]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2012-03-01 Pedro Alves <palves@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 gdb_byte *
810 value_contents_raw (struct value *value)
811 {
812 allocate_value_contents (value);
813 return value->contents + value->embedded_offset;
814 }
815
816 gdb_byte *
817 value_contents_all_raw (struct value *value)
818 {
819 allocate_value_contents (value);
820 return value->contents;
821 }
822
823 struct type *
824 value_enclosing_type (struct value *value)
825 {
826 return value->enclosing_type;
827 }
828
829 static void
830 require_not_optimized_out (const struct value *value)
831 {
832 if (value->optimized_out)
833 error (_("value has been optimized out"));
834 }
835
836 static void
837 require_available (const struct value *value)
838 {
839 if (!VEC_empty (range_s, value->unavailable))
840 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
841 }
842
843 const gdb_byte *
844 value_contents_for_printing (struct value *value)
845 {
846 if (value->lazy)
847 value_fetch_lazy (value);
848 return value->contents;
849 }
850
851 const gdb_byte *
852 value_contents_for_printing_const (const struct value *value)
853 {
854 gdb_assert (!value->lazy);
855 return value->contents;
856 }
857
858 const gdb_byte *
859 value_contents_all (struct value *value)
860 {
861 const gdb_byte *result = value_contents_for_printing (value);
862 require_not_optimized_out (value);
863 require_available (value);
864 return result;
865 }
866
867 /* Copy LENGTH bytes of SRC value's (all) contents
868 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
869 contents, starting at DST_OFFSET. If unavailable contents are
870 being copied from SRC, the corresponding DST contents are marked
871 unavailable accordingly. Neither DST nor SRC may be lazy
872 values.
873
874 It is assumed the contents of DST in the [DST_OFFSET,
875 DST_OFFSET+LENGTH) range are wholly available. */
876
877 void
878 value_contents_copy_raw (struct value *dst, int dst_offset,
879 struct value *src, int src_offset, int length)
880 {
881 range_s *r;
882 int i;
883
884 /* A lazy DST would make that this copy operation useless, since as
885 soon as DST's contents were un-lazied (by a later value_contents
886 call, say), the contents would be overwritten. A lazy SRC would
887 mean we'd be copying garbage. */
888 gdb_assert (!dst->lazy && !src->lazy);
889
890 /* The overwritten DST range gets unavailability ORed in, not
891 replaced. Make sure to remember to implement replacing if it
892 turns out actually necessary. */
893 gdb_assert (value_bytes_available (dst, dst_offset, length));
894
895 /* Copy the data. */
896 memcpy (value_contents_all_raw (dst) + dst_offset,
897 value_contents_all_raw (src) + src_offset,
898 length);
899
900 /* Copy the meta-data, adjusted. */
901 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
902 {
903 ULONGEST h, l;
904
905 l = max (r->offset, src_offset);
906 h = min (r->offset + r->length, src_offset + length);
907
908 if (l < h)
909 mark_value_bytes_unavailable (dst,
910 dst_offset + (l - src_offset),
911 h - l);
912 }
913 }
914
915 /* Copy LENGTH bytes of SRC value's (all) contents
916 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
917 (all) contents, starting at DST_OFFSET. If unavailable contents
918 are being copied from SRC, the corresponding DST contents are
919 marked unavailable accordingly. DST must not be lazy. If SRC is
920 lazy, it will be fetched now. If SRC is not valid (is optimized
921 out), an error is thrown.
922
923 It is assumed the contents of DST in the [DST_OFFSET,
924 DST_OFFSET+LENGTH) range are wholly available. */
925
926 void
927 value_contents_copy (struct value *dst, int dst_offset,
928 struct value *src, int src_offset, int length)
929 {
930 require_not_optimized_out (src);
931
932 if (src->lazy)
933 value_fetch_lazy (src);
934
935 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
936 }
937
938 int
939 value_lazy (struct value *value)
940 {
941 return value->lazy;
942 }
943
944 void
945 set_value_lazy (struct value *value, int val)
946 {
947 value->lazy = val;
948 }
949
950 int
951 value_stack (struct value *value)
952 {
953 return value->stack;
954 }
955
956 void
957 set_value_stack (struct value *value, int val)
958 {
959 value->stack = val;
960 }
961
962 const gdb_byte *
963 value_contents (struct value *value)
964 {
965 const gdb_byte *result = value_contents_writeable (value);
966 require_not_optimized_out (value);
967 require_available (value);
968 return result;
969 }
970
971 gdb_byte *
972 value_contents_writeable (struct value *value)
973 {
974 if (value->lazy)
975 value_fetch_lazy (value);
976 return value_contents_raw (value);
977 }
978
979 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
980 this function is different from value_equal; in C the operator ==
981 can return 0 even if the two values being compared are equal. */
982
983 int
984 value_contents_equal (struct value *val1, struct value *val2)
985 {
986 struct type *type1;
987 struct type *type2;
988 int len;
989
990 type1 = check_typedef (value_type (val1));
991 type2 = check_typedef (value_type (val2));
992 len = TYPE_LENGTH (type1);
993 if (len != TYPE_LENGTH (type2))
994 return 0;
995
996 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
997 }
998
999 int
1000 value_optimized_out (struct value *value)
1001 {
1002 return value->optimized_out;
1003 }
1004
1005 void
1006 set_value_optimized_out (struct value *value, int val)
1007 {
1008 value->optimized_out = val;
1009 }
1010
1011 int
1012 value_entirely_optimized_out (const struct value *value)
1013 {
1014 if (!value->optimized_out)
1015 return 0;
1016 if (value->lval != lval_computed
1017 || !value->location.computed.funcs->check_any_valid)
1018 return 1;
1019 return !value->location.computed.funcs->check_any_valid (value);
1020 }
1021
1022 int
1023 value_bits_valid (const struct value *value, int offset, int length)
1024 {
1025 if (!value->optimized_out)
1026 return 1;
1027 if (value->lval != lval_computed
1028 || !value->location.computed.funcs->check_validity)
1029 return 0;
1030 return value->location.computed.funcs->check_validity (value, offset,
1031 length);
1032 }
1033
1034 int
1035 value_bits_synthetic_pointer (const struct value *value,
1036 int offset, int length)
1037 {
1038 if (value->lval != lval_computed
1039 || !value->location.computed.funcs->check_synthetic_pointer)
1040 return 0;
1041 return value->location.computed.funcs->check_synthetic_pointer (value,
1042 offset,
1043 length);
1044 }
1045
1046 int
1047 value_embedded_offset (struct value *value)
1048 {
1049 return value->embedded_offset;
1050 }
1051
1052 void
1053 set_value_embedded_offset (struct value *value, int val)
1054 {
1055 value->embedded_offset = val;
1056 }
1057
1058 int
1059 value_pointed_to_offset (struct value *value)
1060 {
1061 return value->pointed_to_offset;
1062 }
1063
1064 void
1065 set_value_pointed_to_offset (struct value *value, int val)
1066 {
1067 value->pointed_to_offset = val;
1068 }
1069
1070 const struct lval_funcs *
1071 value_computed_funcs (const struct value *v)
1072 {
1073 gdb_assert (value_lval_const (v) == lval_computed);
1074
1075 return v->location.computed.funcs;
1076 }
1077
1078 void *
1079 value_computed_closure (const struct value *v)
1080 {
1081 gdb_assert (v->lval == lval_computed);
1082
1083 return v->location.computed.closure;
1084 }
1085
1086 enum lval_type *
1087 deprecated_value_lval_hack (struct value *value)
1088 {
1089 return &value->lval;
1090 }
1091
1092 enum lval_type
1093 value_lval_const (const struct value *value)
1094 {
1095 return value->lval;
1096 }
1097
1098 CORE_ADDR
1099 value_address (const struct value *value)
1100 {
1101 if (value->lval == lval_internalvar
1102 || value->lval == lval_internalvar_component)
1103 return 0;
1104 return value->location.address + value->offset;
1105 }
1106
1107 CORE_ADDR
1108 value_raw_address (struct value *value)
1109 {
1110 if (value->lval == lval_internalvar
1111 || value->lval == lval_internalvar_component)
1112 return 0;
1113 return value->location.address;
1114 }
1115
1116 void
1117 set_value_address (struct value *value, CORE_ADDR addr)
1118 {
1119 gdb_assert (value->lval != lval_internalvar
1120 && value->lval != lval_internalvar_component);
1121 value->location.address = addr;
1122 }
1123
1124 struct internalvar **
1125 deprecated_value_internalvar_hack (struct value *value)
1126 {
1127 return &value->location.internalvar;
1128 }
1129
1130 struct frame_id *
1131 deprecated_value_frame_id_hack (struct value *value)
1132 {
1133 return &value->frame_id;
1134 }
1135
1136 short *
1137 deprecated_value_regnum_hack (struct value *value)
1138 {
1139 return &value->regnum;
1140 }
1141
1142 int
1143 deprecated_value_modifiable (struct value *value)
1144 {
1145 return value->modifiable;
1146 }
1147 void
1148 deprecated_set_value_modifiable (struct value *value, int modifiable)
1149 {
1150 value->modifiable = modifiable;
1151 }
1152 \f
1153 /* Return a mark in the value chain. All values allocated after the
1154 mark is obtained (except for those released) are subject to being freed
1155 if a subsequent value_free_to_mark is passed the mark. */
1156 struct value *
1157 value_mark (void)
1158 {
1159 return all_values;
1160 }
1161
1162 /* Take a reference to VAL. VAL will not be deallocated until all
1163 references are released. */
1164
1165 void
1166 value_incref (struct value *val)
1167 {
1168 val->reference_count++;
1169 }
1170
1171 /* Release a reference to VAL, which was acquired with value_incref.
