]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
PR gdb/10884
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257 struct type *atype = check_typedef (type);
258
259 val = (struct value *) xzalloc (sizeof (struct value));
260 val->contents = NULL;
261 val->next = all_values;
262 all_values = val;
263 val->type = type;
264 val->enclosing_type = type;
265 VALUE_LVAL (val) = not_lval;
266 val->location.address = 0;
267 VALUE_FRAME_ID (val) = null_frame_id;
268 val->offset = 0;
269 val->bitpos = 0;
270 val->bitsize = 0;
271 VALUE_REGNUM (val) = -1;
272 val->lazy = 1;
273 val->optimized_out = 0;
274 val->embedded_offset = 0;
275 val->pointed_to_offset = 0;
276 val->modifiable = 1;
277 val->initialized = 1; /* Default to initialized. */
278
279 /* Values start out on the all_values chain. */
280 val->reference_count = 1;
281
282 return val;
283 }
284
285 /* Allocate the contents of VAL if it has not been allocated yet. */
286
287 void
288 allocate_value_contents (struct value *val)
289 {
290 if (!val->contents)
291 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
292 }
293
294 /* Allocate a value and its contents for type TYPE. */
295
296 struct value *
297 allocate_value (struct type *type)
298 {
299 struct value *val = allocate_value_lazy (type);
300 allocate_value_contents (val);
301 val->lazy = 0;
302 return val;
303 }
304
305 /* Allocate a value that has the correct length
306 for COUNT repetitions of type TYPE. */
307
308 struct value *
309 allocate_repeat_value (struct type *type, int count)
310 {
311 int low_bound = current_language->string_lower_bound; /* ??? */
312 /* FIXME-type-allocation: need a way to free this type when we are
313 done with it. */
314 struct type *array_type
315 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
316 return allocate_value (array_type);
317 }
318
319 struct value *
320 allocate_computed_value (struct type *type,
321 struct lval_funcs *funcs,
322 void *closure)
323 {
324 struct value *v = allocate_value (type);
325 VALUE_LVAL (v) = lval_computed;
326 v->location.computed.funcs = funcs;
327 v->location.computed.closure = closure;
328 set_value_lazy (v, 1);
329
330 return v;
331 }
332
333 /* Accessor methods. */
334
335 struct value *
336 value_next (struct value *value)
337 {
338 return value->next;
339 }
340
341 struct type *
342 value_type (struct value *value)
343 {
344 return value->type;
345 }
346 void
347 deprecated_set_value_type (struct value *value, struct type *type)
348 {
349 value->type = type;
350 }
351
352 int
353 value_offset (struct value *value)
354 {
355 return value->offset;
356 }
357 void
358 set_value_offset (struct value *value, int offset)
359 {
360 value->offset = offset;
361 }
362
363 int
364 value_bitpos (struct value *value)
365 {
366 return value->bitpos;
367 }
368 void
369 set_value_bitpos (struct value *value, int bit)
370 {
371 value->bitpos = bit;
372 }
373
374 int
375 value_bitsize (struct value *value)
376 {
377 return value->bitsize;
378 }
379 void
380 set_value_bitsize (struct value *value, int bit)
381 {
382 value->bitsize = bit;
383 }
384
385 struct value *
386 value_parent (struct value *value)
387 {
388 return value->parent;
389 }
390
391 gdb_byte *
392 value_contents_raw (struct value *value)
393 {
394 allocate_value_contents (value);
395 return value->contents + value->embedded_offset;
396 }
397
398 gdb_byte *
399 value_contents_all_raw (struct value *value)
400 {
401 allocate_value_contents (value);
402 return value->contents;
403 }
404
405 struct type *
406 value_enclosing_type (struct value *value)
407 {
408 return value->enclosing_type;
409 }
410
411 const gdb_byte *
412 value_contents_all (struct value *value)
413 {
414 if (value->lazy)
415 value_fetch_lazy (value);
416 return value->contents;
417 }
418
419 int
420 value_lazy (struct value *value)
421 {
422 return value->lazy;
423 }
424
425 void
426 set_value_lazy (struct value *value, int val)
427 {
428 value->lazy = val;
429 }
430
431 int
432 value_stack (struct value *value)
433 {
434 return value->stack;
435 }
436
437 void
438 set_value_stack (struct value *value, int val)
439 {
440 value->stack = val;
441 }
442
443 const gdb_byte *
444 value_contents (struct value *value)
445 {
446 return value_contents_writeable (value);
447 }
448
449 gdb_byte *
450 value_contents_writeable (struct value *value)
451 {
452 if (value->lazy)
453 value_fetch_lazy (value);
454 return value_contents_raw (value);
455 }
456
457 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
458 this function is different from value_equal; in C the operator ==
459 can return 0 even if the two values being compared are equal. */
460
461 int
462 value_contents_equal (struct value *val1, struct value *val2)
463 {
464 struct type *type1;
465 struct type *type2;
466 int len;
467
468 type1 = check_typedef (value_type (val1));
469 type2 = check_typedef (value_type (val2));
470 len = TYPE_LENGTH (type1);
471 if (len != TYPE_LENGTH (type2))
472 return 0;
473
474 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
475 }
476
477 int
478 value_optimized_out (struct value *value)
479 {
480 return value->optimized_out;
481 }
482
483 void
484 set_value_optimized_out (struct value *value, int val)
485 {
486 value->optimized_out = val;
487 }
488
489 int
490 value_embedded_offset (struct value *value)
491 {
492 return value->embedded_offset;
493 }
494
495 void
496 set_value_embedded_offset (struct value *value, int val)
497 {
498 value->embedded_offset = val;
499 }
500
501 int
502 value_pointed_to_offset (struct value *value)
503 {
504 return value->pointed_to_offset;
505 }
506
507 void
508 set_value_pointed_to_offset (struct value *value, int val)
509 {
510 value->pointed_to_offset = val;
511 }
512
513 struct lval_funcs *
514 value_computed_funcs (struct value *v)
515 {
516 gdb_assert (VALUE_LVAL (v) == lval_computed);
517
518 return v->location.computed.funcs;
519 }
520
521 void *
522 value_computed_closure (struct value *v)
523 {
524 gdb_assert (VALUE_LVAL (v) == lval_computed);
525
526 return v->location.computed.closure;
527 }
528
529 enum lval_type *
530 deprecated_value_lval_hack (struct value *value)
531 {
532 return &value->lval;
533 }
534
535 CORE_ADDR
536 value_address (struct value *value)
537 {
538 if (value->lval == lval_internalvar
539 || value->lval == lval_internalvar_component)
540 return 0;
541 return value->location.address + value->offset;
542 }
543
544 CORE_ADDR
545 value_raw_address (struct value *value)
546 {
547 if (value->lval == lval_internalvar
548 || value->lval == lval_internalvar_component)
549 return 0;
550 return value->location.address;
551 }
552
553 void
554 set_value_address (struct value *value, CORE_ADDR addr)
555 {
556 gdb_assert (value->lval != lval_internalvar
557 && value->lval != lval_internalvar_component);
558 value->location.address = addr;
559 }
560
561 struct internalvar **
562 deprecated_value_internalvar_hack (struct value *value)
563 {
564 return &value->location.internalvar;
565 }
566
567 struct frame_id *
568 deprecated_value_frame_id_hack (struct value *value)
569 {
570 return &value->frame_id;
571 }
572
573 short *
574 deprecated_value_regnum_hack (struct value *value)
575 {
576 return &value->regnum;
577 }
578
579 int
580 deprecated_value_modifiable (struct value *value)
581 {
582 return value->modifiable;
583 }
584 void
585 deprecated_set_value_modifiable (struct value *value, int modifiable)
586 {
587 value->modifiable = modifiable;
588 }
589 \f
590 /* Return a mark in the value chain. All values allocated after the
591 mark is obtained (except for those released) are subject to being freed
592 if a subsequent value_free_to_mark is passed the mark. */
593 struct value *
594 value_mark (void)
595 {
596 return all_values;
597 }
598
599 /* Take a reference to VAL. VAL will not be deallocated until all
600 references are released. */
601
602 void
603 value_incref (struct value *val)
604 {
605 val->reference_count++;
606 }
607
608 /* Release a reference to VAL, which was acquired with value_incref.
