]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
* breakpoint.c (condition_completer): New function.
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45
46 /* Prototypes for exported functions. */
47
48 void _initialize_values (void);
49
50 /* Definition of a user function. */
51 struct internal_function
52 {
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63 };
64
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67 struct range
68 {
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74 };
75
76 typedef struct range range_s;
77
78 DEF_VEC_O(range_s);
79
80 /* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83 static int
84 ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86 {
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92 }
93
94 /* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99 static int
100 range_lessthan (const range_s *r1, const range_s *r2)
101 {
102 return r1->offset < r2->offset;
103 }
104
105 /* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108 static int
109 ranges_contain (VEC(range_s) *ranges, int offset, int length)
110 {
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
209
210 /* If the value has been released. */
211 unsigned int released : 1;
212
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
234 } computed;
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
250 int bitpos;
251
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
327
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
332 };
333
334 int
335 value_bytes_available (const struct value *value, int offset, int length)
336 {
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340 }
341
342 int
343 value_entirely_available (struct value *value)
344 {
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353 }
354
355 void
356 mark_value_bytes_unavailable (struct value *value, int offset, int length)
357 {
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518 }
519
520 /* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525 static int
526 find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528 {
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537 }
538
539 int
540 value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543 {
544 int idx1 = 0, idx2 = 0;
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
602 return 0;
603
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610 }
611
612 /* Prototypes for local functions. */
613
614 static void show_values (char *, int);
615
616 static void show_convenience (char *, int);
617
618
619 /* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625 #define VALUE_HISTORY_CHUNK 60
626
627 struct value_history_chunk
628 {
629 struct value_history_chunk *next;
630 struct value *values[VALUE_HISTORY_CHUNK];
631 };
632
633 /* Chain of chunks now in use. */
634
635 static struct value_history_chunk *value_history_chain;
636
637 static int value_history_count; /* Abs number of last entry stored. */
638
639 \f
640 /* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
644 static struct value *all_values;
645
646 /* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
649
650 struct value *
651 allocate_value_lazy (struct type *type)
652 {
653 struct value *val;
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
662
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
665 val->next = all_values;
666 all_values = val;
667 val->type = type;
668 val->enclosing_type = type;
669 VALUE_LVAL (val) = not_lval;
670 val->location.address = 0;
671 VALUE_FRAME_ID (val) = null_frame_id;
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
675 VALUE_REGNUM (val) = -1;
676 val->lazy = 1;
677 val->optimized_out = 0;
678 val->embedded_offset = 0;
679 val->pointed_to_offset = 0;
680 val->modifiable = 1;
681 val->initialized = 1; /* Default to initialized. */
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
686 return val;
687 }
688
689 /* Allocate the contents of VAL if it has not been allocated yet. */
690
691 void
692 allocate_value_contents (struct value *val)
693 {
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696 }
697
698 /* Allocate a value and its contents for type TYPE. */
699
700 struct value *
701 allocate_value (struct type *type)
702 {
703 struct value *val = allocate_value_lazy (type);
704
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708 }
709
710 /* Allocate a value that has the correct length
711 for COUNT repetitions of type TYPE. */
712
713 struct value *
714 allocate_repeat_value (struct type *type, int count)
715 {
716 int low_bound = current_language->string_lower_bound; /* ??? */
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
721
722 return allocate_value (array_type);
723 }
724
725 struct value *
726 allocate_computed_value (struct type *type,
727 const struct lval_funcs *funcs,
728 void *closure)
729 {
730 struct value *v = allocate_value_lazy (type);
731
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
735
736 return v;
737 }
738
739 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741 struct value *
742 allocate_optimized_out_value (struct type *type)
743 {
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749 }
750
751 /* Accessor methods. */
752
753 struct value *
754 value_next (struct value *value)
755 {
756 return value->next;
757 }
758
759 struct type *
760 value_type (const struct value *value)
761 {
762 return value->type;
763 }
764 void
765 deprecated_set_value_type (struct value *value, struct type *type)
766 {
767 value->type = type;
768 }
769
770 int
771 value_offset (const struct value *value)
772 {
773 return value->offset;
774 }
775 void
776 set_value_offset (struct value *value, int offset)
777 {
778 value->offset = offset;
779 }
780
781 int
782 value_bitpos (const struct value *value)
783 {
784 return value->bitpos;
785 }
786 void
787 set_value_bitpos (struct value *value, int bit)
788 {
789 value->bitpos = bit;
790 }
791
792 int
793 value_bitsize (const struct value *value)
794 {
795 return value->bitsize;
796 }
797 void
798 set_value_bitsize (struct value *value, int bit)
799 {
800 value->bitsize = bit;
801 }
802
803 struct value *
804 value_parent (struct value *value)
805 {
806 return value->parent;
807 }
808
809 /* See value.h. */
810
811 void
812 set_value_parent (struct value *value, struct value *parent)
813 {
814 value->parent = parent;
815 }
816
817 gdb_byte *
818 value_contents_raw (struct value *value)
819 {
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
822 }
823
824 gdb_byte *
825 value_contents_all_raw (struct value *value)
826 {
827 allocate_value_contents (value);
828 return value->contents;
829 }
830
831 struct type *
832 value_enclosing_type (struct value *value)
833 {
834 return value->enclosing_type;
835 }
836
837 /* Look at value.h for description. */
838
839 struct type *
840 value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842 {
843 struct value_print_options opts;
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
853 if (TYPE_CODE (result) == TYPE_CODE_PTR
854 || TYPE_CODE (result) == TYPE_CODE_REF)
855 {
856 struct type *real_type;
857
858 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
859 if (real_type)
860 {
861 if (real_type_found)
862 *real_type_found = 1;
863 result = real_type;
864 }
865 }
866 else if (resolve_simple_types)
867 {
868 if (real_type_found)
869 *real_type_found = 1;
870 result = value_enclosing_type (value);
871 }
872 }
873
874 return result;
875 }
876
877 static void
878 require_not_optimized_out (const struct value *value)
879 {
880 if (value->optimized_out)
881 error (_("value has been optimized out"));
882 }
883
884 static void
885 require_available (const struct value *value)
886 {
887 if (!VEC_empty (range_s, value->unavailable))
888 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
889 }
890
891 const gdb_byte *
892 value_contents_for_printing (struct value *value)
893 {
894 if (value->lazy)
895 value_fetch_lazy (value);
896 return value->contents;
897 }
898
899 const gdb_byte *
900 value_contents_for_printing_const (const struct value *value)
901 {
902 gdb_assert (!value->lazy);
903 return value->contents;
904 }
905
906 const gdb_byte *
907 value_contents_all (struct value *value)
908 {
909 const gdb_byte *result = value_contents_for_printing (value);
910 require_not_optimized_out (value);
911 require_available (value);
912 return result;
913 }
914
915 /* Copy LENGTH bytes of SRC value's (all) contents
916 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
917 contents, starting at DST_OFFSET. If unavailable contents are
918 being copied from SRC, the corresponding DST contents are marked
919 unavailable accordingly. Neither DST nor SRC may be lazy
920 values.
