]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
* varobj.c (update_dynamic_varobj_children): Don't use
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* Actual contents of the value. Target byte-order. NULL or not
200 valid if lazy is nonzero. */
201 gdb_byte *contents;
202
203 /* The number of references to this value. When a value is created,
204 the value chain holds a reference, so REFERENCE_COUNT is 1. If
205 release_value is called, this value is removed from the chain but
206 the caller of release_value now has a reference to this value.
207 The caller must arrange for a call to value_free later. */
208 int reference_count;
209 };
210
211 /* Prototypes for local functions. */
212
213 static void show_values (char *, int);
214
215 static void show_convenience (char *, int);
216
217
218 /* The value-history records all the values printed
219 by print commands during this session. Each chunk
220 records 60 consecutive values. The first chunk on
221 the chain records the most recent values.
222 The total number of values is in value_history_count. */
223
224 #define VALUE_HISTORY_CHUNK 60
225
226 struct value_history_chunk
227 {
228 struct value_history_chunk *next;
229 struct value *values[VALUE_HISTORY_CHUNK];
230 };
231
232 /* Chain of chunks now in use. */
233
234 static struct value_history_chunk *value_history_chain;
235
236 static int value_history_count; /* Abs number of last entry stored */
237
238 \f
239 /* List of all value objects currently allocated
240 (except for those released by calls to release_value)
241 This is so they can be freed after each command. */
242
243 static struct value *all_values;
244
245 /* Allocate a lazy value for type TYPE. Its actual content is
246 "lazily" allocated too: the content field of the return value is
247 NULL; it will be allocated when it is fetched from the target. */
248
249 struct value *
250 allocate_value_lazy (struct type *type)
251 {
252 struct value *val;
253 struct type *atype = check_typedef (type);
254
255 val = (struct value *) xzalloc (sizeof (struct value));
256 val->contents = NULL;
257 val->next = all_values;
258 all_values = val;
259 val->type = type;
260 val->enclosing_type = type;
261 VALUE_LVAL (val) = not_lval;
262 val->location.address = 0;
263 VALUE_FRAME_ID (val) = null_frame_id;
264 val->offset = 0;
265 val->bitpos = 0;
266 val->bitsize = 0;
267 VALUE_REGNUM (val) = -1;
268 val->lazy = 1;
269 val->optimized_out = 0;
270 val->embedded_offset = 0;
271 val->pointed_to_offset = 0;
272 val->modifiable = 1;
273 val->initialized = 1; /* Default to initialized. */
274
275 /* Values start out on the all_values chain. */
276 val->reference_count = 1;
277
278 return val;
279 }
280
281 /* Allocate the contents of VAL if it has not been allocated yet. */
282
283 void
284 allocate_value_contents (struct value *val)
285 {
286 if (!val->contents)
287 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
288 }
289
290 /* Allocate a value and its contents for type TYPE. */
291
292 struct value *
293 allocate_value (struct type *type)
294 {
295 struct value *val = allocate_value_lazy (type);
296 allocate_value_contents (val);
297 val->lazy = 0;
298 return val;
299 }
300
301 /* Allocate a value that has the correct length
302 for COUNT repetitions of type TYPE. */
303
304 struct value *
305 allocate_repeat_value (struct type *type, int count)
306 {
307 int low_bound = current_language->string_lower_bound; /* ??? */
308 /* FIXME-type-allocation: need a way to free this type when we are
309 done with it. */
310 struct type *array_type
311 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
312 return allocate_value (array_type);
313 }
314
315 struct value *
316 allocate_computed_value (struct type *type,
317 struct lval_funcs *funcs,
318 void *closure)
319 {
320 struct value *v = allocate_value (type);
321 VALUE_LVAL (v) = lval_computed;
322 v->location.computed.funcs = funcs;
323 v->location.computed.closure = closure;
324 set_value_lazy (v, 1);
325
326 return v;
327 }
328
329 /* Accessor methods. */
330
331 struct value *
332 value_next (struct value *value)
333 {
334 return value->next;
335 }
336
337 struct type *
338 value_type (struct value *value)
339 {
340 return value->type;
341 }
342 void
343 deprecated_set_value_type (struct value *value, struct type *type)
344 {
345 value->type = type;
346 }
347
348 int
349 value_offset (struct value *value)
350 {
351 return value->offset;
352 }
353 void
354 set_value_offset (struct value *value, int offset)
355 {
356 value->offset = offset;
357 }
358
359 int
360 value_bitpos (struct value *value)
361 {
362 return value->bitpos;
363 }
364 void
365 set_value_bitpos (struct value *value, int bit)
366 {
367 value->bitpos = bit;
368 }
369
370 int
371 value_bitsize (struct value *value)
372 {
373 return value->bitsize;
374 }
375 void
376 set_value_bitsize (struct value *value, int bit)
377 {
378 value->bitsize = bit;
379 }
380
381 struct value *
382 value_parent (struct value *value)
383 {
384 return value->parent;
385 }
386
387 gdb_byte *
388 value_contents_raw (struct value *value)
389 {
390 allocate_value_contents (value);
391 return value->contents + value->embedded_offset;
392 }
393
394 gdb_byte *
395 value_contents_all_raw (struct value *value)
396 {
397 allocate_value_contents (value);
398 return value->contents;
399 }
400
401 struct type *
402 value_enclosing_type (struct value *value)
403 {
404 return value->enclosing_type;
405 }
406
407 const gdb_byte *
408 value_contents_all (struct value *value)
409 {
410 if (value->lazy)
411 value_fetch_lazy (value);
412 return value->contents;
413 }
414
415 int
416 value_lazy (struct value *value)
417 {
418 return value->lazy;
419 }
420
421 void
422 set_value_lazy (struct value *value, int val)
423 {
424 value->lazy = val;
425 }
426
427 const gdb_byte *
428 value_contents (struct value *value)
429 {
430 return value_contents_writeable (value);
431 }
432
433 gdb_byte *
434 value_contents_writeable (struct value *value)
435 {
436 if (value->lazy)
437 value_fetch_lazy (value);
438 return value_contents_raw (value);
439 }
440
441 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
442 this function is different from value_equal; in C the operator ==
443 can return 0 even if the two values being compared are equal. */
444
445 int
446 value_contents_equal (struct value *val1, struct value *val2)
447 {
448 struct type *type1;
449 struct type *type2;
450 int len;
451
452 type1 = check_typedef (value_type (val1));
453 type2 = check_typedef (value_type (val2));
454 len = TYPE_LENGTH (type1);
455 if (len != TYPE_LENGTH (type2))
456 return 0;
457
458 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
459 }
460
461 int
462 value_optimized_out (struct value *value)
463 {
464 return value->optimized_out;
465 }
466
467 void
468 set_value_optimized_out (struct value *value, int val)
469 {
470 value->optimized_out = val;
471 }
472
473 int
474 value_embedded_offset (struct value *value)
475 {
476 return value->embedded_offset;
477 }
478
479 void
480 set_value_embedded_offset (struct value *value, int val)
481 {
482 value->embedded_offset = val;
483 }
484
485 int
486 value_pointed_to_offset (struct value *value)
487 {
488 return value->pointed_to_offset;
489 }
490
491 void
492 set_value_pointed_to_offset (struct value *value, int val)
493 {
494 value->pointed_to_offset = val;
495 }
496
497 struct lval_funcs *
498 value_computed_funcs (struct value *v)
499 {
500 gdb_assert (VALUE_LVAL (v) == lval_computed);
501
502 return v->location.computed.funcs;
503 }
504
505 void *
506 value_computed_closure (struct value *v)
507 {
508 gdb_assert (VALUE_LVAL (v) == lval_computed);
509
510 return v->location.computed.closure;
511 }
512
513 enum lval_type *
514 deprecated_value_lval_hack (struct value *value)
515 {
516 return &value->lval;
517 }
518
519 CORE_ADDR
520 value_address (struct value *value)
521 {
522 if (value->lval == lval_internalvar
523 || value->lval == lval_internalvar_component)
524 return 0;
525 return value->location.address + value->offset;
526 }
527
528 CORE_ADDR
529 value_raw_address (struct value *value)
530 {
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address;
535 }
536
537 void
538 set_value_address (struct value *value, CORE_ADDR addr)
539 {
540 gdb_assert (value->lval != lval_internalvar
541 && value->lval != lval_internalvar_component);
542 value->location.address = addr;
543 }
544
545 struct internalvar **
546 deprecated_value_internalvar_hack (struct value *value)
547 {
548 return &value->location.internalvar;
549 }
550
551 struct frame_id *
552 deprecated_value_frame_id_hack (struct value *value)
553 {
554 return &value->frame_id;
555 }
556
557 short *
558 deprecated_value_regnum_hack (struct value *value)
559 {
560 return &value->regnum;
561 }
562
563 int
564 deprecated_value_modifiable (struct value *value)
565 {
566 return value->modifiable;
567 }
568 void
569 deprecated_set_value_modifiable (struct value *value, int modifiable)
570 {
571 value->modifiable = modifiable;
572 }
573 \f
574 /* Return a mark in the value chain. All values allocated after the
575 mark is obtained (except for those released) are subject to being freed
576 if a subsequent value_free_to_mark is passed the mark. */
577 struct value *
578 value_mark (void)
579 {
580 return all_values;
581 }
582
583 /* Take a reference to VAL. VAL will not be deallocated until all
584 references are released. */
585
586 void
587 value_incref (struct value *val)
588 {
589 val->reference_count++;
590 }
591
592 /* Release a reference to VAL, which was acquired with value_incref.
