]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 /* See value.h. */
810
811 void
812 set_value_parent (struct value *value, struct value *parent)
813 {
814 value->parent = parent;
815 }
816
817 gdb_byte *
818 value_contents_raw (struct value *value)
819 {
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
822 }
823
824 gdb_byte *
825 value_contents_all_raw (struct value *value)
826 {
827 allocate_value_contents (value);
828 return value->contents;
829 }
830
831 struct type *
832 value_enclosing_type (struct value *value)
833 {
834 return value->enclosing_type;
835 }
836
837 /* Look at value.h for description. */
838
839 struct type *
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842 {
843 struct value_print_options opts;
844 struct value *target;
845 struct type *result;
846
847 get_user_print_options (&opts);
848
849 if (real_type_found)
850 *real_type_found = 0;
851 result = value_type (value);
852 if (opts.objectprint)
853 {
854 if (TYPE_CODE (result) == TYPE_CODE_PTR
855 || TYPE_CODE (result) == TYPE_CODE_REF)
856 {
857 struct type *real_type;
858
859 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
860 if (real_type)
861 {
862 if (real_type_found)
863 *real_type_found = 1;
864 result = real_type;
865 }
866 }
867 else if (resolve_simple_types)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = value_enclosing_type (value);
872 }
873 }
874
875 return result;
876 }
877
878 static void
879 require_not_optimized_out (const struct value *value)
880 {
881 if (value->optimized_out)
882 error (_("value has been optimized out"));
883 }
884
885 static void
886 require_available (const struct value *value)
887 {
888 if (!VEC_empty (range_s, value->unavailable))
889 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
890 }
891
892 const gdb_byte *
893 value_contents_for_printing (struct value *value)
894 {
895 if (value->lazy)
896 value_fetch_lazy (value);
897 return value->contents;
898 }
899
900 const gdb_byte *
901 value_contents_for_printing_const (const struct value *value)
902 {
903 gdb_assert (!value->lazy);
904 return value->contents;
905 }
906
907 const gdb_byte *
908 value_contents_all (struct value *value)
909 {
910 const gdb_byte *result = value_contents_for_printing (value);
911 require_not_optimized_out (value);
912 require_available (value);
913 return result;
914 }
915
916 /* Copy LENGTH bytes of SRC value's (all) contents
917 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
918 contents, starting at DST_OFFSET. If unavailable contents are
919 being copied from SRC, the corresponding DST contents are marked
920 unavailable accordingly. Neither DST nor SRC may be lazy
921 values.
922
923 It is assumed the contents of DST in the [DST_OFFSET,
924 DST_OFFSET+LENGTH) range are wholly available. */
925
926 void
927 value_contents_copy_raw (struct value *dst, int dst_offset,
928 struct value *src, int src_offset, int length)
929 {
930 range_s *r;
931 int i;
932
933 /* A lazy DST would make that this copy operation useless, since as
934 soon as DST's contents were un-lazied (by a later value_contents
935 call, say), the contents would be overwritten. A lazy SRC would
936 mean we'd be copying garbage. */
937 gdb_assert (!dst->lazy && !src->lazy);
938
939 /* The overwritten DST range gets unavailability ORed in, not
940 replaced. Make sure to remember to implement replacing if it
941 turns out actually necessary. */
942 gdb_assert (value_bytes_available (dst, dst_offset, length));
943
944 /* Copy the data. */
945 memcpy (value_contents_all_raw (dst) + dst_offset,
946 value_contents_all_raw (src) + src_offset,
947 length);
948
949 /* Copy the meta-data, adjusted. */
950 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
951 {
952 ULONGEST h, l;
953
954 l = max (r->offset, src_offset);
955 h = min (r->offset + r->length, src_offset + length);
956
957 if (l < h)
958 mark_value_bytes_unavailable (dst,
959 dst_offset + (l - src_offset),
960 h - l);
961 }
962 }
963
964 /* Copy LENGTH bytes of SRC value's (all) contents
965 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
966 (all) contents, starting at DST_OFFSET. If unavailable contents
967 are being copied from SRC, the corresponding DST contents are
968 marked unavailable accordingly. DST must not be lazy. If SRC is
969 lazy, it will be fetched now. If SRC is not valid (is optimized
970 out), an error is thrown.
971
972 It is assumed the contents of DST in the [DST_OFFSET,
973 DST_OFFSET+LENGTH) range are wholly available. */
974
975 void
976 value_contents_copy (struct value *dst, int dst_offset,
977 struct value *src, int src_offset, int length)
978 {
979 require_not_optimized_out (src);
980
981 if (src->lazy)
982 value_fetch_lazy (src);
983
984 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
985 }
986
987 int
988 value_lazy (struct value *value)
989 {
990 return value->lazy;
991 }
992
993 void
994 set_value_lazy (struct value *value, int val)
995 {
996 value->lazy = val;
997 }
998
999 int
1000 value_stack (struct value *value)
1001 {
1002 return value->stack;
1003 }
1004
1005 void
1006 set_value_stack (struct value *value, int val)
1007 {
1008 value->stack = val;
1009 }
1010
1011 const gdb_byte *
1012 value_contents (struct value *value)
1013 {
1014 const gdb_byte *result = value_contents_writeable (value);
1015 require_not_optimized_out (value);
1016 require_available (value);
1017 return result;
1018 }
1019
1020 gdb_byte *
1021 value_contents_writeable (struct value *value)
1022 {
1023 if (value->lazy)
1024 value_fetch_lazy (value);
1025 return value_contents_raw (value);
1026 }
1027
1028 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1029 this function is different from value_equal; in C the operator ==
1030 can return 0 even if the two values being compared are equal. */
1031
1032 int
1033 value_contents_equal (struct value *val1, struct value *val2)
1034 {
1035 struct type *type1;
1036 struct type *type2;
1037 int len;
1038
1039 type1 = check_typedef (value_type (val1));
1040 type2 = check_typedef (value_type (val2));
1041 len = TYPE_LENGTH (type1);
1042 if (len != TYPE_LENGTH (type2))
1043 return 0;
1044
1045 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
1046 }
1047
1048 int
1049 value_optimized_out (struct value *value)
1050 {
1051 return value->optimized_out;
1052 }
1053
1054 void
1055 set_value_optimized_out (struct value *value, int val)
1056 {
1057 value->optimized_out = val;
1058 }
1059
1060 int
1061 value_entirely_optimized_out (const struct value *value)
1062 {
1063 if (!value->optimized_out)
1064 return 0;
1065 if (value->lval != lval_computed
1066 || !value->location.computed.funcs->check_any_valid)
1067 return 1;
1068 return !value->location.computed.funcs->check_any_valid (value);
1069 }
1070
1071 int
1072 value_bits_valid (const struct value *value, int offset, int length)
1073 {
1074 if (!value->optimized_out)
1075 return 1;
1076 if (value->lval != lval_computed
1077 || !value->location.computed.funcs->check_validity)
1078 return 0;
1079 return value->location.computed.funcs->check_validity (value, offset,
1080 length);
1081 }
1082
1083 int
1084 value_bits_synthetic_pointer (const struct value *value,
1085 int offset, int length)
1086 {
1087 if (value->lval != lval_computed
1088 || !value->location.computed.funcs->check_synthetic_pointer)
1089 return 0;
1090 return value->location.computed.funcs->check_synthetic_pointer (value,
1091 offset,
1092 length);
1093 }
1094
1095 int
1096 value_embedded_offset (struct value *value)
1097 {
1098 return value->embedded_offset;
1099 }
1100
1101 void
1102 set_value_embedded_offset (struct value *value, int val)
1103 {
1104 value->embedded_offset = val;
1105 }
1106
1107 int
1108 value_pointed_to_offset (struct value *value)
1109 {
1110 return value->pointed_to_offset;
1111 }
1112
1113 void
1114 set_value_pointed_to_offset (struct value *value, int val)
1115 {
1116 value->pointed_to_offset = val;
1117 }
1118
1119 const struct lval_funcs *
1120 value_computed_funcs (const struct value *v)
1121 {
1122 gdb_assert (value_lval_const (v) == lval_computed);
1123
1124 return v->location.computed.funcs;
1125 }
1126
1127 void *
1128 value_computed_closure (const struct value *v)
1129 {
1130 gdb_assert (v->lval == lval_computed);
1131
1132 return v->location.computed.closure;
1133 }
1134
1135 enum lval_type *
1136 deprecated_value_lval_hack (struct value *value)
1137 {
1138 return &value->lval;
1139 }
1140
1141 enum lval_type
1142 value_lval_const (const struct value *value)
1143 {
1144 return value->lval;
1145 }
1146
1147 CORE_ADDR
1148 value_address (const struct value *value)
1149 {
1150 if (value->lval == lval_internalvar
1151 || value->lval == lval_internalvar_component)
1152 return 0;
1153 if (value->parent != NULL)
1154 return value_address (value->parent) + value->offset;
1155 else
1156 return value->location.address + value->offset;
1157 }
1158
1159 CORE_ADDR
1160 value_raw_address (struct value *value)
1161 {
1162 if (value->lval == lval_internalvar
1163 || value->lval == lval_internalvar_component)
1164 return 0;
1165 return value->location.address;
1166 }
1167
1168 void
1169 set_value_address (struct value *value, CORE_ADDR addr)
1170 {
1171 gdb_assert (value->lval != lval_internalvar
1172 && value->lval != lval_internalvar_component);
1173 value->location.address = addr;
1174 }
1175
1176 struct internalvar **
1177 deprecated_value_internalvar_hack (struct value *value)
1178 {
1179 return &value->location.internalvar;
1180 }
1181
1182 struct frame_id *
1183 deprecated_value_frame_id_hack (struct value *value)
1184 {
1185 return &value->frame_id;
1186 }
1187
1188 short *
1189 deprecated_value_regnum_hack (struct value *value)
1190 {
1191 return &value->regnum;
1192 }
1193
1194 int
1195 deprecated_value_modifiable (struct value *value)
1196 {
1197 return value->modifiable;
1198 }
1199 void
1200 deprecated_set_value_modifiable (struct value *value, int modifiable)
1201 {
1202 value->modifiable = modifiable;
1203 }
1204 \f
1205 /* Return a mark in the value chain. All values allocated after the
1206 mark is obtained (except for those released) are subject to being freed
1207 if a subsequent value_free_to_mark is passed the mark. */
1208 struct value *
1209 value_mark (void)
1210 {
1211 return all_values;
1212 }
1213
1214 /* Take a reference to VAL. VAL will not be deallocated until all
1215 references are released. */
1216
1217 void
1218 value_incref (struct value *val)
1219 {
1220 val->reference_count++;
1221 }
1222
1223 /* Release a reference to VAL, which was acquired with value_incref.
