]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2005-02-01 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct type *
127 value_type (struct value *value)
128 {
129 return value->type;
130 }
131
132 int
133 value_offset (struct value *value)
134 {
135 return value->offset;
136 }
137
138 int
139 value_bitpos (struct value *value)
140 {
141 return value->bitpos;
142 }
143
144 int
145 value_bitsize (struct value *value)
146 {
147 return value->bitsize;
148 }
149
150 bfd_byte *
151 value_contents_raw (struct value *value)
152 {
153 return value->aligner.contents + value->embedded_offset;
154 }
155
156 bfd_byte *
157 value_contents_all_raw (struct value *value)
158 {
159 return value->aligner.contents;
160 }
161
162 \f
163 /* Return a mark in the value chain. All values allocated after the
164 mark is obtained (except for those released) are subject to being freed
165 if a subsequent value_free_to_mark is passed the mark. */
166 struct value *
167 value_mark (void)
168 {
169 return all_values;
170 }
171
172 /* Free all values allocated since MARK was obtained by value_mark
173 (except for those released). */
174 void
175 value_free_to_mark (struct value *mark)
176 {
177 struct value *val;
178 struct value *next;
179
180 for (val = all_values; val && val != mark; val = next)
181 {
182 next = val->next;
183 value_free (val);
184 }
185 all_values = val;
186 }
187
188 /* Free all the values that have been allocated (except for those released).
189 Called after each command, successful or not. */
190
191 void
192 free_all_values (void)
193 {
194 struct value *val;
195 struct value *next;
196
197 for (val = all_values; val; val = next)
198 {
199 next = val->next;
200 value_free (val);
201 }
202
203 all_values = 0;
204 }
205
206 /* Remove VAL from the chain all_values
207 so it will not be freed automatically. */
208
209 void
210 release_value (struct value *val)
211 {
212 struct value *v;
213
214 if (all_values == val)
215 {
216 all_values = val->next;
217 return;
218 }
219
220 for (v = all_values; v; v = v->next)
221 {
222 if (v->next == val)
223 {
224 v->next = val->next;
225 break;
226 }
227 }
228 }
229
230 /* Release all values up to mark */
231 struct value *
232 value_release_to_mark (struct value *mark)
233 {
234 struct value *val;
235 struct value *next;
236
237 for (val = next = all_values; next; next = next->next)
238 if (next->next == mark)
239 {
240 all_values = next->next;
241 next->next = NULL;
242 return val;
243 }
244 all_values = 0;
245 return val;
246 }
247
248 /* Return a copy of the value ARG.
249 It contains the same contents, for same memory address,
250 but it's a different block of storage. */
251
252 struct value *
253 value_copy (struct value *arg)
254 {
255 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
256 struct value *val = allocate_value (encl_type);
257 val->type = arg->type;
258 VALUE_LVAL (val) = VALUE_LVAL (arg);
259 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
260 val->offset = arg->offset;
261 val->bitpos = arg->bitpos;
262 val->bitsize = arg->bitsize;
263 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
264 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
265 VALUE_LAZY (val) = VALUE_LAZY (arg);
266 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
267 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
268 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
269 val->modifiable = arg->modifiable;
270 if (!VALUE_LAZY (val))
271 {
272 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
273 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
274
275 }
276 return val;
277 }
278 \f
279 /* Access to the value history. */
280
281 /* Record a new value in the value history.
282 Returns the absolute history index of the entry.
283 Result of -1 indicates the value was not saved; otherwise it is the
284 value history index of this new item. */
285
286 int
287 record_latest_value (struct value *val)
288 {
289 int i;
290
291 /* We don't want this value to have anything to do with the inferior anymore.
