]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
2004-11-12 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct type *
127 value_type (struct value *value)
128 {
129 return value->type;
130 }
131
132 int
133 value_offset (struct value *value)
134 {
135 return value->offset;
136 }
137
138 int
139 value_bitpos (struct value *value)
140 {
141 return value->bitpos;
142 }
143
144 int
145 value_bitsize (struct value *value)
146 {
147 return value->bitsize;
148 }
149
150 /* Return a mark in the value chain. All values allocated after the
151 mark is obtained (except for those released) are subject to being freed
152 if a subsequent value_free_to_mark is passed the mark. */
153 struct value *
154 value_mark (void)
155 {
156 return all_values;
157 }
158
159 /* Free all values allocated since MARK was obtained by value_mark
160 (except for those released). */
161 void
162 value_free_to_mark (struct value *mark)
163 {
164 struct value *val;
165 struct value *next;
166
167 for (val = all_values; val && val != mark; val = next)
168 {
169 next = val->next;
170 value_free (val);
171 }
172 all_values = val;
173 }
174
175 /* Free all the values that have been allocated (except for those released).
176 Called after each command, successful or not. */
177
178 void
179 free_all_values (void)
180 {
181 struct value *val;
182 struct value *next;
183
184 for (val = all_values; val; val = next)
185 {
186 next = val->next;
187 value_free (val);
188 }
189
190 all_values = 0;
191 }
192
193 /* Remove VAL from the chain all_values
194 so it will not be freed automatically. */
195
196 void
197 release_value (struct value *val)
198 {
199 struct value *v;
200
201 if (all_values == val)
202 {
203 all_values = val->next;
204 return;
205 }
206
207 for (v = all_values; v; v = v->next)
208 {
209 if (v->next == val)
210 {
211 v->next = val->next;
212 break;
213 }
214 }
215 }
216
217 /* Release all values up to mark */
218 struct value *
219 value_release_to_mark (struct value *mark)
220 {
221 struct value *val;
222 struct value *next;
223
224 for (val = next = all_values; next; next = next->next)
225 if (next->next == mark)
226 {
227 all_values = next->next;
228 next->next = NULL;
229 return val;
230 }
231 all_values = 0;
232 return val;
233 }
234
235 /* Return a copy of the value ARG.
236 It contains the same contents, for same memory address,
237 but it's a different block of storage. */
238
239 struct value *
240 value_copy (struct value *arg)
241 {
242 struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
243 struct value *val = allocate_value (encl_type);
244 val->type = arg->type;
245 VALUE_LVAL (val) = VALUE_LVAL (arg);
246 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
247 val->offset = arg->offset;
248 val->bitpos = arg->bitpos;
249 val->bitsize = arg->bitsize;
250 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
251 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
252 VALUE_LAZY (val) = VALUE_LAZY (arg);
253 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
254 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
255 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
256 val->modifiable = arg->modifiable;
257 if (!VALUE_LAZY (val))
258 {
259 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
260 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
261
262 }
263 return val;
264 }
265 \f
266 /* Access to the value history. */
267
268 /* Record a new value in the value history.
269 Returns the absolute history index of the entry.
270 Result of -1 indicates the value was not saved; otherwise it is the
271 value history index of this new item. */
272
273 int
274 record_latest_value (struct value *val)
275 {
276 int i;
277
278 /* We don't want this value to have anything to do with the inferior anymore.