1224 This function is also called to deallocate values from the value
1225 chain. */
1226
1227 void
1228 value_free (struct value *val)
1229 {
1230 if (val)
1231 {
1232 gdb_assert (val->reference_count > 0);
1233 val->reference_count--;
1234 if (val->reference_count > 0)
1235 return;
1236
1237 /* If there's an associated parent value, drop our reference to
1238 it. */
1239 if (val->parent != NULL)
1240 value_free (val->parent);
1241
1242 if (VALUE_LVAL (val) == lval_computed)
1243 {
1244 const struct lval_funcs *funcs = val->location.computed.funcs;
1245
1246 if (funcs->free_closure)
1247 funcs->free_closure (val);
1248 }
1249
1250 xfree (val->contents);
1251 VEC_free (range_s, val->unavailable);
1252 }
1253 xfree (val);
1254 }
1255
1256 /* Free all values allocated since MARK was obtained by value_mark
1257 (except for those released). */
1258 void
1259 value_free_to_mark (struct value *mark)
1260 {
1261 struct value *val;
1262 struct value *next;
1263
1264 for (val = all_values; val && val != mark; val = next)
1265 {
1266 next = val->next;
1267 val->released = 1;
1268 value_free (val);
1269 }
1270 all_values = val;
1271 }
1272
1273 /* Free all the values that have been allocated (except for those released).
1274 Call after each command, successful or not.
1275 In practice this is called before each command, which is sufficient. */
1276
1277 void
1278 free_all_values (void)
1279 {
1280 struct value *val;
1281 struct value *next;
1282
1283 for (val = all_values; val; val = next)
1284 {
1285 next = val->next;
1286 val->released = 1;
1287 value_free (val);
1288 }
1289
1290 all_values = 0;
1291 }
1292
1293 /* Frees all the elements in a chain of values. */
1294
1295 void
1296 free_value_chain (struct value *v)
1297 {
1298 struct value *next;
1299
1300 for (; v; v = next)
1301 {
1302 next = value_next (v);
1303 value_free (v);
1304 }
1305 }
1306
1307 /* Remove VAL from the chain all_values
1308 so it will not be freed automatically. */
1309
1310 void
1311 release_value (struct value *val)
1312 {
1313 struct value *v;
1314
1315 if (all_values == val)
1316 {
1317 all_values = val->next;
1318 val->next = NULL;
1319 val->released = 1;
1320 return;
1321 }
1322
1323 for (v = all_values; v; v = v->next)
1324 {
1325 if (v->next == val)
1326 {
1327 v->next = val->next;
1328 val->next = NULL;
1329 val->released = 1;
1330 break;
1331 }
1332 }
1333 }
1334
1335 /* If the value is not already released, release it.
1336 If the value is already released, increment its reference count.
1337 That is, this function ensures that the value is released from the
1338 value chain and that the caller owns a reference to it. */
1339
1340 void
1341 release_value_or_incref (struct value *val)
1342 {
1343 if (val->released)
1344 value_incref (val);
1345 else
1346 release_value (val);
1347 }
1348
1349 /* Release all values up to mark */
1350 struct value *
1351 value_release_to_mark (struct value *mark)
1352 {
1353 struct value *val;
1354 struct value *next;
1355
1356 for (val = next = all_values; next; next = next->next)
1357 {
1358 if (next->next == mark)
1359 {
1360 all_values = next->next;
1361 next->next = NULL;
1362 return val;
1363 }
1364 next->released = 1;
1365 }
1366 all_values = 0;
1367 return val;
1368 }
1369
1370 /* Return a copy of the value ARG.
1371 It contains the same contents, for same memory address,
1372 but it's a different block of storage. */
1373
1374 struct value *
1375 value_copy (struct value *arg)
1376 {
1377 struct type *encl_type = value_enclosing_type (arg);
1378 struct value *val;
1379
1380 if (value_lazy (arg))
1381 val = allocate_value_lazy (encl_type);
1382 else
1383 val = allocate_value (encl_type);
1384 val->type = arg->type;
1385 VALUE_LVAL (val) = VALUE_LVAL (arg);
1386 val->location = arg->location;
1387 val->offset = arg->offset;
1388 val->bitpos = arg->bitpos;
1389 val->bitsize = arg->bitsize;
1390 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1391 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1392 val->lazy = arg->lazy;
1393 val->optimized_out = arg->optimized_out;
1394 val->embedded_offset = value_embedded_offset (arg);
1395 val->pointed_to_offset = arg->pointed_to_offset;
1396 val->modifiable = arg->modifiable;
1397 if (!value_lazy (val))
1398 {
1399 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1400 TYPE_LENGTH (value_enclosing_type (arg)));
1401
1402 }
1403 val->unavailable = VEC_copy (range_s, arg->unavailable);
1404 val->parent = arg->parent;
1405 if (val->parent)
1406 value_incref (val->parent);
1407 if (VALUE_LVAL (val) == lval_computed)
1408 {
1409 const struct lval_funcs *funcs = val->location.computed.funcs;
1410
1411 if (funcs->copy_closure)
1412 val->location.computed.closure = funcs->copy_closure (val);
1413 }
1414 return val;
1415 }
1416
1417 /* Return a version of ARG that is non-lvalue. */
1418
1419 struct value *
1420 value_non_lval (struct value *arg)
1421 {
1422 if (VALUE_LVAL (arg) != not_lval)
1423 {
1424 struct type *enc_type = value_enclosing_type (arg);
1425 struct value *val = allocate_value (enc_type);
1426
1427 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1428 TYPE_LENGTH (enc_type));
1429 val->type = arg->type;
1430 set_value_embedded_offset (val, value_embedded_offset (arg));
1431 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1432 return val;
1433 }
1434 return arg;
1435 }
1436
1437 void
1438 set_value_component_location (struct value *component,
1439 const struct value *whole)
1440 {
1441 if (whole->lval == lval_internalvar)
1442 VALUE_LVAL (component) = lval_internalvar_component;
1443 else
1444 VALUE_LVAL (component) = whole->lval;
1445
1446 component->location = whole->location;
1447 if (whole->lval == lval_computed)
1448 {
1449 const struct lval_funcs *funcs = whole->location.computed.funcs;
1450
1451 if (funcs->copy_closure)
1452 component->location.computed.closure = funcs->copy_closure (whole);
1453 }
1454 }
1455
1456 \f
1457 /* Access to the value history. */
1458
1459 /* Record a new value in the value history.
1460 Returns the absolute history index of the entry.
1461 Result of -1 indicates the value was not saved; otherwise it is the
1462 value history index of this new item. */
1463
1464 int
1465 record_latest_value (struct value *val)
1466 {
1467 int i;
1468
1469 /* We don't want this value to have anything to do with the inferior anymore.