292 In particular, "set $1 = 50" should not affect the variable from which
293 the value was taken, and fast watchpoints should be able to assume that
294 a value on the value history never changes. */
295 if (VALUE_LAZY (val))
296 value_fetch_lazy (val);
297 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
298 from. This is a bit dubious, because then *&$1 does not just return $1
299 but the current contents of that location. c'est la vie... */
300 val->modifiable = 0;
301 release_value (val);
302
303 /* Here we treat value_history_count as origin-zero
304 and applying to the value being stored now. */
305
306 i = value_history_count % VALUE_HISTORY_CHUNK;
307 if (i == 0)
308 {
309 struct value_history_chunk *new
310 = (struct value_history_chunk *)
311 xmalloc (sizeof (struct value_history_chunk));
312 memset (new->values, 0, sizeof new->values);
313 new->next = value_history_chain;
314 value_history_chain = new;
315 }
316
317 value_history_chain->values[i] = val;
318
319 /* Now we regard value_history_count as origin-one
320 and applying to the value just stored. */
321
322 return ++value_history_count;
323 }
324
325 /* Return a copy of the value in the history with sequence number NUM. */
326
327 struct value *
328 access_value_history (int num)
329 {
330 struct value_history_chunk *chunk;
331 int i;
332 int absnum = num;
333
334 if (absnum <= 0)
335 absnum += value_history_count;
336
337 if (absnum <= 0)
338 {
339 if (num == 0)
340 error ("The history is empty.");
341 else if (num == 1)
342 error ("There is only one value in the history.");
343 else
344 error ("History does not go back to $$%d.", -num);
345 }
346 if (absnum > value_history_count)
347 error ("History has not yet reached $%d.", absnum);
348
349 absnum--;
350
351 /* Now absnum is always absolute and origin zero. */
352
353 chunk = value_history_chain;
354 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
355 i > 0; i--)
356 chunk = chunk->next;
357
358 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
359 }
360
361 /* Clear the value history entirely.
362 Must be done when new symbol tables are loaded,
363 because the type pointers become invalid. */
364
365 void
366 clear_value_history (void)
367 {
368 struct value_history_chunk *next;
369 int i;
370 struct value *val;
371
372 while (value_history_chain)
373 {
374 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
375 if ((val = value_history_chain->values[i]) != NULL)
376 xfree (val);
377 next = value_history_chain->next;
378 xfree (value_history_chain);
379 value_history_chain = next;
380 }
381 value_history_count = 0;
382 }
383
384 static void
385 show_values (char *num_exp, int from_tty)
386 {
387 int i;
388 struct value *val;
389 static int num = 1;
390
391 if (num_exp)
392 {
393 /* "info history +" should print from the stored position.
394 "info history <exp>" should print around value number <exp>. */
395 if (num_exp[0] != '+' || num_exp[1] != '\0')
396 num = parse_and_eval_long (num_exp) - 5;
397 }
398 else
399 {
400 /* "info history" means print the last 10 values. */
401 num = value_history_count - 9;
402 }
403
404 if (num <= 0)
405 num = 1;
406
407 for (i = num; i < num + 10 && i <= value_history_count; i++)
408 {
409 val = access_value_history (i);
410 printf_filtered ("$%d = ", i);
411 value_print (val, gdb_stdout, 0, Val_pretty_default);
412 printf_filtered ("\n");
413 }
414
415 /* The next "info history +" should start after what we just printed. */
416 num += 10;
417
418 /* Hitting just return after this command should do the same thing as
419 "info history +". If num_exp is null, this is unnecessary, since
420 "info history +" is not useful after "info history". */
421 if (from_tty && num_exp)
422 {
423 num_exp[0] = '+';
424 num_exp[1] = '\0';
425 }
426 }
427 \f
428 /* Internal variables. These are variables within the debugger
429 that hold values assigned by debugger commands.
430 The user refers to them with a '$' prefix
431 that does not appear in the variable names stored internally. */
432
433 static struct internalvar *internalvars;
434
435 /* Look up an internal variable with name NAME. NAME should not
436 normally include a dollar sign.
437
438 If the specified internal variable does not exist,
439 one is created, with a void value. */
440
441 struct internalvar *
442 lookup_internalvar (char *name)
443 {
444 struct internalvar *var;
445
446 for (var = internalvars; var; var = var->next)
447 if (strcmp (var->name, name) == 0)
448 return var;
449
450 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
451 var->name = concat (name, NULL);
452 var->value = allocate_value (builtin_type_void);
453 release_value (var->value);
454 var->next = internalvars;
455 internalvars = var;
456 return var;
457 }
458
459 struct value *
460 value_of_internalvar (struct internalvar *var)
461 {
462 struct value *val;
463
464 val = value_copy (var->value);
465 if (VALUE_LAZY (val))
466 value_fetch_lazy (val);
467 VALUE_LVAL (val) = lval_internalvar;
468 VALUE_INTERNALVAR (val) = var;
469 return val;
470 }
471
472 void
473 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
474 int bitsize, struct value *newval)
475 {
476 char *addr = VALUE_CONTENTS (var->value) + offset;
477
478 if (bitsize)
479 modify_field (addr, value_as_long (newval),
480 bitpos, bitsize);
481 else
482 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
483 }
484
485 void
486 set_internalvar (struct internalvar *var, struct value *val)
487 {
488 struct value *newval;
489
490 newval = value_copy (val);
491 newval->modifiable = 1;
492
493 /* Force the value to be fetched from the target now, to avoid problems
494 later when this internalvar is referenced and the target is gone or
495 has changed. */
496 if (VALUE_LAZY (newval))
497 value_fetch_lazy (newval);
498
499 /* Begin code which must not call error(). If var->value points to
500 something free'd, an error() obviously leaves a dangling pointer.