921
922 It is assumed the contents of DST in the [DST_OFFSET,
923 DST_OFFSET+LENGTH) range are wholly available. */
924
925 void
926 value_contents_copy_raw (struct value *dst, int dst_offset,
927 struct value *src, int src_offset, int length)
928 {
929 range_s *r;
930 int i;
931
932 /* A lazy DST would make that this copy operation useless, since as
933 soon as DST's contents were un-lazied (by a later value_contents
934 call, say), the contents would be overwritten. A lazy SRC would
935 mean we'd be copying garbage. */
936 gdb_assert (!dst->lazy && !src->lazy);
937
938 /* The overwritten DST range gets unavailability ORed in, not
939 replaced. Make sure to remember to implement replacing if it
940 turns out actually necessary. */
941 gdb_assert (value_bytes_available (dst, dst_offset, length));
942
943 /* Copy the data. */
944 memcpy (value_contents_all_raw (dst) + dst_offset,
945 value_contents_all_raw (src) + src_offset,
946 length);
947
948 /* Copy the meta-data, adjusted. */
949 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
950 {
951 ULONGEST h, l;
952
953 l = max (r->offset, src_offset);
954 h = min (r->offset + r->length, src_offset + length);
955
956 if (l < h)
957 mark_value_bytes_unavailable (dst,
958 dst_offset + (l - src_offset),
959 h - l);
960 }
961 }
962
963 /* Copy LENGTH bytes of SRC value's (all) contents
964 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
965 (all) contents, starting at DST_OFFSET. If unavailable contents
966 are being copied from SRC, the corresponding DST contents are
967 marked unavailable accordingly. DST must not be lazy. If SRC is
968 lazy, it will be fetched now. If SRC is not valid (is optimized
969 out), an error is thrown.
970
971 It is assumed the contents of DST in the [DST_OFFSET,
972 DST_OFFSET+LENGTH) range are wholly available. */
973
974 void
975 value_contents_copy (struct value *dst, int dst_offset,
976 struct value *src, int src_offset, int length)
977 {
978 require_not_optimized_out (src);
979
980 if (src->lazy)
981 value_fetch_lazy (src);
982
983 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
984 }
985
986 int
987 value_lazy (struct value *value)
988 {
989 return value->lazy;
990 }
991
992 void
993 set_value_lazy (struct value *value, int val)
994 {
995 value->lazy = val;
996 }
997
998 int
999 value_stack (struct value *value)
1000 {
1001 return value->stack;
1002 }
1003
1004 void
1005 set_value_stack (struct value *value, int val)
1006 {
1007 value->stack = val;
1008 }
1009
1010 const gdb_byte *
1011 value_contents (struct value *value)
1012 {
1013 const gdb_byte *result = value_contents_writeable (value);
1014 require_not_optimized_out (value);
1015 require_available (value);
1016 return result;
1017 }
1018
1019 gdb_byte *
1020 value_contents_writeable (struct value *value)
1021 {
1022 if (value->lazy)
1023 value_fetch_lazy (value);
1024 return value_contents_raw (value);
1025 }
1026
1027 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1028 this function is different from value_equal; in C the operator ==
1029 can return 0 even if the two values being compared are equal. */
1030
1031 int
1032 value_contents_equal (struct value *val1, struct value *val2)
1033 {
1034 struct type *type1;
1035 struct type *type2;
1036 int len;
1037
1038 type1 = check_typedef (value_type (val1));
1039 type2 = check_typedef (value_type (val2));
1040 len = TYPE_LENGTH (type1);
1041 if (len != TYPE_LENGTH (type2))
1042 return 0;
1043
1044 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
1045 }
1046
1047 int
1048 value_optimized_out (struct value *value)
1049 {
1050 return value->optimized_out;
1051 }
1052
1053 void
1054 set_value_optimized_out (struct value *value, int val)
1055 {
1056 value->optimized_out = val;
1057 }
1058
1059 int
1060 value_entirely_optimized_out (const struct value *value)
1061 {
1062 if (!value->optimized_out)
1063 return 0;
1064 if (value->lval != lval_computed
1065 || !value->location.computed.funcs->check_any_valid)
1066 return 1;
1067 return !value->location.computed.funcs->check_any_valid (value);
1068 }
1069
1070 int
1071 value_bits_valid (const struct value *value, int offset, int length)
1072 {
1073 if (!value->optimized_out)
1074 return 1;
1075 if (value->lval != lval_computed
1076 || !value->location.computed.funcs->check_validity)
1077 return 0;
1078 return value->location.computed.funcs->check_validity (value, offset,
1079 length);
1080 }
1081
1082 int
1083 value_bits_synthetic_pointer (const struct value *value,
1084 int offset, int length)
1085 {
1086 if (value->lval != lval_computed
1087 || !value->location.computed.funcs->check_synthetic_pointer)
1088 return 0;
1089 return value->location.computed.funcs->check_synthetic_pointer (value,
1090 offset,
1091 length);
1092 }
1093
1094 int
1095 value_embedded_offset (struct value *value)
1096 {
1097 return value->embedded_offset;
1098 }
1099
1100 void
1101 set_value_embedded_offset (struct value *value, int val)
1102 {
1103 value->embedded_offset = val;
1104 }
1105
1106 int
1107 value_pointed_to_offset (struct value *value)
1108 {
1109 return value->pointed_to_offset;
1110 }
1111
1112 void
1113 set_value_pointed_to_offset (struct value *value, int val)
1114 {
1115 value->pointed_to_offset = val;
1116 }
1117
1118 const struct lval_funcs *
1119 value_computed_funcs (const struct value *v)
1120 {
1121 gdb_assert (value_lval_const (v) == lval_computed);
1122
1123 return v->location.computed.funcs;
1124 }
1125
1126 void *
1127 value_computed_closure (const struct value *v)
1128 {
1129 gdb_assert (v->lval == lval_computed);
1130