1172 This function is also called to deallocate values from the value
1173 chain. */
1174
1175 void
1176 value_free (struct value *val)
1177 {
1178 if (val)
1179 {
1180 gdb_assert (val->reference_count > 0);
1181 val->reference_count--;
1182 if (val->reference_count > 0)
1183 return;
1184
1185 /* If there's an associated parent value, drop our reference to
1186 it. */
1187 if (val->parent != NULL)
1188 value_free (val->parent);
1189
1190 if (VALUE_LVAL (val) == lval_computed)
1191 {
1192 const struct lval_funcs *funcs = val->location.computed.funcs;
1193
1194 if (funcs->free_closure)
1195 funcs->free_closure (val);
1196 }
1197
1198 xfree (val->contents);
1199 VEC_free (range_s, val->unavailable);
1200 }
1201 xfree (val);
1202 }
1203
1204 /* Free all values allocated since MARK was obtained by value_mark
1205 (except for those released). */
1206 void
1207 value_free_to_mark (struct value *mark)
1208 {
1209 struct value *val;
1210 struct value *next;
1211
1212 for (val = all_values; val && val != mark; val = next)
1213 {
1214 next = val->next;
1215 val->released = 1;
1216 value_free (val);
1217 }
1218 all_values = val;
1219 }
1220
1221 /* Free all the values that have been allocated (except for those released).
1222 Call after each command, successful or not.
1223 In practice this is called before each command, which is sufficient. */
1224
1225 void
1226 free_all_values (void)
1227 {
1228 struct value *val;
1229 struct value *next;
1230
1231 for (val = all_values; val; val = next)
1232 {
1233 next = val->next;
1234 val->released = 1;
1235 value_free (val);
1236 }
1237
1238 all_values = 0;
1239 }
1240
1241 /* Frees all the elements in a chain of values. */
1242
1243 void
1244 free_value_chain (struct value *v)
1245 {
1246 struct value *next;
1247
1248 for (; v; v = next)
1249 {
1250 next = value_next (v);
1251 value_free (v);
1252 }
1253 }
1254
1255 /* Remove VAL from the chain all_values
1256 so it will not be freed automatically. */
1257
1258 void
1259 release_value (struct value *val)
1260 {
1261 struct value *v;
1262
1263 if (all_values == val)
1264 {
1265 all_values = val->next;
1266 val->next = NULL;
1267 val->released = 1;
1268 return;
1269 }
1270
1271 for (v = all_values; v; v = v->next)
1272 {
1273 if (v->next == val)
1274 {
1275 v->next = val->next;
1276 val->next = NULL;
1277 val->released = 1;
1278 break;
1279 }
1280 }
1281 }
1282
1283 /* If the value is not already released, release it.
1284 If the value is already released, increment its reference count.
1285 That is, this function ensures that the value is released from the
1286 value chain and that the caller owns a reference to it. */
1287
1288 void
1289 release_value_or_incref (struct value *val)
1290 {
1291 if (val->released)
1292 value_incref (val);
1293 else
1294 release_value (val);
1295 }
1296
1297 /* Release all values up to mark */
1298 struct value *
1299 value_release_to_mark (struct value *mark)
1300 {
1301 struct value *val;
1302 struct value *next;
1303
1304 for (val = next = all_values; next; next = next->next)
1305 {
1306 if (next->next == mark)
1307 {
1308 all_values = next->next;
1309 next->next = NULL;
1310 return val;
1311 }
1312 next->released = 1;
1313 }
1314 all_values = 0;
1315 return val;
1316 }
1317
1318 /* Return a copy of the value ARG.
1319 It contains the same contents, for same memory address,
1320 but it's a different block of storage. */
1321
1322 struct value *
1323 value_copy (struct value *arg)
1324 {
1325 struct type *encl_type = value_enclosing_type (arg);
1326 struct value *val;
1327
1328 if (value_lazy (arg))
1329 val = allocate_value_lazy (encl_type);
1330 else
1331 val = allocate_value (encl_type);
1332 val->type = arg->type;
1333 VALUE_LVAL (val) = VALUE_LVAL (arg);
1334 val->location = arg->location;
1335 val->offset = arg->offset;
1336 val->bitpos = arg->bitpos;
1337 val->bitsize = arg->bitsize;
1338 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1339 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1340 val->lazy = arg->lazy;
1341 val->optimized_out = arg->optimized_out;
1342 val->embedded_offset = value_embedded_offset (arg);
1343 val->pointed_to_offset = arg->pointed_to_offset;
1344 val->modifiable = arg->modifiable;
1345 if (!value_lazy (val))
1346 {
1347 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1348 TYPE_LENGTH (value_enclosing_type (arg)));
1349
1350 }
1351 val->unavailable = VEC_copy (range_s, arg->unavailable);
1352 val->parent = arg->parent;
1353 if (val->parent)
1354 value_incref (val->parent);
1355 if (VALUE_LVAL (val) == lval_computed)
1356 {
1357 const struct lval_funcs *funcs = val->location.computed.funcs;
1358
1359 if (funcs->copy_closure)
1360 val->location.computed.closure = funcs->copy_closure (val);
1361 }
1362 return val;
1363 }
1364
1365 /* Return a version of ARG that is non-lvalue. */
1366
1367 struct value *
1368 value_non_lval (struct value *arg)
1369 {
1370 if (VALUE_LVAL (arg) != not_lval)
1371 {
1372 struct type *enc_type = value_enclosing_type (arg);
1373 struct value *val = allocate_value (enc_type);
1374
1375 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1376 TYPE_LENGTH (enc_type));
1377 val->type = arg->type;
1378 set_value_embedded_offset (val, value_embedded_offset (arg));
1379 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1380 return val;
1381 }
1382 return arg;
1383 }
1384
1385 void
1386 set_value_component_location (struct value *component,
1387 const struct value *whole)
1388 {
1389 if (whole->lval == lval_internalvar)
1390 VALUE_LVAL (component) = lval_internalvar_component;
1391 else
1392 VALUE_LVAL (component) = whole->lval;
1393
1394 component->location = whole->location;
1395 if (whole->lval == lval_computed)
1396 {
1397 const struct lval_funcs *funcs = whole->location.computed.funcs;
1398
1399 if (funcs->copy_closure)
1400 component->location.computed.closure = funcs->copy_closure (whole);
1401 }
1402 }
1403
1404 \f
1405 /* Access to the value history. */
1406
1407 /* Record a new value in the value history.
1408 Returns the absolute history index of the entry.
1409 Result of -1 indicates the value was not saved; otherwise it is the
1410 value history index of this new item. */
1411
1412 int
1413 record_latest_value (struct value *val)
1414 {
1415 int i;
1416
1417 /* We don't want this value to have anything to do with the inferior anymore.
1418 In particular, "set $1 = 50" should not affect the variable from which
1419 the value was taken, and fast watchpoints should be able to assume that
1420 a value on the value history never changes. */
1421 if (value_lazy (val))
1422 value_fetch_lazy (val);
1423 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1424 from. This is a bit dubious, because then *&$1 does not just return $1
1425 but the current contents of that location. c'est la vie... */
1426 val->modifiable = 0;
1427 release_value (val);
1428
1429 /* Here we treat value_history_count as origin-zero
1430 and applying to the value being stored now. */
1431
1432 i = value_history_count % VALUE_HISTORY_CHUNK;
1433 if (i == 0)
1434 {
1435 struct value_history_chunk *new
1436 = (struct value_history_chunk *)
1437
1438 xmalloc (sizeof (struct value_history_chunk));
1439 memset (new->values, 0, sizeof new->values);
1440 new->next = value_history_chain;
1441 value_history_chain = new;
1442 }
1443
1444 value_history_chain->values[i] = val;
1445
1446 /* Now we regard value_history_count as origin-one
1447 and applying to the value just stored. */
1448
1449 return ++value_history_count;
1450 }
1451
1452 /* Return a copy of the value in the history with sequence number NUM. */
1453
1454 struct value *
1455 access_value_history (int num)
1456 {
1457 struct value_history_chunk *chunk;
1458 int i;
1459 int absnum = num;
1460
1461 if (absnum <= 0)
1462 absnum += value_history_count;
1463
1464 if (absnum <= 0)
1465 {
1466 if (num == 0)
1467 error (_("The history is empty."));
1468 else if (num == 1)
1469 error (_("There is only one value in the history."));
1470 else
1471 error (_("History does not go back to $$%d."), -num);
1472 }
1473 if (absnum > value_history_count)
1474 error (_("History has not yet reached $%d."), absnum);
1475
1476 absnum--;
1477
1478 /* Now absnum is always absolute and origin zero. */
1479
1480 chunk = value_history_chain;
1481 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1482 - absnum / VALUE_HISTORY_CHUNK;
1483 i > 0; i--)
1484 chunk = chunk->next;
1485
1486 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1487 }
1488
1489 static void
1490 show_values (char *num_exp, int from_tty)
1491 {
1492 int i;
1493 struct value *val;
1494 static int num = 1;
1495
1496 if (num_exp)
1497 {
1498 /* "show values +" should print from the stored position.