501 But we also get a danling pointer if var->value points to
502 something in the value chain (i.e., before release_value is
503 called), because after the error free_all_values will get called before
504 long. */
505 xfree (var->value);
506 var->value = newval;
507 release_value (newval);
508 /* End code which must not call error(). */
509 }
510
511 char *
512 internalvar_name (struct internalvar *var)
513 {
514 return var->name;
515 }
516
517 /* Free all internalvars. Done when new symtabs are loaded,
518 because that makes the values invalid. */
519
520 void
521 clear_internalvars (void)
522 {
523 struct internalvar *var;
524
525 while (internalvars)
526 {
527 var = internalvars;
528 internalvars = var->next;
529 xfree (var->name);
530 xfree (var->value);
531 xfree (var);
532 }
533 }
534
535 static void
536 show_convenience (char *ignore, int from_tty)
537 {
538 struct internalvar *var;
539 int varseen = 0;
540
541 for (var = internalvars; var; var = var->next)
542 {
543 if (!varseen)
544 {
545 varseen = 1;
546 }
547 printf_filtered ("$%s = ", var->name);
548 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
549 printf_filtered ("\n");
550 }
551 if (!varseen)
552 printf_unfiltered ("No debugger convenience variables now defined.\n\
553 Convenience variables have names starting with \"$\";\n\
554 use \"set\" as in \"set $foo = 5\" to define them.\n");
555 }
556 \f
557 /* Extract a value as a C number (either long or double).
558 Knows how to convert fixed values to double, or
559 floating values to long.
560 Does not deallocate the value. */
561
562 LONGEST
563 value_as_long (struct value *val)
564 {
565 /* This coerces arrays and functions, which is necessary (e.g.
566 in disassemble_command). It also dereferences references, which
567 I suspect is the most logical thing to do. */
568 val = coerce_array (val);
569 return unpack_long (value_type (val), VALUE_CONTENTS (val));
570 }
571
572 DOUBLEST
573 value_as_double (struct value *val)
574 {
575 DOUBLEST foo;
576 int inv;
577
578 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
579 if (inv)
580 error ("Invalid floating value found in program.");
581 return foo;
582 }
583 /* Extract a value as a C pointer. Does not deallocate the value.
584 Note that val's type may not actually be a pointer; value_as_long
585 handles all the cases. */
586 CORE_ADDR
587 value_as_address (struct value *val)
588 {
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591 #if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
595 return ADDR_BITS_REMOVE (value_as_long (val));
596 #else
597
598 /* There are several targets (IA-64, PowerPC, and others) which
599 don't represent pointers to functions as simply the address of
600 the function's entry point. For example, on the IA-64, a
601 function pointer points to a two-word descriptor, generated by
602 the linker, which contains the function's entry point, and the
603 value the IA-64 "global pointer" register should have --- to
604 support position-independent code. The linker generates
605 descriptors only for those functions whose addresses are taken.
606
607 On such targets, it's difficult for GDB to convert an arbitrary
608 function address into a function pointer; it has to either find
609 an existing descriptor for that function, or call malloc and
610 build its own. On some targets, it is impossible for GDB to
611 build a descriptor at all: the descriptor must contain a jump
612 instruction; data memory cannot be executed; and code memory
613 cannot be modified.
614
615 Upon entry to this function, if VAL is a value of type `function'
616 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
617 VALUE_ADDRESS (val) is the address of the function. This is what
618 you'll get if you evaluate an expression like `main'. The call
619 to COERCE_ARRAY below actually does all the usual unary
620 conversions, which includes converting values of type `function'
621 to `pointer to function'. This is the challenging conversion
622 discussed above. Then, `unpack_long' will convert that pointer
623 back into an address.
