]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2012-11-14 Luis Machado <lgustavo@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 /* See value.h. */
810
811 void
812 set_value_parent (struct value *value, struct value *parent)
813 {
814 value->parent = parent;
815 }
816
817 gdb_byte *
818 value_contents_raw (struct value *value)
819 {
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
822 }
823
824 gdb_byte *
825 value_contents_all_raw (struct value *value)
826 {
827 allocate_value_contents (value);
828 return value->contents;
829 }
830
831 struct type *
832 value_enclosing_type (struct value *value)
833 {
834 return value->enclosing_type;
835 }
836
837 /* Look at value.h for description. */
838
839 struct type *
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842 {
843 struct value_print_options opts;
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
853 /* If result's target type is TYPE_CODE_STRUCT, proceed to
854 fetch its rtti type. */
855 if ((TYPE_CODE (result) == TYPE_CODE_PTR
856 || TYPE_CODE (result) == TYPE_CODE_REF)
857 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
858 == TYPE_CODE_STRUCT)
859 {
860 struct type *real_type;
861
862 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
863 if (real_type)
864 {
865 if (real_type_found)
866 *real_type_found = 1;
867 result = real_type;
868 }
869 }
870 else if (resolve_simple_types)
871 {
872 if (real_type_found)
873 *real_type_found = 1;
874 result = value_enclosing_type (value);
875 }
876 }
877
878 return result;
879 }
880
881 static void
882 require_not_optimized_out (const struct value *value)
883 {
884 if (value->optimized_out)
885 error (_("value has been optimized out"));
886 }
887
888 static void
889 require_available (const struct value *value)
890 {
891 if (!VEC_empty (range_s, value->unavailable))
892 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
893 }
894
895 const gdb_byte *
896 value_contents_for_printing (struct value *value)
897 {
898 if (value->lazy)
899 value_fetch_lazy (value);
900 return value->contents;
901 }
902
903 const gdb_byte *
904 value_contents_for_printing_const (const struct value *value)
905 {
906 gdb_assert (!value->lazy);
907 return value->contents;
908 }
909
910 const gdb_byte *
911 value_contents_all (struct value *value)
912 {
913 const gdb_byte *result = value_contents_for_printing (value);
914 require_not_optimized_out (value);
915 require_available (value);
916 return result;
917 }
918
919 /* Copy LENGTH bytes of SRC value's (all) contents
920 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
921 contents, starting at DST_OFFSET. If unavailable contents are
922 being copied from SRC, the corresponding DST contents are marked
923 unavailable accordingly. Neither DST nor SRC may be lazy
924 values.
925
926 It is assumed the contents of DST in the [DST_OFFSET,
927 DST_OFFSET+LENGTH) range are wholly available. */
928
929 void
930 value_contents_copy_raw (struct value *dst, int dst_offset,
931 struct value *src, int src_offset, int length)
932 {
933 range_s *r;
934 int i;
935
936 /* A lazy DST would make that this copy operation useless, since as
937 soon as DST's contents were un-lazied (by a later value_contents
938 call, say), the contents would be overwritten. A lazy SRC would
939 mean we'd be copying garbage. */
940 gdb_assert (!dst->lazy && !src->lazy);
941
942 /* The overwritten DST range gets unavailability ORed in, not
943 replaced. Make sure to remember to implement replacing if it
944 turns out actually necessary. */
945 gdb_assert (value_bytes_available (dst, dst_offset, length));
946
947 /* Copy the data. */
948 memcpy (value_contents_all_raw (dst) + dst_offset,
949 value_contents_all_raw (src) + src_offset,
950 length);
951
952 /* Copy the meta-data, adjusted. */
953 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
954 {
955 ULONGEST h, l;
956
957 l = max (r->offset, src_offset);
958 h = min (r->offset + r->length, src_offset + length);
959
960 if (l < h)
961 mark_value_bytes_unavailable (dst,
962 dst_offset + (l - src_offset),
963 h - l);
964 }
965 }
966
967 /* Copy LENGTH bytes of SRC value's (all) contents
968 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
969 (all) contents, starting at DST_OFFSET. If unavailable contents
970 are being copied from SRC, the corresponding DST contents are
971 marked unavailable accordingly. DST must not be lazy. If SRC is
972 lazy, it will be fetched now. If SRC is not valid (is optimized
973 out), an error is thrown.
974
975 It is assumed the contents of DST in the [DST_OFFSET,
976 DST_OFFSET+LENGTH) range are wholly available. */
977
978 void
979 value_contents_copy (struct value *dst, int dst_offset,
980 struct value *src, int src_offset, int length)
981 {
982 require_not_optimized_out (src);
983
984 if (src->lazy)
985 value_fetch_lazy (src);
986
987 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
988 }
989
990 int
991 value_lazy (struct value *value)
992 {
993 return value->lazy;
994 }
995
996 void
997 set_value_lazy (struct value *value, int val)
998 {
999 value->lazy = val;
1000 }
1001
1002 int
1003 value_stack (struct value *value)
1004 {
1005 return value->stack;
1006 }
1007
1008 void
1009 set_value_stack (struct value *value, int val)
1010 {
1011 value->stack = val;
1012 }
1013
1014 const gdb_byte *
1015 value_contents (struct value *value)
1016 {
1017 const gdb_byte *result = value_contents_writeable (value);
1018 require_not_optimized_out (value);
1019 require_available (value);
1020 return result;
1021 }
1022
1023 gdb_byte *
1024 value_contents_writeable (struct value *value)
1025 {
1026 if (value->lazy)
1027 value_fetch_lazy (value);
1028 return value_contents_raw (value);
1029 }
1030
1031 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1032 this function is different from value_equal; in C the operator ==
1033 can return 0 even if the two values being compared are equal. */
1034
1035 int
1036 value_contents_equal (struct value *val1, struct value *val2)
1037 {
1038 struct type *type1;
1039 struct type *type2;
1040
1041 type1 = check_typedef (value_type (val1));
1042 type2 = check_typedef (value_type (val2));
1043 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1044 return 0;
1045
1046 return (memcmp (value_contents (val1), value_contents (val2),
1047 TYPE_LENGTH (type1)) == 0);
1048 }
1049
1050 int
1051 value_optimized_out (struct value *value)
1052 {
1053 return value->optimized_out;
1054 }
1055
1056 void
1057 set_value_optimized_out (struct value *value, int val)
1058 {
1059 value->optimized_out = val;
1060 }
1061
1062 int
1063 value_entirely_optimized_out (const struct value *value)
1064 {
1065 if (!value->optimized_out)
1066 return 0;
1067 if (value->lval != lval_computed
1068 || !value->location.computed.funcs->check_any_valid)
1069 return 1;
1070 return !value->location.computed.funcs->check_any_valid (value);
1071 }
1072
1073 int
1074 value_bits_valid (const struct value *value, int offset, int length)
1075 {
1076 if (!value->optimized_out)
1077 return 1;
1078 if (value->lval != lval_computed
1079 || !value->location.computed.funcs->check_validity)
1080 return 0;
1081 return value->location.computed.funcs->check_validity (value, offset,
1082 length);
1083 }
1084
1085 int
1086 value_bits_synthetic_pointer (const struct value *value,
1087 int offset, int length)
1088 {
1089 if (value->lval != lval_computed
1090 || !value->location.computed.funcs->check_synthetic_pointer)
1091 return 0;
1092 return value->location.computed.funcs->check_synthetic_pointer (value,
1093 offset,
1094 length);
1095 }
1096
1097 int
1098 value_embedded_offset (struct value *value)
1099 {
1100 return value->embedded_offset;
1101 }
1102
1103 void
1104 set_value_embedded_offset (struct value *value, int val)
1105 {
1106 value->embedded_offset = val;
1107 }
1108
1109 int
1110 value_pointed_to_offset (struct value *value)
1111 {
1112 return value->pointed_to_offset;
1113 }
1114
1115 void
1116 set_value_pointed_to_offset (struct value *value, int val)
1117 {
1118 value->pointed_to_offset = val;
1119 }
1120
1121 const struct lval_funcs *
1122 value_computed_funcs (const struct value *v)
1123 {
1124 gdb_assert (value_lval_const (v) == lval_computed);
1125
1126 return v->location.computed.funcs;
1127 }
1128
1129 void *
1130 value_computed_closure (const struct value *v)
1131 {
1132 gdb_assert (v->lval == lval_computed);
1133
1134 return v->location.computed.closure;
1135 }
1136
1137 enum lval_type *
1138 deprecated_value_lval_hack (struct value *value)
1139 {
1140 return &value->lval;
1141 }
1142
1143 enum lval_type
1144 value_lval_const (const struct value *value)
1145 {
1146 return value->lval;
1147 }
1148
1149 CORE_ADDR
1150 value_address (const struct value *value)
1151 {
1152 if (value->lval == lval_internalvar
1153 || value->lval == lval_internalvar_component)
1154 return 0;
1155 if (value->parent != NULL)
1156 return value_address (value->parent) + value->offset;
1157 else
1158 return value->location.address + value->offset;
1159 }
1160
1161 CORE_ADDR
1162 value_raw_address (struct value *value)
1163 {
1164 if (value->lval == lval_internalvar
1165 || value->lval == lval_internalvar_component)
1166 return 0;
1167 return value->location.address;
1168 }
1169
1170 void
1171 set_value_address (struct value *value, CORE_ADDR addr)
1172 {
1173 gdb_assert (value->lval != lval_internalvar
1174 && value->lval != lval_internalvar_component);
1175 value->location.address = addr;
1176 }
1177
1178 struct internalvar **
1179 deprecated_value_internalvar_hack (struct value *value)
1180 {
1181 return &value->location.internalvar;
1182 }
1183
1184 struct frame_id *
1185 deprecated_value_frame_id_hack (struct value *value)
1186 {
1187 return &value->frame_id;
1188 }
1189
1190 short *
1191 deprecated_value_regnum_hack (struct value *value)
1192 {
1193 return &value->regnum;
1194 }
1195
1196 int
1197 deprecated_value_modifiable (struct value *value)
1198 {
1199 return value->modifiable;
1200 }
1201 void
1202 deprecated_set_value_modifiable (struct value *value, int modifiable)
1203 {
1204 value->modifiable = modifiable;
1205 }
1206 \f
1207 /* Return a mark in the value chain. All values allocated after the
1208 mark is obtained (except for those released) are subject to being freed
1209 if a subsequent value_free_to_mark is passed the mark. */
1210 struct value *
1211 value_mark (void)
1212 {
1213 return all_values;
1214 }
1215
1216 /* Take a reference to VAL. VAL will not be deallocated until all
1217 references are released. */
1218
1219 void
1220 value_incref (struct value *val)
1221 {
1222 val->reference_count++;
1223 }
1224
1225 /* Release a reference to VAL, which was acquired with value_incref.