609 This function is also called to deallocate values from the value
610 chain. */
611
612 void
613 value_free (struct value *val)
614 {
615 if (val)
616 {
617 gdb_assert (val->reference_count > 0);
618 val->reference_count--;
619 if (val->reference_count > 0)
620 return;
621
622 /* If there's an associated parent value, drop our reference to
623 it. */
624 if (val->parent != NULL)
625 value_free (val->parent);
626
627 if (VALUE_LVAL (val) == lval_computed)
628 {
629 struct lval_funcs *funcs = val->location.computed.funcs;
630
631 if (funcs->free_closure)
632 funcs->free_closure (val);
633 }
634
635 xfree (val->contents);
636 }
637 xfree (val);
638 }
639
640 /* Free all values allocated since MARK was obtained by value_mark
641 (except for those released). */
642 void
643 value_free_to_mark (struct value *mark)
644 {
645 struct value *val;
646 struct value *next;
647
648 for (val = all_values; val && val != mark; val = next)
649 {
650 next = val->next;
651 value_free (val);
652 }
653 all_values = val;
654 }
655
656 /* Free all the values that have been allocated (except for those released).
657 Call after each command, successful or not.
658 In practice this is called before each command, which is sufficient. */
659
660 void
661 free_all_values (void)
662 {
663 struct value *val;
664 struct value *next;
665
666 for (val = all_values; val; val = next)
667 {
668 next = val->next;
669 value_free (val);
670 }
671
672 all_values = 0;
673 }
674
675 /* Remove VAL from the chain all_values
676 so it will not be freed automatically. */
677
678 void
679 release_value (struct value *val)
680 {
681 struct value *v;
682
683 if (all_values == val)
684 {
685 all_values = val->next;
686 return;
687 }
688
689 for (v = all_values; v; v = v->next)
690 {
691 if (v->next == val)
692 {
693 v->next = val->next;
694 break;
695 }
696 }
697 }
698
699 /* Release all values up to mark */
700 struct value *
701 value_release_to_mark (struct value *mark)
702 {
703 struct value *val;
704 struct value *next;
705
706 for (val = next = all_values; next; next = next->next)
707 if (next->next == mark)
708 {
709 all_values = next->next;
710 next->next = NULL;
711 return val;
712 }
713 all_values = 0;
714 return val;
715 }
716
717 /* Return a copy of the value ARG.
718 It contains the same contents, for same memory address,
719 but it's a different block of storage. */
720
721 struct value *
722 value_copy (struct value *arg)
723 {
724 struct type *encl_type = value_enclosing_type (arg);
725 struct value *val;
726
727 if (value_lazy (arg))
728 val = allocate_value_lazy (encl_type);
729 else
730 val = allocate_value (encl_type);
731 val->type = arg->type;
732 VALUE_LVAL (val) = VALUE_LVAL (arg);
733 val->location = arg->location;
734 val->offset = arg->offset;
735 val->bitpos = arg->bitpos;
736 val->bitsize = arg->bitsize;
737 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
738 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
739 val->lazy = arg->lazy;
740 val->optimized_out = arg->optimized_out;
741 val->embedded_offset = value_embedded_offset (arg);
742 val->pointed_to_offset = arg->pointed_to_offset;
743 val->modifiable = arg->modifiable;
744 if (!value_lazy (val))
745 {
746 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
747 TYPE_LENGTH (value_enclosing_type (arg)));
748
749 }
750 val->parent = arg->parent;
751 if (val->parent)
752 value_incref (val->parent);
753 if (VALUE_LVAL (val) == lval_computed)
754 {
755 struct lval_funcs *funcs = val->location.computed.funcs;
756
757 if (funcs->copy_closure)
758 val->location.computed.closure = funcs->copy_closure (val);
759 }
760 return val;
761 }
762
763 void
764 set_value_component_location (struct value *component, struct value *whole)
765 {
766 if (VALUE_LVAL (whole) == lval_internalvar)
767 VALUE_LVAL (component) = lval_internalvar_component;
768 else
769 VALUE_LVAL (component) = VALUE_LVAL (whole);
770
771 component->location = whole->location;
772 if (VALUE_LVAL (whole) == lval_computed)
773 {
774 struct lval_funcs *funcs = whole->location.computed.funcs;
775
776 if (funcs->copy_closure)
777 component->location.computed.closure = funcs->copy_closure (whole);
778 }
779 }
780
781 \f
782 /* Access to the value history. */
783
784 /* Record a new value in the value history.
785 Returns the absolute history index of the entry.
786 Result of -1 indicates the value was not saved; otherwise it is the
787 value history index of this new item. */
788
789 int
790 record_latest_value (struct value *val)
791 {
792 int i;
793
794 /* We don't want this value to have anything to do with the inferior anymore.
795 In particular, "set $1 = 50" should not affect the variable from which
796 the value was taken, and fast watchpoints should be able to assume that
797 a value on the value history never changes. */
798 if (value_lazy (val))
799 value_fetch_lazy (val);
800 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
801 from. This is a bit dubious, because then *&$1 does not just return $1
802 but the current contents of that location. c'est la vie... */
803 val->modifiable = 0;
804 release_value (val);
805
806 /* Here we treat value_history_count as origin-zero
807 and applying to the value being stored now. */
808
809 i = value_history_count % VALUE_HISTORY_CHUNK;
810 if (i == 0)
811 {
812 struct value_history_chunk *new
813 = (struct value_history_chunk *)
814 xmalloc (sizeof (struct value_history_chunk));
815 memset (new->values, 0, sizeof new->values);
816 new->next = value_history_chain;
817 value_history_chain = new;
818 }
819
820 value_history_chain->values[i] = val;
821
822 /* Now we regard value_history_count as origin-one
823 and applying to the value just stored. */
824
825 return ++value_history_count;
826 }
827
828 /* Return a copy of the value in the history with sequence number NUM. */
829
830 struct value *
831 access_value_history (int num)
832 {
833 struct value_history_chunk *chunk;
834 int i;
835 int absnum = num;
836
837 if (absnum <= 0)
838 absnum += value_history_count;
839
840 if (absnum <= 0)
841 {
842 if (num == 0)
843 error (_("The history is empty."));
844 else if (num == 1)
845 error (_("There is only one value in the history."));
846 else
847 error (_("History does not go back to $$%d."), -num);
848 }
849 if (absnum > value_history_count)
850 error (_("History has not yet reached $%d."), absnum);
851
852 absnum--;
853
854 /* Now absnum is always absolute and origin zero. */
855
856 chunk = value_history_chain;
857 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
858 i > 0; i--)
859 chunk = chunk->next;
860
861 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
862 }
863
864 static void
865 show_values (char *num_exp, int from_tty)
866 {
867 int i;
868 struct value *val;
869 static int num = 1;
870
871 if (num_exp)
872 {
873 /* "show values +" should print from the stored position.