279 In particular, "set $1 = 50" should not affect the variable from which
280 the value was taken, and fast watchpoints should be able to assume that
281 a value on the value history never changes. */
282 if (VALUE_LAZY (val))
283 value_fetch_lazy (val);
284 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
285 from. This is a bit dubious, because then *&$1 does not just return $1
286 but the current contents of that location. c'est la vie... */
287 val->modifiable = 0;
288 release_value (val);
289
290 /* Here we treat value_history_count as origin-zero
291 and applying to the value being stored now. */
292
293 i = value_history_count % VALUE_HISTORY_CHUNK;
294 if (i == 0)
295 {
296 struct value_history_chunk *new
297 = (struct value_history_chunk *)
298 xmalloc (sizeof (struct value_history_chunk));
299 memset (new->values, 0, sizeof new->values);
300 new->next = value_history_chain;
301 value_history_chain = new;
302 }
303
304 value_history_chain->values[i] = val;
305
306 /* Now we regard value_history_count as origin-one
307 and applying to the value just stored. */
308
309 return ++value_history_count;
310 }
311
312 /* Return a copy of the value in the history with sequence number NUM. */
313
314 struct value *
315 access_value_history (int num)
316 {
317 struct value_history_chunk *chunk;
318 int i;
319 int absnum = num;
320
321 if (absnum <= 0)
322 absnum += value_history_count;
323
324 if (absnum <= 0)
325 {
326 if (num == 0)
327 error ("The history is empty.");
328 else if (num == 1)
329 error ("There is only one value in the history.");
330 else
331 error ("History does not go back to $$%d.", -num);
332 }
333 if (absnum > value_history_count)
334 error ("History has not yet reached $%d.", absnum);
335
336 absnum--;
337
338 /* Now absnum is always absolute and origin zero. */
339
340 chunk = value_history_chain;
341 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
342 i > 0; i--)
343 chunk = chunk->next;
344
345 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
346 }
347
348 /* Clear the value history entirely.
349 Must be done when new symbol tables are loaded,
350 because the type pointers become invalid. */
351
352 void
353 clear_value_history (void)
354 {
355 struct value_history_chunk *next;
356 int i;
357 struct value *val;
358
359 while (value_history_chain)
360 {
361 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
362 if ((val = value_history_chain->values[i]) != NULL)
363 xfree (val);
364 next = value_history_chain->next;
365 xfree (value_history_chain);
366 value_history_chain = next;
367 }
368 value_history_count = 0;
369 }
370
371 static void
372 show_values (char *num_exp, int from_tty)
373 {
374 int i;
375 struct value *val;
376 static int num = 1;
377
378 if (num_exp)
379 {
380 /* "info history +" should print from the stored position.
381 "info history <exp>" should print around value number <exp>. */
382 if (num_exp[0] != '+' || num_exp[1] != '\0')
383 num = parse_and_eval_long (num_exp) - 5;
384 }
385 else
386 {
387 /* "info history" means print the last 10 values. */
388 num = value_history_count - 9;
389 }
390
391 if (num <= 0)
392 num = 1;
393
394 for (i = num; i < num + 10 && i <= value_history_count; i++)
395 {
396 val = access_value_history (i);
397 printf_filtered ("$%d = ", i);
398 value_print (val, gdb_stdout, 0, Val_pretty_default);
399 printf_filtered ("\n");
400 }
401
402 /* The next "info history +" should start after what we just printed. */
403 num += 10;
404
405 /* Hitting just return after this command should do the same thing as
406 "info history +". If num_exp is null, this is unnecessary, since
407 "info history +" is not useful after "info history". */
408 if (from_tty && num_exp)
409 {
410 num_exp[0] = '+';
411 num_exp[1] = '\0';
412 }
413 }
414 \f
415 /* Internal variables. These are variables within the debugger
416 that hold values assigned by debugger commands.
417 The user refers to them with a '$' prefix
418 that does not appear in the variable names stored internally. */
419
420 static struct internalvar *internalvars;
421
422 /* Look up an internal variable with name NAME. NAME should not
423 normally include a dollar sign.
424
425 If the specified internal variable does not exist,
426 one is created, with a void value. */
427
428 struct internalvar *
429 lookup_internalvar (char *name)
430 {
431 struct internalvar *var;
432
433 for (var = internalvars; var; var = var->next)
434 if (strcmp (var->name, name) == 0)
435 return var;
436
437 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
438 var->name = concat (name, NULL);
439 var->value = allocate_value (builtin_type_void);
440 release_value (var->value);
441 var->next = internalvars;
442 internalvars = var;
443 return var;
444 }
445
446 struct value *
447 value_of_internalvar (struct internalvar *var)
448 {
449 struct value *val;
450
451 val = value_copy (var->value);
452 if (VALUE_LAZY (val))
453 value_fetch_lazy (val);
454 VALUE_LVAL (val) = lval_internalvar;
455 VALUE_INTERNALVAR (val) = var;
456 return val;
457 }
458
459 void
460 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
461 int bitsize, struct value *newval)
462 {
463 char *addr = VALUE_CONTENTS (var->value) + offset;
464
465 if (bitsize)
466 modify_field (addr, value_as_long (newval),
467 bitpos, bitsize);
468 else
469 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
470 }
471
472 void
473 set_internalvar (struct internalvar *var, struct value *val)
474 {
475 struct value *newval;
476
477 newval = value_copy (val);
478 newval->modifiable = 1;
479
480 /* Force the value to be fetched from the target now, to avoid problems
481 later when this internalvar is referenced and the target is gone or
482 has changed. */
483 if (VALUE_LAZY (newval))
484 value_fetch_lazy (newval);
485
486 /* Begin code which must not call error(). If var->value points to
487 something free'd, an error() obviously leaves a dangling pointer.
