]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
gdb
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38 #include "objfiles.h"
39 #include "valprint.h"
40
41 #include "python/python.h"
42
43 /* Prototypes for exported functions. */
44
45 void _initialize_values (void);
46
47 struct value
48 {
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
166 /* Actual contents of the value. For use of this value; setting it
167 uses the stuff above. Not valid if lazy is nonzero. Target
168 byte-order. We force it to be aligned properly for any possible
169 value. Note that a value therefore extends beyond what is
170 declared here. */
171 union
172 {
173 gdb_byte contents[1];
174 DOUBLEST force_doublest_align;
175 LONGEST force_longest_align;
176 CORE_ADDR force_core_addr_align;
177 void *force_pointer_align;
178 } aligner;
179 /* Do not add any new members here -- contents above will trash
180 them. */
181 };
182
183 /* Prototypes for local functions. */
184
185 static void show_values (char *, int);
186
187 static void show_convenience (char *, int);
188
189
190 /* The value-history records all the values printed
191 by print commands during this session. Each chunk
192 records 60 consecutive values. The first chunk on
193 the chain records the most recent values.
194 The total number of values is in value_history_count. */
195
196 #define VALUE_HISTORY_CHUNK 60
197
198 struct value_history_chunk
199 {
200 struct value_history_chunk *next;
201 struct value *values[VALUE_HISTORY_CHUNK];
202 };
203
204 /* Chain of chunks now in use. */
205
206 static struct value_history_chunk *value_history_chain;
207
208 static int value_history_count; /* Abs number of last entry stored */
209 \f
210 /* List of all value objects currently allocated
211 (except for those released by calls to release_value)
212 This is so they can be freed after each command. */
213
214 static struct value *all_values;
215
216 /* Allocate a value that has the correct length for type TYPE. */
217
218 struct value *
219 allocate_value (struct type *type)
220 {
221 struct value *val;
222 struct type *atype = check_typedef (type);
223
224 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
225 val->next = all_values;
226 all_values = val;
227 val->type = type;
228 val->enclosing_type = type;
229 VALUE_LVAL (val) = not_lval;
230 VALUE_ADDRESS (val) = 0;
231 VALUE_FRAME_ID (val) = null_frame_id;
232 val->offset = 0;
233 val->bitpos = 0;
234 val->bitsize = 0;
235 VALUE_REGNUM (val) = -1;
236 val->lazy = 0;
237 val->optimized_out = 0;
238 val->embedded_offset = 0;
239 val->pointed_to_offset = 0;
240 val->modifiable = 1;
241 val->initialized = 1; /* Default to initialized. */
242 return val;
243 }
244
245 /* Allocate a value that has the correct length
246 for COUNT repetitions of type TYPE. */
247
248 struct value *
249 allocate_repeat_value (struct type *type, int count)
250 {
251 int low_bound = current_language->string_lower_bound; /* ??? */
252 /* FIXME-type-allocation: need a way to free this type when we are
253 done with it. */
254 struct type *range_type
255 = create_range_type ((struct type *) NULL, builtin_type_int32,
256 low_bound, count + low_bound - 1);
257 /* FIXME-type-allocation: need a way to free this type when we are
258 done with it. */
259 return allocate_value (create_array_type ((struct type *) NULL,
260 type, range_type));
261 }
262
263 /* Needed if another module needs to maintain its on list of values. */
264 void
265 value_prepend_to_list (struct value **head, struct value *val)
266 {
267 val->next = *head;
268 *head = val;
269 }
270
271 /* Needed if another module needs to maintain its on list of values. */
272 void
273 value_remove_from_list (struct value **head, struct value *val)
274 {
275 struct value *prev;
276
277 if (*head == val)
278 *head = (*head)->next;
279 else
280 for (prev = *head; prev->next; prev = prev->next)
281 if (prev->next == val)
282 {
283 prev->next = val->next;
284 break;
285 }
286 }
287
288 /* Accessor methods. */
289
290 struct value *
291 value_next (struct value *value)
292 {
293 return value->next;
294 }
295
296 struct type *
297 value_type (struct value *value)
298 {
299 return value->type;
300 }
301 void
302 deprecated_set_value_type (struct value *value, struct type *type)
303 {
304 value->type = type;
305 }
306
307 int
308 value_offset (struct value *value)
309 {
310 return value->offset;
311 }
312 void
313 set_value_offset (struct value *value, int offset)
314 {
315 value->offset = offset;
316 }
317
318 int
319 value_bitpos (struct value *value)
320 {
321 return value->bitpos;
322 }
323 void
324 set_value_bitpos (struct value *value, int bit)
325 {
326 value->bitpos = bit;
327 }
328
329 int
330 value_bitsize (struct value *value)
331 {
332 return value->bitsize;
333 }
334 void
335 set_value_bitsize (struct value *value, int bit)
336 {
337 value->bitsize = bit;
338 }
339
340 gdb_byte *
341 value_contents_raw (struct value *value)
342 {
343 return value->aligner.contents + value->embedded_offset;
344 }
345
346 gdb_byte *
347 value_contents_all_raw (struct value *value)
348 {
349 return value->aligner.contents;
350 }
351
352 struct type *
353 value_enclosing_type (struct value *value)
354 {
355 return value->enclosing_type;
356 }
357
358 const gdb_byte *
359 value_contents_all (struct value *value)
360 {
361 if (value->lazy)
362 value_fetch_lazy (value);
363 return value->aligner.contents;
364 }
365
366 int
367 value_lazy (struct value *value)
368 {
369 return value->lazy;
370 }
371
372 void
373 set_value_lazy (struct value *value, int val)
374 {
375 value->lazy = val;
376 }
377
378 const gdb_byte *