624
625 So, suppose the user types `disassemble foo' on an architecture
626 with a strange function pointer representation, on which GDB
627 cannot build its own descriptors, and suppose further that `foo'
628 has no linker-built descriptor. The address->pointer conversion
629 will signal an error and prevent the command from running, even
630 though the next step would have been to convert the pointer
631 directly back into the same address.
632
633 The following shortcut avoids this whole mess. If VAL is a
634 function, just return its address directly. */
635 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
636 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
637 return VALUE_ADDRESS (val);
638
639 val = coerce_array (val);
640
641 /* Some architectures (e.g. Harvard), map instruction and data
642 addresses onto a single large unified address space. For
643 instance: An architecture may consider a large integer in the
644 range 0x10000000 .. 0x1000ffff to already represent a data
645 addresses (hence not need a pointer to address conversion) while
646 a small integer would still need to be converted integer to
647 pointer to address. Just assume such architectures handle all
648 integer conversions in a single function. */
649
650 /* JimB writes:
651
652 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
653 must admonish GDB hackers to make sure its behavior matches the
654 compiler's, whenever possible.
655
656 In general, I think GDB should evaluate expressions the same way
657 the compiler does. When the user copies an expression out of
658 their source code and hands it to a `print' command, they should
659 get the same value the compiler would have computed. Any
660 deviation from this rule can cause major confusion and annoyance,
661 and needs to be justified carefully. In other words, GDB doesn't
662 really have the freedom to do these conversions in clever and
663 useful ways.
664
665 AndrewC pointed out that users aren't complaining about how GDB
666 casts integers to pointers; they are complaining that they can't
667 take an address from a disassembly listing and give it to `x/i'.
668 This is certainly important.
669
670 Adding an architecture method like integer_to_address() certainly
671 makes it possible for GDB to "get it right" in all circumstances
672 --- the target has complete control over how things get done, so
673 people can Do The Right Thing for their target without breaking
674 anyone else. The standard doesn't specify how integers get
675 converted to pointers; usually, the ABI doesn't either, but
676 ABI-specific code is a more reasonable place to handle it. */
677
678 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
679 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
680 && gdbarch_integer_to_address_p (current_gdbarch))
681 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
682 VALUE_CONTENTS (val));
683
684 return unpack_long (value_type (val), VALUE_CONTENTS (val));
685 #endif
686 }
687 \f
688 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
689 as a long, or as a double, assuming the raw data is described
690 by type TYPE. Knows how to convert different sizes of values
691 and can convert between fixed and floating point. We don't assume
692 any alignment for the raw data. Return value is in host byte order.
693
694 If you want functions and arrays to be coerced to pointers, and
695 references to be dereferenced, call value_as_long() instead.
696
697 C++: It is assumed that the front-end has taken care of
698 all matters concerning pointers to members. A pointer
699 to member which reaches here is considered to be equivalent
700 to an INT (or some size). After all, it is only an offset. */
701
702 LONGEST
703 unpack_long (struct type *type, const char *valaddr)
704 {
705 enum type_code code = TYPE_CODE (type);
706 int len = TYPE_LENGTH (type);
707 int nosign = TYPE_UNSIGNED (type);
708
709 if (current_language->la_language == language_scm
710 && is_scmvalue_type (type))
711 return scm_unpack (type, valaddr, TYPE_CODE_INT);
712
713 switch (code)
714 {
715 case TYPE_CODE_TYPEDEF:
716 return unpack_long (check_typedef (type), valaddr);
717 case TYPE_CODE_ENUM:
718 case TYPE_CODE_BOOL:
719 case TYPE_CODE_INT:
720 case TYPE_CODE_CHAR:
721 case TYPE_CODE_RANGE:
722 if (nosign)
723 return extract_unsigned_integer (valaddr, len);
724 else
725 return extract_signed_integer (valaddr, len);
726
727 case TYPE_CODE_FLT:
728 return extract_typed_floating (valaddr, type);
729
730 case TYPE_CODE_PTR:
731 case TYPE_CODE_REF:
732 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
733 whether we want this to be true eventually. */
734 return extract_typed_address (valaddr, type);
735
736 case TYPE_CODE_MEMBER:
737 error ("not implemented: member types in unpack_long");
738
739 default:
740 error ("Value can't be converted to integer.");
741 }
742 return 0; /* Placate lint. */
743 }
744
745 /* Return a double value from the specified type and address.