874 "show values <exp>" should print around value number <exp>. */
875 if (num_exp[0] != '+' || num_exp[1] != '\0')
876 num = parse_and_eval_long (num_exp) - 5;
877 }
878 else
879 {
880 /* "show values" means print the last 10 values. */
881 num = value_history_count - 9;
882 }
883
884 if (num <= 0)
885 num = 1;
886
887 for (i = num; i < num + 10 && i <= value_history_count; i++)
888 {
889 struct value_print_options opts;
890 val = access_value_history (i);
891 printf_filtered (("$%d = "), i);
892 get_user_print_options (&opts);
893 value_print (val, gdb_stdout, &opts);
894 printf_filtered (("\n"));
895 }
896
897 /* The next "show values +" should start after what we just printed. */
898 num += 10;
899
900 /* Hitting just return after this command should do the same thing as
901 "show values +". If num_exp is null, this is unnecessary, since
902 "show values +" is not useful after "show values". */
903 if (from_tty && num_exp)
904 {
905 num_exp[0] = '+';
906 num_exp[1] = '\0';
907 }
908 }
909 \f
910 /* Internal variables. These are variables within the debugger
911 that hold values assigned by debugger commands.
912 The user refers to them with a '$' prefix
913 that does not appear in the variable names stored internally. */
914
915 struct internalvar
916 {
917 struct internalvar *next;
918 char *name;
919
920 /* We support various different kinds of content of an internal variable.
921 enum internalvar_kind specifies the kind, and union internalvar_data
922 provides the data associated with this particular kind. */
923
924 enum internalvar_kind
925 {
926 /* The internal variable is empty. */
927 INTERNALVAR_VOID,
928
929 /* The value of the internal variable is provided directly as
930 a GDB value object. */
931 INTERNALVAR_VALUE,
932
933 /* A fresh value is computed via a call-back routine on every
934 access to the internal variable. */
935 INTERNALVAR_MAKE_VALUE,
936
937 /* The internal variable holds a GDB internal convenience function. */
938 INTERNALVAR_FUNCTION,
939
940 /* The variable holds an integer value. */
941 INTERNALVAR_INTEGER,
942
943 /* The variable holds a pointer value. */
944 INTERNALVAR_POINTER,
945
946 /* The variable holds a GDB-provided string. */
947 INTERNALVAR_STRING,
948
949 } kind;
950
951 union internalvar_data
952 {
953 /* A value object used with INTERNALVAR_VALUE. */
954 struct value *value;
955
956 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
957 internalvar_make_value make_value;
958
959 /* The internal function used with INTERNALVAR_FUNCTION. */
960 struct
961 {
962 struct internal_function *function;
963 /* True if this is the canonical name for the function. */
964 int canonical;
965 } fn;
966
967 /* An integer value used with INTERNALVAR_INTEGER. */
968 struct
969 {
970 /* If type is non-NULL, it will be used as the type to generate
971 a value for this internal variable. If type is NULL, a default
972 integer type for the architecture is used. */
973 struct type *type;
974 LONGEST val;
975 } integer;
976
977 /* A pointer value used with INTERNALVAR_POINTER. */
978 struct
979 {
980 struct type *type;
981 CORE_ADDR val;
982 } pointer;
983
984 /* A string value used with INTERNALVAR_STRING. */
985 char *string;
986 } u;
987 };
988
989 static struct internalvar *internalvars;
990
991 /* If the variable does not already exist create it and give it the value given.
992 If no value is given then the default is zero. */
993 static void
994 init_if_undefined_command (char* args, int from_tty)
995 {
996 struct internalvar* intvar;
997
998 /* Parse the expression - this is taken from set_command(). */
999 struct expression *expr = parse_expression (args);
1000 register struct cleanup *old_chain =
1001 make_cleanup (free_current_contents, &expr);
1002
1003 /* Validate the expression.
1004 Was the expression an assignment?
1005 Or even an expression at all? */
1006 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1007 error (_("Init-if-undefined requires an assignment expression."));
1008
1009 /* Extract the variable from the parsed expression.
1010 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1011 if (expr->elts[1].opcode != OP_INTERNALVAR)
1012 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1013 intvar = expr->elts[2].internalvar;
1014
1015 /* Only evaluate the expression if the lvalue is void.
1016 This may still fail if the expresssion is invalid. */
1017 if (intvar->kind == INTERNALVAR_VOID)
1018 evaluate_expression (expr);
1019
1020 do_cleanups (old_chain);
1021 }
1022
1023
1024 /* Look up an internal variable with name NAME. NAME should not
1025 normally include a dollar sign.
1026
1027 If the specified internal variable does not exist,
1028 the return value is NULL. */
1029
1030 struct internalvar *
1031 lookup_only_internalvar (const char *name)
1032 {
1033 struct internalvar *var;
1034
1035 for (var = internalvars; var; var = var->next)
1036 if (strcmp (var->name, name) == 0)
1037 return var;
1038
1039 return NULL;
1040 }
1041
1042
1043 /* Create an internal variable with name NAME and with a void value.
1044 NAME should not normally include a dollar sign. */
1045
1046 struct internalvar *
1047 create_internalvar (const char *name)
1048 {
1049 struct internalvar *var;
1050 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1051 var->name = concat (name, (char *)NULL);
1052 var->kind = INTERNALVAR_VOID;
1053 var->next = internalvars;
1054 internalvars = var;
1055 return var;
1056 }
1057
1058 /* Create an internal variable with name NAME and register FUN as the
1059 function that value_of_internalvar uses to create a value whenever
1060 this variable is referenced. NAME should not normally include a
1061 dollar sign. */
1062
1063 struct internalvar *
1064 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1065 {
1066 struct internalvar *var = create_internalvar (name);
1067 var->kind = INTERNALVAR_MAKE_VALUE;
1068 var->u.make_value = fun;
1069 return var;
1070 }
1071
1072 /* Look up an internal variable with name NAME. NAME should not
1073 normally include a dollar sign.
1074
1075 If the specified internal variable does not exist,
1076 one is created, with a void value. */
1077
1078 struct internalvar *
1079 lookup_internalvar (const char *name)
1080 {
1081 struct internalvar *var;
1082
1083 var = lookup_only_internalvar (name);
1084 if (var)
1085 return var;
1086
1087 return create_internalvar (name);
1088 }
1089
1090 /* Return current value of internal variable VAR. For variables that
1091 are not inherently typed, use a value type appropriate for GDBARCH. */
1092
1093 struct value *
1094 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1095 {
1096 struct value *val;
1097
1098 switch (var->kind)
1099 {
1100 case INTERNALVAR_VOID:
1101 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1102 break;
1103
1104 case INTERNALVAR_FUNCTION:
1105 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1106 break;
1107
1108 case INTERNALVAR_INTEGER:
1109 if (!var->u.integer.type)
1110 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1111 var->u.integer.val);
1112 else
1113 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1114 break;
1115
1116 case INTERNALVAR_POINTER:
1117 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1118 break;
1119
1120 case INTERNALVAR_STRING:
1121 val = value_cstring (var->u.string, strlen (var->u.string),
1122 builtin_type (gdbarch)->builtin_char);
1123 break;
1124
1125 case INTERNALVAR_VALUE:
1126 val = value_copy (var->u.value);
1127 if (value_lazy (val))
1128 value_fetch_lazy (val);
1129 break;
1130
1131 case INTERNALVAR_MAKE_VALUE:
1132 val = (*var->u.make_value) (gdbarch, var);
1133 break;
1134
1135 default:
1136 internal_error (__FILE__, __LINE__, "bad kind");
1137 }
1138
1139 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1140 on this value go back to affect the original internal variable.