488 But we also get a danling pointer if var->value points to
489 something in the value chain (i.e., before release_value is
490 called), because after the error free_all_values will get called before
491 long. */
492 xfree (var->value);
493 var->value = newval;
494 release_value (newval);
495 /* End code which must not call error(). */
496 }
497
498 char *
499 internalvar_name (struct internalvar *var)
500 {
501 return var->name;
502 }
503
504 /* Free all internalvars. Done when new symtabs are loaded,
505 because that makes the values invalid. */
506
507 void
508 clear_internalvars (void)
509 {
510 struct internalvar *var;
511
512 while (internalvars)
513 {
514 var = internalvars;
515 internalvars = var->next;
516 xfree (var->name);
517 xfree (var->value);
518 xfree (var);
519 }
520 }
521
522 static void
523 show_convenience (char *ignore, int from_tty)
524 {
525 struct internalvar *var;
526 int varseen = 0;
527
528 for (var = internalvars; var; var = var->next)
529 {
530 if (!varseen)
531 {
532 varseen = 1;
533 }
534 printf_filtered ("$%s = ", var->name);
535 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
536 printf_filtered ("\n");
537 }
538 if (!varseen)
539 printf_unfiltered ("No debugger convenience variables now defined.\n\
540 Convenience variables have names starting with \"$\";\n\
541 use \"set\" as in \"set $foo = 5\" to define them.\n");
542 }
543 \f
544 /* Extract a value as a C number (either long or double).
545 Knows how to convert fixed values to double, or
546 floating values to long.
547 Does not deallocate the value. */
548
549 LONGEST
550 value_as_long (struct value *val)
551 {
552 /* This coerces arrays and functions, which is necessary (e.g.
553 in disassemble_command). It also dereferences references, which
554 I suspect is the most logical thing to do. */
555 val = coerce_array (val);
556 return unpack_long (value_type (val), VALUE_CONTENTS (val));
557 }
558
559 DOUBLEST
560 value_as_double (struct value *val)
561 {
562 DOUBLEST foo;
563 int inv;
564
565 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
566 if (inv)
567 error ("Invalid floating value found in program.");
568 return foo;
569 }
570 /* Extract a value as a C pointer. Does not deallocate the value.
571 Note that val's type may not actually be a pointer; value_as_long
572 handles all the cases. */
573 CORE_ADDR
574 value_as_address (struct value *val)
575 {
576 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
577 whether we want this to be true eventually. */
578 #if 0
579 /* ADDR_BITS_REMOVE is wrong if we are being called for a
580 non-address (e.g. argument to "signal", "info break", etc.), or
581 for pointers to char, in which the low bits *are* significant. */
582 return ADDR_BITS_REMOVE (value_as_long (val));
583 #else
584
585 /* There are several targets (IA-64, PowerPC, and others) which
586 don't represent pointers to functions as simply the address of
587 the function's entry point. For example, on the IA-64, a
588 function pointer points to a two-word descriptor, generated by
589 the linker, which contains the function's entry point, and the
590 value the IA-64 "global pointer" register should have --- to
591 support position-independent code. The linker generates
592 descriptors only for those functions whose addresses are taken.
593
594 On such targets, it's difficult for GDB to convert an arbitrary
595 function address into a function pointer; it has to either find
596 an existing descriptor for that function, or call malloc and
597 build its own. On some targets, it is impossible for GDB to
598 build a descriptor at all: the descriptor must contain a jump
599 instruction; data memory cannot be executed; and code memory
600 cannot be modified.
601
602 Upon entry to this function, if VAL is a value of type `function'
603 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
604 VALUE_ADDRESS (val) is the address of the function. This is what
605 you'll get if you evaluate an expression like `main'. The call
606 to COERCE_ARRAY below actually does all the usual unary
607 conversions, which includes converting values of type `function'
608 to `pointer to function'. This is the challenging conversion
609 discussed above. Then, `unpack_long' will convert that pointer
610 back into an address.