746 INVP points to an int which is set to 0 for valid value,
747 1 for invalid value (bad float format). In either case,
748 the returned double is OK to use. Argument is in target
749 format, result is in host format. */
750
751 DOUBLEST
752 unpack_double (struct type *type, const char *valaddr, int *invp)
753 {
754 enum type_code code;
755 int len;
756 int nosign;
757
758 *invp = 0; /* Assume valid. */
759 CHECK_TYPEDEF (type);
760 code = TYPE_CODE (type);
761 len = TYPE_LENGTH (type);
762 nosign = TYPE_UNSIGNED (type);
763 if (code == TYPE_CODE_FLT)
764 {
765 /* NOTE: cagney/2002-02-19: There was a test here to see if the
766 floating-point value was valid (using the macro
767 INVALID_FLOAT). That test/macro have been removed.
768
769 It turns out that only the VAX defined this macro and then
770 only in a non-portable way. Fixing the portability problem
771 wouldn't help since the VAX floating-point code is also badly
772 bit-rotten. The target needs to add definitions for the
773 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
774 exactly describe the target floating-point format. The
775 problem here is that the corresponding floatformat_vax_f and
776 floatformat_vax_d values these methods should be set to are
777 also not defined either. Oops!
778
779 Hopefully someone will add both the missing floatformat
780 definitions and the new cases for floatformat_is_valid (). */
781
782 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
783 {
784 *invp = 1;
785 return 0.0;
786 }
787
788 return extract_typed_floating (valaddr, type);
789 }
790 else if (nosign)
791 {
792 /* Unsigned -- be sure we compensate for signed LONGEST. */
793 return (ULONGEST) unpack_long (type, valaddr);
794 }
795 else
796 {
797 /* Signed -- we are OK with unpack_long. */
798 return unpack_long (type, valaddr);
799 }
800 }
801
802 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
803 as a CORE_ADDR, assuming the raw data is described by type TYPE.
804 We don't assume any alignment for the raw data. Return value is in
805 host byte order.
806
807 If you want functions and arrays to be coerced to pointers, and
808 references to be dereferenced, call value_as_address() instead.
809
810 C++: It is assumed that the front-end has taken care of
811 all matters concerning pointers to members. A pointer
812 to member which reaches here is considered to be equivalent
813 to an INT (or some size). After all, it is only an offset. */
814
815 CORE_ADDR
816 unpack_pointer (struct type *type, const char *valaddr)
817 {
818 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
819 whether we want this to be true eventually. */
820 return unpack_long (type, valaddr);
821 }
822
823 \f
824 /* Get the value of the FIELDN'th field (which must be static) of
825 TYPE. Return NULL if the field doesn't exist or has been
826 optimized out. */
827
828 struct value *
829 value_static_field (struct type *type, int fieldno)
830 {
831 struct value *retval;
832
833 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
834 {
835 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
836 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
837 }
838 else
839 {
840 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
841 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
842 if (sym == NULL)
843 {
844 /* With some compilers, e.g. HP aCC, static data members are reported
845 as non-debuggable symbols */
846 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
847 if (!msym)
848 return NULL;
849 else
850 {
851 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
852 SYMBOL_VALUE_ADDRESS (msym));
853 }
854 }
855 else
856 {
857 /* SYM should never have a SYMBOL_CLASS which will require
858 read_var_value to use the FRAME parameter. */
859 if (symbol_read_needs_frame (sym))
860 warning ("static field's value depends on the current "
861 "frame - bad debug info?");
862 retval = read_var_value (sym, NULL);
863 }
864 if (retval && VALUE_LVAL (retval) == lval_memory)
865 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
866 VALUE_ADDRESS (retval));
867 }
868 return retval;
869 }
870
871 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
872 You have to be careful here, since the size of the data area for the value
873 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
874 than the old enclosing type, you have to allocate more space for the data.
875 The return value is a pointer to the new version of this value structure. */
876
877 struct value *
878 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
879 {
880 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
881 {
882 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
883 return val;
884 }
885 else
886 {
887 struct value *new_val;
888 struct value *prev;
889
890 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
891
892 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
893
894 /* We have to make sure this ends up in the same place in the value
895 chain as the original copy, so it's clean-up behavior is the same.