1470 In particular, "set $1 = 50" should not affect the variable from which
1471 the value was taken, and fast watchpoints should be able to assume that
1472 a value on the value history never changes. */
1473 if (value_lazy (val))
1474 value_fetch_lazy (val);
1475 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1476 from. This is a bit dubious, because then *&$1 does not just return $1
1477 but the current contents of that location. c'est la vie... */
1478 val->modifiable = 0;
1479 release_value (val);
1480
1481 /* Here we treat value_history_count as origin-zero
1482 and applying to the value being stored now. */
1483
1484 i = value_history_count % VALUE_HISTORY_CHUNK;
1485 if (i == 0)
1486 {
1487 struct value_history_chunk *new
1488 = (struct value_history_chunk *)
1489
1490 xmalloc (sizeof (struct value_history_chunk));
1491 memset (new->values, 0, sizeof new->values);
1492 new->next = value_history_chain;
1493 value_history_chain = new;
1494 }
1495
1496 value_history_chain->values[i] = val;
1497
1498 /* Now we regard value_history_count as origin-one
1499 and applying to the value just stored. */
1500
1501 return ++value_history_count;
1502 }
1503
1504 /* Return a copy of the value in the history with sequence number NUM. */
1505
1506 struct value *
1507 access_value_history (int num)
1508 {
1509 struct value_history_chunk *chunk;
1510 int i;
1511 int absnum = num;
1512
1513 if (absnum <= 0)
1514 absnum += value_history_count;
1515
1516 if (absnum <= 0)
1517 {
1518 if (num == 0)
1519 error (_("The history is empty."));
1520 else if (num == 1)
1521 error (_("There is only one value in the history."));
1522 else
1523 error (_("History does not go back to $$%d."), -num);
1524 }
1525 if (absnum > value_history_count)
1526 error (_("History has not yet reached $%d."), absnum);
1527
1528 absnum--;
1529
1530 /* Now absnum is always absolute and origin zero. */
1531
1532 chunk = value_history_chain;
1533 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1534 - absnum / VALUE_HISTORY_CHUNK;
1535 i > 0; i--)
1536 chunk = chunk->next;
1537
1538 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1539 }
1540
1541 static void
1542 show_values (char *num_exp, int from_tty)
1543 {
1544 int i;
1545 struct value *val;
1546 static int num = 1;
1547
1548 if (num_exp)
1549 {
1550 /* "show values +" should print from the stored position.
1551 "show values <exp>" should print around value number <exp>. */
1552 if (num_exp[0] != '+' || num_exp[1] != '\0')
1553 num = parse_and_eval_long (num_exp) - 5;
1554 }
1555 else
1556 {
1557 /* "show values" means print the last 10 values. */
1558 num = value_history_count - 9;
1559 }
1560
1561 if (num <= 0)
1562 num = 1;
1563
1564 for (i = num; i < num + 10 && i <= value_history_count; i++)
1565 {
1566 struct value_print_options opts;
1567
1568 val = access_value_history (i);
1569 printf_filtered (("$%d = "), i);
1570 get_user_print_options (&opts);
1571 value_print (val, gdb_stdout, &opts);
1572 printf_filtered (("\n"));
1573 }
1574
1575 /* The next "show values +" should start after what we just printed. */
1576 num += 10;
1577
1578 /* Hitting just return after this command should do the same thing as
1579 "show values +". If num_exp is null, this is unnecessary, since
1580 "show values +" is not useful after "show values". */
1581 if (from_tty && num_exp)
1582 {
1583 num_exp[0] = '+';
1584 num_exp[1] = '\0';
1585 }
1586 }
1587 \f
1588 /* Internal variables. These are variables within the debugger
1589 that hold values assigned by debugger commands.
1590 The user refers to them with a '$' prefix
1591 that does not appear in the variable names stored internally. */
1592
1593 struct internalvar
1594 {
1595 struct internalvar *next;
1596 char *name;
1597
1598 /* We support various different kinds of content of an internal variable.
1599 enum internalvar_kind specifies the kind, and union internalvar_data
1600 provides the data associated with this particular kind. */
1601
1602 enum internalvar_kind
1603 {
1604 /* The internal variable is empty. */
1605 INTERNALVAR_VOID,
1606
1607 /* The value of the internal variable is provided directly as
1608 a GDB value object. */
1609 INTERNALVAR_VALUE,
1610
1611 /* A fresh value is computed via a call-back routine on every
1612 access to the internal variable. */
1613 INTERNALVAR_MAKE_VALUE,
1614
1615 /* The internal variable holds a GDB internal convenience function. */
1616 INTERNALVAR_FUNCTION,
1617
1618 /* The variable holds an integer value. */
1619 INTERNALVAR_INTEGER,
1620
1621 /* The variable holds a GDB-provided string. */
1622 INTERNALVAR_STRING,
1623
1624 } kind;
1625
1626 union internalvar_data
1627 {
1628 /* A value object used with INTERNALVAR_VALUE. */
1629 struct value *value;
1630
1631 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1632 struct
1633 {
1634 /* The functions to call. */
1635 const struct internalvar_funcs *functions;
1636
1637 /* The function's user-data. */
1638 void *data;
1639 } make_value;
1640
1641 /* The internal function used with INTERNALVAR_FUNCTION. */
1642 struct
1643 {
1644 struct internal_function *function;
1645 /* True if this is the canonical name for the function. */
1646 int canonical;
1647 } fn;
1648
1649 /* An integer value used with INTERNALVAR_INTEGER. */
1650 struct
1651 {
1652 /* If type is non-NULL, it will be used as the type to generate
1653 a value for this internal variable. If type is NULL, a default
1654 integer type for the architecture is used. */
1655 struct type *type;
1656 LONGEST val;
1657 } integer;
1658
1659 /* A string value used with INTERNALVAR_STRING. */
1660 char *string;
1661 } u;
1662 };
1663
1664 static struct internalvar *internalvars;
1665
1666 /* If the variable does not already exist create it and give it the
1667 value given. If no value is given then the default is zero. */
1668 static void
1669 init_if_undefined_command (char* args, int from_tty)
1670 {
1671 struct internalvar* intvar;
1672
1673 /* Parse the expression - this is taken from set_command(). */
1674 struct expression *expr = parse_expression (args);
1675 register struct cleanup *old_chain =
1676 make_cleanup (free_current_contents, &expr);
1677
1678 /* Validate the expression.
1679 Was the expression an assignment?
1680 Or even an expression at all? */
1681 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1682 error (_("Init-if-undefined requires an assignment expression."));
1683
1684 /* Extract the variable from the parsed expression.
1685 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1686 if (expr->elts[1].opcode != OP_INTERNALVAR)
1687 error (_("The first parameter to init-if-undefined "
1688 "should be a GDB variable."));
1689 intvar = expr->elts[2].internalvar;
1690
1691 /* Only evaluate the expression if the lvalue is void.
1692 This may still fail if the expresssion is invalid. */
1693 if (intvar->kind == INTERNALVAR_VOID)
1694 evaluate_expression (expr);
1695
1696 do_cleanups (old_chain);
1697 }
1698
1699
1700 /* Look up an internal variable with name NAME. NAME should not
1701 normally include a dollar sign.
1702
1703 If the specified internal variable does not exist,
1704 the return value is NULL. */
1705
1706 struct internalvar *
1707 lookup_only_internalvar (const char *name)
1708 {
1709 struct internalvar *var;
1710
1711 for (var = internalvars; var; var = var->next)
1712 if (strcmp (var->name, name) == 0)
1713 return var;
1714
1715 return NULL;
1716 }
1717
1718
1719 /* Create an internal variable with name NAME and with a void value.
1720 NAME should not normally include a dollar sign. */
1721
1722 struct internalvar *
1723 create_internalvar (const char *name)
1724 {
1725 struct internalvar *var;
1726
1727 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1728 var->name = concat (name, (char *)NULL);
1729 var->kind = INTERNALVAR_VOID;
1730 var->next = internalvars;
1731 internalvars = var;
1732 return var;
1733 }
1734
1735 /* Create an internal variable with name NAME and register FUN as the
1736 function that value_of_internalvar uses to create a value whenever
1737 this variable is referenced. NAME should not normally include a
1738 dollar sign. DATA is passed uninterpreted to FUN when it is
1739 called. CLEANUP, if not NULL, is called when the internal variable
1740 is destroyed. It is passed DATA as its only argument. */
1741
1742 struct internalvar *
1743 create_internalvar_type_lazy (const char *name,
1744 const struct internalvar_funcs *funcs,
1745 void *data)
1746 {
1747 struct internalvar *var = create_internalvar (name);
1748
1749 var->kind = INTERNALVAR_MAKE_VALUE;
1750 var->u.make_value.functions = funcs;
1751 var->u.make_value.data = data;
1752 return var;
1753 }
1754
1755 /* See documentation in value.h. */
1756
1757 int
1758 compile_internalvar_to_ax (struct internalvar *var,
1759 struct agent_expr *expr,
1760 struct axs_value *value)
1761 {
1762 if (var->kind != INTERNALVAR_MAKE_VALUE
1763 || var->u.make_value.functions->compile_to_ax == NULL)
1764 return 0;
1765
1766 var->u.make_value.functions->compile_to_ax (var, expr, value,
1767 var->u.make_value.data);
1768 return 1;
1769 }
1770
1771 /* Look up an internal variable with name NAME. NAME should not
1772 normally include a dollar sign.