593 This function is also called to deallocate values from the value
594 chain. */
595
596 void
597 value_free (struct value *val)
598 {
599 if (val)
600 {
601 gdb_assert (val->reference_count > 0);
602 val->reference_count--;
603 if (val->reference_count > 0)
604 return;
605
606 /* If there's an associated parent value, drop our reference to
607 it. */
608 if (val->parent != NULL)
609 value_free (val->parent);
610
611 if (VALUE_LVAL (val) == lval_computed)
612 {
613 struct lval_funcs *funcs = val->location.computed.funcs;
614
615 if (funcs->free_closure)
616 funcs->free_closure (val);
617 }
618
619 xfree (val->contents);
620 }
621 xfree (val);
622 }
623
624 /* Free all values allocated since MARK was obtained by value_mark
625 (except for those released). */
626 void
627 value_free_to_mark (struct value *mark)
628 {
629 struct value *val;
630 struct value *next;
631
632 for (val = all_values; val && val != mark; val = next)
633 {
634 next = val->next;
635 value_free (val);
636 }
637 all_values = val;
638 }
639
640 /* Free all the values that have been allocated (except for those released).
641 Called after each command, successful or not. */
642
643 void
644 free_all_values (void)
645 {
646 struct value *val;
647 struct value *next;
648
649 for (val = all_values; val; val = next)
650 {
651 next = val->next;
652 value_free (val);
653 }
654
655 all_values = 0;
656 }
657
658 /* Remove VAL from the chain all_values
659 so it will not be freed automatically. */
660
661 void
662 release_value (struct value *val)
663 {
664 struct value *v;
665
666 if (all_values == val)
667 {
668 all_values = val->next;
669 return;
670 }
671
672 for (v = all_values; v; v = v->next)
673 {
674 if (v->next == val)
675 {
676 v->next = val->next;
677 break;
678 }
679 }
680 }
681
682 /* Release all values up to mark */
683 struct value *
684 value_release_to_mark (struct value *mark)
685 {
686 struct value *val;
687 struct value *next;
688
689 for (val = next = all_values; next; next = next->next)
690 if (next->next == mark)
691 {
692 all_values = next->next;
693 next->next = NULL;
694 return val;
695 }
696 all_values = 0;
697 return val;
698 }
699
700 /* Return a copy of the value ARG.
701 It contains the same contents, for same memory address,
702 but it's a different block of storage. */
703
704 struct value *
705 value_copy (struct value *arg)
706 {
707 struct type *encl_type = value_enclosing_type (arg);
708 struct value *val;
709
710 if (value_lazy (arg))
711 val = allocate_value_lazy (encl_type);
712 else
713 val = allocate_value (encl_type);
714 val->type = arg->type;
715 VALUE_LVAL (val) = VALUE_LVAL (arg);
716 val->location = arg->location;
717 val->offset = arg->offset;
718 val->bitpos = arg->bitpos;
719 val->bitsize = arg->bitsize;
720 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
721 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
722 val->lazy = arg->lazy;
723 val->optimized_out = arg->optimized_out;
724 val->embedded_offset = value_embedded_offset (arg);
725 val->pointed_to_offset = arg->pointed_to_offset;
726 val->modifiable = arg->modifiable;
727 if (!value_lazy (val))
728 {
729 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
730 TYPE_LENGTH (value_enclosing_type (arg)));
731
732 }
733 val->parent = arg->parent;
734 if (val->parent)
735 value_incref (val->parent);
736 if (VALUE_LVAL (val) == lval_computed)
737 {
738 struct lval_funcs *funcs = val->location.computed.funcs;
739
740 if (funcs->copy_closure)
741 val->location.computed.closure = funcs->copy_closure (val);
742 }
743 return val;
744 }
745
746 void
747 set_value_component_location (struct value *component, struct value *whole)
748 {
749 if (VALUE_LVAL (whole) == lval_internalvar)
750 VALUE_LVAL (component) = lval_internalvar_component;
751 else
752 VALUE_LVAL (component) = VALUE_LVAL (whole);
753
754 component->location = whole->location;
755 if (VALUE_LVAL (whole) == lval_computed)
756 {
757 struct lval_funcs *funcs = whole->location.computed.funcs;
758
759 if (funcs->copy_closure)
760 component->location.computed.closure = funcs->copy_closure (whole);
761 }
762 }
763
764 \f
765 /* Access to the value history. */
766
767 /* Record a new value in the value history.
768 Returns the absolute history index of the entry.
769 Result of -1 indicates the value was not saved; otherwise it is the
770 value history index of this new item. */
771
772 int
773 record_latest_value (struct value *val)
774 {
775 int i;
776
777 /* We don't want this value to have anything to do with the inferior anymore.