1131 return v->location.computed.closure;
1132 }
1133
1134 enum lval_type *
1135 deprecated_value_lval_hack (struct value *value)
1136 {
1137 return &value->lval;
1138 }
1139
1140 enum lval_type
1141 value_lval_const (const struct value *value)
1142 {
1143 return value->lval;
1144 }
1145
1146 CORE_ADDR
1147 value_address (const struct value *value)
1148 {
1149 if (value->lval == lval_internalvar
1150 || value->lval == lval_internalvar_component)
1151 return 0;
1152 if (value->parent != NULL)
1153 return value_address (value->parent) + value->offset;
1154 else
1155 return value->location.address + value->offset;
1156 }
1157
1158 CORE_ADDR
1159 value_raw_address (struct value *value)
1160 {
1161 if (value->lval == lval_internalvar
1162 || value->lval == lval_internalvar_component)
1163 return 0;
1164 return value->location.address;
1165 }
1166
1167 void
1168 set_value_address (struct value *value, CORE_ADDR addr)
1169 {
1170 gdb_assert (value->lval != lval_internalvar
1171 && value->lval != lval_internalvar_component);
1172 value->location.address = addr;
1173 }
1174
1175 struct internalvar **
1176 deprecated_value_internalvar_hack (struct value *value)
1177 {
1178 return &value->location.internalvar;
1179 }
1180
1181 struct frame_id *
1182 deprecated_value_frame_id_hack (struct value *value)
1183 {
1184 return &value->frame_id;
1185 }
1186
1187 short *
1188 deprecated_value_regnum_hack (struct value *value)
1189 {
1190 return &value->regnum;
1191 }
1192
1193 int
1194 deprecated_value_modifiable (struct value *value)
1195 {
1196 return value->modifiable;
1197 }
1198 void
1199 deprecated_set_value_modifiable (struct value *value, int modifiable)
1200 {
1201 value->modifiable = modifiable;
1202 }
1203 \f
1204 /* Return a mark in the value chain. All values allocated after the
1205 mark is obtained (except for those released) are subject to being freed
1206 if a subsequent value_free_to_mark is passed the mark. */
1207 struct value *
1208 value_mark (void)
1209 {
1210 return all_values;
1211 }
1212
1213 /* Take a reference to VAL. VAL will not be deallocated until all
1214 references are released. */
1215
1216 void
1217 value_incref (struct value *val)
1218 {
1219 val->reference_count++;
1220 }
1221
1222 /* Release a reference to VAL, which was acquired with value_incref.
1223 This function is also called to deallocate values from the value
1224 chain. */
1225
1226 void
1227 value_free (struct value *val)
1228 {
1229 if (val)
1230 {
1231 gdb_assert (val->reference_count > 0);
1232 val->reference_count--;
1233 if (val->reference_count > 0)
1234 return;
1235
1236 /* If there's an associated parent value, drop our reference to
1237 it. */
1238 if (val->parent != NULL)
1239 value_free (val->parent);
1240
1241 if (VALUE_LVAL (val) == lval_computed)
1242 {
1243 const struct lval_funcs *funcs = val->location.computed.funcs;
1244
1245 if (funcs->free_closure)
1246 funcs->free_closure (val);
1247 }
1248
1249 xfree (val->contents);
1250 VEC_free (range_s, val->unavailable);
1251 }
1252 xfree (val);
1253 }
1254
1255 /* Free all values allocated since MARK was obtained by value_mark
1256 (except for those released). */
1257 void
1258 value_free_to_mark (struct value *mark)
1259 {
1260 struct value *val;
1261 struct value *next;
1262
1263 for (val = all_values; val && val != mark; val = next)
1264 {
1265 next = val->next;
1266 val->released = 1;
1267 value_free (val);
1268 }
1269 all_values = val;
1270 }
1271
1272 /* Free all the values that have been allocated (except for those released).
1273 Call after each command, successful or not.
1274 In practice this is called before each command, which is sufficient. */
1275
1276 void
1277 free_all_values (void)
1278 {
1279 struct value *val;
1280 struct value *next;
1281
1282 for (val = all_values; val; val = next)
1283 {
1284 next = val->next;
1285 val->released = 1;
1286 value_free (val);
1287 }
1288
1289 all_values = 0;
1290 }
1291
1292 /* Frees all the elements in a chain of values. */
1293
1294 void
1295 free_value_chain (struct value *v)
1296 {
1297 struct value *next;
1298
1299 for (; v; v = next)
1300 {
1301 next = value_next (v);
1302 value_free (v);
1303 }
1304 }
1305
1306 /* Remove VAL from the chain all_values
1307 so it will not be freed automatically. */
1308
1309 void
1310 release_value (struct value *val)
1311 {
1312 struct value *v;
1313
1314 if (all_values == val)
1315 {
1316 all_values = val->next;
1317 val->next = NULL;
1318 val->released = 1;
1319 return;
1320 }
1321
1322 for (v = all_values; v; v = v->next)
1323 {
1324 if (v->next == val)
1325 {
1326 v->next = val->next;
1327 val->next = NULL;
1328 val->released = 1;
1329 break;
1330 }
1331 }
1332 }
1333
1334 /* If the value is not already released, release it.
1335 If the value is already released, increment its reference count.
1336 That is, this function ensures that the value is released from the
1337 value chain and that the caller owns a reference to it. */
1338
1339 void
1340 release_value_or_incref (struct value *val)
1341 {
1342 if (val->released)
1343 value_incref (val);
1344 else
1345 release_value (val);
1346 }
1347
1348 /* Release all values up to mark */
1349 struct value *
1350 value_release_to_mark (struct value *mark)
1351 {
1352 struct value *val;
1353 struct value *next;
1354
1355 for (val = next = all_values; next; next = next->next)
1356 {
1357 if (next->next == mark)
1358 {
1359 all_values = next->next;
1360 next->next = NULL;
1361 return val;
1362 }
1363 next->released = 1;
1364 }
1365 all_values = 0;
1366 return val;
1367 }
1368
1369 /* Return a copy of the value ARG.