1226 This function is also called to deallocate values from the value
1227 chain. */
1228
1229 void
1230 value_free (struct value *val)
1231 {
1232 if (val)
1233 {
1234 gdb_assert (val->reference_count > 0);
1235 val->reference_count--;
1236 if (val->reference_count > 0)
1237 return;
1238
1239 /* If there's an associated parent value, drop our reference to
1240 it. */
1241 if (val->parent != NULL)
1242 value_free (val->parent);
1243
1244 if (VALUE_LVAL (val) == lval_computed)
1245 {
1246 const struct lval_funcs *funcs = val->location.computed.funcs;
1247
1248 if (funcs->free_closure)
1249 funcs->free_closure (val);
1250 }
1251
1252 xfree (val->contents);
1253 VEC_free (range_s, val->unavailable);
1254 }
1255 xfree (val);
1256 }
1257
1258 /* Free all values allocated since MARK was obtained by value_mark
1259 (except for those released). */
1260 void
1261 value_free_to_mark (struct value *mark)
1262 {
1263 struct value *val;
1264 struct value *next;
1265
1266 for (val = all_values; val && val != mark; val = next)
1267 {
1268 next = val->next;
1269 val->released = 1;
1270 value_free (val);
1271 }
1272 all_values = val;
1273 }
1274
1275 /* Free all the values that have been allocated (except for those released).
1276 Call after each command, successful or not.
1277 In practice this is called before each command, which is sufficient. */
1278
1279 void
1280 free_all_values (void)
1281 {
1282 struct value *val;
1283 struct value *next;
1284
1285 for (val = all_values; val; val = next)
1286 {
1287 next = val->next;
1288 val->released = 1;
1289 value_free (val);
1290 }
1291
1292 all_values = 0;
1293 }
1294
1295 /* Frees all the elements in a chain of values. */
1296
1297 void
1298 free_value_chain (struct value *v)
1299 {
1300 struct value *next;
1301
1302 for (; v; v = next)
1303 {
1304 next = value_next (v);
1305 value_free (v);
1306 }
1307 }
1308
1309 /* Remove VAL from the chain all_values
1310 so it will not be freed automatically. */
1311
1312 void
1313 release_value (struct value *val)
1314 {
1315 struct value *v;
1316
1317 if (all_values == val)
1318 {
1319 all_values = val->next;
1320 val->next = NULL;
1321 val->released = 1;
1322 return;
1323 }
1324
1325 for (v = all_values; v; v = v->next)
1326 {
1327 if (v->next == val)
1328 {
1329 v->next = val->next;
1330 val->next = NULL;
1331 val->released = 1;
1332 break;
1333 }
1334 }
1335 }
1336
1337 /* If the value is not already released, release it.
1338 If the value is already released, increment its reference count.
1339 That is, this function ensures that the value is released from the
1340 value chain and that the caller owns a reference to it. */
1341
1342 void
1343 release_value_or_incref (struct value *val)
1344 {
1345 if (val->released)
1346 value_incref (val);
1347 else
1348 release_value (val);
1349 }
1350
1351 /* Release all values up to mark */
1352 struct value *
1353 value_release_to_mark (struct value *mark)
1354 {
1355 struct value *val;
1356 struct value *next;
1357
1358 for (val = next = all_values; next; next = next->next)
1359 {
1360 if (next->next == mark)
1361 {
1362 all_values = next->next;
1363 next->next = NULL;
1364 return val;
1365 }
1366 next->released = 1;
1367 }
1368 all_values = 0;
1369 return val;
1370 }
1371
1372 /* Return a copy of the value ARG.
1373 It contains the same contents, for same memory address,
1374 but it's a different block of storage. */
1375
1376 struct value *
1377 value_copy (struct value *arg)
1378 {
1379 struct type *encl_type = value_enclosing_type (arg);
1380 struct value *val;
1381
1382 if (value_lazy (arg))
1383 val = allocate_value_lazy (encl_type);
1384 else
1385 val = allocate_value (encl_type);
1386 val->type = arg->type;
1387 VALUE_LVAL (val) = VALUE_LVAL (arg);
1388 val->location = arg->location;
1389 val->offset = arg->offset;
1390 val->bitpos = arg->bitpos;
1391 val->bitsize = arg->bitsize;
1392 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1393 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1394 val->lazy = arg->lazy;
1395 val->optimized_out = arg->optimized_out;
1396 val->embedded_offset = value_embedded_offset (arg);
1397 val->pointed_to_offset = arg->pointed_to_offset;
1398 val->modifiable = arg->modifiable;
1399 if (!value_lazy (val))
1400 {
1401 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1402 TYPE_LENGTH (value_enclosing_type (arg)));
1403
1404 }
1405 val->unavailable = VEC_copy (range_s, arg->unavailable);
1406 val->parent = arg->parent;
1407 if (val->parent)
1408 value_incref (val->parent);
1409 if (VALUE_LVAL (val) == lval_computed)
1410 {
1411 const struct lval_funcs *funcs = val->location.computed.funcs;
1412
1413 if (funcs->copy_closure)
1414 val->location.computed.closure = funcs->copy_closure (val);
1415 }
1416 return val;
1417 }
1418
1419 /* Return a version of ARG that is non-lvalue. */
1420
1421 struct value *
1422 value_non_lval (struct value *arg)
1423 {
1424 if (VALUE_LVAL (arg) != not_lval)
1425 {
1426 struct type *enc_type = value_enclosing_type (arg);
1427 struct value *val = allocate_value (enc_type);
1428
1429 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1430 TYPE_LENGTH (enc_type));
1431 val->type = arg->type;
1432 set_value_embedded_offset (val, value_embedded_offset (arg));
1433 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1434 return val;
1435 }
1436 return arg;
1437 }
1438
1439 void
1440 set_value_component_location (struct value *component,
1441 const struct value *whole)
1442 {
1443 if (whole->lval == lval_internalvar)
1444 VALUE_LVAL (component) = lval_internalvar_component;
1445 else
1446 VALUE_LVAL (component) = whole->lval;
1447
1448 component->location = whole->location;
1449 if (whole->lval == lval_computed)
1450 {
1451 const struct lval_funcs *funcs = whole->location.computed.funcs;
1452
1453 if (funcs->copy_closure)
1454 component->location.computed.closure = funcs->copy_closure (whole);
1455 }
1456 }
1457
1458 \f
1459 /* Access to the value history. */
1460
1461 /* Record a new value in the value history.
1462 Returns the absolute history index of the entry.
1463 Result of -1 indicates the value was not saved; otherwise it is the
1464 value history index of this new item. */
1465
1466 int
1467 record_latest_value (struct value *val)
1468 {
1469 int i;
1470
1471 /* We don't want this value to have anything to do with the inferior anymore.
1472 In particular, "set $1 = 50" should not affect the variable from which
1473 the value was taken, and fast watchpoints should be able to assume that
1474 a value on the value history never changes. */
1475 if (value_lazy (val))
1476 value_fetch_lazy (val);
1477 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1478 from. This is a bit dubious, because then *&$1 does not just return $1
1479 but the current contents of that location. c'est la vie... */
1480 val->modifiable = 0;
1481 release_value (val);
1482
1483 /* Here we treat value_history_count as origin-zero
1484 and applying to the value being stored now. */
1485
1486 i = value_history_count % VALUE_HISTORY_CHUNK;
1487 if (i == 0)
1488 {
1489 struct value_history_chunk *new
1490 = (struct value_history_chunk *)
1491
1492 xmalloc (sizeof (struct value_history_chunk));
1493 memset (new->values, 0, sizeof new->values);
1494 new->next = value_history_chain;
1495 value_history_chain = new;
1496 }
1497
1498 value_history_chain->values[i] = val;
1499
1500 /* Now we regard value_history_count as origin-one
1501 and applying to the value just stored. */
1502
1503 return ++value_history_count;
1504 }
1505
1506 /* Return a copy of the value in the history with sequence number NUM. */
1507
1508 struct value *
1509 access_value_history (int num)
1510 {
1511 struct value_history_chunk *chunk;
1512 int i;
1513 int absnum = num;
1514
1515 if (absnum <= 0)
1516 absnum += value_history_count;
1517
1518 if (absnum <= 0)
1519 {
1520 if (num == 0)
1521 error (_("The history is empty."));
1522 else if (num == 1)
1523 error (_("There is only one value in the history."));
1524 else
1525 error (_("History does not go back to $$%d."), -num);
1526 }
1527 if (absnum > value_history_count)
1528 error (_("History has not yet reached $%d."), absnum);
1529
1530 absnum--;
1531
1532 /* Now absnum is always absolute and origin zero. */
1533
1534 chunk = value_history_chain;
1535 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1536 - absnum / VALUE_HISTORY_CHUNK;
1537 i > 0; i--)
1538 chunk = chunk->next;
1539
1540 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1541 }
1542
1543 static void
1544 show_values (char *num_exp, int from_tty)
1545 {
1546 int i;
1547 struct value *val;
1548 static int num = 1;
1549
1550 if (num_exp)
1551 {
1552 /* "show values +" should print from the stored position.