1773
1774 If the specified internal variable does not exist,
1775 one is created, with a void value. */
1776
1777 struct internalvar *
1778 lookup_internalvar (const char *name)
1779 {
1780 struct internalvar *var;
1781
1782 var = lookup_only_internalvar (name);
1783 if (var)
1784 return var;
1785
1786 return create_internalvar (name);
1787 }
1788
1789 /* Return current value of internal variable VAR. For variables that
1790 are not inherently typed, use a value type appropriate for GDBARCH. */
1791
1792 struct value *
1793 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1794 {
1795 struct value *val;
1796 struct trace_state_variable *tsv;
1797
1798 /* If there is a trace state variable of the same name, assume that
1799 is what we really want to see. */
1800 tsv = find_trace_state_variable (var->name);
1801 if (tsv)
1802 {
1803 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1804 &(tsv->value));
1805 if (tsv->value_known)
1806 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1807 tsv->value);
1808 else
1809 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1810 return val;
1811 }
1812
1813 switch (var->kind)
1814 {
1815 case INTERNALVAR_VOID:
1816 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1817 break;
1818
1819 case INTERNALVAR_FUNCTION:
1820 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1821 break;
1822
1823 case INTERNALVAR_INTEGER:
1824 if (!var->u.integer.type)
1825 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1826 var->u.integer.val);
1827 else
1828 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1829 break;
1830
1831 case INTERNALVAR_STRING:
1832 val = value_cstring (var->u.string, strlen (var->u.string),
1833 builtin_type (gdbarch)->builtin_char);
1834 break;
1835
1836 case INTERNALVAR_VALUE:
1837 val = value_copy (var->u.value);
1838 if (value_lazy (val))
1839 value_fetch_lazy (val);
1840 break;
1841
1842 case INTERNALVAR_MAKE_VALUE:
1843 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1844 var->u.make_value.data);
1845 break;
1846
1847 default:
1848 internal_error (__FILE__, __LINE__, _("bad kind"));
1849 }
1850
1851 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1852 on this value go back to affect the original internal variable.
1853
1854 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1855 no underlying modifyable state in the internal variable.
1856
1857 Likewise, if the variable's value is a computed lvalue, we want
1858 references to it to produce another computed lvalue, where
1859 references and assignments actually operate through the
1860 computed value's functions.
1861
1862 This means that internal variables with computed values
1863 behave a little differently from other internal variables:
1864 assignments to them don't just replace the previous value
1865 altogether. At the moment, this seems like the behavior we
1866 want. */
1867
1868 if (var->kind != INTERNALVAR_MAKE_VALUE
1869 && val->lval != lval_computed)
1870 {
1871 VALUE_LVAL (val) = lval_internalvar;
1872 VALUE_INTERNALVAR (val) = var;
1873 }
1874
1875 return val;
1876 }
1877
1878 int
1879 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1880 {
1881 if (var->kind == INTERNALVAR_INTEGER)
1882 {
1883 *result = var->u.integer.val;
1884 return 1;
1885 }
1886
1887 if (var->kind == INTERNALVAR_VALUE)
1888 {
1889 struct type *type = check_typedef (value_type (var->u.value));
1890
1891 if (TYPE_CODE (type) == TYPE_CODE_INT)
1892 {
1893 *result = value_as_long (var->u.value);
1894 return 1;
1895 }
1896 }
1897
1898 return 0;
1899 }
1900
1901 static int
1902 get_internalvar_function (struct internalvar *var,
1903 struct internal_function **result)
1904 {
1905 switch (var->kind)
1906 {
1907 case INTERNALVAR_FUNCTION:
1908 *result = var->u.fn.function;
1909 return 1;
1910
1911 default:
1912 return 0;
1913 }
1914 }
1915
1916 void
1917 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1918 int bitsize, struct value *newval)
1919 {
1920 gdb_byte *addr;
1921
1922 switch (var->kind)
1923 {
1924 case INTERNALVAR_VALUE:
1925 addr = value_contents_writeable (var->u.value);
1926
1927 if (bitsize)
1928 modify_field (value_type (var->u.value), addr + offset,
1929 value_as_long (newval), bitpos, bitsize);
1930 else
1931 memcpy (addr + offset, value_contents (newval),
1932 TYPE_LENGTH (value_type (newval)));
1933 break;
1934
1935 default:
1936 /* We can never get a component of any other kind. */
1937 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1938 }
1939 }
1940
1941 void
1942 set_internalvar (struct internalvar *var, struct value *val)
1943 {
1944 enum internalvar_kind new_kind;
1945 union internalvar_data new_data = { 0 };
1946
1947 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1948 error (_("Cannot overwrite convenience function %s"), var->name);
1949
1950 /* Prepare new contents. */
1951 switch (TYPE_CODE (check_typedef (value_type (val))))
1952 {
1953 case TYPE_CODE_VOID:
1954 new_kind = INTERNALVAR_VOID;
1955 break;
1956
1957 case TYPE_CODE_INTERNAL_FUNCTION:
1958 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1959 new_kind = INTERNALVAR_FUNCTION;
1960 get_internalvar_function (VALUE_INTERNALVAR (val),
1961 &new_data.fn.function);
1962 /* Copies created here are never canonical. */
1963 break;
1964
1965 default:
1966 new_kind = INTERNALVAR_VALUE;
1967 new_data.value = value_copy (val);
1968 new_data.value->modifiable = 1;
1969
1970 /* Force the value to be fetched from the target now, to avoid problems
1971 later when this internalvar is referenced and the target is gone or
1972 has changed. */
1973 if (value_lazy (new_data.value))
1974 value_fetch_lazy (new_data.value);
1975
1976 /* Release the value from the value chain to prevent it from being
1977 deleted by free_all_values. From here on this function should not
1978 call error () until new_data is installed into the var->u to avoid
1979 leaking memory. */
1980 release_value (new_data.value);
1981 break;
1982 }
1983
1984 /* Clean up old contents. */
1985 clear_internalvar (var);
1986
1987 /* Switch over. */
1988 var->kind = new_kind;
1989 var->u = new_data;
1990 /* End code which must not call error(). */
1991 }
1992
1993 void
1994 set_internalvar_integer (struct internalvar *var, LONGEST l)
1995 {
1996 /* Clean up old contents. */
1997 clear_internalvar (var);
1998
1999 var->kind = INTERNALVAR_INTEGER;
2000 var->u.integer.type = NULL;
2001 var->u.integer.val = l;
2002 }
2003
2004 void
2005 set_internalvar_string (struct internalvar *var, const char *string)
2006 {
2007 /* Clean up old contents. */
2008 clear_internalvar (var);
2009
2010 var->kind = INTERNALVAR_STRING;
2011 var->u.string = xstrdup (string);
2012 }
2013
2014 static void
2015 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2016 {
2017 /* Clean up old contents. */
2018 clear_internalvar (var);
2019
2020 var->kind = INTERNALVAR_FUNCTION;
2021 var->u.fn.function = f;
2022 var->u.fn.canonical = 1;
2023 /* Variables installed here are always the canonical version. */
2024 }
2025
2026 void
2027 clear_internalvar (struct internalvar *var)
2028 {
2029 /* Clean up old contents. */
2030 switch (var->kind)
2031 {
2032 case INTERNALVAR_VALUE:
2033 value_free (var->u.value);
2034 break;
2035
2036 case INTERNALVAR_STRING:
2037 xfree (var->u.string);
2038 break;
2039
2040 case INTERNALVAR_MAKE_VALUE:
2041 if (var->u.make_value.functions->destroy != NULL)
2042 var->u.make_value.functions->destroy (var->u.make_value.data);
2043 break;
2044
2045 default:
2046 break;
2047 }
2048
2049 /* Reset to void kind. */
2050 var->kind = INTERNALVAR_VOID;
2051 }
2052
2053 char *
2054 internalvar_name (struct internalvar *var)
2055 {
2056 return var->name;
2057 }
2058
2059 static struct internal_function *
2060 create_internal_function (const char *name,
2061 internal_function_fn handler, void *cookie)
2062 {
2063 struct internal_function *ifn = XNEW (struct internal_function);
2064
2065 ifn->name = xstrdup (name);
2066 ifn->handler = handler;
2067 ifn->cookie = cookie;
2068 return ifn;
2069 }
2070
2071 char *
2072 value_internal_function_name (struct value *val)
2073 {
2074 struct internal_function *ifn;
2075 int result;
2076
2077 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2078 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2079 gdb_assert (result);
2080
2081 return ifn->name;
2082 }
2083
2084 struct value *
2085 call_internal_function (struct gdbarch *gdbarch,
2086 const struct language_defn *language,
2087 struct value *func, int argc, struct value **argv)
2088 {
2089 struct internal_function *ifn;
2090 int result;
2091
2092 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2093 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2094 gdb_assert (result);
2095
2096 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2097 }
2098
2099 /* The 'function' command. This does nothing -- it is just a
2100 placeholder to let "help function NAME" work. This is also used as
2101 the implementation of the sub-command that is created when
2102 registering an internal function. */
2103 static void
2104 function_command (char *command, int from_tty)
2105 {
2106 /* Do nothing. */
2107 }
2108
2109 /* Clean up if an internal function's command is destroyed. */
2110 static void
2111 function_destroyer (struct cmd_list_element *self, void *ignore)
2112 {
2113 xfree (self->name);
2114 xfree (self->doc);
2115 }
2116
2117 /* Add a new internal function. NAME is the name of the function; DOC
2118 is a documentation string describing the function. HANDLER is
2119 called when the function is invoked. COOKIE is an arbitrary
2120 pointer which is passed to HANDLER and is intended for "user
2121 data". */
2122 void
2123 add_internal_function (const char *name, const char *doc,
2124 internal_function_fn handler, void *cookie)
2125 {
2126 struct cmd_list_element *cmd;
2127 struct internal_function *ifn;
2128 struct internalvar *var = lookup_internalvar (name);
2129
