component) = lval_internalvar_component;
855 else
856 VALUE_LVAL (component) = whole->lval;
857
858 component->location = whole->location;
859 if (whole->lval == lval_computed)
860 {
861 struct lval_funcs *funcs = whole->location.computed.funcs;
862
863 if (funcs->copy_closure)
864 component->location.computed.closure = funcs->copy_closure (whole);
865 }
866 }
867
868 \f
869 /* Access to the value history. */
870
871 /* Record a new value in the value history.
872 Returns the absolute history index of the entry.
873 Result of -1 indicates the value was not saved; otherwise it is the
874 value history index of this new item. */
875
876 int
877 record_latest_value (struct value *val)
878 {
879 int i;
880
881 /* We don't want this value to have anything to do with the inferior anymore.
882 In particular, "set $1 = 50" should not affect the variable from which
883 the value was taken, and fast watchpoints should be able to assume that
884 a value on the value history never changes. */
885 if (value_lazy (val))
886 value_fetch_lazy (val);
887 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
888 from. This is a bit dubious, because then *&$1 does not just return $1
889 but the current contents of that location. c'est la vie... */
890 val->modifiable = 0;
891 release_value (val);
892
893 /* Here we treat value_history_count as origin-zero
894 and applying to the value being stored now. */
895
896 i = value_history_count % VALUE_HISTORY_CHUNK;
897 if (i == 0)
898 {
899 struct value_history_chunk *new
900 = (struct value_history_chunk *)
901
902 xmalloc (sizeof (struct value_history_chunk));
903 memset (new->values, 0, sizeof new->values);
904 new->next = value_history_chain;
905 value_history_chain = new;
906 }
907
908 value_history_chain->values[i] = val;
909
910 /* Now we regard value_history_count as origin-one
911 and applying to the value just stored. */
912
913 return ++value_history_count;
914 }
915
916 /* Return a copy of the value in the history with sequence number NUM. */
917
918 struct value *
919 access_value_history (int num)
920 {
921 struct value_history_chunk *chunk;
922 int i;
923 int absnum = num;
924
925 if (absnum <= 0)
926 absnum += value_history_count;
927
928 if (absnum <= 0)
929 {
930 if (num == 0)
931 error (_("The history is empty."));
932 else if (num == 1)
933 error (_("There is only one value in the history."));
934 else
935 error (_("History does not go back to $$%d."), -num);
936 }
937 if (absnum > value_history_count)
938 error (_("History has not yet reached $%d."), absnum);
939
940 absnum--;
941
942 /* Now absnum is always absolute and origin zero. */
943
944 chunk = value_history_chain;
945 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
946 i > 0; i--)
947 chunk = chunk->next;
948
949 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
950 }
951
952 static void
953 show_values (char *num_exp, int from_tty)
954 {
955 int i;
956 struct value *val;
957 static int num = 1;
958
959 if (num_exp)
960 {
961 /* "show values +" should print from the stored position.
962 "show values <exp>" should print around value number <exp>. */
963 if (num_exp[0] != '+' || num_exp[1] != '\0')
964 num = parse_and_eval_long (num_exp) - 5;
965 }
966 else
967 {
968 /* "show values" means print the last 10 values. */
969 num = value_history_count - 9;
970 }
971
972 if (num <= 0)
973 num = 1;
974
975 for (i = num; i < num + 10 && i <= value_history_count; i++)
976 {
977 struct value_print_options opts;
978
979 val = access_value_history (i);
980 printf_filtered (("$%d = "), i);
981 get_user_print_options (&opts);
982 value_print (val, gdb_stdout, &opts);
983 printf_filtered (("\n"));
984 }
985
986 /* The next "show values +" should start after what we just printed. */
987 num += 10;
988
989 /* Hitting just return after this command should do the same thing as
990 "show values +". If num_exp is null, this is unnecessary, since
991 "show values +" is not useful after "show values". */
992 if (from_tty && num_exp)
993 {
994 num_exp[0] = '+';
995 num_exp[1] = '\0';
996 }
997 }
998 \f
999 /* Internal variables. These are variables within the debugger
1000 that hold values assigned by debugger commands.
1001 The user refers to them with a '$' prefix
1002 that does not appear in the variable names stored internally. */
1003
1004 struct internalvar
1005 {
1006 struct internalvar *next;
1007 char *name;
1008
1009 /* We support various different kinds of content of an internal variable.
1010 enum internalvar_kind specifies the kind, and union internalvar_data
1011 provides the data associated with this particular kind. */
1012
1013 enum internalvar_kind
1014 {
1015 /* The internal variable is empty. */
1016 INTERNALVAR_VOID,
1017
1018 /* The value of the internal variable is provided directly as
1019 a GDB value object. */
1020 INTERNALVAR_VALUE,
1021
1022 /* A fresh value is computed via a call-back routine on every
1023 access to the internal variable. */
1024 INTERNALVAR_MAKE_VALUE,
1025
1026 /* The internal variable holds a GDB internal convenience function. */
1027 INTERNALVAR_FUNCTION,
1028
1029 /* The variable holds an integer value. */
1030 INTERNALVAR_INTEGER,
1031
1032 /* The variable holds a pointer value. */
1033 INTERNALVAR_POINTER,
1034
1035 /* The variable holds a GDB-provided string. */
1036 INTERNALVAR_STRING,
1037
1038 } kind;
1039
1040 union internalvar_data
1041 {
1042 /* A value object used with INTERNALVAR_VALUE. */
1043 struct value *value;
1044
1045 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1046 internalvar_make_value make_value;
1047
1048 /* The internal function used with INTERNALVAR_FUNCTION. */
1049 struct
1050 {
1051 struct internal_function *function;
1052 /* True if this is the canonical name for the function. */
1053 int canonical;
1054 } fn;
1055
1056 /* An integer value used with INTERNALVAR_INTEGER. */
1057 struct
1058 {
1059 /* If type is non-NULL, it will be used as the type to generate
1060 a value for this internal variable. If type is NULL, a default
1061 integer type for the architecture is used. */
1062 struct type *type;
1063 LONGEST val;
1064 } integer;
1065
1066 /* A pointer value used with INTERNALVAR_POINTER. */
1067 struct
1068 {
1069 struct type *type;
1070 CORE_ADDR val;
1071 } pointer;
1072
1073 /* A string value used with INTERNALVAR_STRING. */
1074 char *string;
1075 } u;
1076 };
1077
1078 static struct internalvar *internalvars;
1079
1080 /* If the variable does not already exist create it and give it the value given.