379 value_contents (struct value *value)
380 {
381 return value_contents_writeable (value);
382 }
383
384 gdb_byte *
385 value_contents_writeable (struct value *value)
386 {
387 if (value->lazy)
388 value_fetch_lazy (value);
389 return value_contents_raw (value);
390 }
391
392 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
393 this function is different from value_equal; in C the operator ==
394 can return 0 even if the two values being compared are equal. */
395
396 int
397 value_contents_equal (struct value *val1, struct value *val2)
398 {
399 struct type *type1;
400 struct type *type2;
401 int len;
402
403 type1 = check_typedef (value_type (val1));
404 type2 = check_typedef (value_type (val2));
405 len = TYPE_LENGTH (type1);
406 if (len != TYPE_LENGTH (type2))
407 return 0;
408
409 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
410 }
411
412 int
413 value_optimized_out (struct value *value)
414 {
415 return value->optimized_out;
416 }
417
418 void
419 set_value_optimized_out (struct value *value, int val)
420 {
421 value->optimized_out = val;
422 }
423
424 int
425 value_embedded_offset (struct value *value)
426 {
427 return value->embedded_offset;
428 }
429
430 void
431 set_value_embedded_offset (struct value *value, int val)
432 {
433 value->embedded_offset = val;
434 }
435
436 int
437 value_pointed_to_offset (struct value *value)
438 {
439 return value->pointed_to_offset;
440 }
441
442 void
443 set_value_pointed_to_offset (struct value *value, int val)
444 {
445 value->pointed_to_offset = val;
446 }
447
448 enum lval_type *
449 deprecated_value_lval_hack (struct value *value)
450 {
451 return &value->lval;
452 }
453
454 CORE_ADDR *
455 deprecated_value_address_hack (struct value *value)
456 {
457 return &value->location.address;
458 }
459
460 struct internalvar **
461 deprecated_value_internalvar_hack (struct value *value)
462 {
463 return &value->location.internalvar;
464 }
465
466 struct frame_id *
467 deprecated_value_frame_id_hack (struct value *value)
468 {
469 return &value->frame_id;
470 }
471
472 short *
473 deprecated_value_regnum_hack (struct value *value)
474 {
475 return &value->regnum;
476 }
477
478 int
479 deprecated_value_modifiable (struct value *value)
480 {
481 return value->modifiable;
482 }
483 void
484 deprecated_set_value_modifiable (struct value *value, int modifiable)
485 {
486 value->modifiable = modifiable;
487 }
488 \f
489 /* Return a mark in the value chain. All values allocated after the
490 mark is obtained (except for those released) are subject to being freed
491 if a subsequent value_free_to_mark is passed the mark. */
492 struct value *
493 value_mark (void)
494 {
495 return all_values;
496 }
497
498 /* Free all values allocated since MARK was obtained by value_mark
499 (except for those released). */
500 void
501 value_free_to_mark (struct value *mark)
502 {
503 struct value *val;
504 struct value *next;
505
506 for (val = all_values; val && val != mark; val = next)
507 {
508 next = val->next;
509 value_free (val);
510 }
511 all_values = val;
512 }
513
514 /* Free all the values that have been allocated (except for those released).
515 Called after each command, successful or not. */
516
517 void
518 free_all_values (void)
519 {
520 struct value *val;
521 struct value *next;
522
523 for (val = all_values; val; val = next)
524 {
525 next = val->next;
526 value_free (val);
527 }
528
529 all_values = 0;
530 }
531
532 /* Remove VAL from the chain all_values
533 so it will not be freed automatically. */
534
535 void
536 release_value (struct value *val)
537 {
538 struct value *v;
539
540 if (all_values == val)
541 {
542 all_values = val->next;
543 return;
544 }
545
546 for (v = all_values; v; v = v->next)
547 {
548 if (v->next == val)
549 {
550 v->next = val->next;
551 break;
552 }
553 }
554 }
555
556 /* Release all values up to mark */
557 struct value *
558 value_release_to_mark (struct value *mark)
559 {
560 struct value *val;
561 struct value *next;
562
563 for (val = next = all_values; next; next = next->next)
564 if (next->next == mark)
565 {
566 all_values = next->next;
567 next->next = NULL;
568 return val;
569 }
570 all_values = 0;
571 return val;
572 }
573
574 /* Return a copy of the value ARG.
575 It contains the same contents, for same memory address,
576 but it's a different block of storage. */
577
578 struct value *
579 value_copy (struct value *arg)
580 {
581 struct type *encl_type = value_enclosing_type (arg);
582 struct value *val = allocate_value (encl_type);
583 val->type = arg->type;
584 VALUE_LVAL (val) = VALUE_LVAL (arg);
585 val->location = arg->location;
586 val->offset = arg->offset;
587 val->bitpos = arg->bitpos;
588 val->bitsize = arg->bitsize;
589 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
590 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
591 val->lazy = arg->lazy;
592 val->optimized_out = arg->optimized_out;
593 val->embedded_offset = value_embedded_offset (arg);
594 val->pointed_to_offset = arg->pointed_to_offset;
595 val->modifiable = arg->modifiable;
596 if (!value_lazy (val))
597 {
598 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
599 TYPE_LENGTH (value_enclosing_type (arg)));
600
601 }
602 return val;
603 }
604 \f
605 /* Access to the value history. */
606
607 /* Record a new value in the value history.
608 Returns the absolute history index of the entry.
609 Result of -1 indicates the value was not saved; otherwise it is the
610 value history index of this new item. */
611
612 int
613 record_latest_value (struct value *val)
614 {
615 int i;
616
617 /* We don't want this value to have anything to do with the inferior anymore.