2130 ifn = create_internal_function (name, handler, cookie);
2131 set_internalvar_function (var, ifn);
2132
2133 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2134 &functionlist);
2135 cmd->destroyer = function_destroyer;
2136 }
2137
2138 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2139 prevent cycles / duplicates. */
2140
2141 void
2142 preserve_one_value (struct value *value, struct objfile *objfile,
2143 htab_t copied_types)
2144 {
2145 if (TYPE_OBJFILE (value->type) == objfile)
2146 value->type = copy_type_recursive (objfile, value->type, copied_types);
2147
2148 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2149 value->enclosing_type = copy_type_recursive (objfile,
2150 value->enclosing_type,
2151 copied_types);
2152 }
2153
2154 /* Likewise for internal variable VAR. */
2155
2156 static void
2157 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2158 htab_t copied_types)
2159 {
2160 switch (var->kind)
2161 {
2162 case INTERNALVAR_INTEGER:
2163 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2164 var->u.integer.type
2165 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2166 break;
2167
2168 case INTERNALVAR_VALUE:
2169 preserve_one_value (var->u.value, objfile, copied_types);
2170 break;
2171 }
2172 }
2173
2174 /* Update the internal variables and value history when OBJFILE is
2175 discarded; we must copy the types out of the objfile. New global types
2176 will be created for every convenience variable which currently points to
2177 this objfile's types, and the convenience variables will be adjusted to
2178 use the new global types. */
2179
2180 void
2181 preserve_values (struct objfile *objfile)
2182 {
2183 htab_t copied_types;
2184 struct value_history_chunk *cur;
2185 struct internalvar *var;
2186 int i;
2187
2188 /* Create the hash table. We allocate on the objfile's obstack, since
2189 it is soon to be deleted. */
2190 copied_types = create_copied_types_hash (objfile);
2191
2192 for (cur = value_history_chain; cur; cur = cur->next)
2193 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2194 if (cur->values[i])
2195 preserve_one_value (cur->values[i], objfile, copied_types);
2196
2197 for (var = internalvars; var; var = var->next)
2198 preserve_one_internalvar (var, objfile, copied_types);
2199
2200 preserve_python_values (objfile, copied_types);
2201
2202 htab_delete (copied_types);
2203 }
2204
2205 static void
2206 show_convenience (char *ignore, int from_tty)
2207 {
2208 struct gdbarch *gdbarch = get_current_arch ();
2209 struct internalvar *var;
2210 int varseen = 0;
2211 struct value_print_options opts;
2212
2213 get_user_print_options (&opts);
2214 for (var = internalvars; var; var = var->next)
2215 {
2216 volatile struct gdb_exception ex;
2217
2218 if (!varseen)
2219 {
2220 varseen = 1;
2221 }
2222 printf_filtered (("$%s = "), var->name);
2223
2224 TRY_CATCH (ex, RETURN_MASK_ERROR)
2225 {
2226 struct value *val;
2227
2228 val = value_of_internalvar (gdbarch, var);
2229 value_print (val, gdb_stdout, &opts);
2230 }
2231 if (ex.reason < 0)
2232 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2233 printf_filtered (("\n"));
2234 }
2235 if (!varseen)
2236 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2237 "Convenience variables have "
2238 "names starting with \"$\";\n"
2239 "use \"set\" as in \"set "
2240 "$foo = 5\" to define them.\n"));
2241 }
2242 \f
2243 /* Extract a value as a C number (either long or double).
2244 Knows how to convert fixed values to double, or
2245 floating values to long.
2246 Does not deallocate the value. */
2247
2248 LONGEST
2249 value_as_long (struct value *val)
2250 {
2251 /* This coerces arrays and functions, which is necessary (e.g.
2252 in disassemble_command). It also dereferences references, which
2253 I suspect is the most logical thing to do. */
2254 val = coerce_array (val);
2255 return unpack_long (value_type (val), value_contents (val));
2256 }
2257
2258 DOUBLEST
2259 value_as_double (struct value *val)
2260 {
2261 DOUBLEST foo;
2262 int inv;
2263
2264 foo = unpack_double (value_type (val), value_contents (val), &inv);
2265 if (inv)
2266 error (_("Invalid floating value found in program."));
2267 return foo;
2268 }
2269
2270 /* Extract a value as a C pointer. Does not deallocate the value.
2271 Note that val's type may not actually be a pointer; value_as_long
2272 handles all the cases. */
2273 CORE_ADDR
2274 value_as_address (struct value *val)
2275 {
2276 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2277
2278 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2279 whether we want this to be true eventually. */
2280 #if 0
2281 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2282 non-address (e.g. argument to "signal", "info break", etc.), or
2283 for pointers to char, in which the low bits *are* significant. */
2284 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2285 #else
2286
2287 /* There are several targets (IA-64, PowerPC, and others) which
2288 don't represent pointers to functions as simply the address of
2289 the function's entry point. For example, on the IA-64, a
2290 function pointer points to a two-word descriptor, generated by
2291 the linker, which contains the function's entry point, and the
2292 value the IA-64 "global pointer" register should have --- to
2293 support position-independent code. The linker generates
2294 descriptors only for those functions whose addresses are taken.
2295
2296 On such targets, it's difficult for GDB to convert an arbitrary
2297 function address into a function pointer; it has to either find
2298 an existing descriptor for that function, or call malloc and
2299 build its own. On some targets, it is impossible for GDB to
2300 build a descriptor at all: the descriptor must contain a jump
2301 instruction; data memory cannot be executed; and code memory
2302 cannot be modified.
2303
2304 Upon entry to this function, if VAL is a value of type `function'
2305 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2306 value_address (val) is the address of the function. This is what
2307 you'll get if you evaluate an expression like `main'. The call
2308 to COERCE_ARRAY below actually does all the usual unary
2309 conversions, which includes converting values of type `function'
2310 to `pointer to function'. This is the challenging conversion
2311 discussed above. Then, `unpack_long' will convert that pointer
2312 back into an address.
2313
2314 So, suppose the user types `disassemble foo' on an architecture
2315 with a strange function pointer representation, on which GDB
2316 cannot build its own descriptors, and suppose further that `foo'
2317 has no linker-built descriptor. The address->pointer conversion
2318 will signal an error and prevent the command from running, even
2319 though the next step would have been to convert the pointer
2320 directly back into the same address.
2321
2322 The following shortcut avoids this whole mess. If VAL is a
2323 function, just return its address directly. */
2324 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2325 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2326 return value_address (val);
2327
2328 val = coerce_array (val);
2329
2330 /* Some architectures (e.g. Harvard), map instruction and data
2331 addresses onto a single large unified address space. For
2332 instance: An architecture may consider a large integer in the
2333 range 0x10000000 .. 0x1000ffff to already represent a data
2334 addresses (hence not need a pointer to address conversion) while
2335 a small integer would still need to be converted integer to
2336 pointer to address. Just assume such architectures handle all
2337 integer conversions in a single function. */
2338
2339 /* JimB writes:
2340
2341 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2342 must admonish GDB hackers to make sure its behavior matches the
2343 compiler's, whenever possible.
2344
2345 In general, I think GDB should evaluate expressions the same way
2346 the compiler does. When the user copies an expression out of
2347 their source code and hands it to a `print' command, they should
2348 get the same value the compiler would have computed. Any
2349 deviation from this rule can cause major confusion and annoyance,
2350 and needs to be justified carefully. In other words, GDB doesn't
2351 really have the freedom to do these conversions in clever and
2352 useful ways.
2353
2354 AndrewC pointed out that users aren't complaining about how GDB
2355 casts integers to pointers; they are complaining that they can't
2356 take an address from a disassembly listing and give it to `x/i'.
2357 This is certainly important.
2358
2359 Adding an architecture method like integer_to_address() certainly
2360 makes it possible for GDB to "get it right" in all circumstances
2361 --- the target has complete control over how things get done, so
2362 people can Do The Right Thing for their target without breaking
2363 anyone else. The standard doesn't specify how integers get
2364 converted to pointers; usually, the ABI doesn't either, but
2365 ABI-specific code is a more reasonable place to handle it. */
2366
2367 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2368 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2369 && gdbarch_integer_to_address_p (gdbarch))
2370 return gdbarch_integer_to_address (gdbarch, value_type (val),
2371 value_contents (val));
2372
2373 return unpack_long (value_type (val), value_contents (val));
2374 #endif
2375 }
2376 \f
2377 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2378 as a long, or as a double, assuming the raw data is described
2379 by type TYPE. Knows how to convert different sizes of values
2380 and can convert between fixed and floating point. We don't assume
2381 any alignment for the raw data. Return value is in host byte order.
2382
2383 If you want functions and arrays to be coerced to pointers, and
2384 references to be dereferenced, call value_as_long() instead.