1081 If no value is given then the default is zero. */
1082 static void
1083 init_if_undefined_command (char* args, int from_tty)
1084 {
1085 struct internalvar* intvar;
1086
1087 /* Parse the expression - this is taken from set_command(). */
1088 struct expression *expr = parse_expression (args);
1089 register struct cleanup *old_chain =
1090 make_cleanup (free_current_contents, &expr);
1091
1092 /* Validate the expression.
1093 Was the expression an assignment?
1094 Or even an expression at all? */
1095 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1096 error (_("Init-if-undefined requires an assignment expression."));
1097
1098 /* Extract the variable from the parsed expression.
1099 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1100 if (expr->elts[1].opcode != OP_INTERNALVAR)
1101 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1102 intvar = expr->elts[2].internalvar;
1103
1104 /* Only evaluate the expression if the lvalue is void.
1105 This may still fail if the expresssion is invalid. */
1106 if (intvar->kind == INTERNALVAR_VOID)
1107 evaluate_expression (expr);
1108
1109 do_cleanups (old_chain);
1110 }
1111
1112
1113 /* Look up an internal variable with name NAME. NAME should not
1114 normally include a dollar sign.
1115
1116 If the specified internal variable does not exist,
1117 the return value is NULL. */
1118
1119 struct internalvar *
1120 lookup_only_internalvar (const char *name)
1121 {
1122 struct internalvar *var;
1123
1124 for (var = internalvars; var; var = var->next)
1125 if (strcmp (var->name, name) == 0)
1126 return var;
1127
1128 return NULL;
1129 }
1130
1131
1132 /* Create an internal variable with name NAME and with a void value.
1133 NAME should not normally include a dollar sign. */
1134
1135 struct internalvar *
1136 create_internalvar (const char *name)
1137 {
1138 struct internalvar *var;
1139
1140 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1141 var->name = concat (name, (char *)NULL);
1142 var->kind = INTERNALVAR_VOID;
1143 var->next = internalvars;
1144 internalvars = var;
1145 return var;
1146 }
1147
1148 /* Create an internal variable with name NAME and register FUN as the
1149 function that value_of_internalvar uses to create a value whenever
1150 this variable is referenced. NAME should not normally include a
1151 dollar sign. */
1152
1153 struct internalvar *
1154 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1155 {
1156 struct internalvar *var = create_internalvar (name);
1157
1158 var->kind = INTERNALVAR_MAKE_VALUE;
1159 var->u.make_value = fun;
1160 return var;
1161 }
1162
1163 /* Look up an internal variable with name NAME. NAME should not
1164 normally include a dollar sign.
1165
1166 If the specified internal variable does not exist,
1167 one is created, with a void value. */
1168
1169 struct internalvar *
1170 lookup_internalvar (const char *name)
1171 {
1172 struct internalvar *var;
1173
1174 var = lookup_only_internalvar (name);
1175 if (var)
1176 return var;
1177
1178 return create_internalvar (name);
1179 }
1180
1181 /* Return current value of internal variable VAR. For variables that
1182 are not inherently typed, use a value type appropriate for GDBARCH. */
1183
1184 struct value *
1185 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1186 {
1187 struct value *val;
1188
1189 switch (var->kind)
1190 {
1191 case INTERNALVAR_VOID:
1192 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1193 break;
1194
1195 case INTERNALVAR_FUNCTION:
1196 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1197 break;
1198
1199 case INTERNALVAR_INTEGER:
1200 if (!var->u.integer.type)
1201 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1202 var->u.integer.val);
1203 else
1204 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1205 break;
1206
1207 case INTERNALVAR_POINTER:
1208 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1209 break;
1210
1211 case INTERNALVAR_STRING:
1212 val = value_cstring (var->u.string, strlen (var->u.string),
1213 builtin_type (gdbarch)->builtin_char);
1214 break;
1215
1216 case INTERNALVAR_VALUE:
1217 val = value_copy (var->u.value);
1218 if (value_lazy (val))
1219 value_fetch_lazy (val);
1220 break;
1221
1222 case INTERNALVAR_MAKE_VALUE:
1223 val = (*var->u.make_value) (gdbarch, var);
1224 break;
1225
1226 default:
1227 internal_error (__FILE__, __LINE__, "bad kind");
1228 }
1229
1230 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1231 on this value go back to affect the original internal variable.
1232
1233 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1234 no underlying modifyable state in the internal variable.
1235
1236 Likewise, if the variable's value is a computed lvalue, we want
1237 references to it to produce another computed lvalue, where
1238 references and assignments actually operate through the
1239 computed value's functions.