778 In particular, "set $1 = 50" should not affect the variable from which
779 the value was taken, and fast watchpoints should be able to assume that
780 a value on the value history never changes. */
781 if (value_lazy (val))
782 value_fetch_lazy (val);
783 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
784 from. This is a bit dubious, because then *&$1 does not just return $1
785 but the current contents of that location. c'est la vie... */
786 val->modifiable = 0;
787 release_value (val);
788
789 /* Here we treat value_history_count as origin-zero
790 and applying to the value being stored now. */
791
792 i = value_history_count % VALUE_HISTORY_CHUNK;
793 if (i == 0)
794 {
795 struct value_history_chunk *new
796 = (struct value_history_chunk *)
797 xmalloc (sizeof (struct value_history_chunk));
798 memset (new->values, 0, sizeof new->values);
799 new->next = value_history_chain;
800 value_history_chain = new;
801 }
802
803 value_history_chain->values[i] = val;
804
805 /* Now we regard value_history_count as origin-one
806 and applying to the value just stored. */
807
808 return ++value_history_count;
809 }
810
811 /* Return a copy of the value in the history with sequence number NUM. */
812
813 struct value *
814 access_value_history (int num)
815 {
816 struct value_history_chunk *chunk;
817 int i;
818 int absnum = num;
819
820 if (absnum <= 0)
821 absnum += value_history_count;
822
823 if (absnum <= 0)
824 {
825 if (num == 0)
826 error (_("The history is empty."));
827 else if (num == 1)
828 error (_("There is only one value in the history."));
829 else
830 error (_("History does not go back to $$%d."), -num);
831 }
832 if (absnum > value_history_count)
833 error (_("History has not yet reached $%d."), absnum);
834
835 absnum--;
836
837 /* Now absnum is always absolute and origin zero. */
838
839 chunk = value_history_chain;
840 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
841 i > 0; i--)
842 chunk = chunk->next;
843
844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
845 }
846
847 static void
848 show_values (char *num_exp, int from_tty)
849 {
850 int i;
851 struct value *val;
852 static int num = 1;
853
854 if (num_exp)
855 {
856 /* "show values +" should print from the stored position.
857 "show values <exp>" should print around value number <exp>. */
858 if (num_exp[0] != '+' || num_exp[1] != '\0')
859 num = parse_and_eval_long (num_exp) - 5;
860 }
861 else
862 {
863 /* "show values" means print the last 10 values. */
864 num = value_history_count - 9;
865 }
866
867 if (num <= 0)
868 num = 1;
869
870 for (i = num; i < num + 10 && i <= value_history_count; i++)
871 {
872 struct value_print_options opts;
873 val = access_value_history (i);
874 printf_filtered (("$%d = "), i);
875 get_user_print_options (&opts);
876 value_print (val, gdb_stdout, &opts);
877 printf_filtered (("\n"));
878 }
879
880 /* The next "show values +" should start after what we just printed. */
881 num += 10;
882
883 /* Hitting just return after this command should do the same thing as
884 "show values +". If num_exp is null, this is unnecessary, since
885 "show values +" is not useful after "show values". */
886 if (from_tty && num_exp)
887 {
888 num_exp[0] = '+';
889 num_exp[1] = '\0';
890 }
891 }
892 \f
893 /* Internal variables. These are variables within the debugger
894 that hold values assigned by debugger commands.
895 The user refers to them with a '$' prefix
896 that does not appear in the variable names stored internally. */
897
898 struct internalvar
899 {
900 struct internalvar *next;
901 char *name;
902
903 /* We support various different kinds of content of an internal variable.
904 enum internalvar_kind specifies the kind, and union internalvar_data
905 provides the data associated with this particular kind. */
906
907 enum internalvar_kind
908 {
909 /* The internal variable is empty. */
910 INTERNALVAR_VOID,
911
912 /* The value of the internal variable is provided directly as
913 a GDB value object. */
914 INTERNALVAR_VALUE,
915
916 /* A fresh value is computed via a call-back routine on every
917 access to the internal variable. */
918 INTERNALVAR_MAKE_VALUE,
919
920 /* The internal variable holds a GDB internal convenience function. */
921 INTERNALVAR_FUNCTION,
922
923 /* The variable holds a simple scalar value. */
924 INTERNALVAR_SCALAR,
925
926 /* The variable holds a GDB-provided string. */
927 INTERNALVAR_STRING,
928
929 } kind;
930
931 union internalvar_data
932 {
933 /* A value object used with INTERNALVAR_VALUE. */
934 struct value *value;
935
936 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
937 internalvar_make_value make_value;
938
939 /* The internal function used with INTERNALVAR_FUNCTION. */
940 struct
941 {
942 struct internal_function *function;
943 /* True if this is the canonical name for the function. */
944 int canonical;
945 } fn;
946
947 /* A scalar value used with INTERNALVAR_SCALAR. */
948 struct
949 {
950 /* If type is non-NULL, it will be used as the type to generate
951 a value for this internal variable. If type is NULL, a default
952 integer type for the architecture is used. */
953 struct type *type;
954 union
955 {
956 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
957 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
958 } val;
959 } scalar;
960
961 /* A string value used with INTERNALVAR_STRING. */
962 char *string;
963 } u;
964 };
965
966 static struct internalvar *internalvars;
967
968 /* If the variable does not already exist create it and give it the value given.
969 If no value is given then the default is zero. */
970 static void
971 init_if_undefined_command (char* args, int from_tty)
972 {
973 struct internalvar* intvar;
974
975 /* Parse the expression - this is taken from set_command(). */
976 struct expression *expr = parse_expression (args);
977 register struct cleanup *old_chain =
978 make_cleanup (free_current_contents, &expr);
979
980 /* Validate the expression.
981 Was the expression an assignment?
982 Or even an expression at all? */
983 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
984 error (_("Init-if-undefined requires an assignment expression."));
985
986 /* Extract the variable from the parsed expression.
987 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
988 if (expr->elts[1].opcode != OP_INTERNALVAR)
989 error (_("The first parameter to init-if-undefined should be a GDB variable."));
990 intvar = expr->elts[2].internalvar;
991
992 /* Only evaluate the expression if the lvalue is void.
993 This may still fail if the expresssion is invalid. */
994 if (intvar->kind == INTERNALVAR_VOID)
995 evaluate_expression (expr);
996
997 do_cleanups (old_chain);
998 }
999
1000
1001 /* Look up an internal variable with name NAME. NAME should not
1002 normally include a dollar sign.
1003
1004 If the specified internal variable does not exist,
1005 the return value is NULL. */
1006
1007 struct internalvar *
1008 lookup_only_internalvar (const char *name)
1009 {
1010 struct internalvar *var;
1011
1012 for (var = internalvars; var; var = var->next)
1013 if (strcmp (var->name, name) == 0)
1014 return var;
1015
1016 return NULL;
1017 }
1018
1019
1020 /* Create an internal variable with name NAME and with a void value.
1021 NAME should not normally include a dollar sign. */
1022
1023 struct internalvar *
1024 create_internalvar (const char *name)
1025 {
1026 struct internalvar *var;
1027 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1028 var->name = concat (name, (char *)NULL);
1029 var->kind = INTERNALVAR_VOID;
1030 var->next = internalvars;
1031 internalvars = var;
1032 return var;
1033 }
1034
1035 /* Create an internal variable with name NAME and register FUN as the
1036 function that value_of_internalvar uses to create a value whenever
1037 this variable is referenced. NAME should not normally include a
1038 dollar sign. */
1039
1040 struct internalvar *
1041 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1042 {
1043 struct internalvar *var = create_internalvar (name);
1044 var->kind = INTERNALVAR_MAKE_VALUE;
1045 var->u.make_value = fun;
1046 return var;
1047 }
1048
1049 /* Look up an internal variable with name NAME. NAME should not
1050 normally include a dollar sign.