1499 "show values <exp>" should print around value number <exp>. */
1500 if (num_exp[0] != '+' || num_exp[1] != '\0')
1501 num = parse_and_eval_long (num_exp) - 5;
1502 }
1503 else
1504 {
1505 /* "show values" means print the last 10 values. */
1506 num = value_history_count - 9;
1507 }
1508
1509 if (num <= 0)
1510 num = 1;
1511
1512 for (i = num; i < num + 10 && i <= value_history_count; i++)
1513 {
1514 struct value_print_options opts;
1515
1516 val = access_value_history (i);
1517 printf_filtered (("$%d = "), i);
1518 get_user_print_options (&opts);
1519 value_print (val, gdb_stdout, &opts);
1520 printf_filtered (("\n"));
1521 }
1522
1523 /* The next "show values +" should start after what we just printed. */
1524 num += 10;
1525
1526 /* Hitting just return after this command should do the same thing as
1527 "show values +". If num_exp is null, this is unnecessary, since
1528 "show values +" is not useful after "show values". */
1529 if (from_tty && num_exp)
1530 {
1531 num_exp[0] = '+';
1532 num_exp[1] = '\0';
1533 }
1534 }
1535 \f
1536 /* Internal variables. These are variables within the debugger
1537 that hold values assigned by debugger commands.
1538 The user refers to them with a '$' prefix
1539 that does not appear in the variable names stored internally. */
1540
1541 struct internalvar
1542 {
1543 struct internalvar *next;
1544 char *name;
1545
1546 /* We support various different kinds of content of an internal variable.
1547 enum internalvar_kind specifies the kind, and union internalvar_data
1548 provides the data associated with this particular kind. */
1549
1550 enum internalvar_kind
1551 {
1552 /* The internal variable is empty. */
1553 INTERNALVAR_VOID,
1554
1555 /* The value of the internal variable is provided directly as
1556 a GDB value object. */
1557 INTERNALVAR_VALUE,
1558
1559 /* A fresh value is computed via a call-back routine on every
1560 access to the internal variable. */
1561 INTERNALVAR_MAKE_VALUE,
1562
1563 /* The internal variable holds a GDB internal convenience function. */
1564 INTERNALVAR_FUNCTION,
1565
1566 /* The variable holds an integer value. */
1567 INTERNALVAR_INTEGER,
1568
1569 /* The variable holds a GDB-provided string. */
1570 INTERNALVAR_STRING,
1571
1572 } kind;
1573
1574 union internalvar_data
1575 {
1576 /* A value object used with INTERNALVAR_VALUE. */
1577 struct value *value;
1578
1579 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1580 internalvar_make_value make_value;
1581
1582 /* The internal function used with INTERNALVAR_FUNCTION. */
1583 struct
1584 {
1585 struct internal_function *function;
1586 /* True if this is the canonical name for the function. */
1587 int canonical;
1588 } fn;
1589
1590 /* An integer value used with INTERNALVAR_INTEGER. */
1591 struct
1592 {
1593 /* If type is non-NULL, it will be used as the type to generate
1594 a value for this internal variable. If type is NULL, a default
1595 integer type for the architecture is used. */
1596 struct type *type;
1597 LONGEST val;
1598 } integer;
1599
1600 /* A string value used with INTERNALVAR_STRING. */
1601 char *string;
1602 } u;
1603 };
1604
1605 static struct internalvar *internalvars;
1606
1607 /* If the variable does not already exist create it and give it the
1608 value given. If no value is given then the default is zero. */
1609 static void
1610 init_if_undefined_command (char* args, int from_tty)
1611 {
1612 struct internalvar* intvar;
1613
1614 /* Parse the expression - this is taken from set_command(). */
1615 struct expression *expr = parse_expression (args);
1616 register struct cleanup *old_chain =
1617 make_cleanup (free_current_contents, &expr);
1618
1619 /* Validate the expression.
1620 Was the expression an assignment?
1621 Or even an expression at all? */
1622 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1623 error (_("Init-if-undefined requires an assignment expression."));
1624
1625 /* Extract the variable from the parsed expression.
1626 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1627 if (expr->elts[1].opcode != OP_INTERNALVAR)
1628 error (_("The first parameter to init-if-undefined "
1629 "should be a GDB variable."));
1630 intvar = expr->elts[2].internalvar;
1631
1632 /* Only evaluate the expression if the lvalue is void.
1633 This may still fail if the expresssion is invalid. */
1634 if (intvar->kind == INTERNALVAR_VOID)
1635 evaluate_expression (expr);
1636
1637 do_cleanups (old_chain);
1638 }
1639
1640
1641 /* Look up an internal variable with name NAME. NAME should not
1642 normally include a dollar sign.
1643
1644 If the specified internal variable does not exist,
1645 the return value is NULL. */
1646
1647 struct internalvar *
1648 lookup_only_internalvar (const char *name)
1649 {
1650 struct internalvar *var;
1651
1652 for (var = internalvars; var; var = var->next)
1653 if (strcmp (var->name, name) == 0)
1654 return var;
1655
1656 return NULL;
1657 }
1658
1659
1660 /* Create an internal variable with name NAME and with a void value.
1661 NAME should not normally include a dollar sign. */
1662
1663 struct internalvar *
1664 create_internalvar (const char *name)
1665 {
1666 struct internalvar *var;
1667
1668 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1669 var->name = concat (name, (char *)NULL);
1670 var->kind = INTERNALVAR_VOID;
1671 var->next = internalvars;
1672 internalvars = var;
1673 return var;
1674 }
1675
1676 /* Create an internal variable with name NAME and register FUN as the
1677 function that value_of_internalvar uses to create a value whenever
1678 this variable is referenced. NAME should not normally include a
1679 dollar sign. */
1680
1681 struct internalvar *
1682 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1683 {
1684 struct internalvar *var = create_internalvar (name);
1685
1686 var->kind = INTERNALVAR_MAKE_VALUE;
1687 var->u.make_value = fun;
1688 return var;
1689 }
1690
1691 /* Look up an internal variable with name NAME. NAME should not
1692 normally include a dollar sign.
1693
1694 If the specified internal variable does not exist,
1695 one is created, with a void value. */
1696
1697 struct internalvar *
1698 lookup_internalvar (const char *name)
1699 {
1700 struct internalvar *var;
1701
1702 var = lookup_only_internalvar (name);
1703 if (var)
1704 return var;
1705
1706 return create_internalvar (name);
1707 }
1708
1709 /* Return current value of internal variable VAR. For variables that
1710 are not inherently typed, use a value type appropriate for GDBARCH. */
1711
1712 struct value *
1713 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1714 {
1715 struct value *val;
1716 struct trace_state_variable *tsv;
1717
1718 /* If there is a trace state variable of the same name, assume that
1719 is what we really want to see. */
1720 tsv = find_trace_state_variable (var->name);
1721 if (tsv)
1722 {
1723 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1724 &(tsv->value));
1725 if (tsv->value_known)
1726 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1727 tsv->value);
1728 else
1729 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1730 return val;
1731 }
1732
1733 switch (var->kind)
1734 {
1735 case INTERNALVAR_VOID:
1736 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1737 break;
1738
1739 case INTERNALVAR_FUNCTION:
1740 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1741 break;
1742
1743 case INTERNALVAR_INTEGER:
1744 if (!var->u.integer.type)
1745 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1746 var->u.integer.val);
1747 else
1748 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1749 break;
1750
1751 case INTERNALVAR_STRING:
1752 val = value_cstring (var->u.string, strlen (var->u.string),
1753 builtin_type (gdbarch)->builtin_char);
1754 break;
1755
1756 case INTERNALVAR_VALUE:
1757 val = value_copy (var->u.value);
1758 if (value_lazy (val))
1759 value_fetch_lazy (val);
1760 break;
1761
1762 case INTERNALVAR_MAKE_VALUE:
1763 val = (*var->u.make_value) (gdbarch, var);
1764 break;
1765
1766 default:
1767 internal_error (__FILE__, __LINE__, _("bad kind"));
1768 }
1769
1770 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1771 on this value go back to affect the original internal variable.