1553 "show values <exp>" should print around value number <exp>. */
1554 if (num_exp[0] != '+' || num_exp[1] != '\0')
1555 num = parse_and_eval_long (num_exp) - 5;
1556 }
1557 else
1558 {
1559 /* "show values" means print the last 10 values. */
1560 num = value_history_count - 9;
1561 }
1562
1563 if (num <= 0)
1564 num = 1;
1565
1566 for (i = num; i < num + 10 && i <= value_history_count; i++)
1567 {
1568 struct value_print_options opts;
1569
1570 val = access_value_history (i);
1571 printf_filtered (("$%d = "), i);
1572 get_user_print_options (&opts);
1573 value_print (val, gdb_stdout, &opts);
1574 printf_filtered (("\n"));
1575 }
1576
1577 /* The next "show values +" should start after what we just printed. */
1578 num += 10;
1579
1580 /* Hitting just return after this command should do the same thing as
1581 "show values +". If num_exp is null, this is unnecessary, since
1582 "show values +" is not useful after "show values". */
1583 if (from_tty && num_exp)
1584 {
1585 num_exp[0] = '+';
1586 num_exp[1] = '\0';
1587 }
1588 }
1589 \f
1590 /* Internal variables. These are variables within the debugger
1591 that hold values assigned by debugger commands.
1592 The user refers to them with a '$' prefix
1593 that does not appear in the variable names stored internally. */
1594
1595 struct internalvar
1596 {
1597 struct internalvar *next;
1598 char *name;
1599
1600 /* We support various different kinds of content of an internal variable.
1601 enum internalvar_kind specifies the kind, and union internalvar_data
1602 provides the data associated with this particular kind. */
1603
1604 enum internalvar_kind
1605 {
1606 /* The internal variable is empty. */
1607 INTERNALVAR_VOID,
1608
1609 /* The value of the internal variable is provided directly as
1610 a GDB value object. */
1611 INTERNALVAR_VALUE,
1612
1613 /* A fresh value is computed via a call-back routine on every
1614 access to the internal variable. */
1615 INTERNALVAR_MAKE_VALUE,
1616
1617 /* The internal variable holds a GDB internal convenience function. */
1618 INTERNALVAR_FUNCTION,
1619
1620 /* The variable holds an integer value. */
1621 INTERNALVAR_INTEGER,
1622
1623 /* The variable holds a GDB-provided string. */
1624 INTERNALVAR_STRING,
1625
1626 } kind;
1627
1628 union internalvar_data
1629 {
1630 /* A value object used with INTERNALVAR_VALUE. */
1631 struct value *value;
1632
1633 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1634 struct
1635 {
1636 /* The functions to call. */
1637 const struct internalvar_funcs *functions;
1638
1639 /* The function's user-data. */
1640 void *data;
1641 } make_value;
1642
1643 /* The internal function used with INTERNALVAR_FUNCTION. */
1644 struct
1645 {
1646 struct internal_function *function;
1647 /* True if this is the canonical name for the function. */
1648 int canonical;
1649 } fn;
1650
1651 /* An integer value used with INTERNALVAR_INTEGER. */
1652 struct
1653 {
1654 /* If type is non-NULL, it will be used as the type to generate
1655 a value for this internal variable. If type is NULL, a default
1656 integer type for the architecture is used. */
1657 struct type *type;
1658 LONGEST val;
1659 } integer;
1660
1661 /* A string value used with INTERNALVAR_STRING. */
1662 char *string;
1663 } u;
1664 };
1665
1666 static struct internalvar *internalvars;
1667
1668 /* If the variable does not already exist create it and give it the
1669 value given. If no value is given then the default is zero. */
1670 static void
1671 init_if_undefined_command (char* args, int from_tty)
1672 {
1673 struct internalvar* intvar;
1674
1675 /* Parse the expression - this is taken from set_command(). */
1676 struct expression *expr = parse_expression (args);
1677 register struct cleanup *old_chain =
1678 make_cleanup (free_current_contents, &expr);
1679
1680 /* Validate the expression.
1681 Was the expression an assignment?
1682 Or even an expression at all? */
1683 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1684 error (_("Init-if-undefined requires an assignment expression."));
1685
1686 /* Extract the variable from the parsed expression.
1687 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1688 if (expr->elts[1].opcode != OP_INTERNALVAR)
1689 error (_("The first parameter to init-if-undefined "
1690 "should be a GDB variable."));
1691 intvar = expr->elts[2].internalvar;
1692
1693 /* Only evaluate the expression if the lvalue is void.
1694 This may still fail if the expresssion is invalid. */
1695 if (intvar->kind == INTERNALVAR_VOID)
1696 evaluate_expression (expr);
1697
1698 do_cleanups (old_chain);
1699 }
1700
1701
1702 /* Look up an internal variable with name NAME. NAME should not
1703 normally include a dollar sign.
1704
1705 If the specified internal variable does not exist,
1706 the return value is NULL. */
1707
1708 struct internalvar *
1709 lookup_only_internalvar (const char *name)
1710 {
1711 struct internalvar *var;
1712
1713 for (var = internalvars; var; var = var->next)
1714 if (strcmp (var->name, name) == 0)
1715 return var;
1716
1717 return NULL;
1718 }
1719
1720 /* Complete NAME by comparing it to the names of internal variables.
1721 Returns a vector of newly allocated strings, or NULL if no matches
1722 were found. */
1723
1724 VEC (char_ptr) *
1725 complete_internalvar (const char *name)
1726 {
1727 VEC (char_ptr) *result = NULL;
1728 struct internalvar *var;
1729 int len;
1730
1731 len = strlen (name);
1732
1733 for (var = internalvars; var; var = var->next)
1734 if (strncmp (var->name, name, len) == 0)
1735 {
1736 char *r = xstrdup (var->name);
1737
1738 VEC_safe_push (char_ptr, result, r);
1739 }
1740
1741 return result;
1742 }
1743
1744 /* Create an internal variable with name NAME and with a void value.
1745 NAME should not normally include a dollar sign. */
1746
1747 struct internalvar *
1748 create_internalvar (const char *name)
1749 {
1750 struct internalvar *var;
1751
1752 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1753 var->name = concat (name, (char *)NULL);
1754 var->kind = INTERNALVAR_VOID;
1755 var->next = internalvars;
1756 internalvars = var;
1757 return var;
1758 }
1759
1760 /* Create an internal variable with name NAME and register FUN as the
1761 function that value_of_internalvar uses to create a value whenever
1762 this variable is referenced. NAME should not normally include a
1763 dollar sign. DATA is passed uninterpreted to FUN when it is
1764 called. CLEANUP, if not NULL, is called when the internal variable
1765 is destroyed. It is passed DATA as its only argument. */
1766
1767 struct internalvar *
1768 create_internalvar_type_lazy (const char *name,
1769 const struct internalvar_funcs *funcs,
1770 void *data)
1771 {
1772 struct internalvar *var = create_internalvar (name);
1773
1774 var->kind = INTERNALVAR_MAKE_VALUE;
1775 var->u.make_value.functions = funcs;
1776 var->u.make_value.data = data;
1777 return var;
1778 }
1779
1780 /* See documentation in value.h. */
1781
1782 int
1783 compile_internalvar_to_ax (struct internalvar *var,
1784 struct agent_expr *expr,
1785 struct axs_value *value)
1786 {
1787 if (var->kind != INTERNALVAR_MAKE_VALUE
1788 || var->u.make_value.functions->compile_to_ax == NULL)
1789 return 0;
1790
1791 var->u.make_value.functions->compile_to_ax (var, expr, value,
1792 var->u.make_value.data);
1793 return 1;
1794 }
1795
1796 /* Look up an internal variable with name NAME. NAME should not
1797 normally include a dollar sign.