611
612 So, suppose the user types `disassemble foo' on an architecture
613 with a strange function pointer representation, on which GDB
614 cannot build its own descriptors, and suppose further that `foo'
615 has no linker-built descriptor. The address->pointer conversion
616 will signal an error and prevent the command from running, even
617 though the next step would have been to convert the pointer
618 directly back into the same address.
619
620 The following shortcut avoids this whole mess. If VAL is a
621 function, just return its address directly. */
622 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
623 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
624 return VALUE_ADDRESS (val);
625
626 val = coerce_array (val);
627
628 /* Some architectures (e.g. Harvard), map instruction and data
629 addresses onto a single large unified address space. For
630 instance: An architecture may consider a large integer in the
631 range 0x10000000 .. 0x1000ffff to already represent a data
632 addresses (hence not need a pointer to address conversion) while
633 a small integer would still need to be converted integer to
634 pointer to address. Just assume such architectures handle all
635 integer conversions in a single function. */
636
637 /* JimB writes:
638
639 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
640 must admonish GDB hackers to make sure its behavior matches the
641 compiler's, whenever possible.
642
643 In general, I think GDB should evaluate expressions the same way
644 the compiler does. When the user copies an expression out of
645 their source code and hands it to a `print' command, they should
646 get the same value the compiler would have computed. Any
647 deviation from this rule can cause major confusion and annoyance,
648 and needs to be justified carefully. In other words, GDB doesn't
649 really have the freedom to do these conversions in clever and
650 useful ways.
651
652 AndrewC pointed out that users aren't complaining about how GDB
653 casts integers to pointers; they are complaining that they can't
654 take an address from a disassembly listing and give it to `x/i'.
655 This is certainly important.
656
657 Adding an architecture method like INTEGER_TO_ADDRESS certainly
658 makes it possible for GDB to "get it right" in all circumstances
659 --- the target has complete control over how things get done, so
660 people can Do The Right Thing for their target without breaking
661 anyone else. The standard doesn't specify how integers get
662 converted to pointers; usually, the ABI doesn't either, but
663 ABI-specific code is a more reasonable place to handle it. */
664
665 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
666 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
667 && INTEGER_TO_ADDRESS_P ())
668 return INTEGER_TO_ADDRESS (value_type (val), VALUE_CONTENTS (val));
669
670 return unpack_long (value_type (val), VALUE_CONTENTS (val));
671 #endif
672 }
673 \f
674 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
675 as a long, or as a double, assuming the raw data is described
676 by type TYPE. Knows how to convert different sizes of values
677 and can convert between fixed and floating point. We don't assume
678 any alignment for the raw data. Return value is in host byte order.
679
680 If you want functions and arrays to be coerced to pointers, and
681 references to be dereferenced, call value_as_long() instead.
682
683 C++: It is assumed that the front-end has taken care of
684 all matters concerning pointers to members. A pointer
685 to member which reaches here is considered to be equivalent
686 to an INT (or some size). After all, it is only an offset. */
687
688 LONGEST
689 unpack_long (struct type *type, const char *valaddr)
690 {
691 enum type_code code = TYPE_CODE (type);
692 int len = TYPE_LENGTH (type);
693 int nosign = TYPE_UNSIGNED (type);
694
695 if (current_language->la_language == language_scm
696 && is_scmvalue_type (type))
697 return scm_unpack (type, valaddr, TYPE_CODE_INT);
698
699 switch (code)
700 {
701 case TYPE_CODE_TYPEDEF:
702 return unpack_long (check_typedef (type), valaddr);
703 case TYPE_CODE_ENUM:
704 case TYPE_CODE_BOOL:
705 case TYPE_CODE_INT:
706 case TYPE_CODE_CHAR:
707 case TYPE_CODE_RANGE:
708 if (nosign)
709 return extract_unsigned_integer (valaddr, len);
710 else
711 return extract_signed_integer (valaddr, len);
712
713 case TYPE_CODE_FLT:
714 return extract_typed_floating (valaddr, type);
715
716 case TYPE_CODE_PTR:
717 case TYPE_CODE_REF:
718 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
719 whether we want this to be true eventually. */
720 return extract_typed_address (valaddr, type);
721
722 case TYPE_CODE_MEMBER:
723 error ("not implemented: member types in unpack_long");
724
725 default:
726 error ("Value can't be converted to integer.");
727 }
728 return 0; /* Placate lint. */
729 }
730
731 /* Return a double value from the specified type and address.