618 In particular, "set $1 = 50" should not affect the variable from which
619 the value was taken, and fast watchpoints should be able to assume that
620 a value on the value history never changes. */
621 if (value_lazy (val))
622 value_fetch_lazy (val);
623 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
624 from. This is a bit dubious, because then *&$1 does not just return $1
625 but the current contents of that location. c'est la vie... */
626 val->modifiable = 0;
627 release_value (val);
628
629 /* Here we treat value_history_count as origin-zero
630 and applying to the value being stored now. */
631
632 i = value_history_count % VALUE_HISTORY_CHUNK;
633 if (i == 0)
634 {
635 struct value_history_chunk *new
636 = (struct value_history_chunk *)
637 xmalloc (sizeof (struct value_history_chunk));
638 memset (new->values, 0, sizeof new->values);
639 new->next = value_history_chain;
640 value_history_chain = new;
641 }
642
643 value_history_chain->values[i] = val;
644
645 /* Now we regard value_history_count as origin-one
646 and applying to the value just stored. */
647
648 return ++value_history_count;
649 }
650
651 /* Return a copy of the value in the history with sequence number NUM. */
652
653 struct value *
654 access_value_history (int num)
655 {
656 struct value_history_chunk *chunk;
657 int i;
658 int absnum = num;
659
660 if (absnum <= 0)
661 absnum += value_history_count;
662
663 if (absnum <= 0)
664 {
665 if (num == 0)
666 error (_("The history is empty."));
667 else if (num == 1)
668 error (_("There is only one value in the history."));
669 else
670 error (_("History does not go back to $$%d."), -num);
671 }
672 if (absnum > value_history_count)
673 error (_("History has not yet reached $%d."), absnum);
674
675 absnum--;
676
677 /* Now absnum is always absolute and origin zero. */
678
679 chunk = value_history_chain;
680 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
681 i > 0; i--)
682 chunk = chunk->next;
683
684 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
685 }
686
687 static void
688 show_values (char *num_exp, int from_tty)
689 {
690 int i;
691 struct value *val;
692 static int num = 1;
693
694 if (num_exp)
695 {
696 /* "show values +" should print from the stored position.
697 "show values <exp>" should print around value number <exp>. */
698 if (num_exp[0] != '+' || num_exp[1] != '\0')
699 num = parse_and_eval_long (num_exp) - 5;
700 }
701 else
702 {
703 /* "show values" means print the last 10 values. */
704 num = value_history_count - 9;
705 }
706
707 if (num <= 0)
708 num = 1;
709
710 for (i = num; i < num + 10 && i <= value_history_count; i++)
711 {
712 struct value_print_options opts;
713 val = access_value_history (i);
714 printf_filtered (("$%d = "), i);
715 get_user_print_options (&opts);
716 value_print (val, gdb_stdout, &opts);
717 printf_filtered (("\n"));
718 }
719
720 /* The next "show values +" should start after what we just printed. */
721 num += 10;
722
723 /* Hitting just return after this command should do the same thing as
724 "show values +". If num_exp is null, this is unnecessary, since
725 "show values +" is not useful after "show values". */
726 if (from_tty && num_exp)
727 {
728 num_exp[0] = '+';
729 num_exp[1] = '\0';
730 }
731 }
732 \f
733 /* Internal variables. These are variables within the debugger
734 that hold values assigned by debugger commands.
735 The user refers to them with a '$' prefix
736 that does not appear in the variable names stored internally. */
737
738 static struct internalvar *internalvars;
739
740 /* If the variable does not already exist create it and give it the value given.
741 If no value is given then the default is zero. */
742 static void
743 init_if_undefined_command (char* args, int from_tty)
744 {
745 struct internalvar* intvar;
746
747 /* Parse the expression - this is taken from set_command(). */
748 struct expression *expr = parse_expression (args);
749 register struct cleanup *old_chain =
750 make_cleanup (free_current_contents, &expr);
751
752 /* Validate the expression.
753 Was the expression an assignment?
754 Or even an expression at all? */
755 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
756 error (_("Init-if-undefined requires an assignment expression."));
757
758 /* Extract the variable from the parsed expression.
759 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
760 if (expr->elts[1].opcode != OP_INTERNALVAR)
761 error (_("The first parameter to init-if-undefined should be a GDB variable."));
762 intvar = expr->elts[2].internalvar;
763
764 /* Only evaluate the expression if the lvalue is void.
765 This may still fail if the expresssion is invalid. */
766 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
767 evaluate_expression (expr);
768
769 do_cleanups (old_chain);
770 }
771
772
773 /* Look up an internal variable with name NAME. NAME should not
774 normally include a dollar sign.
775
776 If the specified internal variable does not exist,
777 the return value is NULL. */
778
779 struct internalvar *
780 lookup_only_internalvar (char *name)
781 {
782 struct internalvar *var;
783
784 for (var = internalvars; var; var = var->next)
785 if (strcmp (var->name, name) == 0)
786 return var;
787
788 return NULL;
789 }
790
791
792 /* Create an internal variable with name NAME and with a void value.
793 NAME should not normally include a dollar sign. */
794
795 struct internalvar *
796 create_internalvar (char *name)
797 {
798 struct internalvar *var;
799 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
800 var->name = concat (name, (char *)NULL);
801 var->value = allocate_value (builtin_type_void);
802 var->endian = gdbarch_byte_order (current_gdbarch);
803 release_value (var->value);
804 var->next = internalvars;
805 internalvars = var;
806 return var;
807 }
808
809
810 /* Look up an internal variable with name NAME. NAME should not
811 normally include a dollar sign.
812
813 If the specified internal variable does not exist,
814 one is created, with a void value. */
815
816 struct internalvar *
817 lookup_internalvar (char *name)
818 {
819 struct internalvar *var;
820
821 var = lookup_only_internalvar (name);
822 if (var)
823 return var;
824
825 return create_internalvar (name);
826 }
827
828 struct value *
829 value_of_internalvar (struct internalvar *var)
830 {
831 struct value *val;
832 int i, j;
833 gdb_byte temp;
834
835 val = value_copy (var->value);
836 if (value_lazy (val))
837 value_fetch_lazy (val);
838 VALUE_LVAL (val) = lval_internalvar;
839 VALUE_INTERNALVAR (val) = var;
840
841 /* Values are always stored in the target's byte order. When connected to a
842 target this will most likely always be correct, so there's normally no
843 need to worry about it.