1772
1773 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1774 no underlying modifyable state in the internal variable.
1775
1776 Likewise, if the variable's value is a computed lvalue, we want
1777 references to it to produce another computed lvalue, where
1778 references and assignments actually operate through the
1779 computed value's functions.
1780
1781 This means that internal variables with computed values
1782 behave a little differently from other internal variables:
1783 assignments to them don't just replace the previous value
1784 altogether. At the moment, this seems like the behavior we
1785 want. */
1786
1787 if (var->kind != INTERNALVAR_MAKE_VALUE
1788 && val->lval != lval_computed)
1789 {
1790 VALUE_LVAL (val) = lval_internalvar;
1791 VALUE_INTERNALVAR (val) = var;
1792 }
1793
1794 return val;
1795 }
1796
1797 int
1798 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1799 {
1800 if (var->kind == INTERNALVAR_INTEGER)
1801 {
1802 *result = var->u.integer.val;
1803 return 1;
1804 }
1805
1806 if (var->kind == INTERNALVAR_VALUE)
1807 {
1808 struct type *type = check_typedef (value_type (var->u.value));
1809
1810 if (TYPE_CODE (type) == TYPE_CODE_INT)
1811 {
1812 *result = value_as_long (var->u.value);
1813 return 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 static int
1821 get_internalvar_function (struct internalvar *var,
1822 struct internal_function **result)
1823 {
1824 switch (var->kind)
1825 {
1826 case INTERNALVAR_FUNCTION:
1827 *result = var->u.fn.function;
1828 return 1;
1829
1830 default:
1831 return 0;
1832 }
1833 }
1834
1835 void
1836 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1837 int bitsize, struct value *newval)
1838 {
1839 gdb_byte *addr;
1840
1841 switch (var->kind)
1842 {
1843 case INTERNALVAR_VALUE:
1844 addr = value_contents_writeable (var->u.value);
1845
1846 if (bitsize)
1847 modify_field (value_type (var->u.value), addr + offset,
1848 value_as_long (newval), bitpos, bitsize);
1849 else
1850 memcpy (addr + offset, value_contents (newval),
1851 TYPE_LENGTH (value_type (newval)));
1852 break;
1853
1854 default:
1855 /* We can never get a component of any other kind. */
1856 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1857 }
1858 }
1859
1860 void
1861 set_internalvar (struct internalvar *var, struct value *val)
1862 {
1863 enum internalvar_kind new_kind;
1864 union internalvar_data new_data = { 0 };
1865
1866 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1867 error (_("Cannot overwrite convenience function %s"), var->name);
1868
1869 /* Prepare new contents. */
1870 switch (TYPE_CODE (check_typedef (value_type (val))))
1871 {
1872 case TYPE_CODE_VOID:
1873 new_kind = INTERNALVAR_VOID;
1874 break;
1875
1876 case TYPE_CODE_INTERNAL_FUNCTION:
1877 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1878 new_kind = INTERNALVAR_FUNCTION;
1879 get_internalvar_function (VALUE_INTERNALVAR (val),
1880 &new_data.fn.function);
1881 /* Copies created here are never canonical. */
1882 break;
1883
1884 default:
1885 new_kind = INTERNALVAR_VALUE;
1886 new_data.value = value_copy (val);
1887 new_data.value->modifiable = 1;
1888
1889 /* Force the value to be fetched from the target now, to avoid problems
1890 later when this internalvar is referenced and the target is gone or
1891 has changed. */
1892 if (value_lazy (new_data.value))
1893 value_fetch_lazy (new_data.value);
1894
1895 /* Release the value from the value chain to prevent it from being
1896 deleted by free_all_values. From here on this function should not
1897 call error () until new_data is installed into the var->u to avoid
1898 leaking memory. */
1899 release_value (new_data.value);
1900 break;
1901 }
1902
1903 /* Clean up old contents. */
1904 clear_internalvar (var);
1905
1906 /* Switch over. */
1907 var->kind = new_kind;
1908 var->u = new_data;
1909 /* End code which must not call error(). */
1910 }
1911
1912 void
1913 set_internalvar_integer (struct internalvar *var, LONGEST l)
1914 {
1915 /* Clean up old contents. */
1916 clear_internalvar (var);
1917
1918 var->kind = INTERNALVAR_INTEGER;
1919 var->u.integer.type = NULL;
1920 var->u.integer.val = l;
1921 }
1922
1923 void
1924 set_internalvar_string (struct internalvar *var, const char *string)
1925 {
1926 /* Clean up old contents. */
1927 clear_internalvar (var);
1928
1929 var->kind = INTERNALVAR_STRING;
1930 var->u.string = xstrdup (string);
1931 }
1932
1933 static void
1934 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1935 {
1936 /* Clean up old contents. */
1937 clear_internalvar (var);
1938
1939 var->kind = INTERNALVAR_FUNCTION;
1940 var->u.fn.function = f;
1941 var->u.fn.canonical = 1;
1942 /* Variables installed here are always the canonical version. */
1943 }
1944
1945 void
1946 clear_internalvar (struct internalvar *var)
1947 {
1948 /* Clean up old contents. */
1949 switch (var->kind)
1950 {
1951 case INTERNALVAR_VALUE:
1952 value_free (var->u.value);
1953 break;
1954
1955 case INTERNALVAR_STRING:
1956 xfree (var->u.string);
1957 break;
1958
1959 default:
1960 break;
1961 }
1962
1963 /* Reset to void kind. */
1964 var->kind = INTERNALVAR_VOID;
1965 }
1966
1967 char *
1968 internalvar_name (struct internalvar *var)
1969 {
1970 return var->name;
1971 }
1972
1973 static struct internal_function *
1974 create_internal_function (const char *name,
1975 internal_function_fn handler, void *cookie)
1976 {
1977 struct internal_function *ifn = XNEW (struct internal_function);
1978
1979 ifn->name = xstrdup (name);
1980 ifn->handler = handler;
1981 ifn->cookie = cookie;
1982 return ifn;
1983 }
1984
1985 char *
1986 value_internal_function_name (struct value *val)
1987 {
1988 struct internal_function *ifn;
1989 int result;
1990
1991 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1992 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1993 gdb_assert (result);
1994
1995 return ifn->name;
1996 }
1997
1998 struct value *
1999 call_internal_function (struct gdbarch *gdbarch,
2000 const struct language_defn *language,
2001 struct value *func, int argc, struct value **argv)
2002 {
2003 struct internal_function *ifn;
2004 int result;
2005
2006 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2007 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2008 gdb_assert (result);
2009
2010 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2011 }
2012
2013 /* The 'function' command. This does nothing -- it is just a
2014 placeholder to let "help function NAME" work. This is also used as
2015 the implementation of the sub-command that is created when
2016 registering an internal function. */
2017 static void
2018 function_command (char *command, int from_tty)
2019 {
2020 /* Do nothing. */
2021 }
2022
2023 /* Clean up if an internal function's command is destroyed. */
2024 static void
2025 function_destroyer (struct cmd_list_element *self, void *ignore)
2026 {
2027 xfree (self->name);
2028 xfree (self->doc);
2029 }
2030
2031 /* Add a new internal function. NAME is the name of the function; DOC
2032 is a documentation string describing the function. HANDLER is
2033 called when the function is invoked. COOKIE is an arbitrary
2034 pointer which is passed to HANDLER and is intended for "user
2035 data". */
2036 void
2037 add_internal_function (const char *name, const char *doc,
2038 internal_function_fn handler, void *cookie)
2039 {
2040 struct cmd_list_element *cmd;
2041 struct internal_function *ifn;
2042 struct internalvar *var = lookup_internalvar (name);
2043
2044 ifn = create_internal_function (name, handler, cookie);
2045 set_internalvar_function (var, ifn);
2046
2047 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2048 &functionlist);
2049 cmd->destroyer = function_destroyer;
2050 }
2051
2052 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2053 prevent cycles / duplicates. */
2054
2055 void
2056 preserve_one_value (struct value *value, struct objfile *objfile,
2057 htab_t copied_types)
2058 {
2059 if (TYPE_OBJFILE (value->type) == objfile)
2060 value->type = copy_type_recursive (objfile, value->type, copied_types);
2061
2062 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2063 value->enclosing_type = copy_type_recursive (objfile,
2064 value->enclosing_type,
2065 copied_types);
2066 }
2067
2068 /* Likewise for internal variable VAR. */
2069
2070 static void
2071 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2072 htab_t copied_types)
2073 {
2074 switch (var->kind)
2075 {
2076 case INTERNALVAR_INTEGER:
2077 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2078 var->u.integer.type
2079 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2080 break;
2081
2082 case INTERNALVAR_VALUE:
2083 preserve_one_value (var->u.value, objfile, copied_types);
2084 break;
2085 }
2086 }
2087
2088 /* Update the internal variables and value history when OBJFILE is
2089 discarded; we must copy the types out of the objfile. New global types
2090 will be created for every convenience variable which currently points to
2091 this objfile's types, and the convenience variables will be adjusted to
2092 use the new global types. */
2093
2094 void
2095 preserve_values (struct objfile *objfile)
2096 {
2097 htab_t copied_types;
2098 struct value_history_chunk *cur;
2099 struct internalvar *var;
2100 int i;
2101
2102 /* Create the hash table. We allocate on the objfile's obstack, since
2103 it is soon to be deleted. */
2104 copied_types = create_copied_types_hash (objfile);
2105
2106 for (cur = value_history_chain; cur; cur = cur->next)
2107 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2108 if (cur->values[i])
2109 preserve_one_value (cur->values[i], objfile, copied_types);
2110
2111 for (var = internalvars; var; var = var->next)
2112 preserve_one_internalvar (var, objfile, copied_types);
2113
2114 preserve_python_values (objfile, copied_types);
2115
2116 htab_delete (copied_types);
2117 }
2118
2119 static void
2120 show_convenience (char *ignore, int from_tty)
2121 {
2122 struct gdbarch *gdbarch = get_current_arch ();
2123 struct internalvar *var;
2124 int varseen = 0;
2125 struct value_print_options opts;
2126
2127 get_user_print_options (&opts);
2128 for (var = internalvars; var; var = var->next)
2129 {
2130 volatile struct gdb_exception ex;
2131
2132 if (!varseen)
2133 {
2134 varseen = 1;
2135 }
2136 printf_filtered (("$%s = "), var->name);
2137
2138 TRY_CATCH (ex, RETURN_MASK_ERROR)
2139 {
2140 struct value *val;
2141
2142 val = value_of_internalvar (gdbarch, var);
2143 value_print (val, gdb_stdout, &opts);
2144 }
2145 if (ex.reason < 0)
2146 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2147 printf_filtered (("\n"));
2148 }
2149 if (!varseen)
2150 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2151 "Convenience variables have "
2152 "names starting with \"$\";\n"
2153 "use \"set\" as in \"set "
2154 "$foo = 5\" to define them.\n"));
2155 }
2156 \f
2157 /* Extract a value as a C number (either long or double).