1370 It contains the same contents, for same memory address,
1371 but it's a different block of storage. */
1372
1373 struct value *
1374 value_copy (struct value *arg)
1375 {
1376 struct type *encl_type = value_enclosing_type (arg);
1377 struct value *val;
1378
1379 if (value_lazy (arg))
1380 val = allocate_value_lazy (encl_type);
1381 else
1382 val = allocate_value (encl_type);
1383 val->type = arg->type;
1384 VALUE_LVAL (val) = VALUE_LVAL (arg);
1385 val->location = arg->location;
1386 val->offset = arg->offset;
1387 val->bitpos = arg->bitpos;
1388 val->bitsize = arg->bitsize;
1389 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1390 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1391 val->lazy = arg->lazy;
1392 val->optimized_out = arg->optimized_out;
1393 val->embedded_offset = value_embedded_offset (arg);
1394 val->pointed_to_offset = arg->pointed_to_offset;
1395 val->modifiable = arg->modifiable;
1396 if (!value_lazy (val))
1397 {
1398 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1399 TYPE_LENGTH (value_enclosing_type (arg)));
1400
1401 }
1402 val->unavailable = VEC_copy (range_s, arg->unavailable);
1403 val->parent = arg->parent;
1404 if (val->parent)
1405 value_incref (val->parent);
1406 if (VALUE_LVAL (val) == lval_computed)
1407 {
1408 const struct lval_funcs *funcs = val->location.computed.funcs;
1409
1410 if (funcs->copy_closure)
1411 val->location.computed.closure = funcs->copy_closure (val);
1412 }
1413 return val;
1414 }
1415
1416 /* Return a version of ARG that is non-lvalue. */
1417
1418 struct value *
1419 value_non_lval (struct value *arg)
1420 {
1421 if (VALUE_LVAL (arg) != not_lval)
1422 {
1423 struct type *enc_type = value_enclosing_type (arg);
1424 struct value *val = allocate_value (enc_type);
1425
1426 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1427 TYPE_LENGTH (enc_type));
1428 val->type = arg->type;
1429 set_value_embedded_offset (val, value_embedded_offset (arg));
1430 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1431 return val;
1432 }
1433 return arg;
1434 }
1435
1436 void
1437 set_value_component_location (struct value *component,
1438 const struct value *whole)
1439 {
1440 if (whole->lval == lval_internalvar)
1441 VALUE_LVAL (component) = lval_internalvar_component;
1442 else
1443 VALUE_LVAL (component) = whole->lval;
1444
1445 component->location = whole->location;
1446 if (whole->lval == lval_computed)
1447 {
1448 const struct lval_funcs *funcs = whole->location.computed.funcs;
1449
1450 if (funcs->copy_closure)
1451 component->location.computed.closure = funcs->copy_closure (whole);
1452 }
1453 }
1454
1455 \f
1456 /* Access to the value history. */
1457
1458 /* Record a new value in the value history.
1459 Returns the absolute history index of the entry.
1460 Result of -1 indicates the value was not saved; otherwise it is the
1461 value history index of this new item. */
1462
1463 int
1464 record_latest_value (struct value *val)
1465 {
1466 int i;
1467
1468 /* We don't want this value to have anything to do with the inferior anymore.
1469 In particular, "set $1 = 50" should not affect the variable from which
1470 the value was taken, and fast watchpoints should be able to assume that
1471 a value on the value history never changes. */
1472 if (value_lazy (val))
1473 value_fetch_lazy (val);
1474 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1475 from. This is a bit dubious, because then *&$1 does not just return $1
1476 but the current contents of that location. c'est la vie... */
1477 val->modifiable = 0;
1478 release_value (val);
1479
1480 /* Here we treat value_history_count as origin-zero
1481 and applying to the value being stored now. */
1482
1483 i = value_history_count % VALUE_HISTORY_CHUNK;
1484 if (i == 0)
1485 {
1486 struct value_history_chunk *new
1487 = (struct value_history_chunk *)
1488
1489 xmalloc (sizeof (struct value_history_chunk));
1490 memset (new->values, 0, sizeof new->values);
1491 new->next = value_history_chain;
1492 value_history_chain = new;
1493 }
1494
1495 value_history_chain->values[i] = val;
1496
1497 /* Now we regard value_history_count as origin-one
1498 and applying to the value just stored. */
1499
1500 return ++value_history_count;
1501 }
1502
1503 /* Return a copy of the value in the history with sequence number NUM. */
1504
1505 struct value *
1506 access_value_history (int num)
1507 {
1508 struct value_history_chunk *chunk;
1509 int i;
1510 int absnum = num;
1511
1512 if (absnum <= 0)
1513 absnum += value_history_count;
1514
1515 if (absnum <= 0)
1516 {
1517 if (num == 0)
1518 error (_("The history is empty."));
1519 else if (num == 1)
1520 error (_("There is only one value in the history."));
1521 else
1522 error (_("History does not go back to $$%d."), -num);
1523 }
1524 if (absnum > value_history_count)
1525 error (_("History has not yet reached $%d."), absnum);
1526
1527 absnum--;
1528
1529 /* Now absnum is always absolute and origin zero. */
1530
1531 chunk = value_history_chain;
1532 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1533 - absnum / VALUE_HISTORY_CHUNK;
1534 i > 0; i--)
1535 chunk = chunk->next;
1536
1537 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1538 }
1539
1540 static void
1541 show_values (char *num_exp, int from_tty)
1542 {
1543 int i;
1544 struct value *val;
1545 static int num = 1;
1546
1547 if (num_exp)
1548 {
1549 /* "show values +" should print from the stored position.
1550 "show values <exp>" should print around value number <exp>. */
1551 if (num_exp[0] != '+' || num_exp[1] != '\0')
1552 num = parse_and_eval_long (num_exp) - 5;
1553 }
1554 else
1555 {
1556 /* "show values" means print the last 10 values. */
1557 num = value_history_count - 9;
1558 }
1559
1560 if (num <= 0)
1561 num = 1;
1562
1563 for (i = num; i < num + 10 && i <= value_history_count; i++)
1564 {
1565 struct value_print_options opts;
1566
1567 val = access_value_history (i);
1568 printf_filtered (("$%d = "), i);
1569 get_user_print_options (&opts);
1570 value_print (val, gdb_stdout, &opts);
1571 printf_filtered (("\n"));
1572 }
1573
1574 /* The next "show values +" should start after what we just printed. */
1575 num += 10;
1576
1577 /* Hitting just return after this command should do the same thing as
1578 "show values +". If num_exp is null, this is unnecessary, since
1579 "show values +" is not useful after "show values". */
1580 if (from_tty && num_exp)
1581 {
1582 num_exp[0] = '+';
1583 num_exp[1] = '\0';
1584 }
1585 }
1586 \f
1587 /* Internal variables. These are variables within the debugger
1588 that hold values assigned by debugger commands.