2385
2386 C++: It is assumed that the front-end has taken care of
2387 all matters concerning pointers to members. A pointer
2388 to member which reaches here is considered to be equivalent
2389 to an INT (or some size). After all, it is only an offset. */
2390
2391 LONGEST
2392 unpack_long (struct type *type, const gdb_byte *valaddr)
2393 {
2394 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2395 enum type_code code = TYPE_CODE (type);
2396 int len = TYPE_LENGTH (type);
2397 int nosign = TYPE_UNSIGNED (type);
2398
2399 switch (code)
2400 {
2401 case TYPE_CODE_TYPEDEF:
2402 return unpack_long (check_typedef (type), valaddr);
2403 case TYPE_CODE_ENUM:
2404 case TYPE_CODE_FLAGS:
2405 case TYPE_CODE_BOOL:
2406 case TYPE_CODE_INT:
2407 case TYPE_CODE_CHAR:
2408 case TYPE_CODE_RANGE:
2409 case TYPE_CODE_MEMBERPTR:
2410 if (nosign)
2411 return extract_unsigned_integer (valaddr, len, byte_order);
2412 else
2413 return extract_signed_integer (valaddr, len, byte_order);
2414
2415 case TYPE_CODE_FLT:
2416 return extract_typed_floating (valaddr, type);
2417
2418 case TYPE_CODE_DECFLOAT:
2419 /* libdecnumber has a function to convert from decimal to integer, but
2420 it doesn't work when the decimal number has a fractional part. */
2421 return decimal_to_doublest (valaddr, len, byte_order);
2422
2423 case TYPE_CODE_PTR:
2424 case TYPE_CODE_REF:
2425 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2426 whether we want this to be true eventually. */
2427 return extract_typed_address (valaddr, type);
2428
2429 default:
2430 error (_("Value can't be converted to integer."));
2431 }
2432 return 0; /* Placate lint. */
2433 }
2434
2435 /* Return a double value from the specified type and address.
2436 INVP points to an int which is set to 0 for valid value,
2437 1 for invalid value (bad float format). In either case,
2438 the returned double is OK to use. Argument is in target
2439 format, result is in host format. */
2440
2441 DOUBLEST
2442 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2443 {
2444 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2445 enum type_code code;
2446 int len;
2447 int nosign;
2448
2449 *invp = 0; /* Assume valid. */
2450 CHECK_TYPEDEF (type);
2451 code = TYPE_CODE (type);
2452 len = TYPE_LENGTH (type);
2453 nosign = TYPE_UNSIGNED (type);
2454 if (code == TYPE_CODE_FLT)
2455 {
2456 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2457 floating-point value was valid (using the macro
2458 INVALID_FLOAT). That test/macro have been removed.
2459
2460 It turns out that only the VAX defined this macro and then
2461 only in a non-portable way. Fixing the portability problem
2462 wouldn't help since the VAX floating-point code is also badly
2463 bit-rotten. The target needs to add definitions for the
2464 methods gdbarch_float_format and gdbarch_double_format - these
2465 exactly describe the target floating-point format. The
2466 problem here is that the corresponding floatformat_vax_f and
2467 floatformat_vax_d values these methods should be set to are
2468 also not defined either. Oops!
2469
2470 Hopefully someone will add both the missing floatformat
2471 definitions and the new cases for floatformat_is_valid (). */
2472
2473 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2474 {
2475 *invp = 1;
2476 return 0.0;
2477 }
2478
2479 return extract_typed_floating (valaddr, type);
2480 }
2481 else if (code == TYPE_CODE_DECFLOAT)
2482 return decimal_to_doublest (valaddr, len, byte_order);
2483 else if (nosign)
2484 {
2485 /* Unsigned -- be sure we compensate for signed LONGEST. */
2486 return (ULONGEST) unpack_long (type, valaddr);
2487 }
2488 else
2489 {
2490 /* Signed -- we are OK with unpack_long. */
2491 return unpack_long (type, valaddr);
2492 }
2493 }
2494
2495 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2496 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2497 We don't assume any alignment for the raw data. Return value is in
2498 host byte order.
2499
2500 If you want functions and arrays to be coerced to pointers, and
2501 references to be dereferenced, call value_as_address() instead.
2502
2503 C++: It is assumed that the front-end has taken care of
2504 all matters concerning pointers to members. A pointer
2505 to member which reaches here is considered to be equivalent
2506 to an INT (or some size). After all, it is only an offset. */
2507
2508 CORE_ADDR
2509 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2510 {
2511 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2512 whether we want this to be true eventually. */
2513 return unpack_long (type, valaddr);
2514 }
2515
2516 \f
2517 /* Get the value of the FIELDNO'th field (which must be static) of
2518 TYPE. Return NULL if the field doesn't exist or has been
2519 optimized out. */
2520
2521 struct value *
2522 value_static_field (struct type *type, int fieldno)
2523 {
2524 struct value *retval;
2525
2526 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2527 {
2528 case FIELD_LOC_KIND_PHYSADDR:
2529 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2530 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2531 break;
2532 case FIELD_LOC_KIND_PHYSNAME:
2533 {
2534 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2535 /* TYPE_FIELD_NAME (type, fieldno); */
2536 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2537
2538 if (sym == NULL)
2539 {
2540 /* With some compilers, e.g. HP aCC, static data members are
2541 reported as non-debuggable symbols. */
2542 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2543 NULL, NULL);
2544
2545 if (!msym)
2546 return NULL;
2547 else
2548 {
2549 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2550 SYMBOL_VALUE_ADDRESS (msym));
2551 }
2552 }
2553 else
2554 retval = value_of_variable (sym, NULL);
2555 break;
2556 }
2557 default:
2558 gdb_assert_not_reached ("unexpected field location kind");
2559 }
2560
2561 return retval;
2562 }
2563
2564 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2565 You have to be careful here, since the size of the data area for the value
2566 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2567 than the old enclosing type, you have to allocate more space for the
2568 data. */
2569
2570 void
2571 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2572 {
2573 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2574 val->contents =
2575 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2576
2577 val->enclosing_type = new_encl_type;
2578 }
2579
2580 /* Given a value ARG1 (offset by OFFSET bytes)
2581 of a struct or union type ARG_TYPE,
2582 extract and return the value of one of its (non-static) fields.
2583 FIELDNO says which field. */
2584
2585 struct value *
2586 value_primitive_field (struct value *arg1, int offset,
2587 int fieldno, struct type *arg_type)
2588 {
2589 struct value *v;
2590 struct type *type;
2591
2592 CHECK_TYPEDEF (arg_type);
2593 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2594
2595 /* Call check_typedef on our type to make sure that, if TYPE
2596 is a TYPE_CODE_TYPEDEF, its length is set to the length
2597 of the target type instead of zero. However, we do not
2598 replace the typedef type by the target type, because we want
2599 to keep the typedef in order to be able to print the type
2600 description correctly. */
2601 check_typedef (type);
2602
2603 if (value_optimized_out (arg1))
2604 v = allocate_optimized_out_value (type);
2605 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2606 {
2607 /* Handle packed fields.
2608
2609 Create a new value for the bitfield, with bitpos and bitsize
2610 set. If possible, arrange offset and bitpos so that we can
2611 do a single aligned read of the size of the containing type.
2612 Otherwise, adjust offset to the byte containing the first
2613 bit. Assume that the address, offset, and embedded offset
2614 are sufficiently aligned. */
2615
2616 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2617 int container_bitsize = TYPE_LENGTH (type) * 8;
2618
2619 v = allocate_value_lazy (type);
2620 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2621 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2622 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2623 v->bitpos = bitpos % container_bitsize;
2624 else
2625 v->bitpos = bitpos % 8;
2626 v->offset = (value_embedded_offset (arg1)
2627 + offset
2628 + (bitpos - v->bitpos) / 8);
2629 v->parent = arg1;
2630 value_incref (v->parent);
2631 if (!value_lazy (arg1))
2632 value_fetch_lazy (v);
2633 }
2634 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2635 {
2636 /* This field is actually a base subobject, so preserve the
2637 entire object's contents for later references to virtual
2638 bases, etc. */
2639 int boffset;
2640
2641 /* Lazy register values with offsets are not supported. */
2642 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2643 value_fetch_lazy (arg1);
2644
2645 /* We special case virtual inheritance here because this
2646 requires access to the contents, which we would rather avoid
2647 for references to ordinary fields of unavailable values. */
2648 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2649 boffset = baseclass_offset (arg_type, fieldno,
2650 value_contents (arg1),
2651 value_embedded_offset (arg1),
2652 value_address (arg1),
2653 arg1);
2654 else
2655 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2656
2657 if (value_lazy (arg1))
2658 v = allocate_value_lazy (value_enclosing_type (arg1));
2659 else
2660 {
2661 v = allocate_value (value_enclosing_type (arg1));
2662 value_contents_copy_raw (v, 0, arg1, 0,
2663 TYPE_LENGTH (value_enclosing_type (arg1)));
2664 }
2665 v->type = type;
2666 v->offset = value_offset (arg1);
2667 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2668 }
2669 else
2670 {
2671 /* Plain old data member */
2672 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2673
2674 /* Lazy register values with offsets are not supported. */
2675 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2676 value_fetch_lazy (arg1);
2677
2678 if (value_lazy (arg1))
2679 v = allocate_value_lazy (type);
2680 else
2681 {
2682 v = allocate_value (type);
2683 value_contents_copy_raw (v, value_embedded_offset (v),
2684 arg1, value_embedded_offset (arg1) + offset,
2685 TYPE_LENGTH (type));
2686 }
2687 v->offset = (value_offset (arg1) + offset
2688 + value_embedded_offset (arg1));
2689 }
2690 set_value_component_location (v, arg1);
2691 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2692 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2693 return v;
2694 }
2695
2696 /* Given a value ARG1 of a struct or union type,
2697 extract and return the value of one of its (non-static) fields.