2158 Knows how to convert fixed values to double, or
2159 floating values to long.
2160 Does not deallocate the value. */
2161
2162 LONGEST
2163 value_as_long (struct value *val)
2164 {
2165 /* This coerces arrays and functions, which is necessary (e.g.
2166 in disassemble_command). It also dereferences references, which
2167 I suspect is the most logical thing to do. */
2168 val = coerce_array (val);
2169 return unpack_long (value_type (val), value_contents (val));
2170 }
2171
2172 DOUBLEST
2173 value_as_double (struct value *val)
2174 {
2175 DOUBLEST foo;
2176 int inv;
2177
2178 foo = unpack_double (value_type (val), value_contents (val), &inv);
2179 if (inv)
2180 error (_("Invalid floating value found in program."));
2181 return foo;
2182 }
2183
2184 /* Extract a value as a C pointer. Does not deallocate the value.
2185 Note that val's type may not actually be a pointer; value_as_long
2186 handles all the cases. */
2187 CORE_ADDR
2188 value_as_address (struct value *val)
2189 {
2190 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2191
2192 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2193 whether we want this to be true eventually. */
2194 #if 0
2195 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2196 non-address (e.g. argument to "signal", "info break", etc.), or
2197 for pointers to char, in which the low bits *are* significant. */
2198 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2199 #else
2200
2201 /* There are several targets (IA-64, PowerPC, and others) which
2202 don't represent pointers to functions as simply the address of
2203 the function's entry point. For example, on the IA-64, a
2204 function pointer points to a two-word descriptor, generated by
2205 the linker, which contains the function's entry point, and the
2206 value the IA-64 "global pointer" register should have --- to
2207 support position-independent code. The linker generates
2208 descriptors only for those functions whose addresses are taken.
2209
2210 On such targets, it's difficult for GDB to convert an arbitrary
2211 function address into a function pointer; it has to either find
2212 an existing descriptor for that function, or call malloc and
2213 build its own. On some targets, it is impossible for GDB to
2214 build a descriptor at all: the descriptor must contain a jump
2215 instruction; data memory cannot be executed; and code memory
2216 cannot be modified.
2217
2218 Upon entry to this function, if VAL is a value of type `function'
2219 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2220 value_address (val) is the address of the function. This is what
2221 you'll get if you evaluate an expression like `main'. The call
2222 to COERCE_ARRAY below actually does all the usual unary
2223 conversions, which includes converting values of type `function'
2224 to `pointer to function'. This is the challenging conversion
2225 discussed above. Then, `unpack_long' will convert that pointer
2226 back into an address.
2227
2228 So, suppose the user types `disassemble foo' on an architecture
2229 with a strange function pointer representation, on which GDB
2230 cannot build its own descriptors, and suppose further that `foo'
2231 has no linker-built descriptor. The address->pointer conversion
2232 will signal an error and prevent the command from running, even
2233 though the next step would have been to convert the pointer
2234 directly back into the same address.
2235
2236 The following shortcut avoids this whole mess. If VAL is a
2237 function, just return its address directly. */
2238 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2239 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2240 return value_address (val);
2241
2242 val = coerce_array (val);
2243
2244 /* Some architectures (e.g. Harvard), map instruction and data
2245 addresses onto a single large unified address space. For
2246 instance: An architecture may consider a large integer in the
2247 range 0x10000000 .. 0x1000ffff to already represent a data
2248 addresses (hence not need a pointer to address conversion) while
2249 a small integer would still need to be converted integer to
2250 pointer to address. Just assume such architectures handle all
2251 integer conversions in a single function. */
2252
2253 /* JimB writes:
2254
2255 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2256 must admonish GDB hackers to make sure its behavior matches the
2257 compiler's, whenever possible.
2258
2259 In general, I think GDB should evaluate expressions the same way
2260 the compiler does. When the user copies an expression out of
2261 their source code and hands it to a `print' command, they should
2262 get the same value the compiler would have computed. Any
2263 deviation from this rule can cause major confusion and annoyance,
2264 and needs to be justified carefully. In other words, GDB doesn't
2265 really have the freedom to do these conversions in clever and
2266 useful ways.
2267
2268 AndrewC pointed out that users aren't complaining about how GDB
2269 casts integers to pointers; they are complaining that they can't
2270 take an address from a disassembly listing and give it to `x/i'.
2271 This is certainly important.
2272
2273 Adding an architecture method like integer_to_address() certainly
2274 makes it possible for GDB to "get it right" in all circumstances
2275 --- the target has complete control over how things get done, so
2276 people can Do The Right Thing for their target without breaking
2277 anyone else. The standard doesn't specify how integers get
2278 converted to pointers; usually, the ABI doesn't either, but
2279 ABI-specific code is a more reasonable place to handle it. */
2280
2281 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2282 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2283 && gdbarch_integer_to_address_p (gdbarch))
2284 return gdbarch_integer_to_address (gdbarch, value_type (val),
2285 value_contents (val));
2286
2287 return unpack_long (value_type (val), value_contents (val));
2288 #endif
2289 }
2290 \f
2291 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2292 as a long, or as a double, assuming the raw data is described
2293 by type TYPE. Knows how to convert different sizes of values
2294 and can convert between fixed and floating point. We don't assume
2295 any alignment for the raw data. Return value is in host byte order.
2296
2297 If you want functions and arrays to be coerced to pointers, and
2298 references to be dereferenced, call value_as_long() instead.
2299
2300 C++: It is assumed that the front-end has taken care of
2301 all matters concerning pointers to members. A pointer
2302 to member which reaches here is considered to be equivalent
2303 to an INT (or some size). After all, it is only an offset. */
2304
2305 LONGEST
2306 unpack_long (struct type *type, const gdb_byte *valaddr)
2307 {
2308 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2309 enum type_code code = TYPE_CODE (type);
2310 int len = TYPE_LENGTH (type);
2311 int nosign = TYPE_UNSIGNED (type);
2312
2313 switch (code)
2314 {
2315 case TYPE_CODE_TYPEDEF:
2316 return unpack_long (check_typedef (type), valaddr);
2317 case TYPE_CODE_ENUM:
2318 case TYPE_CODE_FLAGS:
2319 case TYPE_CODE_BOOL:
2320 case TYPE_CODE_INT:
2321 case TYPE_CODE_CHAR:
2322 case TYPE_CODE_RANGE:
2323 case TYPE_CODE_MEMBERPTR:
2324 if (nosign)
2325 return extract_unsigned_integer (valaddr, len, byte_order);
2326 else
2327 return extract_signed_integer (valaddr, len, byte_order);
2328
2329 case TYPE_CODE_FLT:
2330 return extract_typed_floating (valaddr, type);
2331
2332 case TYPE_CODE_DECFLOAT:
2333 /* libdecnumber has a function to convert from decimal to integer, but
2334 it doesn't work when the decimal number has a fractional part. */
2335 return decimal_to_doublest (valaddr, len, byte_order);
2336
2337 case TYPE_CODE_PTR:
2338 case TYPE_CODE_REF:
2339 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2340 whether we want this to be true eventually. */
2341 return extract_typed_address (valaddr, type);
2342
2343 default:
2344 error (_("Value can't be converted to integer."));
2345 }
2346 return 0; /* Placate lint. */
2347 }
2348
2349 /* Return a double value from the specified type and address.