1141
1142 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1143 no underlying modifyable state in the internal variable.
1144
1145 Likewise, if the variable's value is a computed lvalue, we want
1146 references to it to produce another computed lvalue, where
1147 references and assignments actually operate through the
1148 computed value's functions.
1149
1150 This means that internal variables with computed values
1151 behave a little differently from other internal variables:
1152 assignments to them don't just replace the previous value
1153 altogether. At the moment, this seems like the behavior we
1154 want. */
1155
1156 if (var->kind != INTERNALVAR_MAKE_VALUE
1157 && val->lval != lval_computed)
1158 {
1159 VALUE_LVAL (val) = lval_internalvar;
1160 VALUE_INTERNALVAR (val) = var;
1161 }
1162
1163 return val;
1164 }
1165
1166 int
1167 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1168 {
1169 switch (var->kind)
1170 {
1171 case INTERNALVAR_INTEGER:
1172 *result = var->u.integer.val;
1173 return 1;
1174
1175 default:
1176 return 0;
1177 }
1178 }
1179
1180 static int
1181 get_internalvar_function (struct internalvar *var,
1182 struct internal_function **result)
1183 {
1184 switch (var->kind)
1185 {
1186 case INTERNALVAR_FUNCTION:
1187 *result = var->u.fn.function;
1188 return 1;
1189
1190 default:
1191 return 0;
1192 }
1193 }
1194
1195 void
1196 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1197 int bitsize, struct value *newval)
1198 {
1199 gdb_byte *addr;
1200
1201 switch (var->kind)
1202 {
1203 case INTERNALVAR_VALUE:
1204 addr = value_contents_writeable (var->u.value);
1205
1206 if (bitsize)
1207 modify_field (value_type (var->u.value), addr + offset,
1208 value_as_long (newval), bitpos, bitsize);
1209 else
1210 memcpy (addr + offset, value_contents (newval),
1211 TYPE_LENGTH (value_type (newval)));
1212 break;
1213
1214 default:
1215 /* We can never get a component of any other kind. */
1216 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1217 }
1218 }
1219
1220 void
1221 set_internalvar (struct internalvar *var, struct value *val)
1222 {
1223 enum internalvar_kind new_kind;
1224 union internalvar_data new_data = { 0 };
1225
1226 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1227 error (_("Cannot overwrite convenience function %s"), var->name);
1228
1229 /* Prepare new contents. */
1230 switch (TYPE_CODE (check_typedef (value_type (val))))
1231 {
1232 case TYPE_CODE_VOID:
1233 new_kind = INTERNALVAR_VOID;
1234 break;
1235
1236 case TYPE_CODE_INTERNAL_FUNCTION:
1237 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1238 new_kind = INTERNALVAR_FUNCTION;
1239 get_internalvar_function (VALUE_INTERNALVAR (val),
1240 &new_data.fn.function);
1241 /* Copies created here are never canonical. */
1242 break;
1243
1244 case TYPE_CODE_INT:
1245 new_kind = INTERNALVAR_INTEGER;
1246 new_data.integer.type = value_type (val);
1247 new_data.integer.val = value_as_long (val);
1248 break;
1249
1250 case TYPE_CODE_PTR:
1251 new_kind = INTERNALVAR_POINTER;
1252 new_data.pointer.type = value_type (val);
1253 new_data.pointer.val = value_as_address (val);
1254 break;
1255
1256 default:
1257 new_kind = INTERNALVAR_VALUE;
1258 new_data.value = value_copy (val);
1259 new_data.value->modifiable = 1;
1260
1261 /* Force the value to be fetched from the target now, to avoid problems
1262 later when this internalvar is referenced and the target is gone or
1263 has changed. */
1264 if (value_lazy (new_data.value))
1265 value_fetch_lazy (new_data.value);
1266
1267 /* Release the value from the value chain to prevent it from being
1268 deleted by free_all_values. From here on this function should not
1269 call error () until new_data is installed into the var->u to avoid
1270 leaking memory. */
1271 release_value (new_data.value);
1272 break;
1273 }
1274
1275 /* Clean up old contents. */
1276 clear_internalvar (var);
1277
1278 /* Switch over. */
1279 var->kind = new_kind;
1280 var->u = new_data;
1281 /* End code which must not call error(). */
1282 }
1283
1284 void
1285 set_internalvar_integer (struct internalvar *var, LONGEST l)
1286 {
1287 /* Clean up old contents. */
1288 clear_internalvar (var);
1289
1290 var->kind = INTERNALVAR_INTEGER;
1291 var->u.integer.type = NULL;
1292 var->u.integer.val = l;
1293 }
1294
1295 void
1296 set_internalvar_string (struct internalvar *var, const char *string)
1297 {
1298 /* Clean up old contents. */
1299 clear_internalvar (var);
1300
1301 var->kind = INTERNALVAR_STRING;
1302 var->u.string = xstrdup (string);
1303 }
1304
1305 static void
1306 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1307 {
1308 /* Clean up old contents. */
1309 clear_internalvar (var);
1310
1311 var->kind = INTERNALVAR_FUNCTION;
1312 var->u.fn.function = f;
1313 var->u.fn.canonical = 1;
1314 /* Variables installed here are always the canonical version. */
1315 }
1316
1317 void
1318 clear_internalvar (struct internalvar *var)
1319 {
1320 /* Clean up old contents. */
1321 switch (var->kind)
1322 {
1323 case INTERNALVAR_VALUE:
1324 value_free (var->u.value);
1325 break;
1326
1327 case INTERNALVAR_STRING:
1328 xfree (var->u.string);
1329 break;
1330
1331 default:
1332 break;
1333 }
1334
1335 /* Reset to void kind. */
1336 var->kind = INTERNALVAR_VOID;
1337 }
1338
1339 char *
1340 internalvar_name (struct internalvar *var)
1341 {
1342 return var->name;
1343 }
1344
1345 static struct internal_function *
1346 create_internal_function (const char *name,
1347 internal_function_fn handler, void *cookie)
1348 {
1349 struct internal_function *ifn = XNEW (struct internal_function);
1350 ifn->name = xstrdup (name);
1351 ifn->handler = handler;
1352 ifn->cookie = cookie;
1353 return ifn;
1354 }
1355
1356 char *
1357 value_internal_function_name (struct value *val)
1358 {
1359 struct internal_function *ifn;
1360 int result;
1361
1362 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1363 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1364 gdb_assert (result);
1365
1366 return ifn->name;
1367 }
1368
1369 struct value *
1370 call_internal_function (struct gdbarch *gdbarch,
1371 const struct language_defn *language,
1372 struct value *func, int argc, struct value **argv)
1373 {
1374 struct internal_function *ifn;
1375 int result;
1376
1377 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1378 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1379 gdb_assert (result);
1380
1381 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1382 }
1383
1384 /* The 'function' command. This does nothing -- it is just a
1385 placeholder to let "help function NAME" work. This is also used as
1386 the implementation of the sub-command that is created when
1387 registering an internal function. */
1388 static void
1389 function_command (char *command, int from_tty)
1390 {
1391 /* Do nothing. */
1392 }
1393
1394 /* Clean up if an internal function's command is destroyed. */
1395 static void
1396 function_destroyer (struct cmd_list_element *self, void *ignore)
1397 {
1398 xfree (self->name);
1399 xfree (self->doc);
1400 }
1401
1402 /* Add a new internal function. NAME is the name of the function; DOC
1403 is a documentation string describing the function. HANDLER is
1404 called when the function is invoked. COOKIE is an arbitrary
1405 pointer which is passed to HANDLER and is intended for "user
1406 data". */
1407 void
1408 add_internal_function (const char *name, const char *doc,
1409 internal_function_fn handler, void *cookie)
1410 {
1411 struct cmd_list_element *cmd;
1412 struct internal_function *ifn;
1413 struct internalvar *var = lookup_internalvar (name);
1414
1415 ifn = create_internal_function (name, handler, cookie);
1416 set_internalvar_function (var, ifn);
1417