1798
1799 If the specified internal variable does not exist,
1800 one is created, with a void value. */
1801
1802 struct internalvar *
1803 lookup_internalvar (const char *name)
1804 {
1805 struct internalvar *var;
1806
1807 var = lookup_only_internalvar (name);
1808 if (var)
1809 return var;
1810
1811 return create_internalvar (name);
1812 }
1813
1814 /* Return current value of internal variable VAR. For variables that
1815 are not inherently typed, use a value type appropriate for GDBARCH. */
1816
1817 struct value *
1818 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1819 {
1820 struct value *val;
1821 struct trace_state_variable *tsv;
1822
1823 /* If there is a trace state variable of the same name, assume that
1824 is what we really want to see. */
1825 tsv = find_trace_state_variable (var->name);
1826 if (tsv)
1827 {
1828 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1829 &(tsv->value));
1830 if (tsv->value_known)
1831 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1832 tsv->value);
1833 else
1834 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1835 return val;
1836 }
1837
1838 switch (var->kind)
1839 {
1840 case INTERNALVAR_VOID:
1841 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1842 break;
1843
1844 case INTERNALVAR_FUNCTION:
1845 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1846 break;
1847
1848 case INTERNALVAR_INTEGER:
1849 if (!var->u.integer.type)
1850 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1851 var->u.integer.val);
1852 else
1853 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1854 break;
1855
1856 case INTERNALVAR_STRING:
1857 val = value_cstring (var->u.string, strlen (var->u.string),
1858 builtin_type (gdbarch)->builtin_char);
1859 break;
1860
1861 case INTERNALVAR_VALUE:
1862 val = value_copy (var->u.value);
1863 if (value_lazy (val))
1864 value_fetch_lazy (val);
1865 break;
1866
1867 case INTERNALVAR_MAKE_VALUE:
1868 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1869 var->u.make_value.data);
1870 break;
1871
1872 default:
1873 internal_error (__FILE__, __LINE__, _("bad kind"));
1874 }
1875
1876 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1877 on this value go back to affect the original internal variable.
1878
1879 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1880 no underlying modifyable state in the internal variable.
1881
1882 Likewise, if the variable's value is a computed lvalue, we want
1883 references to it to produce another computed lvalue, where
1884 references and assignments actually operate through the
1885 computed value's functions.
1886
1887 This means that internal variables with computed values
1888 behave a little differently from other internal variables:
1889 assignments to them don't just replace the previous value
1890 altogether. At the moment, this seems like the behavior we
1891 want. */
1892
1893 if (var->kind != INTERNALVAR_MAKE_VALUE
1894 && val->lval != lval_computed)
1895 {
1896 VALUE_LVAL (val) = lval_internalvar;
1897 VALUE_INTERNALVAR (val) = var;
1898 }
1899
1900 return val;
1901 }
1902
1903 int
1904 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1905 {
1906 if (var->kind == INTERNALVAR_INTEGER)
1907 {
1908 *result = var->u.integer.val;
1909 return 1;
1910 }
1911
1912 if (var->kind == INTERNALVAR_VALUE)
1913 {
1914 struct type *type = check_typedef (value_type (var->u.value));
1915
1916 if (TYPE_CODE (type) == TYPE_CODE_INT)
1917 {
1918 *result = value_as_long (var->u.value);
1919 return 1;
1920 }
1921 }
1922
1923 return 0;
1924 }
1925
1926 static int
1927 get_internalvar_function (struct internalvar *var,
1928 struct internal_function **result)
1929 {
1930 switch (var->kind)
1931 {
1932 case INTERNALVAR_FUNCTION:
1933 *result = var->u.fn.function;
1934 return 1;
1935
1936 default:
1937 return 0;
1938 }
1939 }
1940
1941 void
1942 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1943 int bitsize, struct value *newval)
1944 {
1945 gdb_byte *addr;
1946
1947 switch (var->kind)
1948 {
1949 case INTERNALVAR_VALUE:
1950 addr = value_contents_writeable (var->u.value);
1951
1952 if (bitsize)
1953 modify_field (value_type (var->u.value), addr + offset,
1954 value_as_long (newval), bitpos, bitsize);
1955 else
1956 memcpy (addr + offset, value_contents (newval),
1957 TYPE_LENGTH (value_type (newval)));
1958 break;
1959
1960 default:
1961 /* We can never get a component of any other kind. */
1962 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1963 }
1964 }
1965
1966 void
1967 set_internalvar (struct internalvar *var, struct value *val)
1968 {
1969 enum internalvar_kind new_kind;
1970 union internalvar_data new_data = { 0 };
1971
1972 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1973 error (_("Cannot overwrite convenience function %s"), var->name);
1974
1975 /* Prepare new contents. */
1976 switch (TYPE_CODE (check_typedef (value_type (val))))
1977 {
1978 case TYPE_CODE_VOID:
1979 new_kind = INTERNALVAR_VOID;
1980 break;
1981
1982 case TYPE_CODE_INTERNAL_FUNCTION:
1983 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1984 new_kind = INTERNALVAR_FUNCTION;
1985 get_internalvar_function (VALUE_INTERNALVAR (val),
1986 &new_data.fn.function);
1987 /* Copies created here are never canonical. */
1988 break;
1989
1990 default:
1991 new_kind = INTERNALVAR_VALUE;
1992 new_data.value = value_copy (val);
1993 new_data.value->modifiable = 1;
1994
1995 /* Force the value to be fetched from the target now, to avoid problems
1996 later when this internalvar is referenced and the target is gone or
1997 has changed. */
1998 if (value_lazy (new_data.value))
1999 value_fetch_lazy (new_data.value);
2000
2001 /* Release the value from the value chain to prevent it from being
2002 deleted by free_all_values. From here on this function should not
2003 call error () until new_data is installed into the var->u to avoid
2004 leaking memory. */
2005 release_value (new_data.value);
2006 break;
2007 }
2008
2009 /* Clean up old contents. */
2010 clear_internalvar (var);
2011
2012 /* Switch over. */
2013 var->kind = new_kind;
2014 var->u = new_data;
2015 /* End code which must not call error(). */
2016 }
2017
2018 void
2019 set_internalvar_integer (struct internalvar *var, LONGEST l)
2020 {
2021 /* Clean up old contents. */
2022 clear_internalvar (var);
2023
2024 var->kind = INTERNALVAR_INTEGER;
2025 var->u.integer.type = NULL;
2026 var->u.integer.val = l;
2027 }
2028
2029 void
2030 set_internalvar_string (struct internalvar *var, const char *string)
2031 {
2032 /* Clean up old contents. */
2033 clear_internalvar (var);
2034
2035 var->kind = INTERNALVAR_STRING;
2036 var->u.string = xstrdup (string);
2037 }
2038
2039 static void
2040 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2041 {
2042 /* Clean up old contents. */
2043 clear_internalvar (var);
2044
2045 var->kind = INTERNALVAR_FUNCTION;
2046 var->u.fn.function = f;
2047 var->u.fn.canonical = 1;
2048 /* Variables installed here are always the canonical version. */
2049 }
2050
2051 void
2052 clear_internalvar (struct internalvar *var)
2053 {
2054 /* Clean up old contents. */
2055 switch (var->kind)
2056 {
2057 case INTERNALVAR_VALUE:
2058 value_free (var->u.value);
2059 break;
2060
2061 case INTERNALVAR_STRING:
2062 xfree (var->u.string);
2063 break;
2064
2065 case INTERNALVAR_MAKE_VALUE:
2066 if (var->u.make_value.functions->destroy != NULL)
2067 var->u.make_value.functions->destroy (var->u.make_value.data);
2068 break;
2069
2070 default:
2071 break;
2072 }
2073
2074 /* Reset to void kind. */
2075 var->kind = INTERNALVAR_VOID;
2076 }
2077
2078 char *
2079 internalvar_name (struct internalvar *var)
2080 {
2081 return var->name;
2082 }
2083
2084 static struct internal_function *
2085 create_internal_function (const char *name,
2086 internal_function_fn handler, void *cookie)
2087 {
2088 struct internal_function *ifn = XNEW (struct internal_function);
2089
2090 ifn->name = xstrdup (name);
2091 ifn->handler = handler;
2092 ifn->cookie = cookie;
2093 return ifn;
2094 }
2095
2096 char *
2097 value_internal_function_name (struct value *val)
2098 {
2099 struct internal_function *ifn;
2100 int result;
2101
2102 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2103 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2104 gdb_assert (result);
2105
2106 return ifn->name;
2107 }
2108
2109 struct value *
2110 call_internal_function (struct gdbarch *gdbarch,
2111 const struct language_defn *language,
2112 struct value *func, int argc, struct value **argv)
2113 {
2114 struct internal_function *ifn;
2115 int result;
2116
2117 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2118 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2119 gdb_assert (result);
2120
2121 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2122 }
2123
2124 /* The 'function' command. This does nothing -- it is just a
2125 placeholder to let "help function NAME" work. This is also used as
2126 the implementation of the sub-command that is created when
2127 registering an internal function. */
2128 static void
2129 function_command (char *command, int from_tty)
2130 {
2131 /* Do nothing. */
2132 }
2133
2134 /* Clean up if an internal function's command is destroyed. */
2135 static void
2136 function_destroyer (struct cmd_list_element *self, void *ignore)
2137 {
2138 xfree (self->name);
2139 xfree (self->doc);
2140 }
2141
2142 /* Add a new internal function. NAME is the name of the function; DOC
2143 is a documentation string describing the function. HANDLER is
2144 called when the function is invoked. COOKIE is an arbitrary
2145 pointer which is passed to HANDLER and is intended for "user
2146 data". */
2147 void
2148 add_internal_function (const char *name, const char *doc,
2149 internal_function_fn handler, void *cookie)
2150 {
2151 struct cmd_list_element *cmd;
2152 struct internal_function *ifn;
2153 struct internalvar *var = lookup_internalvar (name);
2154
2155 ifn = create_internal_function (name, handler, cookie);
2156 set_internalvar_function (var, ifn);
2157
2158 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2159 &functionlist);