1051
1052 If the specified internal variable does not exist,
1053 one is created, with a void value. */
1054
1055 struct internalvar *
1056 lookup_internalvar (const char *name)
1057 {
1058 struct internalvar *var;
1059
1060 var = lookup_only_internalvar (name);
1061 if (var)
1062 return var;
1063
1064 return create_internalvar (name);
1065 }
1066
1067 /* Return current value of internal variable VAR. For variables that
1068 are not inherently typed, use a value type appropriate for GDBARCH. */
1069
1070 struct value *
1071 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1072 {
1073 struct value *val;
1074
1075 switch (var->kind)
1076 {
1077 case INTERNALVAR_VOID:
1078 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1079 break;
1080
1081 case INTERNALVAR_FUNCTION:
1082 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1083 break;
1084
1085 case INTERNALVAR_SCALAR:
1086 if (!var->u.scalar.type)
1087 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1088 var->u.scalar.val.l);
1089 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1090 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1091 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1092 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1093 else
1094 internal_error (__FILE__, __LINE__, "bad type");
1095 break;
1096
1097 case INTERNALVAR_STRING:
1098 val = value_cstring (var->u.string, strlen (var->u.string),
1099 builtin_type (gdbarch)->builtin_char);
1100 break;
1101
1102 case INTERNALVAR_VALUE:
1103 val = value_copy (var->u.value);
1104 if (value_lazy (val))
1105 value_fetch_lazy (val);
1106 break;
1107
1108 case INTERNALVAR_MAKE_VALUE:
1109 val = (*var->u.make_value) (gdbarch, var);
1110 break;
1111
1112 default:
1113 internal_error (__FILE__, __LINE__, "bad kind");
1114 }
1115
1116 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1117 on this value go back to affect the original internal variable.
1118
1119 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1120 no underlying modifyable state in the internal variable.
1121
1122 Likewise, if the variable's value is a computed lvalue, we want
1123 references to it to produce another computed lvalue, where
1124 references and assignments actually operate through the
1125 computed value's functions.
1126
1127 This means that internal variables with computed values
1128 behave a little differently from other internal variables:
1129 assignments to them don't just replace the previous value
1130 altogether. At the moment, this seems like the behavior we
1131 want. */
1132
1133 if (var->kind != INTERNALVAR_MAKE_VALUE
1134 && val->lval != lval_computed)
1135 {
1136 VALUE_LVAL (val) = lval_internalvar;
1137 VALUE_INTERNALVAR (val) = var;
1138 }
1139
1140 return val;
1141 }
1142
1143 int
1144 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1145 {
1146 switch (var->kind)
1147 {
1148 case INTERNALVAR_SCALAR:
1149 if (var->u.scalar.type == NULL
1150 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1151 {
1152 *result = var->u.scalar.val.l;
1153 return 1;
1154 }
1155 /* Fall through. */
1156
1157 default:
1158 return 0;
1159 }
1160 }
1161
1162 static int
1163 get_internalvar_function (struct internalvar *var,
1164 struct internal_function **result)
1165 {
1166 switch (var->kind)
1167 {
1168 case INTERNALVAR_FUNCTION:
1169 *result = var->u.fn.function;
1170 return 1;
1171
1172 default:
1173 return 0;
1174 }
1175 }
1176
1177 void
1178 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1179 int bitsize, struct value *newval)
1180 {
1181 gdb_byte *addr;
1182
1183 switch (var->kind)
1184 {
1185 case INTERNALVAR_VALUE:
1186 addr = value_contents_writeable (var->u.value);
1187
1188 if (bitsize)
1189 modify_field (value_type (var->u.value), addr + offset,
1190 value_as_long (newval), bitpos, bitsize);
1191 else
1192 memcpy (addr + offset, value_contents (newval),
1193 TYPE_LENGTH (value_type (newval)));
1194 break;
1195
1196 default:
1197 /* We can never get a component of any other kind. */
1198 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1199 }
1200 }
1201
1202 void
1203 set_internalvar (struct internalvar *var, struct value *val)
1204 {
1205 enum internalvar_kind new_kind;
1206 union internalvar_data new_data = { 0 };
1207
1208 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1209 error (_("Cannot overwrite convenience function %s"), var->name);
1210
1211 /* Prepare new contents. */
1212 switch (TYPE_CODE (check_typedef (value_type (val))))
1213 {
1214 case TYPE_CODE_VOID:
1215 new_kind = INTERNALVAR_VOID;
1216 break;
1217
1218 case TYPE_CODE_INTERNAL_FUNCTION:
1219 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1220 new_kind = INTERNALVAR_FUNCTION;
1221 get_internalvar_function (VALUE_INTERNALVAR (val),
1222 &new_data.fn.function);
1223 /* Copies created here are never canonical. */
1224 break;
1225
1226 case TYPE_CODE_INT:
1227 new_kind = INTERNALVAR_SCALAR;
1228 new_data.scalar.type = value_type (val);
1229 new_data.scalar.val.l = value_as_long (val);
1230 break;
1231
1232 case TYPE_CODE_PTR:
1233 new_kind = INTERNALVAR_SCALAR;
1234 new_data.scalar.type = value_type (val);
1235 new_data.scalar.val.a = value_as_address (val);
1236 break;
1237
1238 default:
1239 new_kind = INTERNALVAR_VALUE;
1240 new_data.value = value_copy (val);
1241 new_data.value->modifiable = 1;
1242
1243 /* Force the value to be fetched from the target now, to avoid problems
1244 later when this internalvar is referenced and the target is gone or
1245 has changed. */
1246 if (value_lazy (new_data.value))
1247 value_fetch_lazy (new_data.value);
1248
1249 /* Release the value from the value chain to prevent it from being
1250 deleted by free_all_values. From here on this function should not
1251 call error () until new_data is installed into the var->u to avoid
1252 leaking memory. */
1253 release_value (new_data.value);
1254 break;
1255 }
1256
1257 /* Clean up old contents. */
1258 clear_internalvar (var);
1259
1260 /* Switch over. */
1261 var->kind = new_kind;
1262 var->u = new_data;
1263 /* End code which must not call error(). */
1264 }
1265
1266 void
1267 set_internalvar_integer (struct internalvar *var, LONGEST l)
1268 {
1269 /* Clean up old contents. */
1270 clear_internalvar (var);
1271
1272 var->kind = INTERNALVAR_SCALAR;
1273 var->u.scalar.type = NULL;
1274 var->u.scalar.val.l = l;
1275 }
1276
1277 void
1278 set_internalvar_string (struct internalvar *var, const char *string)
1279 {
1280 /* Clean up old contents. */
1281 clear_internalvar (var);
1282
1283 var->kind = INTERNALVAR_STRING;
1284 var->u.string = xstrdup (string);
1285 }
1286
1287 static void
1288 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1289 {
1290 /* Clean up old contents. */
1291 clear_internalvar (var);
1292
1293 var->kind = INTERNALVAR_FUNCTION;
1294 var->u.fn.function = f;
1295 var->u.fn.canonical = 1;
1296 /* Variables installed here are always the canonical version. */
1297 }
1298
1299 void
1300 clear_internalvar (struct internalvar *var)
1301 {
1302 /* Clean up old contents. */
1303 switch (var->kind)
1304 {
1305 case INTERNALVAR_VALUE:
1306 value_free (var->u.value);
1307 break;
1308
1309 case INTERNALVAR_STRING:
1310 xfree (var->u.string);
1311 break;
1312
1313 default:
1314 break;
1315 }
1316
1317 /* Reset to void kind. */
1318 var->kind = INTERNALVAR_VOID;
1319 }
1320
1321 char *
1322 internalvar_name (struct internalvar *var)
1323 {
1324 return var->name;
1325 }
1326
1327 static struct internal_function *
1328 create_internal_function (const char *name,
1329 internal_function_fn handler, void *cookie)
1330 {
1331 struct internal_function *ifn = XNEW (struct internal_function);
1332 ifn->name = xstrdup (name);
1333 ifn->handler = handler;
1334 ifn->cookie = cookie;
1335 return ifn;
1336 }
1337
1338 char *
1339 value_internal_function_name (struct value *val)
1340 {
1341 struct internal_function *ifn;
1342 int result;
1343
1344 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1345 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1346 gdb_assert (result);
1347
1348 return ifn->name;
1349 }
1350
1351 struct value *
1352 call_internal_function (struct gdbarch *gdbarch,