1418 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1419 &functionlist);
1420 cmd->destroyer = function_destroyer;
1421 }
1422
1423 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1424 prevent cycles / duplicates. */
1425
1426 void
1427 preserve_one_value (struct value *value, struct objfile *objfile,
1428 htab_t copied_types)
1429 {
1430 if (TYPE_OBJFILE (value->type) == objfile)
1431 value->type = copy_type_recursive (objfile, value->type, copied_types);
1432
1433 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1434 value->enclosing_type = copy_type_recursive (objfile,
1435 value->enclosing_type,
1436 copied_types);
1437 }
1438
1439 /* Likewise for internal variable VAR. */
1440
1441 static void
1442 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1443 htab_t copied_types)
1444 {
1445 switch (var->kind)
1446 {
1447 case INTERNALVAR_INTEGER:
1448 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1449 var->u.integer.type
1450 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1451 break;
1452
1453 case INTERNALVAR_POINTER:
1454 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1455 var->u.pointer.type
1456 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1457 break;
1458
1459 case INTERNALVAR_VALUE:
1460 preserve_one_value (var->u.value, objfile, copied_types);
1461 break;
1462 }
1463 }
1464
1465 /* Update the internal variables and value history when OBJFILE is
1466 discarded; we must copy the types out of the objfile. New global types
1467 will be created for every convenience variable which currently points to
1468 this objfile's types, and the convenience variables will be adjusted to
1469 use the new global types. */
1470
1471 void
1472 preserve_values (struct objfile *objfile)
1473 {
1474 htab_t copied_types;
1475 struct value_history_chunk *cur;
1476 struct internalvar *var;
1477 struct value *val;
1478 int i;
1479
1480 /* Create the hash table. We allocate on the objfile's obstack, since
1481 it is soon to be deleted. */
1482 copied_types = create_copied_types_hash (objfile);
1483
1484 for (cur = value_history_chain; cur; cur = cur->next)
1485 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1486 if (cur->values[i])
1487 preserve_one_value (cur->values[i], objfile, copied_types);
1488
1489 for (var = internalvars; var; var = var->next)
1490 preserve_one_internalvar (var, objfile, copied_types);
1491
1492 preserve_python_values (objfile, copied_types);
1493
1494 htab_delete (copied_types);
1495 }
1496
1497 static void
1498 show_convenience (char *ignore, int from_tty)
1499 {
1500 struct gdbarch *gdbarch = get_current_arch ();
1501 struct internalvar *var;
1502 int varseen = 0;
1503 struct value_print_options opts;
1504
1505 get_user_print_options (&opts);
1506 for (var = internalvars; var; var = var->next)
1507 {
1508 if (!varseen)
1509 {
1510 varseen = 1;
1511 }
1512 printf_filtered (("$%s = "), var->name);
1513 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1514 &opts);
1515 printf_filtered (("\n"));
1516 }
1517 if (!varseen)
1518 printf_unfiltered (_("\
1519 No debugger convenience variables now defined.\n\
1520 Convenience variables have names starting with \"$\";\n\
1521 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1522 }
1523 \f
1524 /* Extract a value as a C number (either long or double).
1525 Knows how to convert fixed values to double, or
1526 floating values to long.
1527 Does not deallocate the value. */
1528
1529 LONGEST
1530 value_as_long (struct value *val)
1531 {
1532 /* This coerces arrays and functions, which is necessary (e.g.
1533 in disassemble_command). It also dereferences references, which
1534 I suspect is the most logical thing to do. */
1535 val = coerce_array (val);
1536 return unpack_long (value_type (val), value_contents (val));
1537 }
1538
1539 DOUBLEST
1540 value_as_double (struct value *val)
1541 {
1542 DOUBLEST foo;
1543 int inv;
1544
1545 foo = unpack_double (value_type (val), value_contents (val), &inv);
1546 if (inv)
1547 error (_("Invalid floating value found in program."));
1548 return foo;
1549 }
1550
1551 /* Extract a value as a C pointer. Does not deallocate the value.
1552 Note that val's type may not actually be a pointer; value_as_long
1553 handles all the cases. */
1554 CORE_ADDR
1555 value_as_address (struct value *val)
1556 {
1557 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1558
1559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1560 whether we want this to be true eventually. */
1561 #if 0
1562 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1563 non-address (e.g. argument to "signal", "info break", etc.), or
1564 for pointers to char, in which the low bits *are* significant. */
1565 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1566 #else
1567
1568 /* There are several targets (IA-64, PowerPC, and others) which
1569 don't represent pointers to functions as simply the address of
1570 the function's entry point. For example, on the IA-64, a
1571 function pointer points to a two-word descriptor, generated by
1572 the linker, which contains the function's entry point, and the
1573 value the IA-64 "global pointer" register should have --- to
1574 support position-independent code. The linker generates
1575 descriptors only for those functions whose addresses are taken.
1576
1577 On such targets, it's difficult for GDB to convert an arbitrary
1578 function address into a function pointer; it has to either find
1579 an existing descriptor for that function, or call malloc and
1580 build its own. On some targets, it is impossible for GDB to
1581 build a descriptor at all: the descriptor must contain a jump
1582 instruction; data memory cannot be executed; and code memory
1583 cannot be modified.
1584
1585 Upon entry to this function, if VAL is a value of type `function'
1586 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1587 value_address (val) is the address of the function. This is what
1588 you'll get if you evaluate an expression like `main'. The call
1589 to COERCE_ARRAY below actually does all the usual unary
1590 conversions, which includes converting values of type `function'
1591 to `pointer to function'. This is the challenging conversion
1592 discussed above. Then, `unpack_long' will convert that pointer
1593 back into an address.
1594
1595 So, suppose the user types `disassemble foo' on an architecture
1596 with a strange function pointer representation, on which GDB
1597 cannot build its own descriptors, and suppose further that `foo'
1598 has no linker-built descriptor. The address->pointer conversion
1599 will signal an error and prevent the command from running, even
1600 though the next step would have been to convert the pointer
1601 directly back into the same address.
1602
1603 The following shortcut avoids this whole mess. If VAL is a
1604 function, just return its address directly. */
1605 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1606 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1607 return value_address (val);
1608
1609 val = coerce_array (val);
1610
1611 /* Some architectures (e.g. Harvard), map instruction and data
1612 addresses onto a single large unified address space. For
1613 instance: An architecture may consider a large integer in the
1614 range 0x10000000 .. 0x1000ffff to already represent a data
1615 addresses (hence not need a pointer to address conversion) while
1616 a small integer would still need to be converted integer to
1617 pointer to address. Just assume such architectures handle all
1618 integer conversions in a single function. */
1619
1620 /* JimB writes:
1621
1622 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1623 must admonish GDB hackers to make sure its behavior matches the
1624 compiler's, whenever possible.