732 INVP points to an int which is set to 0 for valid value,
733 1 for invalid value (bad float format). In either case,
734 the returned double is OK to use. Argument is in target
735 format, result is in host format. */
736
737 DOUBLEST
738 unpack_double (struct type *type, const char *valaddr, int *invp)
739 {
740 enum type_code code;
741 int len;
742 int nosign;
743
744 *invp = 0; /* Assume valid. */
745 CHECK_TYPEDEF (type);
746 code = TYPE_CODE (type);
747 len = TYPE_LENGTH (type);
748 nosign = TYPE_UNSIGNED (type);
749 if (code == TYPE_CODE_FLT)
750 {
751 /* NOTE: cagney/2002-02-19: There was a test here to see if the
752 floating-point value was valid (using the macro
753 INVALID_FLOAT). That test/macro have been removed.
754
755 It turns out that only the VAX defined this macro and then
756 only in a non-portable way. Fixing the portability problem
757 wouldn't help since the VAX floating-point code is also badly
758 bit-rotten. The target needs to add definitions for the
759 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
760 exactly describe the target floating-point format. The
761 problem here is that the corresponding floatformat_vax_f and
762 floatformat_vax_d values these methods should be set to are
763 also not defined either. Oops!
764
765 Hopefully someone will add both the missing floatformat
766 definitions and the new cases for floatformat_is_valid (). */
767
768 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
769 {
770 *invp = 1;
771 return 0.0;
772 }
773
774 return extract_typed_floating (valaddr, type);
775 }
776 else if (nosign)
777 {
778 /* Unsigned -- be sure we compensate for signed LONGEST. */
779 return (ULONGEST) unpack_long (type, valaddr);
780 }
781 else
782 {
783 /* Signed -- we are OK with unpack_long. */
784 return unpack_long (type, valaddr);
785 }
786 }
787
788 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
789 as a CORE_ADDR, assuming the raw data is described by type TYPE.
790 We don't assume any alignment for the raw data. Return value is in
791 host byte order.
792
793 If you want functions and arrays to be coerced to pointers, and
794 references to be dereferenced, call value_as_address() instead.
795
796 C++: It is assumed that the front-end has taken care of
797 all matters concerning pointers to members. A pointer
798 to member which reaches here is considered to be equivalent
799 to an INT (or some size). After all, it is only an offset. */
800
801 CORE_ADDR
802 unpack_pointer (struct type *type, const char *valaddr)
803 {
804 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
805 whether we want this to be true eventually. */
806 return unpack_long (type, valaddr);
807 }
808
809 \f
810 /* Get the value of the FIELDN'th field (which must be static) of
811 TYPE. Return NULL if the field doesn't exist or has been
812 optimized out. */
813
814 struct value *
815 value_static_field (struct type *type, int fieldno)
816 {
817 struct value *retval;
818
819 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
820 {
821 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
822 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
823 }
824 else
825 {
826 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
827 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
828 if (sym == NULL)
829 {
830 /* With some compilers, e.g. HP aCC, static data members are reported
831 as non-debuggable symbols */
832 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
833 if (!msym)
834 return NULL;
835 else
836 {
837 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
838 SYMBOL_VALUE_ADDRESS (msym));
839 }
840 }
841 else
842 {
843 /* SYM should never have a SYMBOL_CLASS which will require
844 read_var_value to use the FRAME parameter. */
845 if (symbol_read_needs_frame (sym))
846 warning ("static field's value depends on the current "
847 "frame - bad debug info?");
848 retval = read_var_value (sym, NULL);
849 }
850 if (retval && VALUE_LVAL (retval) == lval_memory)
851 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
852 VALUE_ADDRESS (retval));
853 }
854 return retval;
855 }
856
857 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
858 You have to be careful here, since the size of the data area for the value
859 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
860 than the old enclosing type, you have to allocate more space for the data.
861 The return value is a pointer to the new version of this value structure. */
862
863 struct value *
864 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
865 {
866 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
867 {
868 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
869 return val;
870 }
871 else
872 {
873 struct value *new_val;
874 struct value *prev;
875
876 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
877
878 VALUE_ENCLOSING_TYPE (new_val) = new_encl_type;
879
880 /* We have to make sure this ends up in the same place in the value
881 chain as the original copy, so it's clean-up behavior is the same.