896 If the value has been released, this is a waste of time, but there
897 is no way to tell that in advance, so... */
898
899 if (val != all_values)
900 {
901 for (prev = all_values; prev != NULL; prev = prev->next)
902 {
903 if (prev->next == val)
904 {
905 prev->next = new_val;
906 break;
907 }
908 }
909 }
910
911 return new_val;
912 }
913 }
914
915 /* Given a value ARG1 (offset by OFFSET bytes)
916 of a struct or union type ARG_TYPE,
917 extract and return the value of one of its (non-static) fields.
918 FIELDNO says which field. */
919
920 struct value *
921 value_primitive_field (struct value *arg1, int offset,
922 int fieldno, struct type *arg_type)
923 {
924 struct value *v;
925 struct type *type;
926
927 CHECK_TYPEDEF (arg_type);
928 type = TYPE_FIELD_TYPE (arg_type, fieldno);
929
930 /* Handle packed fields */
931
932 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
933 {
934 v = value_from_longest (type,
935 unpack_field_as_long (arg_type,
936 VALUE_CONTENTS (arg1)
937 + offset,
938 fieldno));
939 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
940 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
941 v->offset = value_offset (arg1) + offset
942 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
943 }
944 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
945 {
946 /* This field is actually a base subobject, so preserve the
947 entire object's contents for later references to virtual
948 bases, etc. */
949 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
950 v->type = type;
951 if (VALUE_LAZY (arg1))
952 VALUE_LAZY (v) = 1;
953 else
954 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
955 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
956 v->offset = value_offset (arg1);
957 VALUE_EMBEDDED_OFFSET (v)
958 = offset +
959 VALUE_EMBEDDED_OFFSET (arg1) +
960 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
961 }
962 else
963 {
964 /* Plain old data member */
965 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
966 v = allocate_value (type);
967 if (VALUE_LAZY (arg1))
968 VALUE_LAZY (v) = 1;
969 else
970 memcpy (value_contents_raw (v),
971 value_contents_raw (arg1) + offset,
972 TYPE_LENGTH (type));
973 v->offset = (value_offset (arg1) + offset
974 + VALUE_EMBEDDED_OFFSET (arg1));
975 }
976 VALUE_LVAL (v) = VALUE_LVAL (arg1);
977 if (VALUE_LVAL (arg1) == lval_internalvar)
978 VALUE_LVAL (v) = lval_internalvar_component;
979 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
980 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
981 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
982 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
983 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
984 return v;
985 }
986
987 /* Given a value ARG1 of a struct or union type,
988 extract and return the value of one of its (non-static) fields.
989 FIELDNO says which field. */
990
991 struct value *
992 value_field (struct value *arg1, int fieldno)
993 {
994 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
995 }
996
997 /* Return a non-virtual function as a value.
998 F is the list of member functions which contains the desired method.
999 J is an index into F which provides the desired method.
1000
1001 We only use the symbol for its address, so be happy with either a
1002 full symbol or a minimal symbol.
1003 */
1004
1005 struct value *
1006 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1007 int offset)
1008 {
1009 struct value *v;
1010 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1011 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1012 struct symbol *sym;
1013 struct minimal_symbol *msym;
1014
1015 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1016 if (sym != NULL)
1017 {
1018 msym = NULL;
1019 }
1020 else
1021 {
1022 gdb_assert (sym == NULL);
1023 msym = lookup_minimal_symbol (physname, NULL, NULL);
1024 if (msym == NULL)
1025 return NULL;
1026 }
1027
1028 v = allocate_value (ftype);
1029 if (sym)
1030 {
1031 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1032 }
1033 else
1034 {
1035 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1036 }
1037
1038 if (arg1p)
1039 {
1040 if (type != value_type (*arg1p))
1041 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1042 value_addr (*arg1p)));
1043
1044 /* Move the `this' pointer according to the offset.
1045 VALUE_OFFSET (*arg1p) += offset;
1046 */
1047 }
1048
1049 return v;
1050 }
1051
1052 \f
1053 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1054 VALADDR.
1055
1056 Extracting bits depends on endianness of the machine. Compute the
1057 number of least significant bits to discard. For big endian machines,
1058 we compute the total number of bits in the anonymous object, subtract
1059 off the bit count from the MSB of the object to the MSB of the
1060 bitfield, then the size of the bitfield, which leaves the LSB discard
1061 count. For little endian machines, the discard count is simply the
1062 number of bits from the LSB of the anonymous object to the LSB of the
1063 bitfield.