1625
1626 In general, I think GDB should evaluate expressions the same way
1627 the compiler does. When the user copies an expression out of
1628 their source code and hands it to a `print' command, they should
1629 get the same value the compiler would have computed. Any
1630 deviation from this rule can cause major confusion and annoyance,
1631 and needs to be justified carefully. In other words, GDB doesn't
1632 really have the freedom to do these conversions in clever and
1633 useful ways.
1634
1635 AndrewC pointed out that users aren't complaining about how GDB
1636 casts integers to pointers; they are complaining that they can't
1637 take an address from a disassembly listing and give it to `x/i'.
1638 This is certainly important.
1639
1640 Adding an architecture method like integer_to_address() certainly
1641 makes it possible for GDB to "get it right" in all circumstances
1642 --- the target has complete control over how things get done, so
1643 people can Do The Right Thing for their target without breaking
1644 anyone else. The standard doesn't specify how integers get
1645 converted to pointers; usually, the ABI doesn't either, but
1646 ABI-specific code is a more reasonable place to handle it. */
1647
1648 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1649 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1650 && gdbarch_integer_to_address_p (gdbarch))
1651 return gdbarch_integer_to_address (gdbarch, value_type (val),
1652 value_contents (val));
1653
1654 return unpack_long (value_type (val), value_contents (val));
1655 #endif
1656 }
1657 \f
1658 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1659 as a long, or as a double, assuming the raw data is described
1660 by type TYPE. Knows how to convert different sizes of values
1661 and can convert between fixed and floating point. We don't assume
1662 any alignment for the raw data. Return value is in host byte order.
1663
1664 If you want functions and arrays to be coerced to pointers, and
1665 references to be dereferenced, call value_as_long() instead.
1666
1667 C++: It is assumed that the front-end has taken care of
1668 all matters concerning pointers to members. A pointer
1669 to member which reaches here is considered to be equivalent
1670 to an INT (or some size). After all, it is only an offset. */
1671
1672 LONGEST
1673 unpack_long (struct type *type, const gdb_byte *valaddr)
1674 {
1675 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1676 enum type_code code = TYPE_CODE (type);
1677 int len = TYPE_LENGTH (type);
1678 int nosign = TYPE_UNSIGNED (type);
1679
1680 switch (code)
1681 {
1682 case TYPE_CODE_TYPEDEF:
1683 return unpack_long (check_typedef (type), valaddr);
1684 case TYPE_CODE_ENUM:
1685 case TYPE_CODE_FLAGS:
1686 case TYPE_CODE_BOOL:
1687 case TYPE_CODE_INT:
1688 case TYPE_CODE_CHAR:
1689 case TYPE_CODE_RANGE:
1690 case TYPE_CODE_MEMBERPTR:
1691 if (nosign)
1692 return extract_unsigned_integer (valaddr, len, byte_order);
1693 else
1694 return extract_signed_integer (valaddr, len, byte_order);
1695
1696 case TYPE_CODE_FLT:
1697 return extract_typed_floating (valaddr, type);
1698
1699 case TYPE_CODE_DECFLOAT:
1700 /* libdecnumber has a function to convert from decimal to integer, but
1701 it doesn't work when the decimal number has a fractional part. */
1702 return decimal_to_doublest (valaddr, len, byte_order);
1703
1704 case TYPE_CODE_PTR:
1705 case TYPE_CODE_REF:
1706 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1707 whether we want this to be true eventually. */
1708 return extract_typed_address (valaddr, type);
1709
1710 default:
1711 error (_("Value can't be converted to integer."));
1712 }
1713 return 0; /* Placate lint. */
1714 }
1715
1716 /* Return a double value from the specified type and address.
1717 INVP points to an int which is set to 0 for valid value,
1718 1 for invalid value (bad float format). In either case,
1719 the returned double is OK to use. Argument is in target
1720 format, result is in host format. */
1721
1722 DOUBLEST
1723 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1724 {
1725 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1726 enum type_code code;
1727 int len;
1728 int nosign;
1729
1730 *invp = 0; /* Assume valid. */
1731 CHECK_TYPEDEF (type);
1732 code = TYPE_CODE (type);
1733 len = TYPE_LENGTH (type);
1734 nosign = TYPE_UNSIGNED (type);
1735 if (code == TYPE_CODE_FLT)
1736 {
1737 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1738 floating-point value was valid (using the macro
1739 INVALID_FLOAT). That test/macro have been removed.
1740
1741 It turns out that only the VAX defined this macro and then
1742 only in a non-portable way. Fixing the portability problem
1743 wouldn't help since the VAX floating-point code is also badly
1744 bit-rotten. The target needs to add definitions for the
1745 methods gdbarch_float_format and gdbarch_double_format - these
1746 exactly describe the target floating-point format. The
1747 problem here is that the corresponding floatformat_vax_f and
1748 floatformat_vax_d values these methods should be set to are
1749 also not defined either. Oops!
1750
1751 Hopefully someone will add both the missing floatformat
1752 definitions and the new cases for floatformat_is_valid (). */
1753
1754 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1755 {
1756 *invp = 1;
1757 return 0.0;
1758 }
1759
1760 return extract_typed_floating (valaddr, type);
1761 }
1762 else if (code == TYPE_CODE_DECFLOAT)
1763 return decimal_to_doublest (valaddr, len, byte_order);
1764 else if (nosign)
1765 {
1766 /* Unsigned -- be sure we compensate for signed LONGEST. */
1767 return (ULONGEST) unpack_long (type, valaddr);
1768 }
1769 else
1770 {
1771 /* Signed -- we are OK with unpack_long. */
1772 return unpack_long (type, valaddr);
1773 }
1774 }
1775
1776 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1777 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1778 We don't assume any alignment for the raw data. Return value is in
1779 host byte order.
1780
1781 If you want functions and arrays to be coerced to pointers, and
1782 references to be dereferenced, call value_as_address() instead.
1783
1784 C++: It is assumed that the front-end has taken care of
1785 all matters concerning pointers to members. A pointer
1786 to member which reaches here is considered to be equivalent
1787 to an INT (or some size). After all, it is only an offset. */
1788
1789 CORE_ADDR
1790 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1791 {
1792 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1793 whether we want this to be true eventually. */
1794 return unpack_long (type, valaddr);
1795 }
1796
1797 \f
1798 /* Get the value of the FIELDN'th field (which must be static) of
1799 TYPE. Return NULL if the field doesn't exist or has been
1800 optimized out. */
1801
1802 struct value *
1803 value_static_field (struct type *type, int fieldno)
1804 {
1805 struct value *retval;
1806
1807 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1808 {
1809 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1810 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1811 }
1812 else
1813 {
1814 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1815 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1816 if (sym == NULL)
1817 {
1818 /* With some compilers, e.g. HP aCC, static data members are reported
1819 as non-debuggable symbols */
1820 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1821 if (!msym)
1822 return NULL;
1823 else
1824 {
1825 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1826 SYMBOL_VALUE_ADDRESS (msym));
1827 }
1828 }
1829 else
1830 {
1831 /* SYM should never have a SYMBOL_CLASS which will require
1832 read_var_value to use the FRAME parameter. */
1833 if (symbol_read_needs_frame (sym))
1834 warning (_("static field's value depends on the current "
1835 "frame - bad debug info?"));
1836 retval = read_var_value (sym, NULL);
1837 }
1838 if (retval && VALUE_LVAL (retval) == lval_memory)
1839 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1840 value_address (retval));
1841 }
1842 return retval;
1843 }
1844
1845 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1846 You have to be careful here, since the size of the data area for the value
1847 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1848 than the old enclosing type, you have to allocate more space for the data.