1353 const struct language_defn *language,
1354 struct value *func, int argc, struct value **argv)
1355 {
1356 struct internal_function *ifn;
1357 int result;
1358
1359 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1360 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1361 gdb_assert (result);
1362
1363 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1364 }
1365
1366 /* The 'function' command. This does nothing -- it is just a
1367 placeholder to let "help function NAME" work. This is also used as
1368 the implementation of the sub-command that is created when
1369 registering an internal function. */
1370 static void
1371 function_command (char *command, int from_tty)
1372 {
1373 /* Do nothing. */
1374 }
1375
1376 /* Clean up if an internal function's command is destroyed. */
1377 static void
1378 function_destroyer (struct cmd_list_element *self, void *ignore)
1379 {
1380 xfree (self->name);
1381 xfree (self->doc);
1382 }
1383
1384 /* Add a new internal function. NAME is the name of the function; DOC
1385 is a documentation string describing the function. HANDLER is
1386 called when the function is invoked. COOKIE is an arbitrary
1387 pointer which is passed to HANDLER and is intended for "user
1388 data". */
1389 void
1390 add_internal_function (const char *name, const char *doc,
1391 internal_function_fn handler, void *cookie)
1392 {
1393 struct cmd_list_element *cmd;
1394 struct internal_function *ifn;
1395 struct internalvar *var = lookup_internalvar (name);
1396
1397 ifn = create_internal_function (name, handler, cookie);
1398 set_internalvar_function (var, ifn);
1399
1400 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1401 &functionlist);
1402 cmd->destroyer = function_destroyer;
1403 }
1404
1405 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1406 prevent cycles / duplicates. */
1407
1408 void
1409 preserve_one_value (struct value *value, struct objfile *objfile,
1410 htab_t copied_types)
1411 {
1412 if (TYPE_OBJFILE (value->type) == objfile)
1413 value->type = copy_type_recursive (objfile, value->type, copied_types);
1414
1415 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1416 value->enclosing_type = copy_type_recursive (objfile,
1417 value->enclosing_type,
1418 copied_types);
1419 }
1420
1421 /* Likewise for internal variable VAR. */
1422
1423 static void
1424 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1425 htab_t copied_types)
1426 {
1427 switch (var->kind)
1428 {
1429 case INTERNALVAR_SCALAR:
1430 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1431 var->u.scalar.type
1432 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1433 break;
1434
1435 case INTERNALVAR_VALUE:
1436 preserve_one_value (var->u.value, objfile, copied_types);
1437 break;
1438 }
1439 }
1440
1441 /* Update the internal variables and value history when OBJFILE is
1442 discarded; we must copy the types out of the objfile. New global types
1443 will be created for every convenience variable which currently points to
1444 this objfile's types, and the convenience variables will be adjusted to
1445 use the new global types. */
1446
1447 void
1448 preserve_values (struct objfile *objfile)
1449 {
1450 htab_t copied_types;
1451 struct value_history_chunk *cur;
1452 struct internalvar *var;
1453 struct value *val;
1454 int i;
1455
1456 /* Create the hash table. We allocate on the objfile's obstack, since
1457 it is soon to be deleted. */
1458 copied_types = create_copied_types_hash (objfile);
1459
1460 for (cur = value_history_chain; cur; cur = cur->next)
1461 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1462 if (cur->values[i])
1463 preserve_one_value (cur->values[i], objfile, copied_types);
1464
1465 for (var = internalvars; var; var = var->next)
1466 preserve_one_internalvar (var, objfile, copied_types);
1467
1468 preserve_python_values (objfile, copied_types);
1469
1470 htab_delete (copied_types);
1471 }
1472
1473 static void
1474 show_convenience (char *ignore, int from_tty)
1475 {
1476 struct gdbarch *gdbarch = get_current_arch ();
1477 struct internalvar *var;
1478 int varseen = 0;
1479 struct value_print_options opts;
1480
1481 get_user_print_options (&opts);
1482 for (var = internalvars; var; var = var->next)
1483 {
1484 if (!varseen)
1485 {
1486 varseen = 1;
1487 }
1488 printf_filtered (("$%s = "), var->name);
1489 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1490 &opts);
1491 printf_filtered (("\n"));
1492 }
1493 if (!varseen)
1494 printf_unfiltered (_("\
1495 No debugger convenience variables now defined.\n\
1496 Convenience variables have names starting with \"$\";\n\
1497 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1498 }
1499 \f
1500 /* Extract a value as a C number (either long or double).
1501 Knows how to convert fixed values to double, or
1502 floating values to long.
1503 Does not deallocate the value. */
1504
1505 LONGEST
1506 value_as_long (struct value *val)
1507 {
1508 /* This coerces arrays and functions, which is necessary (e.g.
1509 in disassemble_command). It also dereferences references, which
1510 I suspect is the most logical thing to do. */
1511 val = coerce_array (val);
1512 return unpack_long (value_type (val), value_contents (val));
1513 }
1514
1515 DOUBLEST
1516 value_as_double (struct value *val)
1517 {
1518 DOUBLEST foo;
1519 int inv;
1520
1521 foo = unpack_double (value_type (val), value_contents (val), &inv);
1522 if (inv)
1523 error (_("Invalid floating value found in program."));
1524 return foo;
1525 }
1526
1527 /* Extract a value as a C pointer. Does not deallocate the value.
1528 Note that val's type may not actually be a pointer; value_as_long
1529 handles all the cases. */
1530 CORE_ADDR
1531 value_as_address (struct value *val)
1532 {
1533 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1534
1535 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1536 whether we want this to be true eventually. */
1537 #if 0
1538 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1539 non-address (e.g. argument to "signal", "info break", etc.), or
1540 for pointers to char, in which the low bits *are* significant. */
1541 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1542 #else
1543
1544 /* There are several targets (IA-64, PowerPC, and others) which
1545 don't represent pointers to functions as simply the address of
1546 the function's entry point. For example, on the IA-64, a
1547 function pointer points to a two-word descriptor, generated by
1548 the linker, which contains the function's entry point, and the
1549 value the IA-64 "global pointer" register should have --- to
1550 support position-independent code. The linker generates
1551 descriptors only for those functions whose addresses are taken.
1552
1553 On such targets, it's difficult for GDB to convert an arbitrary
1554 function address into a function pointer; it has to either find
1555 an existing descriptor for that function, or call malloc and
1556 build its own. On some targets, it is impossible for GDB to
1557 build a descriptor at all: the descriptor must contain a jump
1558 instruction; data memory cannot be executed; and code memory
1559 cannot be modified.
1560
1561 Upon entry to this function, if VAL is a value of type `function'
1562 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1563 value_address (val) is the address of the function. This is what
1564 you'll get if you evaluate an expression like `main'. The call
1565 to COERCE_ARRAY below actually does all the usual unary
1566 conversions, which includes converting values of type `function'
1567 to `pointer to function'. This is the challenging conversion
1568 discussed above. Then, `unpack_long' will convert that pointer
1569 back into an address.
1570
1571 So, suppose the user types `disassemble foo' on an architecture
1572 with a strange function pointer representation, on which GDB
1573 cannot build its own descriptors, and suppose further that `foo'
1574 has no linker-built descriptor. The address->pointer conversion
1575 will signal an error and prevent the command from running, even
1576 though the next step would have been to convert the pointer
1577 directly back into the same address.