1240
1241 This means that internal variables with computed values
1242 behave a little differently from other internal variables:
1243 assignments to them don't just replace the previous value
1244 altogether. At the moment, this seems like the behavior we
1245 want. */
1246
1247 if (var->kind != INTERNALVAR_MAKE_VALUE
1248 && val->lval != lval_computed)
1249 {
1250 VALUE_LVAL (val) = lval_internalvar;
1251 VALUE_INTERNALVAR (val) = var;
1252 }
1253
1254 return val;
1255 }
1256
1257 int
1258 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1259 {
1260 switch (var->kind)
1261 {
1262 case INTERNALVAR_INTEGER:
1263 *result = var->u.integer.val;
1264 return 1;
1265
1266 default:
1267 return 0;
1268 }
1269 }
1270
1271 static int
1272 get_internalvar_function (struct internalvar *var,
1273 struct internal_function **result)
1274 {
1275 switch (var->kind)
1276 {
1277 case INTERNALVAR_FUNCTION:
1278 *result = var->u.fn.function;
1279 return 1;
1280
1281 default:
1282 return 0;
1283 }
1284 }
1285
1286 void
1287 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1288 int bitsize, struct value *newval)
1289 {
1290 gdb_byte *addr;
1291
1292 switch (var->kind)
1293 {
1294 case INTERNALVAR_VALUE:
1295 addr = value_contents_writeable (var->u.value);
1296
1297 if (bitsize)
1298 modify_field (value_type (var->u.value), addr + offset,
1299 value_as_long (newval), bitpos, bitsize);
1300 else
1301 memcpy (addr + offset, value_contents (newval),
1302 TYPE_LENGTH (value_type (newval)));
1303 break;
1304
1305 default:
1306 /* We can never get a component of any other kind. */
1307 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1308 }
1309 }
1310
1311 void
1312 set_internalvar (struct internalvar *var, struct value *val)
1313 {
1314 enum internalvar_kind new_kind;
1315 union internalvar_data new_data = { 0 };
1316
1317 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1318 error (_("Cannot overwrite convenience function %s"), var->name);
1319
1320 /* Prepare new contents. */
1321 switch (TYPE_CODE (check_typedef (value_type (val))))
1322 {
1323 case TYPE_CODE_VOID:
1324 new_kind = INTERNALVAR_VOID;
1325 break;
1326
1327 case TYPE_CODE_INTERNAL_FUNCTION:
1328 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1329 new_kind = INTERNALVAR_FUNCTION;
1330 get_internalvar_function (VALUE_INTERNALVAR (val),
1331 &new_data.fn.function);
1332 /* Copies created here are never canonical. */
1333 break;
1334
1335 case TYPE_CODE_INT:
1336 new_kind = INTERNALVAR_INTEGER;
1337 new_data.integer.type = value_type (val);
1338 new_data.integer.val = value_as_long (val);
1339 break;
1340
1341 case TYPE_CODE_PTR:
1342 new_kind = INTERNALVAR_POINTER;
1343 new_data.pointer.type = value_type (val);
1344 new_data.pointer.val = value_as_address (val);
1345 break;
1346
1347 default:
1348 new_kind = INTERNALVAR_VALUE;
1349 new_data.value = value_copy (val);
1350 new_data.value->modifiable = 1;
1351
1352 /* Force the value to be fetched from the target now, to avoid problems
1353 later when this internalvar is referenced and the target is gone or
1354 has changed. */
1355 if (value_lazy (new_data.value))
1356 value_fetch_lazy (new_data.value);
1357
1358 /* Release the value from the value chain to prevent it from being
1359 deleted by free_all_values. From here on this function should not
1360 call error () until new_data is installed into the var->u to avoid
1361 leaking memory. */
1362 release_value (new_data.value);
1363 break;
1364 }
1365
1366 /* Clean up old contents. */
1367 clear_internalvar (var);
1368
1369 /* Switch over. */
1370 var->kind = new_kind;
1371 var->u = new_data;
1372 /* End code which must not call error(). */
1373 }
1374
1375 void
1376 set_internalvar_integer (struct internalvar *var, LONGEST l)
1377 {
1378 /* Clean up old contents. */
1379 clear_internalvar (var);
1380
1381 var->kind = INTERNALVAR_INTEGER;
1382 var->u.integer.type = NULL;
1383 var->u.integer.val = l;
1384 }
1385
1386 void
1387 set_internalvar_string (struct internalvar *var, const char *string)
1388 {
1389 /* Clean up old contents. */
1390 clear_internalvar (var);
1391
1392 var->kind = INTERNALVAR_STRING;
1393 var->u.string = xstrdup (string);
1394 }
1395
1396 static void
1397 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1398 {
1399 /* Clean up old contents. */
1400 clear_internalvar (var);
1401
1402 var->kind = INTERNALVAR_FUNCTION;
1403 var->u.fn.function = f;
1404 var->u.fn.canonical = 1;
1405 /* Variables installed here are always the canonical version. */
1406 }
1407
1408 void
1409 clear_internalvar (struct internalvar *var)
1410 {
1411 /* Clean up old contents. */
1412 switch (var->kind)
1413 {
1414 case INTERNALVAR_VALUE:
1415 value_free (var->u.value);
1416 break;
1417
1418 case INTERNALVAR_STRING:
1419 xfree (var->u.string);
1420 break;
1421
1422 default:
1423 break;
1424 }
1425
1426 /* Reset to void kind. */
1427 var->kind = INTERNALVAR_VOID;
1428 }
1429
1430 char *
1431 internalvar_name (struct internalvar *var)
1432 {
1433 return var->name;
1434 }
1435
1436 static struct internal_function *
1437 create_internal_function (const char *name,
1438 internal_function_fn handler, void *cookie)
1439 {
1440 struct internal_function *ifn = XNEW (struct internal_function);
1441
1442 ifn->name = xstrdup (name);
1443 ifn->handler = handler;
1444 ifn->cookie = cookie;
1445 return ifn;
1446 }
1447
1448 char *
1449 value_internal_function_name (struct value *val)
1450 {
1451 struct internal_function *ifn;
1452 int result;
1453
1454 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1455 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1456 gdb_assert (result);
1457
1458 return ifn->name;
1459 }
1460
1461 struct value *
1462 call_internal_function (struct gdbarch *gdbarch,
1463 const struct language_defn *language,
1464 struct value *func, int argc, struct value **argv)
1465 {
1466 struct internal_function *ifn;
1467 int result;
1468
1469 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1470 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1471 gdb_assert (result);
1472
1473 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1474 }
1475
1476 /* The 'function' command. This does nothing -- it is just a
1477 placeholder to let "help function NAME" work. This is also used as
1478 the implementation of the sub-command that is created when
1479 registering an internal function. */
1480 static void
1481 function_command (char *command, int from_tty)
1482 {
1483 /* Do nothing. */
1484 }
1485
1486 /* Clean up if an internal function's command is destroyed. */
1487 static void
1488 function_destroyer (struct cmd_list_element *self, void *ignore)
1489 {
1490 xfree (self->name);
1491 xfree (self->doc);
1492 }
1493
1494 /* Add a new internal function. NAME is the name of the function; DOC
1495 is a documentation string describing the function. HANDLER is
1496 called when the function is invoked. COOKIE is an arbitrary
1497 pointer which is passed to HANDLER and is intended for "user
1498 data". */
1499 void
1500 add_internal_function (const char *name, const char *doc,