844
845 However, internal variables can be set up before the target endian is
846 known and so may become out of date. Fix it up before anybody sees.
847
848 Internal variables usually hold simple scalar values, and we can
849 correct those. More complex values (e.g. structures and floating
850 point types) are left alone, because they would be too complicated
851 to correct. */
852
853 if (var->endian != gdbarch_byte_order (current_gdbarch))
854 {
855 gdb_byte *array = value_contents_raw (val);
856 struct type *type = check_typedef (value_enclosing_type (val));
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_PTR:
861 /* Reverse the bytes. */
862 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
863 {
864 temp = array[j];
865 array[j] = array[i];
866 array[i] = temp;
867 }
868 break;
869 }
870 }
871
872 return val;
873 }
874
875 void
876 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
877 int bitsize, struct value *newval)
878 {
879 gdb_byte *addr = value_contents_writeable (var->value) + offset;
880
881 if (bitsize)
882 modify_field (addr, value_as_long (newval),
883 bitpos, bitsize);
884 else
885 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
886 }
887
888 void
889 set_internalvar (struct internalvar *var, struct value *val)
890 {
891 struct value *newval;
892
893 newval = value_copy (val);
894 newval->modifiable = 1;
895
896 /* Force the value to be fetched from the target now, to avoid problems
897 later when this internalvar is referenced and the target is gone or
898 has changed. */
899 if (value_lazy (newval))
900 value_fetch_lazy (newval);
901
902 /* Begin code which must not call error(). If var->value points to
903 something free'd, an error() obviously leaves a dangling pointer.
904 But we also get a danling pointer if var->value points to
905 something in the value chain (i.e., before release_value is
906 called), because after the error free_all_values will get called before
907 long. */
908 xfree (var->value);
909 var->value = newval;
910 var->endian = gdbarch_byte_order (current_gdbarch);
911 release_value (newval);
912 /* End code which must not call error(). */
913 }
914
915 char *
916 internalvar_name (struct internalvar *var)
917 {
918 return var->name;
919 }
920
921 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
922 prevent cycles / duplicates. */
923
924 static void
925 preserve_one_value (struct value *value, struct objfile *objfile,
926 htab_t copied_types)
927 {
928 if (TYPE_OBJFILE (value->type) == objfile)
929 value->type = copy_type_recursive (objfile, value->type, copied_types);
930
931 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
932 value->enclosing_type = copy_type_recursive (objfile,
933 value->enclosing_type,
934 copied_types);
935 }
936
937 /* Update the internal variables and value history when OBJFILE is
938 discarded; we must copy the types out of the objfile. New global types
939 will be created for every convenience variable which currently points to
940 this objfile's types, and the convenience variables will be adjusted to
941 use the new global types. */
942
943 void
944 preserve_values (struct objfile *objfile)
945 {
946 htab_t copied_types;
947 struct value_history_chunk *cur;
948 struct internalvar *var;
949 struct value *val;
950 int i;
951
952 /* Create the hash table. We allocate on the objfile's obstack, since
953 it is soon to be deleted. */
954 copied_types = create_copied_types_hash (objfile);
955
956 for (cur = value_history_chain; cur; cur = cur->next)
957 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
958 if (cur->values[i])
959 preserve_one_value (cur->values[i], objfile, copied_types);
960
961 for (var = internalvars; var; var = var->next)
962 preserve_one_value (var->value, objfile, copied_types);
963
964 for (val = values_in_python; val; val = val->next)
965 preserve_one_value (val, objfile, copied_types);
966
967 htab_delete (copied_types);
968 }
969
970 static void
971 show_convenience (char *ignore, int from_tty)
972 {
973 struct internalvar *var;
974 int varseen = 0;
975 struct value_print_options opts;
976
977 get_user_print_options (&opts);
978 for (var = internalvars; var; var = var->next)
979 {
980 if (!varseen)
981 {
982 varseen = 1;
983 }
984 printf_filtered (("$%s = "), var->name);
985 value_print (value_of_internalvar (var), gdb_stdout,
986 &opts);
987 printf_filtered (("\n"));
988 }
989 if (!varseen)
990 printf_unfiltered (_("\
991 No debugger convenience variables now defined.\n\
992 Convenience variables have names starting with \"$\";\n\
993 use \"set\" as in \"set $foo = 5\" to define them.\n"));
994 }
995 \f
996 /* Extract a value as a C number (either long or double).
997 Knows how to convert fixed values to double, or
998 floating values to long.
999 Does not deallocate the value. */
1000
1001 LONGEST
1002 value_as_long (struct value *val)
1003 {
1004 /* This coerces arrays and functions, which is necessary (e.g.
1005 in disassemble_command). It also dereferences references, which
1006 I suspect is the most logical thing to do. */
1007 val = coerce_array (val);
1008 return unpack_long (value_type (val), value_contents (val));
1009 }
1010
1011 DOUBLEST
1012 value_as_double (struct value *val)
1013 {
1014 DOUBLEST foo;
1015 int inv;
1016
1017 foo = unpack_double (value_type (val), value_contents (val), &inv);
1018 if (inv)
1019 error (_("Invalid floating value found in program."));
1020 return foo;
1021 }
1022
1023 /* Extract a value as a C pointer. Does not deallocate the value.
1024 Note that val's type may not actually be a pointer; value_as_long
1025 handles all the cases. */
1026 CORE_ADDR
1027 value_as_address (struct value *val)
1028 {
1029 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1030 whether we want this to be true eventually. */
1031 #if 0
1032 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1033 non-address (e.g. argument to "signal", "info break", etc.), or
1034 for pointers to char, in which the low bits *are* significant. */
1035 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
1036 #else
1037
1038 /* There are several targets (IA-64, PowerPC, and others) which
1039 don't represent pointers to functions as simply the address of
1040 the function's entry point. For example, on the IA-64, a
1041 function pointer points to a two-word descriptor, generated by
1042 the linker, which contains the function's entry point, and the
1043 value the IA-64 "global pointer" register should have --- to
1044 support position-independent code. The linker generates
1045 descriptors only for those functions whose addresses are taken.