2350 INVP points to an int which is set to 0 for valid value,
2351 1 for invalid value (bad float format). In either case,
2352 the returned double is OK to use. Argument is in target
2353 format, result is in host format. */
2354
2355 DOUBLEST
2356 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2357 {
2358 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2359 enum type_code code;
2360 int len;
2361 int nosign;
2362
2363 *invp = 0; /* Assume valid. */
2364 CHECK_TYPEDEF (type);
2365 code = TYPE_CODE (type);
2366 len = TYPE_LENGTH (type);
2367 nosign = TYPE_UNSIGNED (type);
2368 if (code == TYPE_CODE_FLT)
2369 {
2370 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2371 floating-point value was valid (using the macro
2372 INVALID_FLOAT). That test/macro have been removed.
2373
2374 It turns out that only the VAX defined this macro and then
2375 only in a non-portable way. Fixing the portability problem
2376 wouldn't help since the VAX floating-point code is also badly
2377 bit-rotten. The target needs to add definitions for the
2378 methods gdbarch_float_format and gdbarch_double_format - these
2379 exactly describe the target floating-point format. The
2380 problem here is that the corresponding floatformat_vax_f and
2381 floatformat_vax_d values these methods should be set to are
2382 also not defined either. Oops!
2383
2384 Hopefully someone will add both the missing floatformat
2385 definitions and the new cases for floatformat_is_valid (). */
2386
2387 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2388 {
2389 *invp = 1;
2390 return 0.0;
2391 }
2392
2393 return extract_typed_floating (valaddr, type);
2394 }
2395 else if (code == TYPE_CODE_DECFLOAT)
2396 return decimal_to_doublest (valaddr, len, byte_order);
2397 else if (nosign)
2398 {
2399 /* Unsigned -- be sure we compensate for signed LONGEST. */
2400 return (ULONGEST) unpack_long (type, valaddr);
2401 }
2402 else
2403 {
2404 /* Signed -- we are OK with unpack_long. */
2405 return unpack_long (type, valaddr);
2406 }
2407 }
2408
2409 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2410 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2411 We don't assume any alignment for the raw data. Return value is in
2412 host byte order.
2413
2414 If you want functions and arrays to be coerced to pointers, and
2415 references to be dereferenced, call value_as_address() instead.
2416
2417 C++: It is assumed that the front-end has taken care of
2418 all matters concerning pointers to members. A pointer
2419 to member which reaches here is considered to be equivalent
2420 to an INT (or some size). After all, it is only an offset. */
2421
2422 CORE_ADDR
2423 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2424 {
2425 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2426 whether we want this to be true eventually. */
2427 return unpack_long (type, valaddr);
2428 }
2429
2430 \f
2431 /* Get the value of the FIELDNO'th field (which must be static) of
2432 TYPE. Return NULL if the field doesn't exist or has been
2433 optimized out. */
2434
2435 struct value *
2436 value_static_field (struct type *type, int fieldno)
2437 {
2438 struct value *retval;
2439
2440 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2441 {
2442 case FIELD_LOC_KIND_PHYSADDR:
2443 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2444 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2445 break;
2446 case FIELD_LOC_KIND_PHYSNAME:
2447 {
2448 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2449 /* TYPE_FIELD_NAME (type, fieldno); */
2450 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2451
2452 if (sym == NULL)
2453 {
2454 /* With some compilers, e.g. HP aCC, static data members are
2455 reported as non-debuggable symbols. */
2456 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2457 NULL, NULL);
2458
2459 if (!msym)
2460 return NULL;
2461 else
2462 {
2463 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2464 SYMBOL_VALUE_ADDRESS (msym));
2465 }
2466 }
2467 else
2468 retval = value_of_variable (sym, NULL);
2469 break;
2470 }
2471 default:
2472 gdb_assert_not_reached ("unexpected field location kind");
2473 }
2474
2475 return retval;
2476 }
2477
2478 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2479 You have to be careful here, since the size of the data area for the value
2480 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2481 than the old enclosing type, you have to allocate more space for the
2482 data. */
2483
2484 void
2485 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2486 {
2487 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2488 val->contents =
2489 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2490
2491 val->enclosing_type = new_encl_type;
2492 }
2493
2494 /* Given a value ARG1 (offset by OFFSET bytes)
2495 of a struct or union type ARG_TYPE,
2496 extract and return the value of one of its (non-static) fields.
2497 FIELDNO says which field. */
2498
2499 struct value *
2500 value_primitive_field (struct value *arg1, int offset,
2501 int fieldno, struct type *arg_type)
2502 {
2503 struct value *v;
2504 struct type *type;
2505
2506 CHECK_TYPEDEF (arg_type);
2507 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2508
2509 /* Call check_typedef on our type to make sure that, if TYPE
2510 is a TYPE_CODE_TYPEDEF, its length is set to the length
2511 of the target type instead of zero. However, we do not
2512 replace the typedef type by the target type, because we want
2513 to keep the typedef in order to be able to print the type
2514 description correctly. */
2515 check_typedef (type);
2516
2517 if (value_optimized_out (arg1))
2518 v = allocate_optimized_out_value (type);
2519 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2520 {
2521 /* Handle packed fields.
2522
2523 Create a new value for the bitfield, with bitpos and bitsize
2524 set. If possible, arrange offset and bitpos so that we can
2525 do a single aligned read of the size of the containing type.
2526 Otherwise, adjust offset to the byte containing the first
2527 bit. Assume that the address, offset, and embedded offset
2528 are sufficiently aligned. */
2529
2530 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2531 int container_bitsize = TYPE_LENGTH (type) * 8;
2532
2533 v = allocate_value_lazy (type);
2534 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2535 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2536 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2537 v->bitpos = bitpos % container_bitsize;
2538 else
2539 v->bitpos = bitpos % 8;
2540 v->offset = (value_embedded_offset (arg1)
2541 + offset
2542 + (bitpos - v->bitpos) / 8);
2543 v->parent = arg1;
2544 value_incref (v->parent);
2545 if (!value_lazy (arg1))
2546 value_fetch_lazy (v);
2547 }
2548 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2549 {
2550 /* This field is actually a base subobject, so preserve the
2551 entire object's contents for later references to virtual
2552 bases, etc. */
2553 int boffset;
2554
2555 /* Lazy register values with offsets are not supported. */
2556 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2557 value_fetch_lazy (arg1);
2558
2559 boffset = baseclass_offset (arg_type, fieldno,
2560 value_contents (arg1),
2561 value_embedded_offset (arg1),
2562 value_address (arg1),
2563 arg1);
2564
2565 if (value_lazy (arg1))
2566 v = allocate_value_lazy (value_enclosing_type (arg1));
2567 else
2568 {
2569 v = allocate_value (value_enclosing_type (arg1));
2570 value_contents_copy_raw (v, 0, arg1, 0,
2571 TYPE_LENGTH (value_enclosing_type (arg1)));
2572 }
2573 v->type = type;
2574 v->offset = value_offset (arg1);
2575 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2576 }
2577 else
2578 {
2579 /* Plain old data member */
2580 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2581
2582 /* Lazy register values with offsets are not supported. */
2583 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2584 value_fetch_lazy (arg1);
2585
2586 if (value_lazy (arg1))
2587 v = allocate_value_lazy (type);
2588 else
2589 {
2590 v = allocate_value (type);
2591 value_contents_copy_raw (v, value_embedded_offset (v),
2592 arg1, value_embedded_offset (arg1) + offset,
2593 TYPE_LENGTH (type));
2594 }
2595 v->offset = (value_offset (arg1) + offset
2596 + value_embedded_offset (arg1));
2597 }
2598 set_value_component_location (v, arg1);
2599 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2600 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2601 return v;
2602 }
2603
2604 /* Given a value ARG1 of a struct or union type,
2605 extract and return the value of one of its (non-static) fields.
2606 FIELDNO says which field. */
2607
2608 struct value *
2609 value_field (struct value *arg1, int fieldno)
2610 {
2611 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2612 }
2613
2614 /* Return a non-virtual function as a value.