2160 cmd->destroyer = function_destroyer;
2161 }
2162
2163 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2164 prevent cycles / duplicates. */
2165
2166 void
2167 preserve_one_value (struct value *value, struct objfile *objfile,
2168 htab_t copied_types)
2169 {
2170 if (TYPE_OBJFILE (value->type) == objfile)
2171 value->type = copy_type_recursive (objfile, value->type, copied_types);
2172
2173 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2174 value->enclosing_type = copy_type_recursive (objfile,
2175 value->enclosing_type,
2176 copied_types);
2177 }
2178
2179 /* Likewise for internal variable VAR. */
2180
2181 static void
2182 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2183 htab_t copied_types)
2184 {
2185 switch (var->kind)
2186 {
2187 case INTERNALVAR_INTEGER:
2188 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2189 var->u.integer.type
2190 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2191 break;
2192
2193 case INTERNALVAR_VALUE:
2194 preserve_one_value (var->u.value, objfile, copied_types);
2195 break;
2196 }
2197 }
2198
2199 /* Update the internal variables and value history when OBJFILE is
2200 discarded; we must copy the types out of the objfile. New global types
2201 will be created for every convenience variable which currently points to
2202 this objfile's types, and the convenience variables will be adjusted to
2203 use the new global types. */
2204
2205 void
2206 preserve_values (struct objfile *objfile)
2207 {
2208 htab_t copied_types;
2209 struct value_history_chunk *cur;
2210 struct internalvar *var;
2211 int i;
2212
2213 /* Create the hash table. We allocate on the objfile's obstack, since
2214 it is soon to be deleted. */
2215 copied_types = create_copied_types_hash (objfile);
2216
2217 for (cur = value_history_chain; cur; cur = cur->next)
2218 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2219 if (cur->values[i])
2220 preserve_one_value (cur->values[i], objfile, copied_types);
2221
2222 for (var = internalvars; var; var = var->next)
2223 preserve_one_internalvar (var, objfile, copied_types);
2224
2225 preserve_python_values (objfile, copied_types);
2226
2227 htab_delete (copied_types);
2228 }
2229
2230 static void
2231 show_convenience (char *ignore, int from_tty)
2232 {
2233 struct gdbarch *gdbarch = get_current_arch ();
2234 struct internalvar *var;
2235 int varseen = 0;
2236 struct value_print_options opts;
2237
2238 get_user_print_options (&opts);
2239 for (var = internalvars; var; var = var->next)
2240 {
2241 volatile struct gdb_exception ex;
2242
2243 if (!varseen)
2244 {
2245 varseen = 1;
2246 }
2247 printf_filtered (("$%s = "), var->name);
2248
2249 TRY_CATCH (ex, RETURN_MASK_ERROR)
2250 {
2251 struct value *val;
2252
2253 val = value_of_internalvar (gdbarch, var);
2254 value_print (val, gdb_stdout, &opts);
2255 }
2256 if (ex.reason < 0)
2257 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2258 printf_filtered (("\n"));
2259 }
2260 if (!varseen)
2261 {
2262 /* This text does not mention convenience functions on purpose.
2263 The user can't create them except via Python, and if Python support
2264 is installed this message will never be printed ($_streq will
2265 exist). */
2266 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2267 "Convenience variables have "
2268 "names starting with \"$\";\n"
2269 "use \"set\" as in \"set "
2270 "$foo = 5\" to define them.\n"));
2271 }
2272 }
2273 \f
2274 /* Extract a value as a C number (either long or double).
2275 Knows how to convert fixed values to double, or
2276 floating values to long.
2277 Does not deallocate the value. */
2278
2279 LONGEST
2280 value_as_long (struct value *val)
2281 {
2282 /* This coerces arrays and functions, which is necessary (e.g.
2283 in disassemble_command). It also dereferences references, which
2284 I suspect is the most logical thing to do. */
2285 val = coerce_array (val);
2286 return unpack_long (value_type (val), value_contents (val));
2287 }
2288
2289 DOUBLEST
2290 value_as_double (struct value *val)
2291 {
2292 DOUBLEST foo;
2293 int inv;
2294
2295 foo = unpack_double (value_type (val), value_contents (val), &inv);
2296 if (inv)
2297 error (_("Invalid floating value found in program."));
2298 return foo;
2299 }
2300
2301 /* Extract a value as a C pointer. Does not deallocate the value.
2302 Note that val's type may not actually be a pointer; value_as_long
2303 handles all the cases. */
2304 CORE_ADDR
2305 value_as_address (struct value *val)
2306 {
2307 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2308
2309 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2310 whether we want this to be true eventually. */
2311 #if 0
2312 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2313 non-address (e.g. argument to "signal", "info break", etc.), or
2314 for pointers to char, in which the low bits *are* significant. */
2315 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2316 #else
2317
2318 /* There are several targets (IA-64, PowerPC, and others) which
2319 don't represent pointers to functions as simply the address of
2320 the function's entry point. For example, on the IA-64, a
2321 function pointer points to a two-word descriptor, generated by
2322 the linker, which contains the function's entry point, and the
2323 value the IA-64 "global pointer" register should have --- to
2324 support position-independent code. The linker generates
2325 descriptors only for those functions whose addresses are taken.
2326
2327 On such targets, it's difficult for GDB to convert an arbitrary
2328 function address into a function pointer; it has to either find
2329 an existing descriptor for that function, or call malloc and
2330 build its own. On some targets, it is impossible for GDB to
2331 build a descriptor at all: the descriptor must contain a jump
2332 instruction; data memory cannot be executed; and code memory
2333 cannot be modified.
2334
2335 Upon entry to this function, if VAL is a value of type `function'
2336 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2337 value_address (val) is the address of the function. This is what
2338 you'll get if you evaluate an expression like `main'. The call
2339 to COERCE_ARRAY below actually does all the usual unary
2340 conversions, which includes converting values of type `function'
2341 to `pointer to function'. This is the challenging conversion
2342 discussed above. Then, `unpack_long' will convert that pointer
2343 back into an address.
2344
2345 So, suppose the user types `disassemble foo' on an architecture
2346 with a strange function pointer representation, on which GDB
2347 cannot build its own descriptors, and suppose further that `foo'
2348 has no linker-built descriptor. The address->pointer conversion
2349 will signal an error and prevent the command from running, even
2350 though the next step would have been to convert the pointer
2351 directly back into the same address.
2352
2353 The following shortcut avoids this whole mess. If VAL is a
2354 function, just return its address directly. */
2355 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2356 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2357 return value_address (val);
2358
2359 val = coerce_array (val);
2360
2361 /* Some architectures (e.g. Harvard), map instruction and data
2362 addresses onto a single large unified address space. For
2363 instance: An architecture may consider a large integer in the
2364 range 0x10000000 .. 0x1000ffff to already represent a data
2365 addresses (hence not need a pointer to address conversion) while
2366 a small integer would still need to be converted integer to
2367 pointer to address. Just assume such architectures handle all
2368 integer conversions in a single function. */
2369
2370 /* JimB writes:
2371
2372 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2373 must admonish GDB hackers to make sure its behavior matches the
2374 compiler's, whenever possible.
2375
2376 In general, I think GDB should evaluate expressions the same way
2377 the compiler does. When the user copies an expression out of
2378 their source code and hands it to a `print' command, they should
2379 get the same value the compiler would have computed. Any
2380 deviation from this rule can cause major confusion and annoyance,
2381 and needs to be justified carefully. In other words, GDB doesn't
2382 really have the freedom to do these conversions in clever and
2383 useful ways.
2384
2385 AndrewC pointed out that users aren't complaining about how GDB
2386 casts integers to pointers; they are complaining that they can't
2387 take an address from a disassembly listing and give it to `x/i'.
2388 This is certainly important.
2389
2390 Adding an architecture method like integer_to_address() certainly
2391 makes it possible for GDB to "get it right" in all circumstances
2392 --- the target has complete control over how things get done, so
2393 people can Do The Right Thing for their target without breaking
2394 anyone else. The standard doesn't specify how integers get
2395 converted to pointers; usually, the ABI doesn't either, but
2396 ABI-specific code is a more reasonable place to handle it. */
2397
2398 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2399 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2400 && gdbarch_integer_to_address_p (gdbarch))
2401 return gdbarch_integer_to_address (gdbarch, value_type (val),
2402 value_contents (val));
2403
2404 return unpack_long (value_type (val), value_contents (val));
2405 #endif
2406 }
2407 \f
2408 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2409 as a long, or as a double, assuming the raw data is described
2410 by type TYPE. Knows how to convert different sizes of values
2411 and can convert between fixed and floating point. We don't assume
2412 any alignment for the raw data. Return value is in host byte order.
2413
2414 If you want functions and arrays to be coerced to pointers, and
2415 references to be dereferenced, call value_as_long() instead.