1501 internal_function_fn handler, void *cookie)
1502 {
1503 struct cmd_list_element *cmd;
1504 struct internal_function *ifn;
1505 struct internalvar *var = lookup_internalvar (name);
1506
1507 ifn = create_internal_function (name, handler, cookie);
1508 set_internalvar_function (var, ifn);
1509
1510 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1511 &functionlist);
1512 cmd->destroyer = function_destroyer;
1513 }
1514
1515 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1516 prevent cycles / duplicates. */
1517
1518 void
1519 preserve_one_value (struct value *value, struct objfile *objfile,
1520 htab_t copied_types)
1521 {
1522 if (TYPE_OBJFILE (value->type) == objfile)
1523 value->type = copy_type_recursive (objfile, value->type, copied_types);
1524
1525 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1526 value->enclosing_type = copy_type_recursive (objfile,
1527 value->enclosing_type,
1528 copied_types);
1529 }
1530
1531 /* Likewise for internal variable VAR. */
1532
1533 static void
1534 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1535 htab_t copied_types)
1536 {
1537 switch (var->kind)
1538 {
1539 case INTERNALVAR_INTEGER:
1540 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1541 var->u.integer.type
1542 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1543 break;
1544
1545 case INTERNALVAR_POINTER:
1546 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1547 var->u.pointer.type
1548 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1549 break;
1550
1551 case INTERNALVAR_VALUE:
1552 preserve_one_value (var->u.value, objfile, copied_types);
1553 break;
1554 }
1555 }
1556
1557 /* Update the internal variables and value history when OBJFILE is
1558 discarded; we must copy the types out of the objfile. New global types
1559 will be created for every convenience variable which currently points to
1560 this objfile's types, and the convenience variables will be adjusted to
1561 use the new global types. */
1562
1563 void
1564 preserve_values (struct objfile *objfile)
1565 {
1566 htab_t copied_types;
1567 struct value_history_chunk *cur;
1568 struct internalvar *var;
1569 int i;
1570
1571 /* Create the hash table. We allocate on the objfile's obstack, since
1572 it is soon to be deleted. */
1573 copied_types = create_copied_types_hash (objfile);
1574
1575 for (cur = value_history_chain; cur; cur = cur->next)
1576 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1577 if (cur->values[i])
1578 preserve_one_value (cur->values[i], objfile, copied_types);
1579
1580 for (var = internalvars; var; var = var->next)
1581 preserve_one_internalvar (var, objfile, copied_types);
1582
1583 preserve_python_values (objfile, copied_types);
1584
1585 htab_delete (copied_types);
1586 }
1587
1588 static void
1589 show_convenience (char *ignore, int from_tty)
1590 {
1591 struct gdbarch *gdbarch = get_current_arch ();
1592 struct internalvar *var;
1593 int varseen = 0;
1594 struct value_print_options opts;
1595
1596 get_user_print_options (&opts);
1597 for (var = internalvars; var; var = var->next)
1598 {
1599 if (!varseen)
1600 {
1601 varseen = 1;
1602 }
1603 printf_filtered (("$%s = "), var->name);
1604 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1605 &opts);
1606 printf_filtered (("\n"));
1607 }
1608 if (!varseen)
1609 printf_unfiltered (_("\
1610 No debugger convenience variables now defined.\n\
1611 Convenience variables have names starting with \"$\";\n\
1612 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1613 }
1614 \f
1615 /* Extract a value as a C number (either long or double).
1616 Knows how to convert fixed values to double, or
1617 floating values to long.
1618 Does not deallocate the value. */
1619
1620 LONGEST
1621 value_as_long (struct value *val)
1622 {
1623 /* This coerces arrays and functions, which is necessary (e.g.
1624 in disassemble_command). It also dereferences references, which
1625 I suspect is the most logical thing to do. */
1626 val = coerce_array (val);
1627 return unpack_long (value_type (val), value_contents (val));
1628 }
1629
1630 DOUBLEST
1631 value_as_double (struct value *val)
1632 {
1633 DOUBLEST foo;
1634 int inv;
1635
1636 foo = unpack_double (value_type (val), value_contents (val), &inv);
1637 if (inv)
1638 error (_("Invalid floating value found in program."));
1639 return foo;
1640 }
1641
1642 /* Extract a value as a C pointer. Does not deallocate the value.
1643 Note that val's type may not actually be a pointer; value_as_long
1644 handles all the cases. */
1645 CORE_ADDR
1646 value_as_address (struct value *val)
1647 {
1648 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1649
1650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1651 whether we want this to be true eventually. */
1652 #if 0
1653 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1654 non-address (e.g. argument to "signal", "info break", etc.), or
1655 for pointers to char, in which the low bits *are* significant. */
1656 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1657 #else
1658
1659 /* There are several targets (IA-64, PowerPC, and others) which
1660 don't represent pointers to functions as simply the address of
1661 the function's entry point. For example, on the IA-64, a
1662 function pointer points to a two-word descriptor, generated by
1663 the linker, which contains the function's entry point, and the
1664 value the IA-64 "global pointer" register should have --- to
1665 support position-independent code. The linker generates
1666 descriptors only for those functions whose addresses are taken.
1667
1668 On such targets, it's difficult for GDB to convert an arbitrary
1669 function address into a function pointer; it has to either find
1670 an existing descriptor for that function, or call malloc and
1671 build its own. On some targets, it is impossible for GDB to
1672 build a descriptor at all: the descriptor must contain a jump
1673 instruction; data memory cannot be executed; and code memory
1674 cannot be modified.
1675
1676 Upon entry to this function, if VAL is a value of type `function'
1677 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1678 value_address (val) is the address of the function. This is what
1679 you'll get if you evaluate an expression like `main'. The call
1680 to COERCE_ARRAY below actually does all the usual unary
1681 conversions, which includes converting values of type `function'
1682 to `pointer to function'. This is the challenging conversion
1683 discussed above. Then, `unpack_long' will convert that pointer
1684 back into an address.
1685
1686 So, suppose the user types `disassemble foo' on an architecture
1687 with a strange function pointer representation, on which GDB
1688 cannot build its own descriptors, and suppose further that `foo'
1689 has no linker-built descriptor. The address->pointer conversion
1690 will signal an error and prevent the command from running, even
1691 though the next step would have been to convert the pointer
1692 directly back into the same address.