1589 The user refers to them with a '$' prefix
1590 that does not appear in the variable names stored internally. */
1591
1592 struct internalvar
1593 {
1594 struct internalvar *next;
1595 char *name;
1596
1597 /* We support various different kinds of content of an internal variable.
1598 enum internalvar_kind specifies the kind, and union internalvar_data
1599 provides the data associated with this particular kind. */
1600
1601 enum internalvar_kind
1602 {
1603 /* The internal variable is empty. */
1604 INTERNALVAR_VOID,
1605
1606 /* The value of the internal variable is provided directly as
1607 a GDB value object. */
1608 INTERNALVAR_VALUE,
1609
1610 /* A fresh value is computed via a call-back routine on every
1611 access to the internal variable. */
1612 INTERNALVAR_MAKE_VALUE,
1613
1614 /* The internal variable holds a GDB internal convenience function. */
1615 INTERNALVAR_FUNCTION,
1616
1617 /* The variable holds an integer value. */
1618 INTERNALVAR_INTEGER,
1619
1620 /* The variable holds a GDB-provided string. */
1621 INTERNALVAR_STRING,
1622
1623 } kind;
1624
1625 union internalvar_data
1626 {
1627 /* A value object used with INTERNALVAR_VALUE. */
1628 struct value *value;
1629
1630 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1631 struct
1632 {
1633 /* The functions to call. */
1634 const struct internalvar_funcs *functions;
1635
1636 /* The function's user-data. */
1637 void *data;
1638 } make_value;
1639
1640 /* The internal function used with INTERNALVAR_FUNCTION. */
1641 struct
1642 {
1643 struct internal_function *function;
1644 /* True if this is the canonical name for the function. */
1645 int canonical;
1646 } fn;
1647
1648 /* An integer value used with INTERNALVAR_INTEGER. */
1649 struct
1650 {
1651 /* If type is non-NULL, it will be used as the type to generate
1652 a value for this internal variable. If type is NULL, a default
1653 integer type for the architecture is used. */
1654 struct type *type;
1655 LONGEST val;
1656 } integer;
1657
1658 /* A string value used with INTERNALVAR_STRING. */
1659 char *string;
1660 } u;
1661 };
1662
1663 static struct internalvar *internalvars;
1664
1665 /* If the variable does not already exist create it and give it the
1666 value given. If no value is given then the default is zero. */
1667 static void
1668 init_if_undefined_command (char* args, int from_tty)
1669 {
1670 struct internalvar* intvar;
1671
1672 /* Parse the expression - this is taken from set_command(). */
1673 struct expression *expr = parse_expression (args);
1674 register struct cleanup *old_chain =
1675 make_cleanup (free_current_contents, &expr);
1676
1677 /* Validate the expression.
1678 Was the expression an assignment?
1679 Or even an expression at all? */
1680 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1681 error (_("Init-if-undefined requires an assignment expression."));
1682
1683 /* Extract the variable from the parsed expression.
1684 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1685 if (expr->elts[1].opcode != OP_INTERNALVAR)
1686 error (_("The first parameter to init-if-undefined "
1687 "should be a GDB variable."));
1688 intvar = expr->elts[2].internalvar;
1689
1690 /* Only evaluate the expression if the lvalue is void.
1691 This may still fail if the expresssion is invalid. */
1692 if (intvar->kind == INTERNALVAR_VOID)
1693 evaluate_expression (expr);
1694
1695 do_cleanups (old_chain);
1696 }
1697
1698
1699 /* Look up an internal variable with name NAME. NAME should not
1700 normally include a dollar sign.
1701
1702 If the specified internal variable does not exist,
1703 the return value is NULL. */
1704
1705 struct internalvar *
1706 lookup_only_internalvar (const char *name)
1707 {
1708 struct internalvar *var;
1709
1710 for (var = internalvars; var; var = var->next)
1711 if (strcmp (var->name, name) == 0)
1712 return var;
1713
1714 return NULL;
1715 }
1716
1717 /* Complete NAME by comparing it to the names of internal variables.
1718 Returns a vector of newly allocated strings, or NULL if no matches
1719 were found. */
1720
1721 VEC (char_ptr) *
1722 complete_internalvar (const char *name)
1723 {
1724 VEC (char_ptr) *result = NULL;
1725 struct internalvar *var;
1726 int len;
1727
1728 len = strlen (name);
1729
1730 for (var = internalvars; var; var = var->next)
1731 if (strncmp (var->name, name, len) == 0)
1732 {
1733 char *r = xstrdup (var->name);
1734
1735 VEC_safe_push (char_ptr, result, r);
1736 }
1737
1738 return result;
1739 }
1740
1741 /* Create an internal variable with name NAME and with a void value.
1742 NAME should not normally include a dollar sign. */
1743
1744 struct internalvar *
1745 create_internalvar (const char *name)
1746 {
1747 struct internalvar *var;
1748
1749 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1750 var->name = concat (name, (char *)NULL);
1751 var->kind = INTERNALVAR_VOID;
1752 var->next = internalvars;
1753 internalvars = var;
1754 return var;
1755 }
1756
1757 /* Create an internal variable with name NAME and register FUN as the
1758 function that value_of_internalvar uses to create a value whenever
1759 this variable is referenced. NAME should not normally include a
1760 dollar sign. DATA is passed uninterpreted to FUN when it is
1761 called. CLEANUP, if not NULL, is called when the internal variable
1762 is destroyed. It is passed DATA as its only argument. */
1763
1764 struct internalvar *
1765 create_internalvar_type_lazy (const char *name,
1766 const struct internalvar_funcs *funcs,
1767 void *data)
1768 {
1769 struct internalvar *var = create_internalvar (name);
1770
1771 var->kind = INTERNALVAR_MAKE_VALUE;
1772 var->u.make_value.functions = funcs;
1773 var->u.make_value.data = data;
1774 return var;
1775 }
1776
1777 /* See documentation in value.h. */
1778
1779 int
1780 compile_internalvar_to_ax (struct internalvar *var,
1781 struct agent_expr *expr,
1782 struct axs_value *value)
1783 {
1784 if (var->kind != INTERNALVAR_MAKE_VALUE
1785 || var->u.make_value.functions->compile_to_ax == NULL)
1786 return 0;
1787
1788 var->u.make_value.functions->compile_to_ax (var, expr, value,
1789 var->u.make_value.data);
1790 return 1;
1791 }
1792
1793 /* Look up an internal variable with name NAME. NAME should not
1794 normally include a dollar sign.