1064
1065 If the field is signed, we also do sign extension. */
1066
1067 LONGEST
1068 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1069 {
1070 ULONGEST val;
1071 ULONGEST valmask;
1072 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1073 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1074 int lsbcount;
1075 struct type *field_type;
1076
1077 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1078 field_type = TYPE_FIELD_TYPE (type, fieldno);
1079 CHECK_TYPEDEF (field_type);
1080
1081 /* Extract bits. See comment above. */
1082
1083 if (BITS_BIG_ENDIAN)
1084 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1085 else
1086 lsbcount = (bitpos % 8);
1087 val >>= lsbcount;
1088
1089 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1090 If the field is signed, and is negative, then sign extend. */
1091
1092 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1093 {
1094 valmask = (((ULONGEST) 1) << bitsize) - 1;
1095 val &= valmask;
1096 if (!TYPE_UNSIGNED (field_type))
1097 {
1098 if (val & (valmask ^ (valmask >> 1)))
1099 {
1100 val |= ~valmask;
1101 }
1102 }
1103 }
1104 return (val);
1105 }
1106
1107 /* Modify the value of a bitfield. ADDR points to a block of memory in
1108 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1109 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1110 indicate which bits (in target bit order) comprise the bitfield.
1111 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1112 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1113
1114 void
1115 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1116 {
1117 ULONGEST oword;
1118 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1119
1120 /* If a negative fieldval fits in the field in question, chop
1121 off the sign extension bits. */
1122 if ((~fieldval & ~(mask >> 1)) == 0)
1123 fieldval &= mask;
1124
1125 /* Warn if value is too big to fit in the field in question. */
1126 if (0 != (fieldval & ~mask))
1127 {
1128 /* FIXME: would like to include fieldval in the message, but
1129 we don't have a sprintf_longest. */
1130 warning ("Value does not fit in %d bits.", bitsize);
1131
1132 /* Truncate it, otherwise adjoining fields may be corrupted. */
1133 fieldval &= mask;
1134 }
1135
1136 oword = extract_unsigned_integer (addr, sizeof oword);
1137
1138 /* Shifting for bit field depends on endianness of the target machine. */
1139 if (BITS_BIG_ENDIAN)
1140 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1141
1142 oword &= ~(mask << bitpos);
1143 oword |= fieldval << bitpos;
1144
1145 store_unsigned_integer (addr, sizeof oword, oword);
1146 }
1147 \f
1148 /* Convert C numbers into newly allocated values */
1149
1150 struct value *
1151 value_from_longest (struct type *type, LONGEST num)
1152 {
1153 struct value *val = allocate_value (type);
1154 enum type_code code;
1155 int len;
1156 retry:
1157 code = TYPE_CODE (type);
1158 len = TYPE_LENGTH (type);
1159
1160 switch (code)
1161 {
1162 case TYPE_CODE_TYPEDEF:
1163 type = check_typedef (type);
1164 goto retry;
1165 case TYPE_CODE_INT:
1166 case TYPE_CODE_CHAR:
1167 case TYPE_CODE_ENUM:
1168 case TYPE_CODE_BOOL:
1169 case TYPE_CODE_RANGE:
1170 store_signed_integer (value_contents_raw (val), len, num);
1171 break;
1172
1173 case TYPE_CODE_REF:
1174 case TYPE_CODE_PTR:
1175 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1176 break;
1177
1178 default:
1179 error ("Unexpected type (%d) encountered for integer constant.", code);
1180 }
1181 return val;
1182 }
1183
1184
1185 /* Create a value representing a pointer of type TYPE to the address
1186 ADDR. */
1187 struct value *
1188 value_from_pointer (struct type *type, CORE_ADDR addr)
1189 {
1190 struct value *val = allocate_value (type);
1191 store_typed_address (value_contents_raw (val), type, addr);
1192 return val;
1193 }
1194
1195
1196 /* Create a value for a string constant to be stored locally
1197 (not in the inferior's memory space, but in GDB memory).