882 If the value has been released, this is a waste of time, but there
883 is no way to tell that in advance, so... */
884
885 if (val != all_values)
886 {
887 for (prev = all_values; prev != NULL; prev = prev->next)
888 {
889 if (prev->next == val)
890 {
891 prev->next = new_val;
892 break;
893 }
894 }
895 }
896
897 return new_val;
898 }
899 }
900
901 /* Given a value ARG1 (offset by OFFSET bytes)
902 of a struct or union type ARG_TYPE,
903 extract and return the value of one of its (non-static) fields.
904 FIELDNO says which field. */
905
906 struct value *
907 value_primitive_field (struct value *arg1, int offset,
908 int fieldno, struct type *arg_type)
909 {
910 struct value *v;
911 struct type *type;
912
913 CHECK_TYPEDEF (arg_type);
914 type = TYPE_FIELD_TYPE (arg_type, fieldno);
915
916 /* Handle packed fields */
917
918 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
919 {
920 v = value_from_longest (type,
921 unpack_field_as_long (arg_type,
922 VALUE_CONTENTS (arg1)
923 + offset,
924 fieldno));
925 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
926 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
927 v->offset = value_offset (arg1) + offset
928 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
929 }
930 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
931 {
932 /* This field is actually a base subobject, so preserve the
933 entire object's contents for later references to virtual
934 bases, etc. */
935 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
936 v->type = type;
937 if (VALUE_LAZY (arg1))
938 VALUE_LAZY (v) = 1;
939 else
940 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
941 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
942 v->offset = value_offset (arg1);
943 VALUE_EMBEDDED_OFFSET (v)
944 = offset +
945 VALUE_EMBEDDED_OFFSET (arg1) +
946 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
947 }
948 else
949 {
950 /* Plain old data member */
951 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
952 v = allocate_value (type);
953 if (VALUE_LAZY (arg1))
954 VALUE_LAZY (v) = 1;
955 else
956 memcpy (VALUE_CONTENTS_RAW (v),
957 VALUE_CONTENTS_RAW (arg1) + offset,
958 TYPE_LENGTH (type));
959 v->offset = (value_offset (arg1) + offset
960 + VALUE_EMBEDDED_OFFSET (arg1));
961 }
962 VALUE_LVAL (v) = VALUE_LVAL (arg1);
963 if (VALUE_LVAL (arg1) == lval_internalvar)
964 VALUE_LVAL (v) = lval_internalvar_component;
965 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
966 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
967 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
968 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
969 return v;
970 }
971
972 /* Given a value ARG1 of a struct or union type,
973 extract and return the value of one of its (non-static) fields.
974 FIELDNO says which field. */
975
976 struct value *
977 value_field (struct value *arg1, int fieldno)
978 {
979 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
980 }
981
982 /* Return a non-virtual function as a value.
983 F is the list of member functions which contains the desired method.
984 J is an index into F which provides the desired method.
985
986 We only use the symbol for its address, so be happy with either a
987 full symbol or a minimal symbol.
988 */
989
990 struct value *
991 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
992 int offset)
993 {
994 struct value *v;
995 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
996 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
997 struct symbol *sym;
998 struct minimal_symbol *msym;
999
1000 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1001 if (sym != NULL)
1002 {
1003 msym = NULL;
1004 }
1005 else
1006 {
1007 gdb_assert (sym == NULL);
1008 msym = lookup_minimal_symbol (physname, NULL, NULL);
1009 if (msym == NULL)
1010 return NULL;
1011 }
1012
1013 v = allocate_value (ftype);
1014 if (sym)
1015 {
1016 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1017 }
1018 else
1019 {
1020 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1021 }
1022
1023 if (arg1p)
1024 {
1025 if (type != value_type (*arg1p))
1026 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1027 value_addr (*arg1p)));
1028
1029 /* Move the `this' pointer according to the offset.
1030 VALUE_OFFSET (*arg1p) += offset;
1031 */
1032 }
1033
1034 return v;
1035 }
1036
1037 \f
1038 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1039 VALADDR.