2698 FIELDNO says which field. */
2699
2700 struct value *
2701 value_field (struct value *arg1, int fieldno)
2702 {
2703 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2704 }
2705
2706 /* Return a non-virtual function as a value.
2707 F is the list of member functions which contains the desired method.
2708 J is an index into F which provides the desired method.
2709
2710 We only use the symbol for its address, so be happy with either a
2711 full symbol or a minimal symbol. */
2712
2713 struct value *
2714 value_fn_field (struct value **arg1p, struct fn_field *f,
2715 int j, struct type *type,
2716 int offset)
2717 {
2718 struct value *v;
2719 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2720 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2721 struct symbol *sym;
2722 struct minimal_symbol *msym;
2723
2724 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2725 if (sym != NULL)
2726 {
2727 msym = NULL;
2728 }
2729 else
2730 {
2731 gdb_assert (sym == NULL);
2732 msym = lookup_minimal_symbol (physname, NULL, NULL);
2733 if (msym == NULL)
2734 return NULL;
2735 }
2736
2737 v = allocate_value (ftype);
2738 if (sym)
2739 {
2740 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2741 }
2742 else
2743 {
2744 /* The minimal symbol might point to a function descriptor;
2745 resolve it to the actual code address instead. */
2746 struct objfile *objfile = msymbol_objfile (msym);
2747 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2748
2749 set_value_address (v,
2750 gdbarch_convert_from_func_ptr_addr
2751 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2752 }
2753
2754 if (arg1p)
2755 {
2756 if (type != value_type (*arg1p))
2757 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2758 value_addr (*arg1p)));
2759
2760 /* Move the `this' pointer according to the offset.
2761 VALUE_OFFSET (*arg1p) += offset; */
2762 }
2763
2764 return v;
2765 }
2766
2767 \f
2768
2769 /* Helper function for both unpack_value_bits_as_long and
2770 unpack_bits_as_long. See those functions for more details on the
2771 interface; the only difference is that this function accepts either
2772 a NULL or a non-NULL ORIGINAL_VALUE. */
2773
2774 static int
2775 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2776 int embedded_offset, int bitpos, int bitsize,
2777 const struct value *original_value,
2778 LONGEST *result)
2779 {
2780 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2781 ULONGEST val;
2782 ULONGEST valmask;
2783 int lsbcount;
2784 int bytes_read;
2785 int read_offset;
2786
2787 /* Read the minimum number of bytes required; there may not be
2788 enough bytes to read an entire ULONGEST. */
2789 CHECK_TYPEDEF (field_type);
2790 if (bitsize)
2791 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2792 else
2793 bytes_read = TYPE_LENGTH (field_type);
2794
2795 read_offset = bitpos / 8;
2796
2797 if (original_value != NULL
2798 && !value_bytes_available (original_value, embedded_offset + read_offset,
2799 bytes_read))
2800 return 0;
2801
2802 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2803 bytes_read, byte_order);
2804
2805 /* Extract bits. See comment above. */
2806
2807 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2808 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2809 else
2810 lsbcount = (bitpos % 8);
2811 val >>= lsbcount;
2812
2813 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2814 If the field is signed, and is negative, then sign extend. */
2815
2816 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2817 {
2818 valmask = (((ULONGEST) 1) << bitsize) - 1;
2819 val &= valmask;
2820 if (!TYPE_UNSIGNED (field_type))
2821 {
2822 if (val & (valmask ^ (valmask >> 1)))
2823 {
2824 val |= ~valmask;
2825 }
2826 }
2827 }
2828
2829 *result = val;
2830 return 1;
2831 }
2832
2833 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2834 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2835 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2836 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2837 bits.
2838
2839 Returns false if the value contents are unavailable, otherwise
2840 returns true, indicating a valid value has been stored in *RESULT.
2841
2842 Extracting bits depends on endianness of the machine. Compute the
2843 number of least significant bits to discard. For big endian machines,
2844 we compute the total number of bits in the anonymous object, subtract
2845 off the bit count from the MSB of the object to the MSB of the
2846 bitfield, then the size of the bitfield, which leaves the LSB discard
2847 count. For little endian machines, the discard count is simply the
2848 number of bits from the LSB of the anonymous object to the LSB of the
2849 bitfield.
2850
2851 If the field is signed, we also do sign extension. */
2852
2853 int
2854 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2855 int embedded_offset, int bitpos, int bitsize,
2856 const struct value *original_value,
2857 LONGEST *result)
2858 {
2859 gdb_assert (original_value != NULL);
2860
2861 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2862 bitpos, bitsize, original_value, result);
2863
2864 }
2865
2866 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2867 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2868 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2869 details. */
2870
2871 static int
2872 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2873 int embedded_offset, int fieldno,
2874 const struct value *val, LONGEST *result)
2875 {
2876 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2877 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2878 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2879
2880 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2881 bitpos, bitsize, val,
2882 result);
2883 }
2884
2885 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2886 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2887 ORIGINAL_VALUE, which must not be NULL. See
2888 unpack_value_bits_as_long for more details. */
2889
2890 int
2891 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2892 int embedded_offset, int fieldno,
2893 const struct value *val, LONGEST *result)
2894 {
2895 gdb_assert (val != NULL);
2896
2897 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2898 fieldno, val, result);
2899 }
2900
2901 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2902 object at VALADDR. See unpack_value_bits_as_long for more details.
2903 This function differs from unpack_value_field_as_long in that it
2904 operates without a struct value object. */
2905
2906 LONGEST
2907 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2908 {
2909 LONGEST result;
2910
2911 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2912 return result;
2913 }
2914
2915 /* Return a new value with type TYPE, which is FIELDNO field of the
2916 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2917 of VAL. If the VAL's contents required to extract the bitfield
2918 from are unavailable, the new value is correspondingly marked as
2919 unavailable. */
2920
2921 struct value *
2922 value_field_bitfield (struct type *type, int fieldno,
2923 const gdb_byte *valaddr,
2924 int embedded_offset, const struct value *val)
2925 {
2926 LONGEST l;
2927
2928 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2929 val, &l))
2930 {
2931 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2932 struct value *retval = allocate_value (field_type);
2933 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2934 return retval;
2935 }
2936 else
2937 {
2938 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2939 }
2940 }
2941
2942 /* Modify the value of a bitfield. ADDR points to a block of memory in
2943 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2944 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2945 indicate which bits (in target bit order) comprise the bitfield.
2946 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2947 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2948
2949 void
2950 modify_field (struct type *type, gdb_byte *addr,
2951 LONGEST fieldval, int bitpos, int bitsize)
2952 {
2953 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2954 ULONGEST oword;
2955 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2956 int bytesize;
2957
2958 /* Normalize BITPOS. */
2959 addr += bitpos / 8;
2960 bitpos %= 8;
2961
2962 /* If a negative fieldval fits in the field in question, chop
2963 off the sign extension bits. */
2964 if ((~fieldval & ~(mask >> 1)) == 0)
2965 fieldval &= mask;
2966
2967 /* Warn if value is too big to fit in the field in question. */
2968 if (0 != (fieldval & ~mask))
2969 {
2970 /* FIXME: would like to include fieldval in the message, but
2971 we don't have a sprintf_longest. */
2972 warning (_("Value does not fit in %d bits."), bitsize);
2973
2974 /* Truncate it, otherwise adjoining fields may be corrupted. */
2975 fieldval &= mask;
2976 }
2977
2978 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2979 false valgrind reports. */
2980
2981 bytesize = (bitpos + bitsize + 7) / 8;
2982 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2983
2984 /* Shifting for bit field depends on endianness of the target machine. */
2985 if (gdbarch_bits_big_endian (get_type_arch (type)))
2986 bitpos = bytesize * 8 - bitpos - bitsize;
2987
2988 oword &= ~(mask << bitpos);
2989 oword |= fieldval << bitpos;
2990
2991 store_unsigned_integer (addr, bytesize, byte_order, oword);
2992 }
2993 \f
2994 /* Pack NUM into BUF using a target format of TYPE. */
2995
2996 void
2997 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2998 {
2999 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3000 int len;
3001
3002 type = check_typedef (type);
3003 len = TYPE_LENGTH (type);
3004
3005 switch (TYPE_CODE (type))
3006 {
3007 case TYPE_CODE_INT:
3008 case TYPE_CODE_CHAR:
3009 case TYPE_CODE_ENUM:
3010 case TYPE_CODE_FLAGS:
3011 case TYPE_CODE_BOOL:
3012 case TYPE_CODE_RANGE:
3013 case TYPE_CODE_MEMBERPTR:
3014 store_signed_integer (buf, len, byte_order, num);
3015 break;
3016
3017 case TYPE_CODE_REF:
3018 case TYPE_CODE_PTR:
3019 store_typed_address (buf, type, (CORE_ADDR) num);
3020 break;
3021
3022 default:
3023 error (_("Unexpected type (%d) encountered for integer constant."),
3024 TYPE_CODE (type));
3025 }
3026 }
3027
3028
3029 /* Pack NUM into BUF using a target format of TYPE. */
3030
3031 static void
3032 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3033 {
3034 int len;
3035 enum bfd_endian byte_order;
3036
3037 type = check_typedef (type);
3038 len = TYPE_LENGTH (type);
3039 byte_order = gdbarch_byte_order (get_type_arch (type));
3040
3041 switch (TYPE_CODE (type))
3042 {
3043 case TYPE_CODE_INT:
3044 case TYPE_CODE_CHAR:
3045 case TYPE_CODE_ENUM:
3046 case TYPE_CODE_FLAGS:
3047 case TYPE_CODE_BOOL:
3048 case TYPE_CODE_RANGE:
3049 case TYPE_CODE_MEMBERPTR:
3050 store_unsigned_integer (buf, len, byte_order, num);
3051 break;
3052
3053 case TYPE_CODE_REF:
3054 case TYPE_CODE_PTR:
3055 store_typed_address (buf, type, (CORE_ADDR) num);
3056 break;
3057
3058 default:
3059 error (_("Unexpected type (%d) encountered "
3060 "for unsigned integer constant."),
3061 TYPE_CODE (type));
3062 }
3063 }
3064
3065
3066 /* Convert C numbers into newly allocated values. */
3067
3068 struct value *
3069 value_from_longest (struct type *type, LONGEST num)
3070 {
3071 struct value *val = allocate_value (type);
3072
3073 pack_long (value_contents_raw (val), type, num);
3074 return val;
3075 }
3076
3077
3078 /* Convert C unsigned numbers into newly allocated values. */
3079
3080 struct value *
3081 value_from_ulongest (struct type *type, ULONGEST num)
3082 {
3083 struct value *val = allocate_value (type);
3084
3085 pack_unsigned_long (value_contents_raw (val), type, num);
3086
3087 return val;
3088 }
3089
3090
3091 /* Create a value representing a pointer of type TYPE to the address
3092 ADDR. */
3093 struct value *
3094 value_from_pointer (struct type *type, CORE_ADDR addr)
3095 {
3096 struct value *val = allocate_value (type);
3097
3098 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3099 return val;
3100 }
3101
3102
3103 /* Create a value of type TYPE whose contents come from VALADDR, if it
3104 is non-null, and whose memory address (in the inferior) is
3105 ADDRESS. */
3106
3107 struct value *
3108 value_from_contents_and_address (struct type *type,
3109 const gdb_byte *valaddr,
3110 CORE_ADDR address)
3111 {
3112 struct value *v;
3113
3114 if (valaddr == NULL)
3115 v = allocate_value_lazy (type);
3116 else
3117 {
3118 v = allocate_value (type);
3119 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3120 }
3121 set_value_address (v, address);
3122 VALUE_LVAL (v) = lval_memory;
3123 return v;
3124 }
3125
3126 /* Create a value of type TYPE holding the contents CONTENTS.