1198 This is analogous to value_from_longest, which also does not
1199 use inferior memory. String shall NOT contain embedded nulls. */
1200
1201 struct value *
1202 value_from_string (char *ptr)
1203 {
1204 struct value *val;
1205 int len = strlen (ptr);
1206 int lowbound = current_language->string_lower_bound;
1207 struct type *string_char_type;
1208 struct type *rangetype;
1209 struct type *stringtype;
1210
1211 rangetype = create_range_type ((struct type *) NULL,
1212 builtin_type_int,
1213 lowbound, len + lowbound - 1);
1214 string_char_type = language_string_char_type (current_language,
1215 current_gdbarch);
1216 stringtype = create_array_type ((struct type *) NULL,
1217 string_char_type,
1218 rangetype);
1219 val = allocate_value (stringtype);
1220 memcpy (value_contents_raw (val), ptr, len);
1221 return val;
1222 }
1223
1224 struct value *
1225 value_from_double (struct type *type, DOUBLEST num)
1226 {
1227 struct value *val = allocate_value (type);
1228 struct type *base_type = check_typedef (type);
1229 enum type_code code = TYPE_CODE (base_type);
1230 int len = TYPE_LENGTH (base_type);
1231
1232 if (code == TYPE_CODE_FLT)
1233 {
1234 store_typed_floating (value_contents_raw (val), base_type, num);
1235 }
1236 else
1237 error ("Unexpected type encountered for floating constant.");
1238
1239 return val;
1240 }
1241
1242 struct value *
1243 coerce_ref (struct value *arg)
1244 {
1245 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1246 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1247 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1248 unpack_pointer (value_type (arg),
1249 VALUE_CONTENTS (arg)));
1250 return arg;
1251 }
1252
1253 struct value *
1254 coerce_array (struct value *arg)
1255 {
1256 arg = coerce_ref (arg);
1257 if (current_language->c_style_arrays
1258 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1259 arg = value_coerce_array (arg);
1260 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1261 arg = value_coerce_function (arg);
1262 return arg;
1263 }
1264
1265 struct value *
1266 coerce_number (struct value *arg)
1267 {
1268 arg = coerce_array (arg);
1269 arg = coerce_enum (arg);
1270 return arg;
1271 }
1272
1273 struct value *
1274 coerce_enum (struct value *arg)
1275 {
1276 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1277 arg = value_cast (builtin_type_unsigned_int, arg);
1278 return arg;
1279 }
1280 \f
1281
1282 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1283 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1284 is the type (which is known to be struct, union or array).
1285
1286 On most machines, the struct convention is used unless we are
1287 using gcc and the type is of a special size. */
1288 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1289 native compiler. GCC 2.3.3 was the last release that did it the
1290 old way. Since gcc2_compiled was not changed, we have no
1291 way to correctly win in all cases, so we just do the right thing
1292 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1293 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1294 would cause more chaos than dealing with some struct returns being
1295 handled wrong. */
1296 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1297 dead. */
1298
1299 int
1300 generic_use_struct_convention (int gcc_p, struct type *value_type)
1301 {
1302 return !(TYPE_LENGTH (value_type) == 1
1303 || TYPE_LENGTH (value_type) == 2
1304 || TYPE_LENGTH (value_type) == 4
1305 || TYPE_LENGTH (value_type) == 8);
1306 }
1307
1308 /* Return true if the function returning the specified type is using
1309 the convention of returning structures in memory (passing in the
1310 address as a hidden first parameter). GCC_P is nonzero if compiled
1311 with GCC. */
1312
1313 int
1314 using_struct_return (struct type *value_type, int gcc_p)
1315 {
1316 enum type_code code = TYPE_CODE (value_type);
1317
1318 if (code == TYPE_CODE_ERROR)
1319 error ("Function return type unknown.");
1320
1321 if (code == TYPE_CODE_VOID)
1322 /* A void return value is never in memory. See also corresponding
1323 code in "print_return_value". */
1324 return 0;
1325
1326 /* Probe the architecture for the return-value convention. */
1327 return (gdbarch_return_value (current_gdbarch, value_type,
1328 NULL, NULL, NULL)
1329 != RETURN_VALUE_REGISTER_CONVENTION);
1330 }
1331
1332 void
1333 _initialize_values (void)
1334 {
1335 add_cmd ("convenience", no_class, show_convenience,
1336 "Debugger convenience (\"$foo\") variables.\n\
1337 These variables are created when you assign them values;\n\
1338 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1339 A few convenience variables are given values automatically:\n\
1340 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1341 \"$__\" holds the contents of the last address examined with \"x\".",
1342 &showlist);
1343
1344 add_cmd ("values", no_class, show_values,
1345 "Elements of value history around item number IDX (or last ten).",
1346 &showlist);
1347 }