1849 The return value is a pointer to the new version of this value structure. */
1850
1851 struct value *
1852 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1853 {
1854 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1855 val->contents =
1856 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1857
1858 val->enclosing_type = new_encl_type;
1859 return val;
1860 }
1861
1862 /* Given a value ARG1 (offset by OFFSET bytes)
1863 of a struct or union type ARG_TYPE,
1864 extract and return the value of one of its (non-static) fields.
1865 FIELDNO says which field. */
1866
1867 struct value *
1868 value_primitive_field (struct value *arg1, int offset,
1869 int fieldno, struct type *arg_type)
1870 {
1871 struct value *v;
1872 struct type *type;
1873
1874 CHECK_TYPEDEF (arg_type);
1875 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1876 type = check_typedef (type);
1877
1878 /* Handle packed fields */
1879
1880 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1881 {
1882 /* Create a new value for the bitfield, with bitpos and bitsize
1883 set. If possible, arrange offset and bitpos so that we can
1884 do a single aligned read of the size of the containing type.
1885 Otherwise, adjust offset to the byte containing the first
1886 bit. Assume that the address, offset, and embedded offset
1887 are sufficiently aligned. */
1888 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1889 int container_bitsize = TYPE_LENGTH (type) * 8;
1890
1891 v = allocate_value_lazy (type);
1892 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1893 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1894 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1895 v->bitpos = bitpos % container_bitsize;
1896 else
1897 v->bitpos = bitpos % 8;
1898 v->offset = value_embedded_offset (arg1)
1899 + (bitpos - v->bitpos) / 8;
1900 v->parent = arg1;
1901 value_incref (v->parent);
1902 if (!value_lazy (arg1))
1903 value_fetch_lazy (v);
1904 }
1905 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1906 {
1907 /* This field is actually a base subobject, so preserve the
1908 entire object's contents for later references to virtual
1909 bases, etc. */
1910
1911 /* Lazy register values with offsets are not supported. */
1912 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1913 value_fetch_lazy (arg1);
1914
1915 if (value_lazy (arg1))
1916 v = allocate_value_lazy (value_enclosing_type (arg1));
1917 else
1918 {
1919 v = allocate_value (value_enclosing_type (arg1));
1920 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1921 TYPE_LENGTH (value_enclosing_type (arg1)));
1922 }
1923 v->type = type;
1924 v->offset = value_offset (arg1);
1925 v->embedded_offset = (offset + value_embedded_offset (arg1)
1926 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1927 }
1928 else
1929 {
1930 /* Plain old data member */
1931 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1932
1933 /* Lazy register values with offsets are not supported. */
1934 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1935 value_fetch_lazy (arg1);
1936
1937 if (value_lazy (arg1))
1938 v = allocate_value_lazy (type);
1939 else
1940 {
1941 v = allocate_value (type);
1942 memcpy (value_contents_raw (v),
1943 value_contents_raw (arg1) + offset,
1944 TYPE_LENGTH (type));
1945 }
1946 v->offset = (value_offset (arg1) + offset
1947 + value_embedded_offset (arg1));
1948 }
1949 set_value_component_location (v, arg1);
1950 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1951 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1952 return v;
1953 }
1954
1955 /* Given a value ARG1 of a struct or union type,
1956 extract and return the value of one of its (non-static) fields.
1957 FIELDNO says which field. */
1958
1959 struct value *
1960 value_field (struct value *arg1, int fieldno)
1961 {
1962 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1963 }
1964
1965 /* Return a non-virtual function as a value.
1966 F is the list of member functions which contains the desired method.
1967 J is an index into F which provides the desired method.
1968
1969 We only use the symbol for its address, so be happy with either a
1970 full symbol or a minimal symbol.
1971 */
1972
1973 struct value *
1974 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1975 int offset)
1976 {
1977 struct value *v;
1978 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1979 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1980 struct symbol *sym;
1981 struct minimal_symbol *msym;
1982
1983 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1984 if (sym != NULL)
1985 {
1986 msym = NULL;
1987 }
1988 else
1989 {
1990 gdb_assert (sym == NULL);
1991 msym = lookup_minimal_symbol (physname, NULL, NULL);
1992 if (msym == NULL)
1993 return NULL;
1994 }
1995
1996 v = allocate_value (ftype);
1997 if (sym)
1998 {
1999 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2000 }
2001 else
2002 {
2003 /* The minimal symbol might point to a function descriptor;
2004 resolve it to the actual code address instead. */
2005 struct objfile *objfile = msymbol_objfile (msym);
2006 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2007
2008 set_value_address (v,
2009 gdbarch_convert_from_func_ptr_addr
2010 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2011 }
2012
2013 if (arg1p)
2014 {
2015 if (type != value_type (*arg1p))
2016 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2017 value_addr (*arg1p)));
2018
2019 /* Move the `this' pointer according to the offset.
2020 VALUE_OFFSET (*arg1p) += offset;
2021 */
2022 }
2023
2024 return v;
2025 }
2026
2027 \f
2028 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2029 object at VALADDR. The bitfield starts at BITPOS bits and contains
2030 BITSIZE bits.
2031
2032 Extracting bits depends on endianness of the machine. Compute the
2033 number of least significant bits to discard. For big endian machines,
2034 we compute the total number of bits in the anonymous object, subtract
2035 off the bit count from the MSB of the object to the MSB of the
2036 bitfield, then the size of the bitfield, which leaves the LSB discard
2037 count. For little endian machines, the discard count is simply the
2038 number of bits from the LSB of the anonymous object to the LSB of the
2039 bitfield.
2040
2041 If the field is signed, we also do sign extension. */
2042
2043 LONGEST
2044 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2045 int bitpos, int bitsize)
2046 {
2047 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2048 ULONGEST val;
2049 ULONGEST valmask;
2050 int lsbcount;
2051 int bytes_read;
2052
2053 /* Read the minimum number of bytes required; there may not be
2054 enough bytes to read an entire ULONGEST. */
2055 CHECK_TYPEDEF (field_type);
2056 if (bitsize)
2057 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2058 else
2059 bytes_read = TYPE_LENGTH (field_type);
2060
2061 val = extract_unsigned_integer (valaddr + bitpos / 8,
2062 bytes_read, byte_order);
2063
2064 /* Extract bits. See comment above. */
2065
2066 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2067 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2068 else
2069 lsbcount = (bitpos % 8);
2070 val >>= lsbcount;
2071
2072 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2073 If the field is signed, and is negative, then sign extend. */
2074
2075 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2076 {
2077 valmask = (((ULONGEST) 1) << bitsize) - 1;
2078 val &= valmask;
2079 if (!TYPE_UNSIGNED (field_type))
2080 {
2081 if (val & (valmask ^ (valmask >> 1)))
2082 {
2083 val |= ~valmask;
2084 }
2085 }
2086 }
2087 return (val);
2088 }
2089
2090 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2091 VALADDR. See unpack_bits_as_long for more details. */
2092
2093 LONGEST
2094 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2095 {
2096 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2097 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2098 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2099
2100 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2101 }
2102
2103 /* Modify the value of a bitfield. ADDR points to a block of memory in
2104 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2105 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2106 indicate which bits (in target bit order) comprise the bitfield.