3127 The new value is `not_lval'. */
3128
3129 struct value *
3130 value_from_contents (struct type *type, const gdb_byte *contents)
3131 {
3132 struct value *result;
3133
3134 result = allocate_value (type);
3135 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3136 return result;
3137 }
3138
3139 struct value *
3140 value_from_double (struct type *type, DOUBLEST num)
3141 {
3142 struct value *val = allocate_value (type);
3143 struct type *base_type = check_typedef (type);
3144 enum type_code code = TYPE_CODE (base_type);
3145
3146 if (code == TYPE_CODE_FLT)
3147 {
3148 store_typed_floating (value_contents_raw (val), base_type, num);
3149 }
3150 else
3151 error (_("Unexpected type encountered for floating constant."));
3152
3153 return val;
3154 }
3155
3156 struct value *
3157 value_from_decfloat (struct type *type, const gdb_byte *dec)
3158 {
3159 struct value *val = allocate_value (type);
3160
3161 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3162 return val;
3163 }
3164
3165 /* Extract a value from the history file. Input will be of the form
3166 $digits or $$digits. See block comment above 'write_dollar_variable'
3167 for details. */
3168
3169 struct value *
3170 value_from_history_ref (char *h, char **endp)
3171 {
3172 int index, len;
3173
3174 if (h[0] == '$')
3175 len = 1;
3176 else
3177 return NULL;
3178
3179 if (h[1] == '$')
3180 len = 2;
3181
3182 /* Find length of numeral string. */
3183 for (; isdigit (h[len]); len++)
3184 ;
3185
3186 /* Make sure numeral string is not part of an identifier. */
3187 if (h[len] == '_' || isalpha (h[len]))
3188 return NULL;
3189
3190 /* Now collect the index value. */
3191 if (h[1] == '$')
3192 {
3193 if (len == 2)
3194 {
3195 /* For some bizarre reason, "$$" is equivalent to "$$1",
3196 rather than to "$$0" as it ought to be! */
3197 index = -1;
3198 *endp += len;
3199 }
3200 else
3201 index = -strtol (&h[2], endp, 10);
3202 }
3203 else
3204 {
3205 if (len == 1)
3206 {
3207 /* "$" is equivalent to "$0". */
3208 index = 0;
3209 *endp += len;
3210 }
3211 else
3212 index = strtol (&h[1], endp, 10);
3213 }
3214
3215 return access_value_history (index);
3216 }
3217
3218 struct value *
3219 coerce_ref_if_computed (const struct value *arg)
3220 {
3221 const struct lval_funcs *funcs;
3222
3223 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3224 return NULL;
3225
3226 if (value_lval_const (arg) != lval_computed)
3227 return NULL;
3228
3229 funcs = value_computed_funcs (arg);
3230 if (funcs->coerce_ref == NULL)
3231 return NULL;
3232
3233 return funcs->coerce_ref (arg);
3234 }
3235
3236 /* Look at value.h for description. */
3237
3238 struct value *
3239 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3240 struct type *original_type,
3241 struct value *original_value)
3242 {
3243 /* Re-adjust type. */
3244 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3245
3246 /* Add embedding info. */
3247 set_value_enclosing_type (value, enc_type);
3248 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3249
3250 /* We may be pointing to an object of some derived type. */
3251 return value_full_object (value, NULL, 0, 0, 0);
3252 }
3253
3254 struct value *
3255 coerce_ref (struct value *arg)
3256 {
3257 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3258 struct value *retval;
3259 struct type *enc_type;
3260
3261 retval = coerce_ref_if_computed (arg);
3262 if (retval)
3263 return retval;
3264
3265 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3266 return arg;
3267
3268 enc_type = check_typedef (value_enclosing_type (arg));
3269 enc_type = TYPE_TARGET_TYPE (enc_type);
3270
3271 retval = value_at_lazy (enc_type,
3272 unpack_pointer (value_type (arg),
3273 value_contents (arg)));
3274 return readjust_indirect_value_type (retval, enc_type,
3275 value_type_arg_tmp, arg);
3276 }
3277
3278 struct value *
3279 coerce_array (struct value *arg)
3280 {
3281 struct type *type;
3282
3283 arg = coerce_ref (arg);
3284 type = check_typedef (value_type (arg));
3285
3286 switch (TYPE_CODE (type))
3287 {
3288 case TYPE_CODE_ARRAY:
3289 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3290 arg = value_coerce_array (arg);
3291 break;
3292 case TYPE_CODE_FUNC:
3293 arg = value_coerce_function (arg);
3294 break;
3295 }
3296 return arg;
3297 }
3298 \f
3299
3300 /* Return true if the function returning the specified type is using
3301 the convention of returning structures in memory (passing in the
3302 address as a hidden first parameter). */
3303
3304 int
3305 using_struct_return (struct gdbarch *gdbarch,
3306 struct type *func_type, struct type *value_type)
3307 {
3308 enum type_code code = TYPE_CODE (value_type);
3309
3310 if (code == TYPE_CODE_ERROR)
3311 error (_("Function return type unknown."));
3312
3313 if (code == TYPE_CODE_VOID)
3314 /* A void return value is never in memory. See also corresponding
3315 code in "print_return_value". */
3316 return 0;
3317
3318 /* Probe the architecture for the return-value convention. */
3319 return (gdbarch_return_value (gdbarch, func_type, value_type,
3320 NULL, NULL, NULL)
3321 != RETURN_VALUE_REGISTER_CONVENTION);
3322 }
3323
3324 /* Set the initialized field in a value struct. */
3325
3326 void
3327 set_value_initialized (struct value *val, int status)
3328 {
3329 val->initialized = status;
3330 }
3331
3332 /* Return the initialized field in a value struct. */
3333
3334 int
3335 value_initialized (struct value *val)
3336 {
3337 return val->initialized;
3338 }
3339
3340 void
3341 _initialize_values (void)
3342 {
3343 add_cmd ("convenience", no_class, show_convenience, _("\
3344 Debugger convenience (\"$foo\") variables.\n\
3345 These variables are created when you assign them values;\n\
3346 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3347 \n\
3348 A few convenience variables are given values automatically:\n\
3349 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3350 \"$__\" holds the contents of the last address examined with \"x\"."),
3351 &showlist);
3352
3353 add_cmd ("values", no_set_class, show_values, _("\
3354 Elements of value history around item number IDX (or last ten)."),
3355 &showlist);
3356
3357 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3358 Initialize a convenience variable if necessary.\n\
3359 init-if-undefined VARIABLE = EXPRESSION\n\
3360 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3361 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3362 VARIABLE is already initialized."));
3363
3364 add_prefix_cmd ("function", no_class, function_command, _("\
3365 Placeholder command for showing help on convenience functions."),
3366 &functionlist, "function ", 0, &cmdlist);
3367 }