1693
1694 The following shortcut avoids this whole mess. If VAL is a
1695 function, just return its address directly. */
1696 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1697 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1698 return value_address (val);
1699
1700 val = coerce_array (val);
1701
1702 /* Some architectures (e.g. Harvard), map instruction and data
1703 addresses onto a single large unified address space. For
1704 instance: An architecture may consider a large integer in the
1705 range 0x10000000 .. 0x1000ffff to already represent a data
1706 addresses (hence not need a pointer to address conversion) while
1707 a small integer would still need to be converted integer to
1708 pointer to address. Just assume such architectures handle all
1709 integer conversions in a single function. */
1710
1711 /* JimB writes:
1712
1713 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1714 must admonish GDB hackers to make sure its behavior matches the
1715 compiler's, whenever possible.
1716
1717 In general, I think GDB should evaluate expressions the same way
1718 the compiler does. When the user copies an expression out of
1719 their source code and hands it to a `print' command, they should
1720 get the same value the compiler would have computed. Any
1721 deviation from this rule can cause major confusion and annoyance,
1722 and needs to be justified carefully. In other words, GDB doesn't
1723 really have the freedom to do these conversions in clever and
1724 useful ways.
1725
1726 AndrewC pointed out that users aren't complaining about how GDB
1727 casts integers to pointers; they are complaining that they can't
1728 take an address from a disassembly listing and give it to `x/i'.
1729 This is certainly important.
1730
1731 Adding an architecture method like integer_to_address() certainly
1732 makes it possible for GDB to "get it right" in all circumstances
1733 --- the target has complete control over how things get done, so
1734 people can Do The Right Thing for their target without breaking
1735 anyone else. The standard doesn't specify how integers get
1736 converted to pointers; usually, the ABI doesn't either, but
1737 ABI-specific code is a more reasonable place to handle it. */
1738
1739 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1740 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1741 && gdbarch_integer_to_address_p (gdbarch))
1742 return gdbarch_integer_to_address (gdbarch, value_type (val),
1743 value_contents (val));
1744
1745 return unpack_long (value_type (val), value_contents (val));
1746 #endif
1747 }
1748 \f
1749 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1750 as a long, or as a double, assuming the raw data is described
1751 by type TYPE. Knows how to convert different sizes of values
1752 and can convert between fixed and floating point. We don't assume
1753 any alignment for the raw data. Return value is in host byte order.
1754
1755 If you want functions and arrays to be coerced to pointers, and
1756 references to be dereferenced, call value_as_long() instead.
1757
1758 C++: It is assumed that the front-end has taken care of
1759 all matters concerning pointers to members. A pointer
1760 to member which reaches here is considered to be equivalent
1761 to an INT (or some size). After all, it is only an offset. */
1762
1763 LONGEST
1764 unpack_long (struct type *type, const gdb_byte *valaddr)
1765 {
1766 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1767 enum type_code code = TYPE_CODE (type);
1768 int len = TYPE_LENGTH (type);
1769 int nosign = TYPE_UNSIGNED (type);
1770
1771 switch (code)
1772 {
1773 case TYPE_CODE_TYPEDEF:
1774 return unpack_long (check_typedef (type), valaddr);
1775 case TYPE_CODE_ENUM:
1776 case TYPE_CODE_FLAGS:
1777 case TYPE_CODE_BOOL:
1778 case TYPE_CODE_INT:
1779 case TYPE_CODE_CHAR:
1780 case TYPE_CODE_RANGE:
1781 case TYPE_CODE_MEMBERPTR:
1782 if (nosign)
1783 return extract_unsigned_integer (valaddr, len, byte_order);
1784 else
1785 return extract_signed_integer (valaddr, len, byte_order);
1786
1787 case TYPE_CODE_FLT:
1788 return extract_typed_floating (valaddr, type);
1789
1790 case TYPE_CODE_DECFLOAT:
1791 /* libdecnumber has a function to convert from decimal to integer, but
1792 it doesn't work when the decimal number has a fractional part. */
1793 return decimal_to_doublest (valaddr, len, byte_order);
1794
1795 case TYPE_CODE_PTR:
1796 case TYPE_CODE_REF:
1797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1798 whether we want this to be true eventually. */
1799 return extract_typed_address (valaddr, type);
1800
1801 default:
1802 error (_("Value can't be converted to integer."));
1803 }
1804 return 0; /* Placate lint. */
1805 }
1806
1807 /* Return a double value from the specified type and address.
1808 INVP points to an int which is set to 0 for valid value,
1809 1 for invalid value (bad float format). In either case,
1810 the returned double is OK to use. Argument is in target
1811 format, result is in host format. */
1812
1813 DOUBLEST
1814 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1815 {
1816 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1817 enum type_code code;
1818 int len;
1819 int nosign;
1820
1821 *invp = 0; /* Assume valid. */
1822 CHECK_TYPEDEF (type);
1823 code = TYPE_CODE (type);
1824 len = TYPE_LENGTH (type);
1825 nosign = TYPE_UNSIGNED (type);
1826 if (code == TYPE_CODE_FLT)
1827 {
1828 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1829 floating-point value was valid (using the macro
1830 INVALID_FLOAT). That test/macro have been removed.
1831
1832 It turns out that only the VAX defined this macro and then
1833 only in a non-portable way. Fixing the portability problem
1834 wouldn't help since the VAX floating-point code is also badly
1835 bit-rotten. The target needs to add definitions for the
1836 methods gdbarch_float_format and gdbarch_double_format - these
1837 exactly describe the target floating-point format. The
1838 problem here is that the corresponding floatformat_vax_f and
1839 floatformat_vax_d values these methods should be set to are
1840 also not defined either. Oops!
1841
1842 Hopefully someone will add both the missing floatformat
1843 definitions and the new cases for floatformat_is_valid (). */
1844
1845 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1846 {
1847 *invp = 1;
1848 return 0.0;
1849 }
1850
1851 return extract_typed_floating (valaddr, type);
1852 }
1853 else if (code == TYPE_CODE_DECFLOAT)
1854 return decimal_to_doublest (valaddr, len, byte_order);
1855 else if (nosign)
1856 {
1857 /* Unsigned -- be sure we compensate for signed LONGEST. */
1858 return (ULONGEST) unpack_long (type, valaddr);
1859 }
1860 else
1861 {
1862 /* Signed -- we are OK with unpack_long. */
1863 return unpack_long (type, valaddr);
1864 }
1865 }
1866
1867 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1868 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1869 We don't assume any alignment for the raw data. Return value is in
1870 host byte order.