2615 F is the list of member functions which contains the desired method.
2616 J is an index into F which provides the desired method.
2617
2618 We only use the symbol for its address, so be happy with either a
2619 full symbol or a minimal symbol. */
2620
2621 struct value *
2622 value_fn_field (struct value **arg1p, struct fn_field *f,
2623 int j, struct type *type,
2624 int offset)
2625 {
2626 struct value *v;
2627 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2628 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2629 struct symbol *sym;
2630 struct minimal_symbol *msym;
2631
2632 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2633 if (sym != NULL)
2634 {
2635 msym = NULL;
2636 }
2637 else
2638 {
2639 gdb_assert (sym == NULL);
2640 msym = lookup_minimal_symbol (physname, NULL, NULL);
2641 if (msym == NULL)
2642 return NULL;
2643 }
2644
2645 v = allocate_value (ftype);
2646 if (sym)
2647 {
2648 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2649 }
2650 else
2651 {
2652 /* The minimal symbol might point to a function descriptor;
2653 resolve it to the actual code address instead. */
2654 struct objfile *objfile = msymbol_objfile (msym);
2655 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2656
2657 set_value_address (v,
2658 gdbarch_convert_from_func_ptr_addr
2659 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2660 }
2661
2662 if (arg1p)
2663 {
2664 if (type != value_type (*arg1p))
2665 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2666 value_addr (*arg1p)));
2667
2668 /* Move the `this' pointer according to the offset.
2669 VALUE_OFFSET (*arg1p) += offset; */
2670 }
2671
2672 return v;
2673 }
2674
2675 \f
2676
2677 /* Helper function for both unpack_value_bits_as_long and
2678 unpack_bits_as_long. See those functions for more details on the
2679 interface; the only difference is that this function accepts either
2680 a NULL or a non-NULL ORIGINAL_VALUE. */
2681
2682 static int
2683 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2684 int embedded_offset, int bitpos, int bitsize,
2685 const struct value *original_value,
2686 LONGEST *result)
2687 {
2688 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2689 ULONGEST val;
2690 ULONGEST valmask;
2691 int lsbcount;
2692 int bytes_read;
2693 int read_offset;
2694
2695 /* Read the minimum number of bytes required; there may not be
2696 enough bytes to read an entire ULONGEST. */
2697 CHECK_TYPEDEF (field_type);
2698 if (bitsize)
2699 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2700 else
2701 bytes_read = TYPE_LENGTH (field_type);
2702
2703 read_offset = bitpos / 8;
2704
2705 if (original_value != NULL
2706 && !value_bytes_available (original_value, embedded_offset + read_offset,
2707 bytes_read))
2708 return 0;
2709
2710 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2711 bytes_read, byte_order);
2712
2713 /* Extract bits. See comment above. */
2714
2715 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2716 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2717 else
2718 lsbcount = (bitpos % 8);
2719 val >>= lsbcount;
2720
2721 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2722 If the field is signed, and is negative, then sign extend. */
2723
2724 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2725 {
2726 valmask = (((ULONGEST) 1) << bitsize) - 1;
2727 val &= valmask;
2728 if (!TYPE_UNSIGNED (field_type))
2729 {
2730 if (val & (valmask ^ (valmask >> 1)))
2731 {
2732 val |= ~valmask;
2733 }
2734 }
2735 }
2736
2737 *result = val;
2738 return 1;
2739 }
2740
2741 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2742 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2743 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2744 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2745 bits.
2746
2747 Returns false if the value contents are unavailable, otherwise
2748 returns true, indicating a valid value has been stored in *RESULT.
2749
2750 Extracting bits depends on endianness of the machine. Compute the
2751 number of least significant bits to discard. For big endian machines,
2752 we compute the total number of bits in the anonymous object, subtract
2753 off the bit count from the MSB of the object to the MSB of the
2754 bitfield, then the size of the bitfield, which leaves the LSB discard
2755 count. For little endian machines, the discard count is simply the
2756 number of bits from the LSB of the anonymous object to the LSB of the
2757 bitfield.
2758
2759 If the field is signed, we also do sign extension. */
2760
2761 int
2762 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2763 int embedded_offset, int bitpos, int bitsize,
2764 const struct value *original_value,
2765 LONGEST *result)
2766 {
2767 gdb_assert (original_value != NULL);
2768
2769 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2770 bitpos, bitsize, original_value, result);
2771
2772 }
2773
2774 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2775 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2776 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2777 details. */
2778
2779 static int
2780 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2781 int embedded_offset, int fieldno,
2782 const struct value *val, LONGEST *result)
2783 {
2784 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2785 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2786 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2787
2788 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2789 bitpos, bitsize, val,
2790 result);
2791 }
2792
2793 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2794 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2795 ORIGINAL_VALUE, which must not be NULL. See
2796 unpack_value_bits_as_long for more details. */
2797
2798 int
2799 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2800 int embedded_offset, int fieldno,
2801 const struct value *val, LONGEST *result)
2802 {
2803 gdb_assert (val != NULL);
2804
2805 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2806 fieldno, val, result);
2807 }
2808
2809 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2810 object at VALADDR. See unpack_value_bits_as_long for more details.
2811 This function differs from unpack_value_field_as_long in that it
2812 operates without a struct value object. */
2813
2814 LONGEST
2815 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2816 {
2817 LONGEST result;
2818
2819 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2820 return result;
2821 }
2822
2823 /* Return a new value with type TYPE, which is FIELDNO field of the
2824 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2825 of VAL. If the VAL's contents required to extract the bitfield
2826 from are unavailable, the new value is correspondingly marked as
2827 unavailable. */
2828
2829 struct value *
2830 value_field_bitfield (struct type *type, int fieldno,
2831 const gdb_byte *valaddr,
2832 int embedded_offset, const struct value *val)
2833 {
2834 LONGEST l;
2835
2836 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2837 val, &l))
2838 {
2839 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2840 struct value *retval = allocate_value (field_type);
2841 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2842 return retval;
2843 }
2844 else
2845 {
2846 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2847 }
2848 }
2849
2850 /* Modify the value of a bitfield. ADDR points to a block of memory in
2851 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2852 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2853 indicate which bits (in target bit order) comprise the bitfield.
2854 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2855 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2856
2857 void
2858 modify_field (struct type *type, gdb_byte *addr,
2859 LONGEST fieldval, int bitpos, int bitsize)
2860 {
2861 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2862 ULONGEST oword;
2863 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2864 int bytesize;
2865
2866 /* Normalize BITPOS. */
2867 addr += bitpos / 8;
2868 bitpos %= 8;
2869
2870 /* If a negative fieldval fits in the field in question, chop
2871 off the sign extension bits. */
2872 if ((~fieldval & ~(mask >> 1)) == 0)
2873 fieldval &= mask;
2874
2875 /* Warn if value is too big to fit in the field in question. */
2876 if (0 != (fieldval & ~mask))
2877 {
2878 /* FIXME: would like to include fieldval in the message, but
2879 we don't have a sprintf_longest. */
2880 warning (_("Value does not fit in %d bits."), bitsize);
2881
2882 /* Truncate it, otherwise adjoining fields may be corrupted. */
2883 fieldval &= mask;
2884 }
2885
2886 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2887 false valgrind reports. */
2888
2889 bytesize = (bitpos + bitsize + 7) / 8;
2890 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2891
2892 /* Shifting for bit field depends on endianness of the target machine. */
2893 if (gdbarch_bits_big_endian (get_type_arch (type)))
2894 bitpos = bytesize * 8 - bitpos - bitsize;
2895
2896 oword &= ~(mask << bitpos);
2897 oword |= fieldval << bitpos;
2898
2899 store_unsigned_integer (addr, bytesize, byte_order, oword);
2900 }
2901 \f
2902 /* Pack NUM into BUF using a target format of TYPE. */
2903
2904 void
2905 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2906 {
2907 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2908 int len;
2909
2910 type = check_typedef (type);
2911 len = TYPE_LENGTH (type);
2912
2913 switch (TYPE_CODE (type))
2914 {
2915 case TYPE_CODE_INT:
2916 case TYPE_CODE_CHAR:
2917 case TYPE_CODE_ENUM:
2918 case TYPE_CODE_FLAGS:
2919 case TYPE_CODE_BOOL:
2920 case TYPE_CODE_RANGE:
2921 case TYPE_CODE_MEMBERPTR:
2922 store_signed_integer (buf, len, byte_order, num);
2923 break;
2924
2925 case TYPE_CODE_REF:
2926 case TYPE_CODE_PTR:
2927 store_typed_address (buf, type, (CORE_ADDR) num);
2928 break;
2929
2930 default:
2931 error (_("Unexpected type (%d) encountered for integer constant."),
2932 TYPE_CODE (type));
2933 }
2934 }
2935
2936
2937 /* Pack NUM into BUF using a target format of TYPE. */
2938
2939 static void
2940 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2941 {
2942 int len;
2943 enum bfd_endian byte_order;
2944
2945 type = check_typedef (type);
2946 len = TYPE_LENGTH (type);
2947 byte_order = gdbarch_byte_order (get_type_arch (type));
2948
2949 switch (TYPE_CODE (type))
2950 {
2951 case TYPE_CODE_INT:
2952 case TYPE_CODE_CHAR:
2953 case TYPE_CODE_ENUM:
2954 case TYPE_CODE_FLAGS:
2955 case TYPE_CODE_BOOL:
2956 case TYPE_CODE_RANGE:
2957 case TYPE_CODE_MEMBERPTR:
2958 store_unsigned_integer (buf, len, byte_order, num);
2959 break;
2960
2961 case TYPE_CODE_REF:
2962 case TYPE_CODE_PTR:
2963 store_typed_address (buf, type, (CORE_ADDR) num);
2964 break;
2965
2966 default:
2967 error (_("Unexpected type (%d) encountered "
2968 "for unsigned integer constant."),
2969 TYPE_CODE (type));
2970 }
2971 }
2972
2973
2974 /* Convert C numbers into newly allocated values. */
2975
2976 struct value *
2977 value_from_longest (struct type *type, LONGEST num)
2978 {
2979 struct value *val = allocate_value (type);
2980
2981 pack_long (value_contents_raw (val), type, num);
2982 return val;
2983 }
2984
2985
2986 /* Convert C unsigned numbers into newly allocated values. */
2987
2988 struct value *
2989 value_from_ulongest (struct type *type, ULONGEST num)
2990 {
2991 struct value *val = allocate_value (type);
2992
2993 pack_unsigned_long (value_contents_raw (val), type, num);
2994
2995 return val;
2996 }
2997
2998
2999 /* Create a value representing a pointer of type TYPE to the address
3000 ADDR. */
3001 struct value *
3002 value_from_pointer (struct type *type, CORE_ADDR addr)
3003 {
3004 struct value *val = allocate_value (type);
3005
3006 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3007 return val;
3008 }
3009
3010
3011 /* Create a value of type TYPE whose contents come from VALADDR, if it
3012 is non-null, and whose memory address (in the inferior) is
3013 ADDRESS. */
3014
3015 struct value *
3016 value_from_contents_and_address (struct type *type,
3017 const gdb_byte *valaddr,
3018 CORE_ADDR address)
3019 {
3020 struct value *v;
3021
3022 if (valaddr == NULL)
3023 v = allocate_value_lazy (type);
3024 else
3025 {
3026 v = allocate_value (type);
3027 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3028 }
3029 set_value_address (v, address);
3030 VALUE_LVAL (v) = lval_memory;
3031 return v;
3032 }
3033
3034 /* Create a value of type TYPE holding the contents CONTENTS.