2416
2417 C++: It is assumed that the front-end has taken care of
2418 all matters concerning pointers to members. A pointer
2419 to member which reaches here is considered to be equivalent
2420 to an INT (or some size). After all, it is only an offset. */
2421
2422 LONGEST
2423 unpack_long (struct type *type, const gdb_byte *valaddr)
2424 {
2425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2426 enum type_code code = TYPE_CODE (type);
2427 int len = TYPE_LENGTH (type);
2428 int nosign = TYPE_UNSIGNED (type);
2429
2430 switch (code)
2431 {
2432 case TYPE_CODE_TYPEDEF:
2433 return unpack_long (check_typedef (type), valaddr);
2434 case TYPE_CODE_ENUM:
2435 case TYPE_CODE_FLAGS:
2436 case TYPE_CODE_BOOL:
2437 case TYPE_CODE_INT:
2438 case TYPE_CODE_CHAR:
2439 case TYPE_CODE_RANGE:
2440 case TYPE_CODE_MEMBERPTR:
2441 if (nosign)
2442 return extract_unsigned_integer (valaddr, len, byte_order);
2443 else
2444 return extract_signed_integer (valaddr, len, byte_order);
2445
2446 case TYPE_CODE_FLT:
2447 return extract_typed_floating (valaddr, type);
2448
2449 case TYPE_CODE_DECFLOAT:
2450 /* libdecnumber has a function to convert from decimal to integer, but
2451 it doesn't work when the decimal number has a fractional part. */
2452 return decimal_to_doublest (valaddr, len, byte_order);
2453
2454 case TYPE_CODE_PTR:
2455 case TYPE_CODE_REF:
2456 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2457 whether we want this to be true eventually. */
2458 return extract_typed_address (valaddr, type);
2459
2460 default:
2461 error (_("Value can't be converted to integer."));
2462 }
2463 return 0; /* Placate lint. */
2464 }
2465
2466 /* Return a double value from the specified type and address.
2467 INVP points to an int which is set to 0 for valid value,
2468 1 for invalid value (bad float format). In either case,
2469 the returned double is OK to use. Argument is in target
2470 format, result is in host format. */
2471
2472 DOUBLEST
2473 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2474 {
2475 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2476 enum type_code code;
2477 int len;
2478 int nosign;
2479
2480 *invp = 0; /* Assume valid. */
2481 CHECK_TYPEDEF (type);
2482 code = TYPE_CODE (type);
2483 len = TYPE_LENGTH (type);
2484 nosign = TYPE_UNSIGNED (type);
2485 if (code == TYPE_CODE_FLT)
2486 {
2487 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2488 floating-point value was valid (using the macro
2489 INVALID_FLOAT). That test/macro have been removed.
2490
2491 It turns out that only the VAX defined this macro and then
2492 only in a non-portable way. Fixing the portability problem
2493 wouldn't help since the VAX floating-point code is also badly
2494 bit-rotten. The target needs to add definitions for the
2495 methods gdbarch_float_format and gdbarch_double_format - these
2496 exactly describe the target floating-point format. The
2497 problem here is that the corresponding floatformat_vax_f and
2498 floatformat_vax_d values these methods should be set to are
2499 also not defined either. Oops!
2500
2501 Hopefully someone will add both the missing floatformat
2502 definitions and the new cases for floatformat_is_valid (). */
2503
2504 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2505 {
2506 *invp = 1;
2507 return 0.0;
2508 }
2509
2510 return extract_typed_floating (valaddr, type);
2511 }
2512 else if (code == TYPE_CODE_DECFLOAT)
2513 return decimal_to_doublest (valaddr, len, byte_order);
2514 else if (nosign)
2515 {
2516 /* Unsigned -- be sure we compensate for signed LONGEST. */
2517 return (ULONGEST) unpack_long (type, valaddr);
2518 }
2519 else
2520 {
2521 /* Signed -- we are OK with unpack_long. */
2522 return unpack_long (type, valaddr);
2523 }
2524 }
2525
2526 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2527 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2528 We don't assume any alignment for the raw data. Return value is in
2529 host byte order.
2530
2531 If you want functions and arrays to be coerced to pointers, and
2532 references to be dereferenced, call value_as_address() instead.
2533
2534 C++: It is assumed that the front-end has taken care of
2535 all matters concerning pointers to members. A pointer
2536 to member which reaches here is considered to be equivalent
2537 to an INT (or some size). After all, it is only an offset. */
2538
2539 CORE_ADDR
2540 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2541 {
2542 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2543 whether we want this to be true eventually. */
2544 return unpack_long (type, valaddr);
2545 }
2546
2547 \f
2548 /* Get the value of the FIELDNO'th field (which must be static) of
2549 TYPE. Return NULL if the field doesn't exist or has been
2550 optimized out. */
2551
2552 struct value *
2553 value_static_field (struct type *type, int fieldno)
2554 {
2555 struct value *retval;
2556
2557 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2558 {
2559 case FIELD_LOC_KIND_PHYSADDR:
2560 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2561 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2562 break;
2563 case FIELD_LOC_KIND_PHYSNAME:
2564 {
2565 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2566 /* TYPE_FIELD_NAME (type, fieldno); */
2567 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2568
2569 if (sym == NULL)
2570 {
2571 /* With some compilers, e.g. HP aCC, static data members are
2572 reported as non-debuggable symbols. */
2573 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2574 NULL, NULL);
2575
2576 if (!msym)
2577 return NULL;
2578 else
2579 {
2580 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2581 SYMBOL_VALUE_ADDRESS (msym));
2582 }
2583 }
2584 else
2585 retval = value_of_variable (sym, NULL);
2586 break;
2587 }
2588 default:
2589 gdb_assert_not_reached ("unexpected field location kind");
2590 }
2591
2592 return retval;
2593 }
2594
2595 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2596 You have to be careful here, since the size of the data area for the value
2597 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2598 than the old enclosing type, you have to allocate more space for the
2599 data. */
2600
2601 void
2602 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2603 {
2604 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2605 val->contents =
2606 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2607
2608 val->enclosing_type = new_encl_type;
2609 }
2610
2611 /* Given a value ARG1 (offset by OFFSET bytes)
2612 of a struct or union type ARG_TYPE,
2613 extract and return the value of one of its (non-static) fields.
2614 FIELDNO says which field. */
2615
2616 struct value *
2617 value_primitive_field (struct value *arg1, int offset,
2618 int fieldno, struct type *arg_type)
2619 {
2620 struct value *v;
2621 struct type *type;
2622
2623 CHECK_TYPEDEF (arg_type);
2624 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2625
2626 /* Call check_typedef on our type to make sure that, if TYPE
2627 is a TYPE_CODE_TYPEDEF, its length is set to the length
2628 of the target type instead of zero. However, we do not
2629 replace the typedef type by the target type, because we want
2630 to keep the typedef in order to be able to print the type
2631 description correctly. */
2632 check_typedef (type);
2633
2634 if (value_optimized_out (arg1))
2635 v = allocate_optimized_out_value (type);
2636 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2637 {
2638 /* Handle packed fields.
2639
2640 Create a new value for the bitfield, with bitpos and bitsize
2641 set. If possible, arrange offset and bitpos so that we can
2642 do a single aligned read of the size of the containing type.
2643 Otherwise, adjust offset to the byte containing the first
2644 bit. Assume that the address, offset, and embedded offset
2645 are sufficiently aligned. */
2646
2647 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2648 int container_bitsize = TYPE_LENGTH (type) * 8;
2649
2650 v = allocate_value_lazy (type);
2651 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2652 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2653 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2654 v->bitpos = bitpos % container_bitsize;
2655 else
2656 v->bitpos = bitpos % 8;
2657 v->offset = (value_embedded_offset (arg1)
2658 + offset
2659 + (bitpos - v->bitpos) / 8);
2660 v->parent = arg1;
2661 value_incref (v->parent);
2662 if (!value_lazy (arg1))
2663 value_fetch_lazy (v);
2664 }
2665 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2666 {
2667 /* This field is actually a base subobject, so preserve the
2668 entire object's contents for later references to virtual
2669 bases, etc. */
2670 int boffset;
2671
2672 /* Lazy register values with offsets are not supported. */
2673 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2674 value_fetch_lazy (arg1);
2675
2676 /* We special case virtual inheritance here because this
2677 requires access to the contents, which we would rather avoid
2678 for references to ordinary fields of unavailable values. */
2679 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2680 boffset = baseclass_offset (arg_type, fieldno,
2681 value_contents (arg1),
2682 value_embedded_offset (arg1),
2683 value_address (arg1),
2684 arg1);
2685 else
2686 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2687
2688 if (value_lazy (arg1))
2689 v = allocate_value_lazy (value_enclosing_type (arg1));
2690 else
2691 {
2692 v = allocate_value (value_enclosing_type (arg1));
2693 value_contents_copy_raw (v, 0, arg1, 0,
2694 TYPE_LENGTH (value_enclosing_type (arg1)));
2695 }
2696 v->type = type;
2697 v->offset = value_offset (arg1);
2698 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2699 }
2700 else
2701 {
2702 /* Plain old data member */
2703 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2704
2705 /* Lazy register values with offsets are not supported. */
2706 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2707 value_fetch_lazy (arg1);
2708
2709 if (value_lazy (arg1))
2710 v = allocate_value_lazy (type);
2711 else
2712 {
2713 v = allocate_value (type);
2714 value_contents_copy_raw (v, value_embedded_offset (v),
2715 arg1, value_embedded_offset (arg1) + offset,
2716 TYPE_LENGTH (type));
2717 }
2718 v->offset = (value_offset (arg1) + offset
2719 + value_embedded_offset (arg1));
2720 }
2721 set_value_component_location (v, arg1);
2722 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2723 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2724 return v;
2725 }
2726
2727 /* Given a value ARG1 of a struct or union type,
2728 extract and return the value of one of its (non-static) fields.