1046
1047 On such targets, it's difficult for GDB to convert an arbitrary
1048 function address into a function pointer; it has to either find
1049 an existing descriptor for that function, or call malloc and
1050 build its own. On some targets, it is impossible for GDB to
1051 build a descriptor at all: the descriptor must contain a jump
1052 instruction; data memory cannot be executed; and code memory
1053 cannot be modified.
1054
1055 Upon entry to this function, if VAL is a value of type `function'
1056 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1057 VALUE_ADDRESS (val) is the address of the function. This is what
1058 you'll get if you evaluate an expression like `main'. The call
1059 to COERCE_ARRAY below actually does all the usual unary
1060 conversions, which includes converting values of type `function'
1061 to `pointer to function'. This is the challenging conversion
1062 discussed above. Then, `unpack_long' will convert that pointer
1063 back into an address.
1064
1065 So, suppose the user types `disassemble foo' on an architecture
1066 with a strange function pointer representation, on which GDB
1067 cannot build its own descriptors, and suppose further that `foo'
1068 has no linker-built descriptor. The address->pointer conversion
1069 will signal an error and prevent the command from running, even
1070 though the next step would have been to convert the pointer
1071 directly back into the same address.
1072
1073 The following shortcut avoids this whole mess. If VAL is a
1074 function, just return its address directly. */
1075 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1076 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1077 return VALUE_ADDRESS (val);
1078
1079 val = coerce_array (val);
1080
1081 /* Some architectures (e.g. Harvard), map instruction and data
1082 addresses onto a single large unified address space. For
1083 instance: An architecture may consider a large integer in the
1084 range 0x10000000 .. 0x1000ffff to already represent a data
1085 addresses (hence not need a pointer to address conversion) while
1086 a small integer would still need to be converted integer to
1087 pointer to address. Just assume such architectures handle all
1088 integer conversions in a single function. */
1089
1090 /* JimB writes:
1091
1092 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1093 must admonish GDB hackers to make sure its behavior matches the
1094 compiler's, whenever possible.
1095
1096 In general, I think GDB should evaluate expressions the same way
1097 the compiler does. When the user copies an expression out of
1098 their source code and hands it to a `print' command, they should
1099 get the same value the compiler would have computed. Any
1100 deviation from this rule can cause major confusion and annoyance,
1101 and needs to be justified carefully. In other words, GDB doesn't
1102 really have the freedom to do these conversions in clever and
1103 useful ways.
1104
1105 AndrewC pointed out that users aren't complaining about how GDB
1106 casts integers to pointers; they are complaining that they can't
1107 take an address from a disassembly listing and give it to `x/i'.
1108 This is certainly important.
1109
1110 Adding an architecture method like integer_to_address() certainly
1111 makes it possible for GDB to "get it right" in all circumstances
1112 --- the target has complete control over how things get done, so
1113 people can Do The Right Thing for their target without breaking
1114 anyone else. The standard doesn't specify how integers get
1115 converted to pointers; usually, the ABI doesn't either, but
1116 ABI-specific code is a more reasonable place to handle it. */
1117
1118 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1119 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1120 && gdbarch_integer_to_address_p (current_gdbarch))
1121 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1122 value_contents (val));
1123
1124 return unpack_long (value_type (val), value_contents (val));
1125 #endif
1126 }
1127 \f
1128 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1129 as a long, or as a double, assuming the raw data is described
1130 by type TYPE. Knows how to convert different sizes of values
1131 and can convert between fixed and floating point. We don't assume
1132 any alignment for the raw data. Return value is in host byte order.
1133
1134 If you want functions and arrays to be coerced to pointers, and
1135 references to be dereferenced, call value_as_long() instead.
1136
1137 C++: It is assumed that the front-end has taken care of
1138 all matters concerning pointers to members. A pointer
1139 to member which reaches here is considered to be equivalent
1140 to an INT (or some size). After all, it is only an offset. */
1141
1142 LONGEST
1143 unpack_long (struct type *type, const gdb_byte *valaddr)
1144 {
1145 enum type_code code = TYPE_CODE (type);
1146 int len = TYPE_LENGTH (type);
1147 int nosign = TYPE_UNSIGNED (type);
1148
1149 switch (code)
1150 {
1151 case TYPE_CODE_TYPEDEF:
1152 return unpack_long (check_typedef (type), valaddr);
1153 case TYPE_CODE_ENUM:
1154 case TYPE_CODE_FLAGS:
1155 case TYPE_CODE_BOOL:
1156 case TYPE_CODE_INT:
1157 case TYPE_CODE_CHAR:
1158 case TYPE_CODE_RANGE:
1159 case TYPE_CODE_MEMBERPTR:
1160 if (nosign)
1161 return extract_unsigned_integer (valaddr, len);
1162 else
1163 return extract_signed_integer (valaddr, len);
1164
1165 case TYPE_CODE_FLT:
1166 return extract_typed_floating (valaddr, type);
1167
1168 case TYPE_CODE_DECFLOAT:
1169 /* libdecnumber has a function to convert from decimal to integer, but
1170 it doesn't work when the decimal number has a fractional part. */
1171 return decimal_to_doublest (valaddr, len);
1172
1173 case TYPE_CODE_PTR:
1174 case TYPE_CODE_REF:
1175 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1176 whether we want this to be true eventually. */
1177 return extract_typed_address (valaddr, type);
1178
1179 default:
1180 error (_("Value can't be converted to integer."));
1181 }
1182 return 0; /* Placate lint. */
1183 }
1184
1185 /* Return a double value from the specified type and address.