1871
1872 If you want functions and arrays to be coerced to pointers, and
1873 references to be dereferenced, call value_as_address() instead.
1874
1875 C++: It is assumed that the front-end has taken care of
1876 all matters concerning pointers to members. A pointer
1877 to member which reaches here is considered to be equivalent
1878 to an INT (or some size). After all, it is only an offset. */
1879
1880 CORE_ADDR
1881 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1882 {
1883 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1884 whether we want this to be true eventually. */
1885 return unpack_long (type, valaddr);
1886 }
1887
1888 \f
1889 /* Get the value of the FIELDNO'th field (which must be static) of
1890 TYPE. Return NULL if the field doesn't exist or has been
1891 optimized out. */
1892
1893 struct value *
1894 value_static_field (struct type *type, int fieldno)
1895 {
1896 struct value *retval;
1897
1898 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1899 {
1900 case FIELD_LOC_KIND_PHYSADDR:
1901 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1902 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1903 break;
1904 case FIELD_LOC_KIND_PHYSNAME:
1905 {
1906 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1907 /*TYPE_FIELD_NAME (type, fieldno);*/
1908 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1909
1910 if (sym == NULL)
1911 {
1912 /* With some compilers, e.g. HP aCC, static data members are
1913 reported as non-debuggable symbols */
1914 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1915 NULL, NULL);
1916
1917 if (!msym)
1918 return NULL;
1919 else
1920 {
1921 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1922 SYMBOL_VALUE_ADDRESS (msym));
1923 }
1924 }
1925 else
1926 retval = value_of_variable (sym, NULL);
1927 break;
1928 }
1929 default:
1930 gdb_assert_not_reached ("unexpected field location kind");
1931 }
1932
1933 return retval;
1934 }
1935
1936 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1937 You have to be careful here, since the size of the data area for the value
1938 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1939 than the old enclosing type, you have to allocate more space for the
1940 data. */
1941
1942 void
1943 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
1944 {
1945 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1946 val->contents =
1947 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1948
1949 val->enclosing_type = new_encl_type;
1950 }
1951
1952 /* Given a value ARG1 (offset by OFFSET bytes)
1953 of a struct or union type ARG_TYPE,
1954 extract and return the value of one of its (non-static) fields.
1955 FIELDNO says which field. */
1956
1957 struct value *
1958 value_primitive_field (struct value *arg1, int offset,
1959 int fieldno, struct type *arg_type)
1960 {
1961 struct value *v;
1962 struct type *type;
1963
1964 CHECK_TYPEDEF (arg_type);
1965 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1966
1967 /* Call check_typedef on our type to make sure that, if TYPE
1968 is a TYPE_CODE_TYPEDEF, its length is set to the length
1969 of the target type instead of zero. However, we do not
1970 replace the typedef type by the target type, because we want
1971 to keep the typedef in order to be able to print the type
1972 description correctly. */
1973 check_typedef (type);
1974
1975 /* Handle packed fields */
1976
1977 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1978 {
1979 /* Create a new value for the bitfield, with bitpos and bitsize
1980 set. If possible, arrange offset and bitpos so that we can
1981 do a single aligned read of the size of the containing type.
1982 Otherwise, adjust offset to the byte containing the first
1983 bit. Assume that the address, offset, and embedded offset
1984 are sufficiently aligned. */
1985 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1986 int container_bitsize = TYPE_LENGTH (type) * 8;
1987
1988 v = allocate_value_lazy (type);
1989 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1990 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1991 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1992 v->bitpos = bitpos % container_bitsize;
1993 else
1994 v->bitpos = bitpos % 8;
1995 v->offset = (value_embedded_offset (arg1)
1996 + offset
1997 + (bitpos - v->bitpos) / 8);
1998 v->parent = arg1;
1999 value_incref (v->parent);
2000 if (!value_lazy (arg1))
2001 value_fetch_lazy (v);
2002 }
2003 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2004 {
2005 /* This field is actually a base subobject, so preserve the
2006 entire object's contents for later references to virtual
2007 bases, etc. */
2008
2009 /* Lazy register values with offsets are not supported. */
2010 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2011 value_fetch_lazy (arg1);
2012
2013 if (value_lazy (arg1))
2014 v = allocate_value_lazy (value_enclosing_type (arg1));
2015 else
2016 {
2017 v = allocate_value (value_enclosing_type (arg1));
2018 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2019 TYPE_LENGTH (value_enclosing_type (arg1)));
2020 }
2021 v->type = type;
2022 v->offset = value_offset (arg1);
2023 v->embedded_offset = (offset + value_embedded_offset (arg1)
2024 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2025 }
2026 else
2027 {
2028 /* Plain old data member */
2029 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2030
2031 /* Lazy register values with offsets are not supported. */
2032 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2033 value_fetch_lazy (arg1);
2034
2035 if (value_lazy (arg1))
2036 v = allocate_value_lazy (type);
2037 else
2038 {
2039 v = allocate_value (type);
2040 memcpy (value_contents_raw (v),
2041 value_contents_raw (arg1) + offset,
2042 TYPE_LENGTH (type));
2043 }
2044 v->offset = (value_offset (arg1) + offset
2045 + value_embedded_offset (arg1));
2046 }
2047 set_value_component_location (v, arg1);
2048 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2049 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2050 return v;
2051 }
2052
2053 /* Given a value ARG1 of a struct or union type,
2054 extract and return the value of one of its (non-static) fields.
2055 FIELDNO says which field. */
2056
2057 struct value *
2058 value_field (struct value *arg1, int fieldno)
2059 {
2060 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2061 }
2062
2063 /* Return a non-virtual function as a value.
2064 F is the list of member functions which contains the desired method.
2065 J is an index into F which provides the desired method.
2066
2067 We only use the symbol for its address, so be happy with either a
2068 full symbol or a minimal symbol.