2729 FIELDNO says which field. */
2730
2731 struct value *
2732 value_field (struct value *arg1, int fieldno)
2733 {
2734 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2735 }
2736
2737 /* Return a non-virtual function as a value.
2738 F is the list of member functions which contains the desired method.
2739 J is an index into F which provides the desired method.
2740
2741 We only use the symbol for its address, so be happy with either a
2742 full symbol or a minimal symbol. */
2743
2744 struct value *
2745 value_fn_field (struct value **arg1p, struct fn_field *f,
2746 int j, struct type *type,
2747 int offset)
2748 {
2749 struct value *v;
2750 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2751 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2752 struct symbol *sym;
2753 struct minimal_symbol *msym;
2754
2755 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2756 if (sym != NULL)
2757 {
2758 msym = NULL;
2759 }
2760 else
2761 {
2762 gdb_assert (sym == NULL);
2763 msym = lookup_minimal_symbol (physname, NULL, NULL);
2764 if (msym == NULL)
2765 return NULL;
2766 }
2767
2768 v = allocate_value (ftype);
2769 if (sym)
2770 {
2771 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2772 }
2773 else
2774 {
2775 /* The minimal symbol might point to a function descriptor;
2776 resolve it to the actual code address instead. */
2777 struct objfile *objfile = msymbol_objfile (msym);
2778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2779
2780 set_value_address (v,
2781 gdbarch_convert_from_func_ptr_addr
2782 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2783 }
2784
2785 if (arg1p)
2786 {
2787 if (type != value_type (*arg1p))
2788 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2789 value_addr (*arg1p)));
2790
2791 /* Move the `this' pointer according to the offset.
2792 VALUE_OFFSET (*arg1p) += offset; */
2793 }
2794
2795 return v;
2796 }
2797
2798 \f
2799
2800 /* Helper function for both unpack_value_bits_as_long and
2801 unpack_bits_as_long. See those functions for more details on the
2802 interface; the only difference is that this function accepts either
2803 a NULL or a non-NULL ORIGINAL_VALUE. */
2804
2805 static int
2806 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2807 int embedded_offset, int bitpos, int bitsize,
2808 const struct value *original_value,
2809 LONGEST *result)
2810 {
2811 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2812 ULONGEST val;
2813 ULONGEST valmask;
2814 int lsbcount;
2815 int bytes_read;
2816 int read_offset;
2817
2818 /* Read the minimum number of bytes required; there may not be
2819 enough bytes to read an entire ULONGEST. */
2820 CHECK_TYPEDEF (field_type);
2821 if (bitsize)
2822 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2823 else
2824 bytes_read = TYPE_LENGTH (field_type);
2825
2826 read_offset = bitpos / 8;
2827
2828 if (original_value != NULL
2829 && !value_bytes_available (original_value, embedded_offset + read_offset,
2830 bytes_read))
2831 return 0;
2832
2833 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2834 bytes_read, byte_order);
2835
2836 /* Extract bits. See comment above. */
2837
2838 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2839 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2840 else
2841 lsbcount = (bitpos % 8);
2842 val >>= lsbcount;
2843
2844 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2845 If the field is signed, and is negative, then sign extend. */
2846
2847 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2848 {
2849 valmask = (((ULONGEST) 1) << bitsize) - 1;
2850 val &= valmask;
2851 if (!TYPE_UNSIGNED (field_type))
2852 {
2853 if (val & (valmask ^ (valmask >> 1)))
2854 {
2855 val |= ~valmask;
2856 }
2857 }
2858 }
2859
2860 *result = val;
2861 return 1;
2862 }
2863
2864 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2865 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2866 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2867 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2868 bits.
2869
2870 Returns false if the value contents are unavailable, otherwise
2871 returns true, indicating a valid value has been stored in *RESULT.
2872
2873 Extracting bits depends on endianness of the machine. Compute the
2874 number of least significant bits to discard. For big endian machines,
2875 we compute the total number of bits in the anonymous object, subtract
2876 off the bit count from the MSB of the object to the MSB of the
2877 bitfield, then the size of the bitfield, which leaves the LSB discard
2878 count. For little endian machines, the discard count is simply the
2879 number of bits from the LSB of the anonymous object to the LSB of the
2880 bitfield.
2881
2882 If the field is signed, we also do sign extension. */
2883
2884 int
2885 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2886 int embedded_offset, int bitpos, int bitsize,
2887 const struct value *original_value,
2888 LONGEST *result)
2889 {
2890 gdb_assert (original_value != NULL);
2891
2892 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2893 bitpos, bitsize, original_value, result);
2894
2895 }
2896
2897 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2898 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2899 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2900 details. */
2901
2902 static int
2903 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2904 int embedded_offset, int fieldno,
2905 const struct value *val, LONGEST *result)
2906 {
2907 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2908 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2909 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2910
2911 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2912 bitpos, bitsize, val,
2913 result);
2914 }
2915
2916 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2917 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2918 ORIGINAL_VALUE, which must not be NULL. See
2919 unpack_value_bits_as_long for more details. */
2920
2921 int
2922 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2923 int embedded_offset, int fieldno,
2924 const struct value *val, LONGEST *result)
2925 {
2926 gdb_assert (val != NULL);
2927
2928 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2929 fieldno, val, result);
2930 }
2931
2932 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2933 object at VALADDR. See unpack_value_bits_as_long for more details.
2934 This function differs from unpack_value_field_as_long in that it
2935 operates without a struct value object. */
2936
2937 LONGEST
2938 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2939 {
2940 LONGEST result;
2941
2942 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2943 return result;
2944 }
2945
2946 /* Return a new value with type TYPE, which is FIELDNO field of the
2947 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2948 of VAL. If the VAL's contents required to extract the bitfield
2949 from are unavailable, the new value is correspondingly marked as
2950 unavailable. */
2951
2952 struct value *
2953 value_field_bitfield (struct type *type, int fieldno,
2954 const gdb_byte *valaddr,
2955 int embedded_offset, const struct value *val)
2956 {
2957 LONGEST l;
2958
2959 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2960 val, &l))
2961 {
2962 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2963 struct value *retval = allocate_value (field_type);
2964 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2965 return retval;
2966 }
2967 else
2968 {
2969 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2970 }
2971 }
2972
2973 /* Modify the value of a bitfield. ADDR points to a block of memory in
2974 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2975 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2976 indicate which bits (in target bit order) comprise the bitfield.
2977 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2978 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2979
2980 void
2981 modify_field (struct type *type, gdb_byte *addr,
2982 LONGEST fieldval, int bitpos, int bitsize)
2983 {
2984 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2985 ULONGEST oword;
2986 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2987 int bytesize;
2988
2989 /* Normalize BITPOS. */
2990 addr += bitpos / 8;
2991 bitpos %= 8;
2992
2993 /* If a negative fieldval fits in the field in question, chop
2994 off the sign extension bits. */
2995 if ((~fieldval & ~(mask >> 1)) == 0)
2996 fieldval &= mask;
2997
2998 /* Warn if value is too big to fit in the field in question. */
2999 if (0 != (fieldval & ~mask))
3000 {
3001 /* FIXME: would like to include fieldval in the message, but
3002 we don't have a sprintf_longest. */
3003 warning (_("Value does not fit in %d bits."), bitsize);
3004
3005 /* Truncate it, otherwise adjoining fields may be corrupted. */
3006 fieldval &= mask;
3007 }
3008
3009 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3010 false valgrind reports. */
3011
3012 bytesize = (bitpos + bitsize + 7) / 8;
3013 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3014
3015 /* Shifting for bit field depends on endianness of the target machine. */
3016 if (gdbarch_bits_big_endian (get_type_arch (type)))
3017 bitpos = bytesize * 8 - bitpos - bitsize;
3018
3019 oword &= ~(mask << bitpos);
3020 oword |= fieldval << bitpos;
3021
3022 store_unsigned_integer (addr, bytesize, byte_order, oword);
3023 }
3024 \f
3025 /* Pack NUM into BUF using a target format of TYPE. */
3026
3027 void
3028 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3029 {
3030 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3031 int len;
3032
3033 type = check_typedef (type);
3034 len = TYPE_LENGTH (type);
3035
3036 switch (TYPE_CODE (type))
3037 {
3038 case TYPE_CODE_INT:
3039 case TYPE_CODE_CHAR:
3040 case TYPE_CODE_ENUM:
3041 case TYPE_CODE_FLAGS:
3042 case TYPE_CODE_BOOL:
3043 case TYPE_CODE_RANGE:
3044 case TYPE_CODE_MEMBERPTR:
3045 store_signed_integer (buf, len, byte_order, num);
3046 break;
3047
3048 case TYPE_CODE_REF:
3049 case TYPE_CODE_PTR:
3050 store_typed_address (buf, type, (CORE_ADDR) num);
3051 break;
3052
3053 default:
3054 error (_("Unexpected type (%d) encountered for integer constant."),
3055 TYPE_CODE (type));
3056 }
3057 }
3058
3059
3060 /* Pack NUM into BUF using a target format of TYPE. */
3061
3062 static void
3063 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3064 {
3065 int len;
3066 enum bfd_endian byte_order;
3067
3068 type = check_typedef (type);
3069 len = TYPE_LENGTH (type);
3070 byte_order = gdbarch_byte_order (get_type_arch (type));
3071
3072 switch (TYPE_CODE (type))
3073 {
3074 case TYPE_CODE_INT:
3075 case TYPE_CODE_CHAR:
3076 case TYPE_CODE_ENUM:
3077 case TYPE_CODE_FLAGS:
3078 case TYPE_CODE_BOOL:
3079 case TYPE_CODE_RANGE:
3080 case TYPE_CODE_MEMBERPTR:
3081 store_unsigned_integer (buf, len, byte_order, num);
3082 break;
3083
3084 case TYPE_CODE_REF:
3085 case TYPE_CODE_PTR:
3086 store_typed_address (buf, type, (CORE_ADDR) num);
3087 break;
3088
3089 default:
3090 error (_("Unexpected type (%d) encountered "
3091 "for unsigned integer constant."),
3092 TYPE_CODE (type));
3093 }
3094 }
3095
3096
3097 /* Convert C numbers into newly allocated values. */
3098
3099 struct value *
3100 value_from_longest (struct type *type, LONGEST num)
3101 {
3102 struct value *val = allocate_value (type);
3103
3104 pack_long (value_contents_raw (val), type, num);
3105 return val;
3106 }
3107
3108
3109 /* Convert C unsigned numbers into newly allocated values. */
3110
3111 struct value *
3112 value_from_ulongest (struct type *type, ULONGEST num)
3113 {
3114 struct value *val = allocate_value (type);
3115
3116 pack_unsigned_long (value_contents_raw (val), type, num);
3117
3118 return val;
3119 }
3120
3121
3122 /* Create a value representing a pointer of type TYPE to the address
3123 ADDR. */
3124 struct value *
3125 value_from_pointer (struct type *type, CORE_ADDR addr)
3126 {
3127 struct value *val = allocate_value (type);
3128
3129 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3130 return val;
3131 }
3132
3133
3134 /* Create a value of type TYPE whose contents come from VALADDR, if it
3135 is non-null, and whose memory address (in the inferior) is
3136 ADDRESS. */
3137
3138 struct value *
3139 value_from_contents_and_address (struct type *type,
3140 const gdb_byte *valaddr,
3141 CORE_ADDR address)
3142 {
3143 struct value *v;
3144
3145 if (valaddr == NULL)
3146 v = allocate_value_lazy (type);
3147 else
3148 {
3149 v = allocate_value (type);
3150 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3151 }
3152 set_value_address (v, address);
3153 VALUE_LVAL (v) = lval_memory;
3154 return v;
3155 }
3156
3157 /* Create a value of type TYPE holding the contents CONTENTS.