1186 INVP points to an int which is set to 0 for valid value,
1187 1 for invalid value (bad float format). In either case,
1188 the returned double is OK to use. Argument is in target
1189 format, result is in host format. */
1190
1191 DOUBLEST
1192 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1193 {
1194 enum type_code code;
1195 int len;
1196 int nosign;
1197
1198 *invp = 0; /* Assume valid. */
1199 CHECK_TYPEDEF (type);
1200 code = TYPE_CODE (type);
1201 len = TYPE_LENGTH (type);
1202 nosign = TYPE_UNSIGNED (type);
1203 if (code == TYPE_CODE_FLT)
1204 {
1205 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1206 floating-point value was valid (using the macro
1207 INVALID_FLOAT). That test/macro have been removed.
1208
1209 It turns out that only the VAX defined this macro and then
1210 only in a non-portable way. Fixing the portability problem
1211 wouldn't help since the VAX floating-point code is also badly
1212 bit-rotten. The target needs to add definitions for the
1213 methods gdbarch_float_format and gdbarch_double_format - these
1214 exactly describe the target floating-point format. The
1215 problem here is that the corresponding floatformat_vax_f and
1216 floatformat_vax_d values these methods should be set to are
1217 also not defined either. Oops!
1218
1219 Hopefully someone will add both the missing floatformat
1220 definitions and the new cases for floatformat_is_valid (). */
1221
1222 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1223 {
1224 *invp = 1;
1225 return 0.0;
1226 }
1227
1228 return extract_typed_floating (valaddr, type);
1229 }
1230 else if (code == TYPE_CODE_DECFLOAT)
1231 return decimal_to_doublest (valaddr, len);
1232 else if (nosign)
1233 {
1234 /* Unsigned -- be sure we compensate for signed LONGEST. */
1235 return (ULONGEST) unpack_long (type, valaddr);
1236 }
1237 else
1238 {
1239 /* Signed -- we are OK with unpack_long. */
1240 return unpack_long (type, valaddr);
1241 }
1242 }
1243
1244 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1245 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1246 We don't assume any alignment for the raw data. Return value is in
1247 host byte order.
1248
1249 If you want functions and arrays to be coerced to pointers, and
1250 references to be dereferenced, call value_as_address() instead.
1251
1252 C++: It is assumed that the front-end has taken care of
1253 all matters concerning pointers to members. A pointer
1254 to member which reaches here is considered to be equivalent
1255 to an INT (or some size). After all, it is only an offset. */
1256
1257 CORE_ADDR
1258 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1259 {
1260 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1261 whether we want this to be true eventually. */
1262 return unpack_long (type, valaddr);
1263 }
1264
1265 \f
1266 /* Get the value of the FIELDN'th field (which must be static) of
1267 TYPE. Return NULL if the field doesn't exist or has been
1268 optimized out. */
1269
1270 struct value *
1271 value_static_field (struct type *type, int fieldno)
1272 {
1273 struct value *retval;
1274
1275 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1276 {
1277 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1278 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1279 }
1280 else
1281 {
1282 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1283 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1284 if (sym == NULL)
1285 {
1286 /* With some compilers, e.g. HP aCC, static data members are reported
1287 as non-debuggable symbols */
1288 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1289 if (!msym)
1290 return NULL;
1291 else
1292 {
1293 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1294 SYMBOL_VALUE_ADDRESS (msym));
1295 }
1296 }
1297 else
1298 {
1299 /* SYM should never have a SYMBOL_CLASS which will require
1300 read_var_value to use the FRAME parameter. */
1301 if (symbol_read_needs_frame (sym))
1302 warning (_("static field's value depends on the current "
1303 "frame - bad debug info?"));
1304 retval = read_var_value (sym, NULL);
1305 }
1306 if (retval && VALUE_LVAL (retval) == lval_memory)
1307 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1308 VALUE_ADDRESS (retval));
1309 }
1310 return retval;
1311 }
1312
1313 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1314 You have to be careful here, since the size of the data area for the value
1315 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1316 than the old enclosing type, you have to allocate more space for the data.
1317 The return value is a pointer to the new version of this value structure. */
1318
1319 struct value *
1320 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1321 {
1322 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1323 {
1324 val->enclosing_type = new_encl_type;
1325 return val;
1326 }
1327 else
1328 {
1329 struct value *new_val;
1330 struct value *prev;
1331
1332 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1333
1334 new_val->enclosing_type = new_encl_type;
1335
1336 /* We have to make sure this ends up in the same place in the value
1337 chain as the original copy, so it's clean-up behavior is the same.
1338 If the value has been released, this is a waste of time, but there
1339 is no way to tell that in advance, so... */
1340
1341 if (val != all_values)
1342 {
1343 for (prev = all_values; prev != NULL; prev = prev->next)
1344 {
1345 if (prev->next == val)
1346 {
1347 prev->next = new_val;
1348 break;
1349 }
1350 }
1351 }
1352
1353 return new_val;
1354 }
1355 }
1356
1357 /* Given a value ARG1 (offset by OFFSET bytes)
1358 of a struct or union type ARG_TYPE,
1359 extract and return the value of one of its (non-static) fields.