1578
1579 The following shortcut avoids this whole mess. If VAL is a
1580 function, just return its address directly. */
1581 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1582 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1583 return value_address (val);
1584
1585 val = coerce_array (val);
1586
1587 /* Some architectures (e.g. Harvard), map instruction and data
1588 addresses onto a single large unified address space. For
1589 instance: An architecture may consider a large integer in the
1590 range 0x10000000 .. 0x1000ffff to already represent a data
1591 addresses (hence not need a pointer to address conversion) while
1592 a small integer would still need to be converted integer to
1593 pointer to address. Just assume such architectures handle all
1594 integer conversions in a single function. */
1595
1596 /* JimB writes:
1597
1598 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1599 must admonish GDB hackers to make sure its behavior matches the
1600 compiler's, whenever possible.
1601
1602 In general, I think GDB should evaluate expressions the same way
1603 the compiler does. When the user copies an expression out of
1604 their source code and hands it to a `print' command, they should
1605 get the same value the compiler would have computed. Any
1606 deviation from this rule can cause major confusion and annoyance,
1607 and needs to be justified carefully. In other words, GDB doesn't
1608 really have the freedom to do these conversions in clever and
1609 useful ways.
1610
1611 AndrewC pointed out that users aren't complaining about how GDB
1612 casts integers to pointers; they are complaining that they can't
1613 take an address from a disassembly listing and give it to `x/i'.
1614 This is certainly important.
1615
1616 Adding an architecture method like integer_to_address() certainly
1617 makes it possible for GDB to "get it right" in all circumstances
1618 --- the target has complete control over how things get done, so
1619 people can Do The Right Thing for their target without breaking
1620 anyone else. The standard doesn't specify how integers get
1621 converted to pointers; usually, the ABI doesn't either, but
1622 ABI-specific code is a more reasonable place to handle it. */
1623
1624 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1625 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1626 && gdbarch_integer_to_address_p (gdbarch))
1627 return gdbarch_integer_to_address (gdbarch, value_type (val),
1628 value_contents (val));
1629
1630 return unpack_long (value_type (val), value_contents (val));
1631 #endif
1632 }
1633 \f
1634 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1635 as a long, or as a double, assuming the raw data is described
1636 by type TYPE. Knows how to convert different sizes of values
1637 and can convert between fixed and floating point. We don't assume
1638 any alignment for the raw data. Return value is in host byte order.
1639
1640 If you want functions and arrays to be coerced to pointers, and
1641 references to be dereferenced, call value_as_long() instead.
1642
1643 C++: It is assumed that the front-end has taken care of
1644 all matters concerning pointers to members. A pointer
1645 to member which reaches here is considered to be equivalent
1646 to an INT (or some size). After all, it is only an offset. */
1647
1648 LONGEST
1649 unpack_long (struct type *type, const gdb_byte *valaddr)
1650 {
1651 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1652 enum type_code code = TYPE_CODE (type);
1653 int len = TYPE_LENGTH (type);
1654 int nosign = TYPE_UNSIGNED (type);
1655
1656 switch (code)
1657 {
1658 case TYPE_CODE_TYPEDEF:
1659 return unpack_long (check_typedef (type), valaddr);
1660 case TYPE_CODE_ENUM:
1661 case TYPE_CODE_FLAGS:
1662 case TYPE_CODE_BOOL:
1663 case TYPE_CODE_INT:
1664 case TYPE_CODE_CHAR:
1665 case TYPE_CODE_RANGE:
1666 case TYPE_CODE_MEMBERPTR:
1667 if (nosign)
1668 return extract_unsigned_integer (valaddr, len, byte_order);
1669 else
1670 return extract_signed_integer (valaddr, len, byte_order);
1671
1672 case TYPE_CODE_FLT:
1673 return extract_typed_floating (valaddr, type);
1674
1675 case TYPE_CODE_DECFLOAT:
1676 /* libdecnumber has a function to convert from decimal to integer, but
1677 it doesn't work when the decimal number has a fractional part. */
1678 return decimal_to_doublest (valaddr, len, byte_order);
1679
1680 case TYPE_CODE_PTR:
1681 case TYPE_CODE_REF:
1682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1683 whether we want this to be true eventually. */
1684 return extract_typed_address (valaddr, type);
1685
1686 default:
1687 error (_("Value can't be converted to integer."));
1688 }
1689 return 0; /* Placate lint. */
1690 }
1691
1692 /* Return a double value from the specified type and address.
1693 INVP points to an int which is set to 0 for valid value,
1694 1 for invalid value (bad float format). In either case,
1695 the returned double is OK to use. Argument is in target
1696 format, result is in host format. */
1697
1698 DOUBLEST
1699 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1700 {
1701 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1702 enum type_code code;
1703 int len;
1704 int nosign;
1705
1706 *invp = 0; /* Assume valid. */
1707 CHECK_TYPEDEF (type);
1708 code = TYPE_CODE (type);
1709 len = TYPE_LENGTH (type);
1710 nosign = TYPE_UNSIGNED (type);
1711 if (code == TYPE_CODE_FLT)
1712 {
1713 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1714 floating-point value was valid (using the macro
1715 INVALID_FLOAT). That test/macro have been removed.
1716
1717 It turns out that only the VAX defined this macro and then
1718 only in a non-portable way. Fixing the portability problem
1719 wouldn't help since the VAX floating-point code is also badly
1720 bit-rotten. The target needs to add definitions for the
1721 methods gdbarch_float_format and gdbarch_double_format - these
1722 exactly describe the target floating-point format. The
1723 problem here is that the corresponding floatformat_vax_f and
1724 floatformat_vax_d values these methods should be set to are
1725 also not defined either. Oops!
1726
1727 Hopefully someone will add both the missing floatformat
1728 definitions and the new cases for floatformat_is_valid (). */
1729
1730 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1731 {
1732 *invp = 1;
1733 return 0.0;
1734 }
1735
1736 return extract_typed_floating (valaddr, type);
1737 }
1738 else if (code == TYPE_CODE_DECFLOAT)
1739 return decimal_to_doublest (valaddr, len, byte_order);
1740 else if (nosign)
1741 {
1742 /* Unsigned -- be sure we compensate for signed LONGEST. */
1743 return (ULONGEST) unpack_long (type, valaddr);
1744 }
1745 else
1746 {
1747 /* Signed -- we are OK with unpack_long. */
1748 return unpack_long (type, valaddr);
1749 }
1750 }
1751
1752 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1753 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1754 We don't assume any alignment for the raw data. Return value is in
1755 host byte order.
1756
1757 If you want functions and arrays to be coerced to pointers, and
1758 references to be dereferenced, call value_as_address() instead.
1759
1760 C++: It is assumed that the front-end has taken care of
1761 all matters concerning pointers to members. A pointer
1762 to member which reaches here is considered to be equivalent
1763 to an INT (or some size). After all, it is only an offset. */
1764
1765 CORE_ADDR
1766 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1767 {
1768 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1769 whether we want this to be true eventually. */
1770 return unpack_long (type, valaddr);
1771 }
1772
1773 \f
1774 /* Get the value of the FIELDN'th field (which must be static) of
1775 TYPE. Return NULL if the field doesn't exist or has been
1776 optimized out. */
1777
1778 struct value *
1779 value_static_field (struct type *type, int fieldno)
1780 {
1781 struct value *retval;
1782
1783 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1784 {
1785 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1786 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1787 }
1788 else
1789 {
1790 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1791 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1792 if (sym == NULL)
1793 {
1794 /* With some compilers, e.g. HP aCC, static data members are reported
1795 as non-debuggable symbols */
1796 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1797 if (!msym)
1798 return NULL;
1799 else
1800 {
1801 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1802 SYMBOL_VALUE_ADDRESS (msym));
1803 }
1804 }
1805 else
1806 {
1807 /* SYM should never have a SYMBOL_CLASS which will require
1808 read_var_value to use the FRAME parameter. */
1809 if (symbol_read_needs_frame (sym))
1810 warning (_("static field's value depends on the current "
1811 "frame - bad debug info?"));
1812 retval = read_var_value (sym, NULL);
1813 }
1814 if (retval && VALUE_LVAL (retval) == lval_memory)
1815 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1816 value_address (retval));
1817 }
1818 return retval;
1819 }
1820
1821 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1822 You have to be careful here, since the size of the data area for the value
1823 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1824 than the old enclosing type, you have to allocate more space for the data.