3158 The new value is `not_lval'. */
3159
3160 struct value *
3161 value_from_contents (struct type *type, const gdb_byte *contents)
3162 {
3163 struct value *result;
3164
3165 result = allocate_value (type);
3166 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3167 return result;
3168 }
3169
3170 struct value *
3171 value_from_double (struct type *type, DOUBLEST num)
3172 {
3173 struct value *val = allocate_value (type);
3174 struct type *base_type = check_typedef (type);
3175 enum type_code code = TYPE_CODE (base_type);
3176
3177 if (code == TYPE_CODE_FLT)
3178 {
3179 store_typed_floating (value_contents_raw (val), base_type, num);
3180 }
3181 else
3182 error (_("Unexpected type encountered for floating constant."));
3183
3184 return val;
3185 }
3186
3187 struct value *
3188 value_from_decfloat (struct type *type, const gdb_byte *dec)
3189 {
3190 struct value *val = allocate_value (type);
3191
3192 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3193 return val;
3194 }
3195
3196 /* Extract a value from the history file. Input will be of the form
3197 $digits or $$digits. See block comment above 'write_dollar_variable'
3198 for details. */
3199
3200 struct value *
3201 value_from_history_ref (char *h, char **endp)
3202 {
3203 int index, len;
3204
3205 if (h[0] == '$')
3206 len = 1;
3207 else
3208 return NULL;
3209
3210 if (h[1] == '$')
3211 len = 2;
3212
3213 /* Find length of numeral string. */
3214 for (; isdigit (h[len]); len++)
3215 ;
3216
3217 /* Make sure numeral string is not part of an identifier. */
3218 if (h[len] == '_' || isalpha (h[len]))
3219 return NULL;
3220
3221 /* Now collect the index value. */
3222 if (h[1] == '$')
3223 {
3224 if (len == 2)
3225 {
3226 /* For some bizarre reason, "$$" is equivalent to "$$1",
3227 rather than to "$$0" as it ought to be! */
3228 index = -1;
3229 *endp += len;
3230 }
3231 else
3232 index = -strtol (&h[2], endp, 10);
3233 }
3234 else
3235 {
3236 if (len == 1)
3237 {
3238 /* "$" is equivalent to "$0". */
3239 index = 0;
3240 *endp += len;
3241 }
3242 else
3243 index = strtol (&h[1], endp, 10);
3244 }
3245
3246 return access_value_history (index);
3247 }
3248
3249 struct value *
3250 coerce_ref_if_computed (const struct value *arg)
3251 {
3252 const struct lval_funcs *funcs;
3253
3254 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3255 return NULL;
3256
3257 if (value_lval_const (arg) != lval_computed)
3258 return NULL;
3259
3260 funcs = value_computed_funcs (arg);
3261 if (funcs->coerce_ref == NULL)
3262 return NULL;
3263
3264 return funcs->coerce_ref (arg);
3265 }
3266
3267 /* Look at value.h for description. */
3268
3269 struct value *
3270 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3271 struct type *original_type,
3272 struct value *original_value)
3273 {
3274 /* Re-adjust type. */
3275 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3276
3277 /* Add embedding info. */
3278 set_value_enclosing_type (value, enc_type);
3279 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3280
3281 /* We may be pointing to an object of some derived type. */
3282 return value_full_object (value, NULL, 0, 0, 0);
3283 }
3284
3285 struct value *
3286 coerce_ref (struct value *arg)
3287 {
3288 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3289 struct value *retval;
3290 struct type *enc_type;
3291
3292 retval = coerce_ref_if_computed (arg);
3293 if (retval)
3294 return retval;
3295
3296 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3297 return arg;
3298
3299 enc_type = check_typedef (value_enclosing_type (arg));
3300 enc_type = TYPE_TARGET_TYPE (enc_type);
3301
3302 retval = value_at_lazy (enc_type,
3303 unpack_pointer (value_type (arg),
3304 value_contents (arg)));
3305 return readjust_indirect_value_type (retval, enc_type,
3306 value_type_arg_tmp, arg);
3307 }
3308
3309 struct value *
3310 coerce_array (struct value *arg)
3311 {
3312 struct type *type;
3313
3314 arg = coerce_ref (arg);
3315 type = check_typedef (value_type (arg));
3316
3317 switch (TYPE_CODE (type))
3318 {
3319 case TYPE_CODE_ARRAY:
3320 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3321 arg = value_coerce_array (arg);
3322 break;
3323 case TYPE_CODE_FUNC:
3324 arg = value_coerce_function (arg);
3325 break;
3326 }
3327 return arg;
3328 }
3329 \f
3330
3331 /* Return true if the function returning the specified type is using
3332 the convention of returning structures in memory (passing in the
3333 address as a hidden first parameter). */
3334
3335 int
3336 using_struct_return (struct gdbarch *gdbarch,
3337 struct value *function, struct type *value_type)
3338 {
3339 enum type_code code = TYPE_CODE (value_type);
3340
3341 if (code == TYPE_CODE_ERROR)
3342 error (_("Function return type unknown."));
3343
3344 if (code == TYPE_CODE_VOID)
3345 /* A void return value is never in memory. See also corresponding
3346 code in "print_return_value". */
3347 return 0;
3348
3349 /* Probe the architecture for the return-value convention. */
3350 return (gdbarch_return_value (gdbarch, function, value_type,
3351 NULL, NULL, NULL)
3352 != RETURN_VALUE_REGISTER_CONVENTION);
3353 }
3354
3355 /* Set the initialized field in a value struct. */
3356
3357 void
3358 set_value_initialized (struct value *val, int status)
3359 {
3360 val->initialized = status;
3361 }
3362
3363 /* Return the initialized field in a value struct. */
3364
3365 int
3366 value_initialized (struct value *val)
3367 {
3368 return val->initialized;
3369 }
3370
3371 void
3372 _initialize_values (void)
3373 {
3374 add_cmd ("convenience", no_class, show_convenience, _("\
3375 Debugger convenience (\"$foo\") variables and functions.\n\
3376 Convenience variables are created when you assign them values;\n\
3377 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3378 \n\
3379 A few convenience variables are given values automatically:\n\
3380 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3381 \"$__\" holds the contents of the last address examined with \"x\"."
3382 #ifdef HAVE_PYTHON
3383 "\n\n\
3384 Convenience functions are defined via the Python API."
3385 #endif
3386 ), &showlist);
3387
3388 add_cmd ("values", no_set_class, show_values, _("\
3389 Elements of value history around item number IDX (or last ten)."),
3390 &showlist);
3391
3392 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3393 Initialize a convenience variable if necessary.\n\
3394 init-if-undefined VARIABLE = EXPRESSION\n\
3395 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3396 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3397 VARIABLE is already initialized."));
3398
3399 add_prefix_cmd ("function", no_class, function_command, _("\
3400 Placeholder command for showing help on convenience functions."),
3401 &functionlist, "function ", 0, &cmdlist);
3402 }