1795
1796 If the specified internal variable does not exist,
1797 one is created, with a void value. */
1798
1799 struct internalvar *
1800 lookup_internalvar (const char *name)
1801 {
1802 struct internalvar *var;
1803
1804 var = lookup_only_internalvar (name);
1805 if (var)
1806 return var;
1807
1808 return create_internalvar (name);
1809 }
1810
1811 /* Return current value of internal variable VAR. For variables that
1812 are not inherently typed, use a value type appropriate for GDBARCH. */
1813
1814 struct value *
1815 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1816 {
1817 struct value *val;
1818 struct trace_state_variable *tsv;
1819
1820 /* If there is a trace state variable of the same name, assume that
1821 is what we really want to see. */
1822 tsv = find_trace_state_variable (var->name);
1823 if (tsv)
1824 {
1825 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1826 &(tsv->value));
1827 if (tsv->value_known)
1828 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1829 tsv->value);
1830 else
1831 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1832 return val;
1833 }
1834
1835 switch (var->kind)
1836 {
1837 case INTERNALVAR_VOID:
1838 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1839 break;
1840
1841 case INTERNALVAR_FUNCTION:
1842 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1843 break;
1844
1845 case INTERNALVAR_INTEGER:
1846 if (!var->u.integer.type)
1847 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1848 var->u.integer.val);
1849 else
1850 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1851 break;
1852
1853 case INTERNALVAR_STRING:
1854 val = value_cstring (var->u.string, strlen (var->u.string),
1855 builtin_type (gdbarch)->builtin_char);
1856 break;
1857
1858 case INTERNALVAR_VALUE:
1859 val = value_copy (var->u.value);
1860 if (value_lazy (val))
1861 value_fetch_lazy (val);
1862 break;
1863
1864 case INTERNALVAR_MAKE_VALUE:
1865 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1866 var->u.make_value.data);
1867 break;
1868
1869 default:
1870 internal_error (__FILE__, __LINE__, _("bad kind"));
1871 }
1872
1873 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1874 on this value go back to affect the original internal variable.
1875
1876 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1877 no underlying modifyable state in the internal variable.
1878
1879 Likewise, if the variable's value is a computed lvalue, we want
1880 references to it to produce another computed lvalue, where
1881 references and assignments actually operate through the
1882 computed value's functions.
1883
1884 This means that internal variables with computed values
1885 behave a little differently from other internal variables:
1886 assignments to them don't just replace the previous value
1887 altogether. At the moment, this seems like the behavior we
1888 want. */
1889
1890 if (var->kind != INTERNALVAR_MAKE_VALUE
1891 && val->lval != lval_computed)
1892 {
1893 VALUE_LVAL (val) = lval_internalvar;
1894 VALUE_INTERNALVAR (val) = var;
1895 }
1896
1897 return val;
1898 }
1899
1900 int
1901 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1902 {
1903 if (var->kind == INTERNALVAR_INTEGER)
1904 {
1905 *result = var->u.integer.val;
1906 return 1;
1907 }
1908
1909 if (var->kind == INTERNALVAR_VALUE)
1910 {
1911 struct type *type = check_typedef (value_type (var->u.value));
1912
1913 if (TYPE_CODE (type) == TYPE_CODE_INT)
1914 {
1915 *result = value_as_long (var->u.value);
1916 return 1;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 static int
1924 get_internalvar_function (struct internalvar *var,
1925 struct internal_function **result)
1926 {
1927 switch (var->kind)
1928 {
1929 case INTERNALVAR_FUNCTION:
1930 *result = var->u.fn.function;
1931 return 1;
1932
1933 default:
1934 return 0;
1935 }
1936 }
1937
1938 void
1939 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1940 int bitsize, struct value *newval)
1941 {
1942 gdb_byte *addr;
1943
1944 switch (var->kind)
1945 {
1946 case INTERNALVAR_VALUE:
1947 addr = value_contents_writeable (var->u.value);
1948
1949 if (bitsize)
1950 modify_field (value_type (var->u.value), addr + offset,
1951 value_as_long (newval), bitpos, bitsize);
1952 else
1953 memcpy (addr + offset, value_contents (newval),
1954 TYPE_LENGTH (value_type (newval)));
1955 break;
1956
1957 default:
1958 /* We can never get a component of any other kind. */
1959 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1960 }
1961 }
1962
1963 void
1964 set_internalvar (struct internalvar *var, struct value *val)
1965 {
1966 enum internalvar_kind new_kind;
1967 union internalvar_data new_data = { 0 };
1968
1969 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1970 error (_("Cannot overwrite convenience function %s"), var->name);
1971
1972 /* Prepare new contents. */
1973 switch (TYPE_CODE (check_typedef (value_type (val))))
1974 {
1975 case TYPE_CODE_VOID:
1976 new_kind = INTERNALVAR_VOID;
1977 break;
1978
1979 case TYPE_CODE_INTERNAL_FUNCTION:
1980 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1981 new_kind = INTERNALVAR_FUNCTION;
1982 get_internalvar_function (VALUE_INTERNALVAR (val),
1983 &new_data.fn.function);
1984 /* Copies created here are never canonical. */
1985 break;
1986
1987 default:
1988 new_kind = INTERNALVAR_VALUE;
1989 new_data.value = value_copy (val);
1990 new_data.value->modifiable = 1;
1991
1992 /* Force the value to be fetched from the target now, to avoid problems
1993 later when this internalvar is referenced and the target is gone or
1994 has changed. */
1995 if (value_lazy (new_data.value))
1996 value_fetch_lazy (new_data.value);
1997
1998 /* Release the value from the value chain to prevent it from being
1999 deleted by free_all_values. From here on this function should not
2000 call error () until new_data is installed into the var->u to avoid
2001 leaking memory. */
2002 release_value (new_data.value);
2003 break;
2004 }
2005
2006 /* Clean up old contents. */
2007 clear_internalvar (var);
2008
2009 /* Switch over. */
2010 var->kind = new_kind;
2011 var->u = new_data;
2012 /* End code which must not call error(). */
2013 }
2014
2015 void
2016 set_internalvar_integer (struct internalvar *var, LONGEST l)
2017 {
2018 /* Clean up old contents. */
2019 clear_internalvar (var);
2020
2021 var->kind = INTERNALVAR_INTEGER;
2022 var->u.integer.type = NULL;
2023 var->u.integer.val = l;
2024 }
2025
2026 void
2027 set_internalvar_string (struct internalvar *var, const char *string)
2028 {
2029 /* Clean up old contents. */
2030 clear_internalvar (var);
2031
2032 var->kind = INTERNALVAR_STRING;
2033 var->u.string = xstrdup (string);
2034 }
2035
2036 static void