1040
1041 Extracting bits depends on endianness of the machine. Compute the
1042 number of least significant bits to discard. For big endian machines,
1043 we compute the total number of bits in the anonymous object, subtract
1044 off the bit count from the MSB of the object to the MSB of the
1045 bitfield, then the size of the bitfield, which leaves the LSB discard
1046 count. For little endian machines, the discard count is simply the
1047 number of bits from the LSB of the anonymous object to the LSB of the
1048 bitfield.
1049
1050 If the field is signed, we also do sign extension. */
1051
1052 LONGEST
1053 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1054 {
1055 ULONGEST val;
1056 ULONGEST valmask;
1057 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1058 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1059 int lsbcount;
1060 struct type *field_type;
1061
1062 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1063 field_type = TYPE_FIELD_TYPE (type, fieldno);
1064 CHECK_TYPEDEF (field_type);
1065
1066 /* Extract bits. See comment above. */
1067
1068 if (BITS_BIG_ENDIAN)
1069 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1070 else
1071 lsbcount = (bitpos % 8);
1072 val >>= lsbcount;
1073
1074 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1075 If the field is signed, and is negative, then sign extend. */
1076
1077 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1078 {
1079 valmask = (((ULONGEST) 1) << bitsize) - 1;
1080 val &= valmask;
1081 if (!TYPE_UNSIGNED (field_type))
1082 {
1083 if (val & (valmask ^ (valmask >> 1)))
1084 {
1085 val |= ~valmask;
1086 }
1087 }
1088 }
1089 return (val);
1090 }
1091
1092 /* Modify the value of a bitfield. ADDR points to a block of memory in
1093 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1094 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1095 indicate which bits (in target bit order) comprise the bitfield.
1096 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1097 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1098
1099 void
1100 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1101 {
1102 ULONGEST oword;
1103 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1104
1105 /* If a negative fieldval fits in the field in question, chop
1106 off the sign extension bits. */
1107 if ((~fieldval & ~(mask >> 1)) == 0)
1108 fieldval &= mask;
1109
1110 /* Warn if value is too big to fit in the field in question. */
1111 if (0 != (fieldval & ~mask))
1112 {
1113 /* FIXME: would like to include fieldval in the message, but
1114 we don't have a sprintf_longest. */
1115 warning ("Value does not fit in %d bits.", bitsize);
1116
1117 /* Truncate it, otherwise adjoining fields may be corrupted. */
1118 fieldval &= mask;
1119 }
1120
1121 oword = extract_unsigned_integer (addr, sizeof oword);
1122
1123 /* Shifting for bit field depends on endianness of the target machine. */
1124 if (BITS_BIG_ENDIAN)
1125 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1126
1127 oword &= ~(mask << bitpos);
1128 oword |= fieldval << bitpos;
1129
1130 store_unsigned_integer (addr, sizeof oword, oword);
1131 }
1132 \f
1133 /* Convert C numbers into newly allocated values */
1134
1135 struct value *
1136 value_from_longest (struct type *type, LONGEST num)
1137 {
1138 struct value *val = allocate_value (type);
1139 enum type_code code;
1140 int len;
1141 retry:
1142 code = TYPE_CODE (type);
1143 len = TYPE_LENGTH (type);
1144
1145 switch (code)
1146 {
1147 case TYPE_CODE_TYPEDEF:
1148 type = check_typedef (type);
1149 goto retry;
1150 case TYPE_CODE_INT:
1151 case TYPE_CODE_CHAR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_BOOL:
1154 case TYPE_CODE_RANGE:
1155 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1156 break;
1157
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_PTR:
1160 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1161 break;
1162
1163 default:
1164 error ("Unexpected type (%d) encountered for integer constant.", code);
1165 }
1166 return val;
1167 }
1168
1169
1170 /* Create a value representing a pointer of type TYPE to the address
1171 ADDR. */
1172 struct value *
1173 value_from_pointer (struct type *type, CORE_ADDR addr)
1174 {
1175 struct value *val = allocate_value (type);
1176 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1177 return val;
1178 }
1179
1180
1181 /* Create a value for a string constant to be stored locally
1182 (not in the inferior's memory space, but in GDB memory).