2069 */
2070
2071 struct value *
2072 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2073 int offset)
2074 {
2075 struct value *v;
2076 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2077 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2078 struct symbol *sym;
2079 struct minimal_symbol *msym;
2080
2081 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2082 if (sym != NULL)
2083 {
2084 msym = NULL;
2085 }
2086 else
2087 {
2088 gdb_assert (sym == NULL);
2089 msym = lookup_minimal_symbol (physname, NULL, NULL);
2090 if (msym == NULL)
2091 return NULL;
2092 }
2093
2094 v = allocate_value (ftype);
2095 if (sym)
2096 {
2097 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2098 }
2099 else
2100 {
2101 /* The minimal symbol might point to a function descriptor;
2102 resolve it to the actual code address instead. */
2103 struct objfile *objfile = msymbol_objfile (msym);
2104 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2105
2106 set_value_address (v,
2107 gdbarch_convert_from_func_ptr_addr
2108 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2109 }
2110
2111 if (arg1p)
2112 {
2113 if (type != value_type (*arg1p))
2114 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2115 value_addr (*arg1p)));
2116
2117 /* Move the `this' pointer according to the offset.
2118 VALUE_OFFSET (*arg1p) += offset;
2119 */
2120 }
2121
2122 return v;
2123 }
2124
2125 \f
2126 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2127 object at VALADDR. The bitfield starts at BITPOS bits and contains
2128 BITSIZE bits.
2129
2130 Extracting bits depends on endianness of the machine. Compute the
2131 number of least significant bits to discard. For big endian machines,
2132 we compute the total number of bits in the anonymous object, subtract
2133 off the bit count from the MSB of the object to the MSB of the
2134 bitfield, then the size of the bitfield, which leaves the LSB discard
2135 count. For little endian machines, the discard count is simply the
2136 number of bits from the LSB of the anonymous object to the LSB of the
2137 bitfield.
2138
2139 If the field is signed, we also do sign extension. */
2140
2141 LONGEST
2142 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2143 int bitpos, int bitsize)
2144 {
2145 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2146 ULONGEST val;
2147 ULONGEST valmask;
2148 int lsbcount;
2149 int bytes_read;
2150
2151 /* Read the minimum number of bytes required; there may not be
2152 enough bytes to read an entire ULONGEST. */
2153 CHECK_TYPEDEF (field_type);
2154 if (bitsize)
2155 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2156 else
2157 bytes_read = TYPE_LENGTH (field_type);
2158
2159 val = extract_unsigned_integer (valaddr + bitpos / 8,
2160 bytes_read, byte_order);
2161
2162 /* Extract bits. See comment above. */
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2165 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2166 else
2167 lsbcount = (bitpos % 8);
2168 val >>= lsbcount;
2169
2170 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2171 If the field is signed, and is negative, then sign extend. */
2172
2173 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2174 {
2175 valmask = (((ULONGEST) 1) << bitsize) - 1;
2176 val &= valmask;
2177 if (!TYPE_UNSIGNED (field_type))
2178 {
2179 if (val & (valmask ^ (valmask >> 1)))
2180 {
2181 val |= ~valmask;
2182 }
2183 }
2184 }
2185 return (val);
2186 }
2187
2188 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2189 VALADDR. See unpack_bits_as_long for more details. */
2190
2191 LONGEST
2192 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2193 {
2194 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2195 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2196 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2197
2198 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2199 }
2200
2201 /* Modify the value of a bitfield. ADDR points to a block of memory in
2202 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2203 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2204 indicate which bits (in target bit order) comprise the bitfield.
2205 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2206 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2207
2208 void
2209 modify_field (struct type *type, gdb_byte *addr,
2210 LONGEST fieldval, int bitpos, int bitsize)
2211 {
2212 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2213 ULONGEST oword;
2214 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2215 int bytesize;
2216
2217 /* Normalize BITPOS. */
2218 addr += bitpos / 8;
2219 bitpos %= 8;
2220
2221 /* If a negative fieldval fits in the field in question, chop
2222 off the sign extension bits. */
2223 if ((~fieldval & ~(mask >> 1)) == 0)
2224 fieldval &= mask;
2225
2226 /* Warn if value is too big to fit in the field in question. */
2227 if (0 != (fieldval & ~mask))
2228 {
2229 /* FIXME: would like to include fieldval in the message, but
2230 we don't have a sprintf_longest. */
2231 warning (_("Value does not fit in %d bits."), bitsize);
2232
2233 /* Truncate it, otherwise adjoining fields may be corrupted. */
2234 fieldval &= mask;
2235 }
2236
2237 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2238 false valgrind reports. */
2239
2240 bytesize = (bitpos + bitsize + 7) / 8;
2241 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2242
2243 /* Shifting for bit field depends on endianness of the target machine. */
2244 if (gdbarch_bits_big_endian (get_type_arch (type)))
2245 bitpos = bytesize * 8 - bitpos - bitsize;
2246
2247 oword &= ~(mask << bitpos);
2248 oword |= fieldval << bitpos;
2249
2250 store_unsigned_integer (addr, bytesize, byte_order, oword);
2251 }
2252 \f
2253 /* Pack NUM into BUF using a target format of TYPE. */
2254
2255 void
2256 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2257 {
2258 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2259 int len;
2260
2261 type = check_typedef (type);
2262 len = TYPE_LENGTH (type);
2263
2264 switch (TYPE_CODE (type))
2265 {
2266 case TYPE_CODE_INT:
2267 case TYPE_CODE_CHAR:
2268 case TYPE_CODE_ENUM:
2269 case TYPE_CODE_FLAGS:
2270 case TYPE_CODE_BOOL:
2271 case TYPE_CODE_RANGE:
2272 case TYPE_CODE_MEMBERPTR:
2273 store_signed_integer (buf, len, byte_order, num);
2274 break;
2275
2276 case TYPE_CODE_REF:
2277 case TYPE_CODE_PTR:
2278 store_typed_address (buf, type, (CORE_ADDR) num);