2037 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2038 {
2039 /* Clean up old contents. */
2040 clear_internalvar (var);
2041
2042 var->kind = INTERNALVAR_FUNCTION;
2043 var->u.fn.function = f;
2044 var->u.fn.canonical = 1;
2045 /* Variables installed here are always the canonical version. */
2046 }
2047
2048 void
2049 clear_internalvar (struct internalvar *var)
2050 {
2051 /* Clean up old contents. */
2052 switch (var->kind)
2053 {
2054 case INTERNALVAR_VALUE:
2055 value_free (var->u.value);
2056 break;
2057
2058 case INTERNALVAR_STRING:
2059 xfree (var->u.string);
2060 break;
2061
2062 case INTERNALVAR_MAKE_VALUE:
2063 if (var->u.make_value.functions->destroy != NULL)
2064 var->u.make_value.functions->destroy (var->u.make_value.data);
2065 break;
2066
2067 default:
2068 break;
2069 }
2070
2071 /* Reset to void kind. */
2072 var->kind = INTERNALVAR_VOID;
2073 }
2074
2075 char *
2076 internalvar_name (struct internalvar *var)
2077 {
2078 return var->name;
2079 }
2080
2081 static struct internal_function *
2082 create_internal_function (const char *name,
2083 internal_function_fn handler, void *cookie)
2084 {
2085 struct internal_function *ifn = XNEW (struct internal_function);
2086
2087 ifn->name = xstrdup (name);
2088 ifn->handler = handler;
2089 ifn->cookie = cookie;
2090 return ifn;
2091 }
2092
2093 char *
2094 value_internal_function_name (struct value *val)
2095 {
2096 struct internal_function *ifn;
2097 int result;
2098
2099 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2100 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2101 gdb_assert (result);
2102
2103 return ifn->name;
2104 }
2105
2106 struct value *
2107 call_internal_function (struct gdbarch *gdbarch,
2108 const struct language_defn *language,
2109 struct value *func, int argc, struct value **argv)
2110 {
2111 struct internal_function *ifn;
2112 int result;
2113
2114 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2115 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2116 gdb_assert (result);
2117
2118 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2119 }
2120
2121 /* The 'function' command. This does nothing -- it is just a
2122 placeholder to let "help function NAME" work. This is also used as
2123 the implementation of the sub-command that is created when
2124 registering an internal function. */
2125 static void
2126 function_command (char *command, int from_tty)
2127 {
2128 /* Do nothing. */
2129 }
2130
2131 /* Clean up if an internal function's command is destroyed. */
2132 static void
2133 function_destroyer (struct cmd_list_element *self, void *ignore)
2134 {
2135 xfree (self->name);
2136 xfree (self->doc);
2137 }
2138
2139 /* Add a new internal function. NAME is the name of the function; DOC
2140 is a documentation string describing the function. HANDLER is
2141 called when the function is invoked. COOKIE is an arbitrary
2142 pointer which is passed to HANDLER and is intended for "user
2143 data". */
2144 void
2145 add_internal_function (const char *name, const char *doc,
2146 internal_function_fn handler, void *cookie)
2147 {
2148 struct cmd_list_element *cmd;
2149 struct internal_function *ifn;
2150 struct internalvar *var = lookup_internalvar (name);
2151
2152 ifn = create_internal_function (name, handler, cookie);
2153 set_internalvar_function (var, ifn);
2154
2155 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2156 &functionlist);
2157 cmd->destroyer = function_destroyer;
2158 }
2159
2160 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2161 prevent cycles / duplicates. */
2162
2163 void
2164 preserve_one_value (struct value *value, struct objfile *objfile,
2165 htab_t copied_types)
2166 {
2167 if (TYPE_OBJFILE (value->type) == objfile)
2168 value->type = copy_type_recursive (objfile, value->type, copied_types);
2169
2170 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2171 value->enclosing_type = copy_type_recursive (objfile,
2172 value->enclosing_type,
2173 copied_types);
2174 }
2175
2176 /* Likewise for internal variable VAR. */
2177
2178 static void
2179 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2180 htab_t copied_types)
2181 {
2182 switch (var->kind)
2183 {
2184 case INTERNALVAR_INTEGER:
2185 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2186 var->u.integer.type
2187 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2188 break;
2189
2190 case INTERNALVAR_VALUE:
2191 preserve_one_value (var->u.value, objfile, copied_types);
2192 break;
2193 }
2194 }
2195
2196 /* Update the internal variables and value history when OBJFILE is
2197 discarded; we must copy the types out of the objfile. New global types
2198 will be created for every convenience variable which currently points to
2199 this objfile's types, and the convenience variables will be adjusted to
2200 use the new global types. */
2201
2202 void
2203 preserve_values (struct objfile *objfile)
2204 {
2205 htab_t copied_types;
2206 struct value_history_chunk *cur;
2207 struct internalvar *var;
2208 int i;
2209
2210 /* Create the hash table. We allocate on the objfile's obstack, since
2211 it is soon to be deleted. */
2212 copied_types = create_copied_types_hash (objfile);
2213
2214 for (cur = value_history_chain; cur; cur = cur->next)
2215 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2216 if (cur->values[i])
2217 preserve_one_value (cur->values[i], objfile, copied_types);
2218
2219 for (var = internalvars; var; var = var->next)
2220 preserve_one_internalvar (var, objfile, copied_types);
2221
2222 preserve_python_values (objfile, copied_types);
2223
2224 htab_delete (copied_types);
2225 }
2226
2227 static void
2228 show_convenience (char *ignore, int from_tty)
2229 {
2230 struct gdbarch *gdbarch = get_current_arch ();
2231 struct internalvar *var;
2232 int varseen = 0;
2233 struct value_print_options opts;
2234
2235 get_user_print_options (&opts);
2236 for (var = internalvars; var; var = var->next)
2237 {
2238 volatile struct gdb_exception ex;
2239
2240 if (!varseen)
2241 {
2242 varseen = 1;
2243 }
2244 printf_filtered (("$%s = "), var->name);
2245
2246 TRY_CATCH (ex, RETURN_MASK_ERROR)
2247 {
2248 struct value *val;
2249
2250 val = value_of_internalvar (gdbarch, var);
2251 value_print (val, gdb_stdout, &opts);
2252 }
2253 if (ex.reason < 0)
2254 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2255 printf_filtered (("\n"));
2256 }
2257 if (!varseen)
2258 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2259 "Convenience variables have "
2260 "names starting with \"$\";\n"
2261 "use \"set\" as in \"set "
2262 "$foo = 5\" to define them.\n"));
2263 }
2264 \f
2265 /* Extract a value as a C number (either long or double).