3035 The new value is `not_lval'. */
3036
3037 struct value *
3038 value_from_contents (struct type *type, const gdb_byte *contents)
3039 {
3040 struct value *result;
3041
3042 result = allocate_value (type);
3043 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3044 return result;
3045 }
3046
3047 struct value *
3048 value_from_double (struct type *type, DOUBLEST num)
3049 {
3050 struct value *val = allocate_value (type);
3051 struct type *base_type = check_typedef (type);
3052 enum type_code code = TYPE_CODE (base_type);
3053
3054 if (code == TYPE_CODE_FLT)
3055 {
3056 store_typed_floating (value_contents_raw (val), base_type, num);
3057 }
3058 else
3059 error (_("Unexpected type encountered for floating constant."));
3060
3061 return val;
3062 }
3063
3064 struct value *
3065 value_from_decfloat (struct type *type, const gdb_byte *dec)
3066 {
3067 struct value *val = allocate_value (type);
3068
3069 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3070 return val;
3071 }
3072
3073 /* Extract a value from the history file. Input will be of the form
3074 $digits or $$digits. See block comment above 'write_dollar_variable'
3075 for details. */
3076
3077 struct value *
3078 value_from_history_ref (char *h, char **endp)
3079 {
3080 int index, len;
3081
3082 if (h[0] == '$')
3083 len = 1;
3084 else
3085 return NULL;
3086
3087 if (h[1] == '$')
3088 len = 2;
3089
3090 /* Find length of numeral string. */
3091 for (; isdigit (h[len]); len++)
3092 ;
3093
3094 /* Make sure numeral string is not part of an identifier. */
3095 if (h[len] == '_' || isalpha (h[len]))
3096 return NULL;
3097
3098 /* Now collect the index value. */
3099 if (h[1] == '$')
3100 {
3101 if (len == 2)
3102 {
3103 /* For some bizarre reason, "$$" is equivalent to "$$1",
3104 rather than to "$$0" as it ought to be! */
3105 index = -1;
3106 *endp += len;
3107 }
3108 else
3109 index = -strtol (&h[2], endp, 10);
3110 }
3111 else
3112 {
3113 if (len == 1)
3114 {
3115 /* "$" is equivalent to "$0". */
3116 index = 0;
3117 *endp += len;
3118 }
3119 else
3120 index = strtol (&h[1], endp, 10);
3121 }
3122
3123 return access_value_history (index);
3124 }
3125
3126 struct value *
3127 coerce_ref_if_computed (const struct value *arg)
3128 {
3129 const struct lval_funcs *funcs;
3130
3131 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3132 return NULL;
3133
3134 if (value_lval_const (arg) != lval_computed)
3135 return NULL;
3136
3137 funcs = value_computed_funcs (arg);
3138 if (funcs->coerce_ref == NULL)
3139 return NULL;
3140
3141 return funcs->coerce_ref (arg);
3142 }
3143
3144 /* Look at value.h for description. */
3145
3146 struct value *
3147 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3148 struct type *original_type,
3149 struct value *original_value)
3150 {
3151 /* Re-adjust type. */
3152 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3153
3154 /* Add embedding info. */
3155 set_value_enclosing_type (value, enc_type);
3156 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3157
3158 /* We may be pointing to an object of some derived type. */
3159 return value_full_object (value, NULL, 0, 0, 0);
3160 }
3161
3162 struct value *
3163 coerce_ref (struct value *arg)
3164 {
3165 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3166 struct value *retval;
3167 struct type *enc_type;
3168
3169 retval = coerce_ref_if_computed (arg);
3170 if (retval)
3171 return retval;
3172
3173 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3174 return arg;
3175
3176 enc_type = check_typedef (value_enclosing_type (arg));
3177 enc_type = TYPE_TARGET_TYPE (enc_type);
3178
3179 retval = value_at_lazy (enc_type,
3180 unpack_pointer (value_type (arg),
3181 value_contents (arg)));
3182 return readjust_indirect_value_type (retval, enc_type,
3183 value_type_arg_tmp, arg);
3184 }
3185
3186 struct value *
3187 coerce_array (struct value *arg)
3188 {
3189 struct type *type;
3190
3191 arg = coerce_ref (arg);
3192 type = check_typedef (value_type (arg));
3193
3194 switch (TYPE_CODE (type))
3195 {
3196 case TYPE_CODE_ARRAY:
3197 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3198 arg = value_coerce_array (arg);
3199 break;
3200 case TYPE_CODE_FUNC:
3201 arg = value_coerce_function (arg);
3202 break;
3203 }
3204 return arg;
3205 }
3206 \f
3207
3208 /* Return true if the function returning the specified type is using
3209 the convention of returning structures in memory (passing in the
3210 address as a hidden first parameter). */
3211
3212 int
3213 using_struct_return (struct gdbarch *gdbarch,
3214 struct type *func_type, struct type *value_type)
3215 {
3216 enum type_code code = TYPE_CODE (value_type);
3217
3218 if (code == TYPE_CODE_ERROR)
3219 error (_("Function return type unknown."));
3220
3221 if (code == TYPE_CODE_VOID)
3222 /* A void return value is never in memory. See also corresponding
3223 code in "print_return_value". */
3224 return 0;
3225
3226 /* Probe the architecture for the return-value convention. */
3227 return (gdbarch_return_value (gdbarch, func_type, value_type,
3228 NULL, NULL, NULL)
3229 != RETURN_VALUE_REGISTER_CONVENTION);
3230 }
3231
3232 /* Set the initialized field in a value struct. */
3233
3234 void
3235 set_value_initialized (struct value *val, int status)
3236 {
3237 val->initialized = status;
3238 }
3239
3240 /* Return the initialized field in a value struct. */
3241
3242 int
3243 value_initialized (struct value *val)
3244 {
3245 return val->initialized;
3246 }
3247
3248 void
3249 _initialize_values (void)
3250 {
3251 add_cmd ("convenience", no_class, show_convenience, _("\
3252 Debugger convenience (\"$foo\") variables.\n\
3253 These variables are created when you assign them values;\n\
3254 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3255 \n\
3256 A few convenience variables are given values automatically:\n\
3257 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3258 \"$__\" holds the contents of the last address examined with \"x\"."),
3259 &showlist);
3260
3261 add_cmd ("values", no_set_class, show_values, _("\
3262 Elements of value history around item number IDX (or last ten)."),
3263 &showlist);
3264
3265 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3266 Initialize a convenience variable if necessary.\n\
3267 init-if-undefined VARIABLE = EXPRESSION\n\
3268 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3269 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3270 VARIABLE is already initialized."));
3271
3272 add_prefix_cmd ("function", no_class, function_command, _("\
3273 Placeholder command for showing help on convenience functions."),
3274 &functionlist, "function ", 0, &cmdlist);
3275 }