1825 The return value is a pointer to the new version of this value structure. */
1826
1827 struct value *
1828 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1829 {
1830 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1831 val->contents =
1832 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1833
1834 val->enclosing_type = new_encl_type;
1835 return val;
1836 }
1837
1838 /* Given a value ARG1 (offset by OFFSET bytes)
1839 of a struct or union type ARG_TYPE,
1840 extract and return the value of one of its (non-static) fields.
1841 FIELDNO says which field. */
1842
1843 struct value *
1844 value_primitive_field (struct value *arg1, int offset,
1845 int fieldno, struct type *arg_type)
1846 {
1847 struct value *v;
1848 struct type *type;
1849
1850 CHECK_TYPEDEF (arg_type);
1851 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1852
1853 /* Handle packed fields */
1854
1855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1856 {
1857 /* Create a new value for the bitfield, with bitpos and bitsize
1858 set. If possible, arrange offset and bitpos so that we can
1859 do a single aligned read of the size of the containing type.
1860 Otherwise, adjust offset to the byte containing the first
1861 bit. Assume that the address, offset, and embedded offset
1862 are sufficiently aligned. */
1863 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1864 int container_bitsize = TYPE_LENGTH (type) * 8;
1865
1866 v = allocate_value_lazy (type);
1867 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1868 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1869 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1870 v->bitpos = bitpos % container_bitsize;
1871 else
1872 v->bitpos = bitpos % 8;
1873 v->offset = value_offset (arg1) + value_embedded_offset (arg1)
1874 + (bitpos - v->bitpos) / 8;
1875 v->parent = arg1;
1876 value_incref (v->parent);
1877 if (!value_lazy (arg1))
1878 value_fetch_lazy (v);
1879 }
1880 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1881 {
1882 /* This field is actually a base subobject, so preserve the
1883 entire object's contents for later references to virtual
1884 bases, etc. */
1885
1886 /* Lazy register values with offsets are not supported. */
1887 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1888 value_fetch_lazy (arg1);
1889
1890 if (value_lazy (arg1))
1891 v = allocate_value_lazy (value_enclosing_type (arg1));
1892 else
1893 {
1894 v = allocate_value (value_enclosing_type (arg1));
1895 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1896 TYPE_LENGTH (value_enclosing_type (arg1)));
1897 }
1898 v->type = type;
1899 v->offset = value_offset (arg1);
1900 v->embedded_offset = (offset + value_embedded_offset (arg1)
1901 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1902 }
1903 else
1904 {
1905 /* Plain old data member */
1906 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1907
1908 /* Lazy register values with offsets are not supported. */
1909 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1910 value_fetch_lazy (arg1);
1911
1912 if (value_lazy (arg1))
1913 v = allocate_value_lazy (type);
1914 else
1915 {
1916 v = allocate_value (type);
1917 memcpy (value_contents_raw (v),
1918 value_contents_raw (arg1) + offset,
1919 TYPE_LENGTH (type));
1920 }
1921 v->offset = (value_offset (arg1) + offset
1922 + value_embedded_offset (arg1));
1923 }
1924 set_value_component_location (v, arg1);
1925 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1926 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1927 return v;
1928 }
1929
1930 /* Given a value ARG1 of a struct or union type,
1931 extract and return the value of one of its (non-static) fields.
1932 FIELDNO says which field. */
1933
1934 struct value *
1935 value_field (struct value *arg1, int fieldno)
1936 {
1937 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1938 }
1939
1940 /* Return a non-virtual function as a value.
1941 F is the list of member functions which contains the desired method.
1942 J is an index into F which provides the desired method.
1943
1944 We only use the symbol for its address, so be happy with either a
1945 full symbol or a minimal symbol.
1946 */
1947
1948 struct value *
1949 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1950 int offset)
1951 {
1952 struct value *v;
1953 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1954 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1955 struct symbol *sym;
1956 struct minimal_symbol *msym;
1957
1958 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1959 if (sym != NULL)
1960 {
1961 msym = NULL;
1962 }
1963 else
1964 {
1965 gdb_assert (sym == NULL);
1966 msym = lookup_minimal_symbol (physname, NULL, NULL);
1967 if (msym == NULL)
1968 return NULL;
1969 }
1970
1971 v = allocate_value (ftype);
1972 if (sym)
1973 {
1974 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
1975 }
1976 else
1977 {
1978 /* The minimal symbol might point to a function descriptor;
1979 resolve it to the actual code address instead. */
1980 struct objfile *objfile = msymbol_objfile (msym);
1981 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1982
1983 set_value_address (v,
1984 gdbarch_convert_from_func_ptr_addr
1985 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
1986 }
1987
1988 if (arg1p)
1989 {
1990 if (type != value_type (*arg1p))
1991 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1992 value_addr (*arg1p)));
1993
1994 /* Move the `this' pointer according to the offset.
1995 VALUE_OFFSET (*arg1p) += offset;
1996 */
1997 }
1998
1999 return v;
2000 }
2001
2002 \f
2003 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2004 object at VALADDR. The bitfield starts at BITPOS bits and contains
2005 BITSIZE bits.
2006
2007 Extracting bits depends on endianness of the machine. Compute the
2008 number of least significant bits to discard. For big endian machines,
2009 we compute the total number of bits in the anonymous object, subtract
2010 off the bit count from the MSB of the object to the MSB of the
2011 bitfield, then the size of the bitfield, which leaves the LSB discard
2012 count. For little endian machines, the discard count is simply the
2013 number of bits from the LSB of the anonymous object to the LSB of the
2014 bitfield.
2015
2016 If the field is signed, we also do sign extension. */
2017
2018 LONGEST
2019 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2020 int bitpos, int bitsize)
2021 {
2022 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2023 ULONGEST val;
2024 ULONGEST valmask;
2025 int lsbcount;
2026
2027 val = extract_unsigned_integer (valaddr + bitpos / 8,
2028 sizeof (val), byte_order);
2029 CHECK_TYPEDEF (field_type);
2030
2031 /* Extract bits. See comment above. */
2032
2033 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2034 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2035 else
2036 lsbcount = (bitpos % 8);
2037 val >>= lsbcount;
2038
2039 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2040 If the field is signed, and is negative, then sign extend. */
2041
2042 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2043 {
2044 valmask = (((ULONGEST) 1) << bitsize) - 1;
2045 val &= valmask;
2046 if (!TYPE_UNSIGNED (field_type))
2047 {
2048 if (val & (valmask ^ (valmask >> 1)))
2049 {
2050 val |= ~valmask;
2051 }
2052 }
2053 }
2054 return (val);
2055 }
2056
2057 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2058 VALADDR. See unpack_bits_as_long for more details. */
2059
2060 LONGEST
2061 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2062 {
2063 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2064 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2065 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2066
2067 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2068 }
2069
2070 /* Modify the value of a bitfield. ADDR points to a block of memory in
2071 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2072 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2073 indicate which bits (in target bit order) comprise the bitfield.