1360 FIELDNO says which field. */
1361
1362 struct value *
1363 value_primitive_field (struct value *arg1, int offset,
1364 int fieldno, struct type *arg_type)
1365 {
1366 struct value *v;
1367 struct type *type;
1368
1369 CHECK_TYPEDEF (arg_type);
1370 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1371
1372 /* Handle packed fields */
1373
1374 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1375 {
1376 v = value_from_longest (type,
1377 unpack_field_as_long (arg_type,
1378 value_contents (arg1)
1379 + offset,
1380 fieldno));
1381 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1382 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1383 v->offset = value_offset (arg1) + offset
1384 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1385 }
1386 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1387 {
1388 /* This field is actually a base subobject, so preserve the
1389 entire object's contents for later references to virtual
1390 bases, etc. */
1391 v = allocate_value (value_enclosing_type (arg1));
1392 v->type = type;
1393
1394 /* Lazy register values with offsets are not supported. */
1395 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1396 value_fetch_lazy (arg1);
1397
1398 if (value_lazy (arg1))
1399 set_value_lazy (v, 1);
1400 else
1401 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1402 TYPE_LENGTH (value_enclosing_type (arg1)));
1403 v->offset = value_offset (arg1);
1404 v->embedded_offset = (offset + value_embedded_offset (arg1)
1405 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1406 }
1407 else
1408 {
1409 /* Plain old data member */
1410 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1411 v = allocate_value (type);
1412
1413 /* Lazy register values with offsets are not supported. */
1414 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1415 value_fetch_lazy (arg1);
1416
1417 if (value_lazy (arg1))
1418 set_value_lazy (v, 1);
1419 else
1420 memcpy (value_contents_raw (v),
1421 value_contents_raw (arg1) + offset,
1422 TYPE_LENGTH (type));
1423 v->offset = (value_offset (arg1) + offset
1424 + value_embedded_offset (arg1));
1425 }
1426 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1427 if (VALUE_LVAL (arg1) == lval_internalvar)
1428 VALUE_LVAL (v) = lval_internalvar_component;
1429 v->location = arg1->location;
1430 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1431 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1432 return v;
1433 }
1434
1435 /* Given a value ARG1 of a struct or union type,
1436 extract and return the value of one of its (non-static) fields.
1437 FIELDNO says which field. */
1438
1439 struct value *
1440 value_field (struct value *arg1, int fieldno)
1441 {
1442 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1443 }
1444
1445 /* Return a non-virtual function as a value.
1446 F is the list of member functions which contains the desired method.
1447 J is an index into F which provides the desired method.
1448
1449 We only use the symbol for its address, so be happy with either a
1450 full symbol or a minimal symbol.
1451 */
1452
1453 struct value *
1454 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1455 int offset)
1456 {
1457 struct value *v;
1458 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1459 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1460 struct symbol *sym;
1461 struct minimal_symbol *msym;
1462
1463 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1464 if (sym != NULL)
1465 {
1466 msym = NULL;
1467 }
1468 else
1469 {
1470 gdb_assert (sym == NULL);
1471 msym = lookup_minimal_symbol (physname, NULL, NULL);
1472 if (msym == NULL)
1473 return NULL;
1474 }
1475
1476 v = allocate_value (ftype);
1477 if (sym)
1478 {
1479 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1480 }
1481 else
1482 {
1483 /* The minimal symbol might point to a function descriptor;
1484 resolve it to the actual code address instead. */
1485 struct objfile *objfile = msymbol_objfile (msym);
1486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1487
1488 VALUE_ADDRESS (v)
1489 = gdbarch_convert_from_func_ptr_addr
1490 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
1491 }
1492
1493 if (arg1p)
1494 {
1495 if (type != value_type (*arg1p))
1496 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1497 value_addr (*arg1p)));
1498
1499 /* Move the `this' pointer according to the offset.
1500 VALUE_OFFSET (*arg1p) += offset;
1501 */
1502 }
1503
1504 return v;
1505 }
1506
1507 \f
1508 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1509 VALADDR.
1510
1511 Extracting bits depends on endianness of the machine. Compute the
1512 number of least significant bits to discard. For big endian machines,
1513 we compute the total number of bits in the anonymous object, subtract
1514 off the bit count from the MSB of the object to the MSB of the
1515 bitfield, then the size of the bitfield, which leaves the LSB discard
1516 count. For little endian machines, the discard count is simply the
1517 number of bits from the LSB of the anonymous object to the LSB of the
1518 bitfield.
1519
1520 If the field is signed, we also do sign extension. */
1521
1522 LONGEST
1523 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1524 {
1525 ULONGEST val;
1526 ULONGEST valmask;
1527 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1528 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1529 int lsbcount;
1530 struct type *field_type;
1531
1532 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1533 field_type = TYPE_FIELD_TYPE (type, fieldno);
1534 CHECK_TYPEDEF (field_type);
1535
1536 /* Extract bits. See comment above. */
1537
1538 if (gdbarch_bits_big_endian (current_gdbarch))
1539 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1540 else
1541 lsbcount = (bitpos % 8);
1542 val >>= lsbcount;
1543
1544 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1545 If the field is signed, and is negative, then sign extend. */
1546
1547 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1548 {
1549 valmask = (((ULONGEST) 1) << bitsize) - 1;
1550 val &= valmask;
1551 if (!TYPE_UNSIGNED (field_type))
1552 {
1553 if (val & (valmask ^ (valmask >> 1)))
1554 {
1555 val |= ~valmask;
1556 }
1557 }
1558 }
1559 return (val);
1560 }
1561
1562 /* Modify the value of a bitfield. ADDR points to a block of memory in
1563 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1564 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1565 indicate which bits (in target bit order) comprise the bitfield.