1183 This is analogous to value_from_longest, which also does not
1184 use inferior memory. String shall NOT contain embedded nulls. */
1185
1186 struct value *
1187 value_from_string (char *ptr)
1188 {
1189 struct value *val;
1190 int len = strlen (ptr);
1191 int lowbound = current_language->string_lower_bound;
1192 struct type *string_char_type;
1193 struct type *rangetype;
1194 struct type *stringtype;
1195
1196 rangetype = create_range_type ((struct type *) NULL,
1197 builtin_type_int,
1198 lowbound, len + lowbound - 1);
1199 string_char_type = language_string_char_type (current_language,
1200 current_gdbarch);
1201 stringtype = create_array_type ((struct type *) NULL,
1202 string_char_type,
1203 rangetype);
1204 val = allocate_value (stringtype);
1205 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1206 return val;
1207 }
1208
1209 struct value *
1210 value_from_double (struct type *type, DOUBLEST num)
1211 {
1212 struct value *val = allocate_value (type);
1213 struct type *base_type = check_typedef (type);
1214 enum type_code code = TYPE_CODE (base_type);
1215 int len = TYPE_LENGTH (base_type);
1216
1217 if (code == TYPE_CODE_FLT)
1218 {
1219 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1220 }
1221 else
1222 error ("Unexpected type encountered for floating constant.");
1223
1224 return val;
1225 }
1226
1227 struct value *
1228 coerce_ref (struct value *arg)
1229 {
1230 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1231 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1232 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1233 unpack_pointer (value_type (arg),
1234 VALUE_CONTENTS (arg)));
1235 return arg;
1236 }
1237
1238 struct value *
1239 coerce_array (struct value *arg)
1240 {
1241 arg = coerce_ref (arg);
1242 if (current_language->c_style_arrays
1243 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1244 arg = value_coerce_array (arg);
1245 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1246 arg = value_coerce_function (arg);
1247 return arg;
1248 }
1249
1250 struct value *
1251 coerce_number (struct value *arg)
1252 {
1253 arg = coerce_array (arg);
1254 arg = coerce_enum (arg);
1255 return arg;
1256 }
1257
1258 struct value *
1259 coerce_enum (struct value *arg)
1260 {
1261 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1262 arg = value_cast (builtin_type_unsigned_int, arg);
1263 return arg;
1264 }
1265 \f
1266
1267 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1268 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1269 is the type (which is known to be struct, union or array).
1270
1271 On most machines, the struct convention is used unless we are
1272 using gcc and the type is of a special size. */
1273 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1274 native compiler. GCC 2.3.3 was the last release that did it the
1275 old way. Since gcc2_compiled was not changed, we have no
1276 way to correctly win in all cases, so we just do the right thing
1277 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1278 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1279 would cause more chaos than dealing with some struct returns being
1280 handled wrong. */
1281 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1282 dead. */
1283
1284 int
1285 generic_use_struct_convention (int gcc_p, struct type *value_type)
1286 {
1287 return !(TYPE_LENGTH (value_type) == 1
1288 || TYPE_LENGTH (value_type) == 2
1289 || TYPE_LENGTH (value_type) == 4
1290 || TYPE_LENGTH (value_type) == 8);
1291 }
1292
1293 /* Return true if the function returning the specified type is using
1294 the convention of returning structures in memory (passing in the
1295 address as a hidden first parameter). GCC_P is nonzero if compiled
1296 with GCC. */
1297
1298 int
1299 using_struct_return (struct type *value_type, int gcc_p)
1300 {
1301 enum type_code code = TYPE_CODE (value_type);
1302
1303 if (code == TYPE_CODE_ERROR)
1304 error ("Function return type unknown.");
1305
1306 if (code == TYPE_CODE_VOID)
1307 /* A void return value is never in memory. See also corresponding
1308 code in "print_return_value". */
1309 return 0;
1310
1311 /* Probe the architecture for the return-value convention. */
1312 return (gdbarch_return_value (current_gdbarch, value_type,
1313 NULL, NULL, NULL)
1314 != RETURN_VALUE_REGISTER_CONVENTION);
1315 }
1316
1317 void
1318 _initialize_values (void)
1319 {
1320 add_cmd ("convenience", no_class, show_convenience,
1321 "Debugger convenience (\"$foo\") variables.\n\
1322 These variables are created when you assign them values;\n\
1323 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1324 A few convenience variables are given values automatically:\n\
1325 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1326 \"$__\" holds the contents of the last address examined with \"x\".",
1327 &showlist);
1328
1329 add_cmd ("values", no_class, show_values,
1330 "Elements of value history around item number IDX (or last ten).",
1331 &showlist);
1332 }