2279 break;
2280
2281 default:
2282 error (_("Unexpected type (%d) encountered for integer constant."),
2283 TYPE_CODE (type));
2284 }
2285 }
2286
2287
2288 /* Pack NUM into BUF using a target format of TYPE. */
2289
2290 void
2291 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2292 {
2293 int len;
2294 enum bfd_endian byte_order;
2295
2296 type = check_typedef (type);
2297 len = TYPE_LENGTH (type);
2298 byte_order = gdbarch_byte_order (get_type_arch (type));
2299
2300 switch (TYPE_CODE (type))
2301 {
2302 case TYPE_CODE_INT:
2303 case TYPE_CODE_CHAR:
2304 case TYPE_CODE_ENUM:
2305 case TYPE_CODE_FLAGS:
2306 case TYPE_CODE_BOOL:
2307 case TYPE_CODE_RANGE:
2308 case TYPE_CODE_MEMBERPTR:
2309 store_unsigned_integer (buf, len, byte_order, num);
2310 break;
2311
2312 case TYPE_CODE_REF:
2313 case TYPE_CODE_PTR:
2314 store_typed_address (buf, type, (CORE_ADDR) num);
2315 break;
2316
2317 default:
2318 error (_("\
2319 Unexpected type (%d) encountered for unsigned integer constant."),
2320 TYPE_CODE (type));
2321 }
2322 }
2323
2324
2325 /* Convert C numbers into newly allocated values. */
2326
2327 struct value *
2328 value_from_longest (struct type *type, LONGEST num)
2329 {
2330 struct value *val = allocate_value (type);
2331
2332 pack_long (value_contents_raw (val), type, num);
2333 return val;
2334 }
2335
2336
2337 /* Convert C unsigned numbers into newly allocated values. */
2338
2339 struct value *
2340 value_from_ulongest (struct type *type, ULONGEST num)
2341 {
2342 struct value *val = allocate_value (type);
2343
2344 pack_unsigned_long (value_contents_raw (val), type, num);
2345
2346 return val;
2347 }
2348
2349
2350 /* Create a value representing a pointer of type TYPE to the address
2351 ADDR. */
2352 struct value *
2353 value_from_pointer (struct type *type, CORE_ADDR addr)
2354 {
2355 struct value *val = allocate_value (type);
2356
2357 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2358 return val;
2359 }
2360
2361
2362 /* Create a value of type TYPE whose contents come from VALADDR, if it
2363 is non-null, and whose memory address (in the inferior) is
2364 ADDRESS. */
2365
2366 struct value *
2367 value_from_contents_and_address (struct type *type,
2368 const gdb_byte *valaddr,
2369 CORE_ADDR address)
2370 {
2371 struct value *v = allocate_value (type);
2372
2373 if (valaddr == NULL)
2374 set_value_lazy (v, 1);
2375 else
2376 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2377 set_value_address (v, address);
2378 VALUE_LVAL (v) = lval_memory;
2379 return v;
2380 }
2381
2382 struct value *
2383 value_from_double (struct type *type, DOUBLEST num)
2384 {
2385 struct value *val = allocate_value (type);
2386 struct type *base_type = check_typedef (type);
2387 enum type_code code = TYPE_CODE (base_type);
2388
2389 if (code == TYPE_CODE_FLT)
2390 {
2391 store_typed_floating (value_contents_raw (val), base_type, num);
2392 }
2393 else
2394 error (_("Unexpected type encountered for floating constant."));
2395
2396 return val;
2397 }
2398
2399 struct value *
2400 value_from_decfloat (struct type *type, const gdb_byte *dec)
2401 {
2402 struct value *val = allocate_value (type);
2403
2404 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2405 return val;
2406 }
2407
2408 struct value *
2409 coerce_ref (struct value *arg)
2410 {
2411 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2412
2413 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2414 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2415 unpack_pointer (value_type (arg),
2416 value_contents (arg)));
2417 return arg;
2418 }
2419
2420 struct value *
2421 coerce_array (struct value *arg)
2422 {
2423 struct type *type;
2424
2425 arg = coerce_ref (arg);
2426 type = check_typedef (value_type (arg));
2427
2428 switch (TYPE_CODE (type))
2429 {
2430 case TYPE_CODE_ARRAY:
2431 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2432 arg = value_coerce_array (arg);
2433 break;
2434 case TYPE_CODE_FUNC:
2435 arg = value_coerce_function (arg);
2436 break;
2437 }
2438 return arg;
2439 }
2440 \f
2441
2442 /* Return true if the function returning the specified type is using
2443 the convention of returning structures in memory (passing in the
2444 address as a hidden first parameter). */
2445
2446 int
2447 using_struct_return (struct gdbarch *gdbarch,
2448 struct type *func_type, struct type *value_type)
2449 {
2450 enum type_code code = TYPE_CODE (value_type);
2451
2452 if (code == TYPE_CODE_ERROR)
2453 error (_("Function return type unknown."));
2454
2455 if (code == TYPE_CODE_VOID)
2456 /* A void return value is never in memory. See also corresponding
2457 code in "print_return_value". */
2458 return 0;
2459
2460 /* Probe the architecture for the return-value convention. */
2461 return (gdbarch_return_value (gdbarch, func_type, value_type,
2462 NULL, NULL, NULL)
2463 != RETURN_VALUE_REGISTER_CONVENTION);
2464 }
2465
2466 /* Set the initialized field in a value struct. */
2467
2468 void
2469 set_value_initialized (struct value *val, int status)
2470 {
2471 val->initialized = status;
2472 }
2473
2474 /* Return the initialized field in a value struct. */
2475
2476 int
2477 value_initialized (struct value *val)
2478 {
2479 return val->initialized;
2480 }
2481
2482 void
2483 _initialize_values (void)
2484 {
2485 add_cmd ("convenience", no_class, show_convenience, _("\
2486 Debugger convenience (\"$foo\") variables.\n\
2487 These variables are created when you assign them values;\n\
2488 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2489 \n\
2490 A few convenience variables are given values automatically:\n\
2491 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2492 \"$__\" holds the contents of the last address examined with \"x\"."),
2493 &showlist);
2494
2495 add_cmd ("values", no_class, show_values,
2496 _("Elements of value history around item number IDX (or last ten)."),
2497 &showlist);
2498
2499 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2500 Initialize a convenience variable if necessary.\n\
2501 init-if-undefined VARIABLE = EXPRESSION\n\
2502 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2503 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2504 VARIABLE is already initialized."));
2505
2506 add_prefix_cmd ("function", no_class, function_command, _("\
2507 Placeholder command for showing help on convenience functions."),
2508 &functionlist, "function ", 0, &cmdlist);
2509 }