2074 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2075 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2076
2077 void
2078 modify_field (struct type *type, gdb_byte *addr,
2079 LONGEST fieldval, int bitpos, int bitsize)
2080 {
2081 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2082 ULONGEST oword;
2083 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2084
2085 /* If a negative fieldval fits in the field in question, chop
2086 off the sign extension bits. */
2087 if ((~fieldval & ~(mask >> 1)) == 0)
2088 fieldval &= mask;
2089
2090 /* Warn if value is too big to fit in the field in question. */
2091 if (0 != (fieldval & ~mask))
2092 {
2093 /* FIXME: would like to include fieldval in the message, but
2094 we don't have a sprintf_longest. */
2095 warning (_("Value does not fit in %d bits."), bitsize);
2096
2097 /* Truncate it, otherwise adjoining fields may be corrupted. */
2098 fieldval &= mask;
2099 }
2100
2101 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2102
2103 /* Shifting for bit field depends on endianness of the target machine. */
2104 if (gdbarch_bits_big_endian (get_type_arch (type)))
2105 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2106
2107 oword &= ~(mask << bitpos);
2108 oword |= fieldval << bitpos;
2109
2110 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2111 }
2112 \f
2113 /* Pack NUM into BUF using a target format of TYPE. */
2114
2115 void
2116 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2117 {
2118 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2119 int len;
2120
2121 type = check_typedef (type);
2122 len = TYPE_LENGTH (type);
2123
2124 switch (TYPE_CODE (type))
2125 {
2126 case TYPE_CODE_INT:
2127 case TYPE_CODE_CHAR:
2128 case TYPE_CODE_ENUM:
2129 case TYPE_CODE_FLAGS:
2130 case TYPE_CODE_BOOL:
2131 case TYPE_CODE_RANGE:
2132 case TYPE_CODE_MEMBERPTR:
2133 store_signed_integer (buf, len, byte_order, num);
2134 break;
2135
2136 case TYPE_CODE_REF:
2137 case TYPE_CODE_PTR:
2138 store_typed_address (buf, type, (CORE_ADDR) num);
2139 break;
2140
2141 default:
2142 error (_("Unexpected type (%d) encountered for integer constant."),
2143 TYPE_CODE (type));
2144 }
2145 }
2146
2147
2148 /* Convert C numbers into newly allocated values. */
2149
2150 struct value *
2151 value_from_longest (struct type *type, LONGEST num)
2152 {
2153 struct value *val = allocate_value (type);
2154
2155 pack_long (value_contents_raw (val), type, num);
2156
2157 return val;
2158 }
2159
2160
2161 /* Create a value representing a pointer of type TYPE to the address
2162 ADDR. */
2163 struct value *
2164 value_from_pointer (struct type *type, CORE_ADDR addr)
2165 {
2166 struct value *val = allocate_value (type);
2167 store_typed_address (value_contents_raw (val), type, addr);
2168 return val;
2169 }
2170
2171
2172 /* Create a value of type TYPE whose contents come from VALADDR, if it
2173 is non-null, and whose memory address (in the inferior) is
2174 ADDRESS. */
2175
2176 struct value *
2177 value_from_contents_and_address (struct type *type,
2178 const gdb_byte *valaddr,
2179 CORE_ADDR address)
2180 {
2181 struct value *v = allocate_value (type);
2182 if (valaddr == NULL)
2183 set_value_lazy (v, 1);
2184 else
2185 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2186 set_value_address (v, address);
2187 VALUE_LVAL (v) = lval_memory;
2188 return v;
2189 }
2190
2191 struct value *
2192 value_from_double (struct type *type, DOUBLEST num)
2193 {
2194 struct value *val = allocate_value (type);
2195 struct type *base_type = check_typedef (type);
2196 enum type_code code = TYPE_CODE (base_type);
2197 int len = TYPE_LENGTH (base_type);
2198
2199 if (code == TYPE_CODE_FLT)
2200 {
2201 store_typed_floating (value_contents_raw (val), base_type, num);
2202 }
2203 else
2204 error (_("Unexpected type encountered for floating constant."));
2205
2206 return val;
2207 }
2208
2209 struct value *
2210 value_from_decfloat (struct type *type, const gdb_byte *dec)
2211 {
2212 struct value *val = allocate_value (type);
2213
2214 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2215
2216 return val;
2217 }
2218
2219 struct value *
2220 coerce_ref (struct value *arg)
2221 {
2222 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2223 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2224 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2225 unpack_pointer (value_type (arg),
2226 value_contents (arg)));
2227 return arg;
2228 }
2229
2230 struct value *
2231 coerce_array (struct value *arg)
2232 {
2233 struct type *type;
2234
2235 arg = coerce_ref (arg);
2236 type = check_typedef (value_type (arg));
2237
2238 switch (TYPE_CODE (type))
2239 {
2240 case TYPE_CODE_ARRAY:
2241 if (current_language->c_style_arrays)
2242 arg = value_coerce_array (arg);
2243 break;
2244 case TYPE_CODE_FUNC:
2245 arg = value_coerce_function (arg);
2246 break;
2247 }
2248 return arg;
2249 }
2250 \f
2251
2252 /* Return true if the function returning the specified type is using
2253 the convention of returning structures in memory (passing in the
2254 address as a hidden first parameter). */
2255
2256 int
2257 using_struct_return (struct gdbarch *gdbarch,
2258 struct type *func_type, struct type *value_type)
2259 {
2260 enum type_code code = TYPE_CODE (value_type);
2261
2262 if (code == TYPE_CODE_ERROR)
2263 error (_("Function return type unknown."));
2264
2265 if (code == TYPE_CODE_VOID)
2266 /* A void return value is never in memory. See also corresponding
2267 code in "print_return_value". */
2268 return 0;
2269
2270 /* Probe the architecture for the return-value convention. */
2271 return (gdbarch_return_value (gdbarch, func_type, value_type,
2272 NULL, NULL, NULL)
2273 != RETURN_VALUE_REGISTER_CONVENTION);
2274 }
2275
2276 /* Set the initialized field in a value struct. */
2277
2278 void
2279 set_value_initialized (struct value *val, int status)
2280 {
2281 val->initialized = status;
2282 }
2283
2284 /* Return the initialized field in a value struct. */
2285
2286 int
2287 value_initialized (struct value *val)
2288 {
2289 return val->initialized;
2290 }
2291
2292 void
2293 _initialize_values (void)
2294 {
2295 add_cmd ("convenience", no_class, show_convenience, _("\
2296 Debugger convenience (\"$foo\") variables.\n\
2297 These variables are created when you assign them values;\n\
2298 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2299 \n\
2300 A few convenience variables are given values automatically:\n\
2301 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2302 \"$__\" holds the contents of the last address examined with \"x\"."),
2303 &showlist);
2304
2305 add_cmd ("values", no_class, show_values,
2306 _("Elements of value history around item number IDX (or last ten)."),
2307 &showlist);
2308
2309 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2310 Initialize a convenience variable if necessary.\n\
2311 init-if-undefined VARIABLE = EXPRESSION\n\
2312 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2313 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2314 VARIABLE is already initialized."));
2315
2316 add_prefix_cmd ("function", no_class, function_command, _("\
2317 Placeholder command for showing help on convenience functions."),
2318 &functionlist, "function ", 0, &cmdlist);
2319 }