2107 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2108 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2109
2110 void
2111 modify_field (struct type *type, gdb_byte *addr,
2112 LONGEST fieldval, int bitpos, int bitsize)
2113 {
2114 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2115 ULONGEST oword;
2116 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2117
2118 /* If a negative fieldval fits in the field in question, chop
2119 off the sign extension bits. */
2120 if ((~fieldval & ~(mask >> 1)) == 0)
2121 fieldval &= mask;
2122
2123 /* Warn if value is too big to fit in the field in question. */
2124 if (0 != (fieldval & ~mask))
2125 {
2126 /* FIXME: would like to include fieldval in the message, but
2127 we don't have a sprintf_longest. */
2128 warning (_("Value does not fit in %d bits."), bitsize);
2129
2130 /* Truncate it, otherwise adjoining fields may be corrupted. */
2131 fieldval &= mask;
2132 }
2133
2134 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2135
2136 /* Shifting for bit field depends on endianness of the target machine. */
2137 if (gdbarch_bits_big_endian (get_type_arch (type)))
2138 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2139
2140 oword &= ~(mask << bitpos);
2141 oword |= fieldval << bitpos;
2142
2143 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2144 }
2145 \f
2146 /* Pack NUM into BUF using a target format of TYPE. */
2147
2148 void
2149 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2150 {
2151 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2152 int len;
2153
2154 type = check_typedef (type);
2155 len = TYPE_LENGTH (type);
2156
2157 switch (TYPE_CODE (type))
2158 {
2159 case TYPE_CODE_INT:
2160 case TYPE_CODE_CHAR:
2161 case TYPE_CODE_ENUM:
2162 case TYPE_CODE_FLAGS:
2163 case TYPE_CODE_BOOL:
2164 case TYPE_CODE_RANGE:
2165 case TYPE_CODE_MEMBERPTR:
2166 store_signed_integer (buf, len, byte_order, num);
2167 break;
2168
2169 case TYPE_CODE_REF:
2170 case TYPE_CODE_PTR:
2171 store_typed_address (buf, type, (CORE_ADDR) num);
2172 break;
2173
2174 default:
2175 error (_("Unexpected type (%d) encountered for integer constant."),
2176 TYPE_CODE (type));
2177 }
2178 }
2179
2180
2181 /* Convert C numbers into newly allocated values. */
2182
2183 struct value *
2184 value_from_longest (struct type *type, LONGEST num)
2185 {
2186 struct value *val = allocate_value (type);
2187
2188 pack_long (value_contents_raw (val), type, num);
2189
2190 return val;
2191 }
2192
2193
2194 /* Create a value representing a pointer of type TYPE to the address
2195 ADDR. */
2196 struct value *
2197 value_from_pointer (struct type *type, CORE_ADDR addr)
2198 {
2199 struct value *val = allocate_value (type);
2200 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2201 return val;
2202 }
2203
2204
2205 /* Create a value of type TYPE whose contents come from VALADDR, if it
2206 is non-null, and whose memory address (in the inferior) is
2207 ADDRESS. */
2208
2209 struct value *
2210 value_from_contents_and_address (struct type *type,
2211 const gdb_byte *valaddr,
2212 CORE_ADDR address)
2213 {
2214 struct value *v = allocate_value (type);
2215 if (valaddr == NULL)
2216 set_value_lazy (v, 1);
2217 else
2218 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2219 set_value_address (v, address);
2220 VALUE_LVAL (v) = lval_memory;
2221 return v;
2222 }
2223
2224 struct value *
2225 value_from_double (struct type *type, DOUBLEST num)
2226 {
2227 struct value *val = allocate_value (type);
2228 struct type *base_type = check_typedef (type);
2229 enum type_code code = TYPE_CODE (base_type);
2230 int len = TYPE_LENGTH (base_type);
2231
2232 if (code == TYPE_CODE_FLT)
2233 {
2234 store_typed_floating (value_contents_raw (val), base_type, num);
2235 }
2236 else
2237 error (_("Unexpected type encountered for floating constant."));
2238
2239 return val;
2240 }
2241
2242 struct value *
2243 value_from_decfloat (struct type *type, const gdb_byte *dec)
2244 {
2245 struct value *val = allocate_value (type);
2246
2247 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2248
2249 return val;
2250 }
2251
2252 struct value *
2253 coerce_ref (struct value *arg)
2254 {
2255 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2256 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2257 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2258 unpack_pointer (value_type (arg),
2259 value_contents (arg)));
2260 return arg;
2261 }
2262
2263 struct value *
2264 coerce_array (struct value *arg)
2265 {
2266 struct type *type;
2267
2268 arg = coerce_ref (arg);
2269 type = check_typedef (value_type (arg));
2270
2271 switch (TYPE_CODE (type))
2272 {
2273 case TYPE_CODE_ARRAY:
2274 if (current_language->c_style_arrays)
2275 arg = value_coerce_array (arg);
2276 break;
2277 case TYPE_CODE_FUNC:
2278 arg = value_coerce_function (arg);
2279 break;
2280 }
2281 return arg;
2282 }
2283 \f
2284
2285 /* Return true if the function returning the specified type is using
2286 the convention of returning structures in memory (passing in the
2287 address as a hidden first parameter). */
2288
2289 int
2290 using_struct_return (struct gdbarch *gdbarch,
2291 struct type *func_type, struct type *value_type)
2292 {
2293 enum type_code code = TYPE_CODE (value_type);
2294
2295 if (code == TYPE_CODE_ERROR)
2296 error (_("Function return type unknown."));
2297
2298 if (code == TYPE_CODE_VOID)
2299 /* A void return value is never in memory. See also corresponding
2300 code in "print_return_value". */
2301 return 0;
2302
2303 /* Probe the architecture for the return-value convention. */
2304 return (gdbarch_return_value (gdbarch, func_type, value_type,
2305 NULL, NULL, NULL)
2306 != RETURN_VALUE_REGISTER_CONVENTION);
2307 }
2308
2309 /* Set the initialized field in a value struct. */
2310
2311 void
2312 set_value_initialized (struct value *val, int status)
2313 {
2314 val->initialized = status;
2315 }
2316
2317 /* Return the initialized field in a value struct. */
2318
2319 int
2320 value_initialized (struct value *val)
2321 {
2322 return val->initialized;
2323 }
2324
2325 void
2326 _initialize_values (void)
2327 {
2328 add_cmd ("convenience", no_class, show_convenience, _("\
2329 Debugger convenience (\"$foo\") variables.\n\
2330 These variables are created when you assign them values;\n\
2331 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2332 \n\
2333 A few convenience variables are given values automatically:\n\
2334 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2335 \"$__\" holds the contents of the last address examined with \"x\"."),
2336 &showlist);
2337
2338 add_cmd ("values", no_class, show_values,
2339 _("Elements of value history around item number IDX (or last ten)."),
2340 &showlist);
2341
2342 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2343 Initialize a convenience variable if necessary.\n\
2344 init-if-undefined VARIABLE = EXPRESSION\n\
2345 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2346 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2347 VARIABLE is already initialized."));
2348
2349 add_prefix_cmd ("function", no_class, function_command, _("\
2350 Placeholder command for showing help on convenience functions."),
2351 &functionlist, "function ", 0, &cmdlist);
2352 }