1566 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1567 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1568
1569 void
1570 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1571 {
1572 ULONGEST oword;
1573 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1574
1575 /* If a negative fieldval fits in the field in question, chop
1576 off the sign extension bits. */
1577 if ((~fieldval & ~(mask >> 1)) == 0)
1578 fieldval &= mask;
1579
1580 /* Warn if value is too big to fit in the field in question. */
1581 if (0 != (fieldval & ~mask))
1582 {
1583 /* FIXME: would like to include fieldval in the message, but
1584 we don't have a sprintf_longest. */
1585 warning (_("Value does not fit in %d bits."), bitsize);
1586
1587 /* Truncate it, otherwise adjoining fields may be corrupted. */
1588 fieldval &= mask;
1589 }
1590
1591 oword = extract_unsigned_integer (addr, sizeof oword);
1592
1593 /* Shifting for bit field depends on endianness of the target machine. */
1594 if (gdbarch_bits_big_endian (current_gdbarch))
1595 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1596
1597 oword &= ~(mask << bitpos);
1598 oword |= fieldval << bitpos;
1599
1600 store_unsigned_integer (addr, sizeof oword, oword);
1601 }
1602 \f
1603 /* Pack NUM into BUF using a target format of TYPE. */
1604
1605 void
1606 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1607 {
1608 int len;
1609
1610 type = check_typedef (type);
1611 len = TYPE_LENGTH (type);
1612
1613 switch (TYPE_CODE (type))
1614 {
1615 case TYPE_CODE_INT:
1616 case TYPE_CODE_CHAR:
1617 case TYPE_CODE_ENUM:
1618 case TYPE_CODE_FLAGS:
1619 case TYPE_CODE_BOOL:
1620 case TYPE_CODE_RANGE:
1621 case TYPE_CODE_MEMBERPTR:
1622 store_signed_integer (buf, len, num);
1623 break;
1624
1625 case TYPE_CODE_REF:
1626 case TYPE_CODE_PTR:
1627 store_typed_address (buf, type, (CORE_ADDR) num);
1628 break;
1629
1630 default:
1631 error (_("Unexpected type (%d) encountered for integer constant."),
1632 TYPE_CODE (type));
1633 }
1634 }
1635
1636
1637 /* Convert C numbers into newly allocated values. */
1638
1639 struct value *
1640 value_from_longest (struct type *type, LONGEST num)
1641 {
1642 struct value *val = allocate_value (type);
1643
1644 pack_long (value_contents_raw (val), type, num);
1645
1646 return val;
1647 }
1648
1649
1650 /* Create a value representing a pointer of type TYPE to the address
1651 ADDR. */
1652 struct value *
1653 value_from_pointer (struct type *type, CORE_ADDR addr)
1654 {
1655 struct value *val = allocate_value (type);
1656 store_typed_address (value_contents_raw (val), type, addr);
1657 return val;
1658 }
1659
1660
1661 /* Create a value for a string constant to be stored locally
1662 (not in the inferior's memory space, but in GDB memory).
1663 This is analogous to value_from_longest, which also does not
1664 use inferior memory. String shall NOT contain embedded nulls. */
1665
1666 struct value *
1667 value_from_string (char *ptr)
1668 {
1669 struct value *val;
1670 int len = strlen (ptr);
1671 int lowbound = current_language->string_lower_bound;
1672 struct type *string_char_type;
1673 struct type *rangetype;
1674 struct type *stringtype;
1675
1676 rangetype = create_range_type ((struct type *) NULL,
1677 builtin_type_int32,
1678 lowbound, len + lowbound - 1);
1679 string_char_type = language_string_char_type (current_language,
1680 current_gdbarch);
1681 stringtype = create_array_type ((struct type *) NULL,
1682 string_char_type,
1683 rangetype);
1684 val = allocate_value (stringtype);
1685 memcpy (value_contents_raw (val), ptr, len);
1686 return val;
1687 }
1688
1689 struct value *
1690 value_from_double (struct type *type, DOUBLEST num)
1691 {
1692 struct value *val = allocate_value (type);
1693 struct type *base_type = check_typedef (type);
1694 enum type_code code = TYPE_CODE (base_type);
1695 int len = TYPE_LENGTH (base_type);
1696
1697 if (code == TYPE_CODE_FLT)
1698 {
1699 store_typed_floating (value_contents_raw (val), base_type, num);
1700 }
1701 else
1702 error (_("Unexpected type encountered for floating constant."));
1703
1704 return val;
1705 }
1706
1707 struct value *
1708 value_from_decfloat (struct type *type, const gdb_byte *dec)
1709 {
1710 struct value *val = allocate_value (type);
1711
1712 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1713
1714 return val;
1715 }
1716
1717 struct value *
1718 coerce_ref (struct value *arg)
1719 {
1720 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1721 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1722 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1723 unpack_pointer (value_type (arg),
1724 value_contents (arg)));
1725 return arg;
1726 }
1727
1728 struct value *
1729 coerce_array (struct value *arg)
1730 {
1731 arg = coerce_ref (arg);
1732 if (current_language->c_style_arrays
1733 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1734 arg = value_coerce_array (arg);
1735 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1736 arg = value_coerce_function (arg);
1737 return arg;
1738 }
1739 \f
1740
1741 /* Return true if the function returning the specified type is using
1742 the convention of returning structures in memory (passing in the
1743 address as a hidden first parameter). */
1744
1745 int
1746 using_struct_return (struct type *func_type, struct type *value_type)
1747 {
1748 enum type_code code = TYPE_CODE (value_type);
1749
1750 if (code == TYPE_CODE_ERROR)
1751 error (_("Function return type unknown."));
1752
1753 if (code == TYPE_CODE_VOID)
1754 /* A void return value is never in memory. See also corresponding
1755 code in "print_return_value". */
1756 return 0;
1757
1758 /* Probe the architecture for the return-value convention. */
1759 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
1760 NULL, NULL, NULL)
1761 != RETURN_VALUE_REGISTER_CONVENTION);
1762 }
1763
1764 /* Set the initialized field in a value struct. */
1765
1766 void
1767 set_value_initialized (struct value *val, int status)
1768 {
1769 val->initialized = status;
1770 }
1771
1772 /* Return the initialized field in a value struct. */
1773
1774 int
1775 value_initialized (struct value *val)
1776 {
1777 return val->initialized;
1778 }
1779
1780 void
1781 _initialize_values (void)
1782 {
1783 add_cmd ("convenience", no_class, show_convenience, _("\
1784 Debugger convenience (\"$foo\") variables.\n\
1785 These variables are created when you assign them values;\n\
1786 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1787 \n\
1788 A few convenience variables are given values automatically:\n\
1789 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1790 \"$__\" holds the contents of the last address examined with \"x\"."),
1791 &showlist);
1792
1793 add_cmd ("values", no_class, show_values,
1794 _("Elements of value history around item number IDX (or last ten)."),
1795 &showlist);
1796
1797 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1798 Initialize a convenience variable if necessary.\n\
1799 init-if-undefined VARIABLE = EXPRESSION\n\
1800 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1801 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1802 VARIABLE is already initialized."));
1803 }