2266 Knows how to convert fixed values to double, or
2267 floating values to long.
2268 Does not deallocate the value. */
2269
2270 LONGEST
2271 value_as_long (struct value *val)
2272 {
2273 /* This coerces arrays and functions, which is necessary (e.g.
2274 in disassemble_command). It also dereferences references, which
2275 I suspect is the most logical thing to do. */
2276 val = coerce_array (val);
2277 return unpack_long (value_type (val), value_contents (val));
2278 }
2279
2280 DOUBLEST
2281 value_as_double (struct value *val)
2282 {
2283 DOUBLEST foo;
2284 int inv;
2285
2286 foo = unpack_double (value_type (val), value_contents (val), &inv);
2287 if (inv)
2288 error (_("Invalid floating value found in program."));
2289 return foo;
2290 }
2291
2292 /* Extract a value as a C pointer. Does not deallocate the value.
2293 Note that val's type may not actually be a pointer; value_as_long
2294 handles all the cases. */
2295 CORE_ADDR
2296 value_as_address (struct value *val)
2297 {
2298 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2299
2300 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2301 whether we want this to be true eventually. */
2302 #if 0
2303 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2304 non-address (e.g. argument to "signal", "info break", etc.), or
2305 for pointers to char, in which the low bits *are* significant. */
2306 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2307 #else
2308
2309 /* There are several targets (IA-64, PowerPC, and others) which
2310 don't represent pointers to functions as simply the address of
2311 the function's entry point. For example, on the IA-64, a
2312 function pointer points to a two-word descriptor, generated by
2313 the linker, which contains the function's entry point, and the
2314 value the IA-64 "global pointer" register should have --- to
2315 support position-independent code. The linker generates
2316 descriptors only for those functions whose addresses are taken.
2317
2318 On such targets, it's difficult for GDB to convert an arbitrary
2319 function address into a function pointer; it has to either find
2320 an existing descriptor for that function, or call malloc and
2321 build its own. On some targets, it is impossible for GDB to
2322 build a descriptor at all: the descriptor must contain a jump
2323 instruction; data memory cannot be executed; and code memory
2324 cannot be modified.
2325
2326 Upon entry to this function, if VAL is a value of type `function'
2327 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2328 value_address (val) is the address of the function. This is what
2329 you'll get if you evaluate an expression like `main'. The call
2330 to COERCE_ARRAY below actually does all the usual unary
2331 conversions, which includes converting values of type `function'
2332 to `pointer to function'. This is the challenging conversion
2333 discussed above. Then, `unpack_long' will convert that pointer
2334 back into an address.
2335
2336 So, suppose the user types `disassemble foo' on an architecture
2337 with a strange function pointer representation, on which GDB
2338 cannot build its own descriptors, and suppose further that `foo'
2339 has no linker-built descriptor. The address->pointer conversion
2340 will signal an error and prevent the command from running, even
2341 though the next step would have been to convert the pointer
2342 directly back into the same address.
2343
2344 The following shortcut avoids this whole mess. If VAL is a
2345 function, just return its address directly. */
2346 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2347 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2348 return value_address (val);
2349
2350 val = coerce_array (val);
2351
2352 /* Some architectures (e.g. Harvard), map instruction and data
2353 addresses onto a single large unified address space. For
2354 instance: An architecture may consider a large integer in the
2355 range 0x10000000 .. 0x1000ffff to already represent a data
2356 addresses (hence not need a pointer to address conversion) while
2357 a small integer would still need to be converted integer to
2358 pointer to address. Just assume such architectures handle all
2359 integer conversions in a single function. */
2360
2361 /* JimB writes:
2362
2363 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2364 must admonish GDB hackers to make sure its behavior matches the
2365 compiler's, whenever possible.
2366
2367 In general, I think GDB should evaluate expressions the same way
2368 the compiler does. When the user copies an expression out of
2369 their source code and hands it to a `print' command, they should
2370 get the same value the compiler would have computed. Any
2371 deviation from this rule can cause major confusion and annoyance,
2372 and needs to be justified carefully. In other words, GDB doesn't
2373 really have the freedom to do these conversions in clever and
2374 useful ways.
2375
2376 AndrewC pointed out that users aren't complaining about how GDB
2377 casts integers to pointers; they are complaining that they can't
2378 take an address from a disassembly listing and give it to `x/i'.
2379 This is certainly important.
2380
2381 Adding an architecture method like integer_to_address() certainly
2382 makes it possible for GDB to "get it right" in all circumstances
2383 --- the target has complete control over how things get done, so
2384 people can Do The Right Thing for their target without breaking
2385 anyone else. The standard doesn't specify how integers get
2386 converted to pointers; usually, the ABI doesn't either, but
2387 ABI-specific code is a more reasonable place to handle it. */
2388
2389 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2390 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2391 && gdbarch_integer_to_address_p (gdbarch))
2392 return gdbarch_integer_to_address (gdbarch, value_type (val),
2393 value_contents (val));
2394
2395 return unpack_long (value_type (val), value_contents (val));
2396 #endif
2397 }
2398 \f
2399 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2400 as a long, or as a double, assuming the raw data is described
2401 by type TYPE. Knows how to convert different sizes of values
2402 and can convert between fixed and floating point. We don't assume
2403 any alignment for the raw data. Return value is in host byte order.
2404
2405 If you want functions and arrays to be coerced to pointers, and
2406 references to be dereferenced, call value_as_long() instead.
2407
2408 C++: It is assumed that the front-end has taken care of
2409 all matters concerning pointers to members. A pointer
2410 to member which reaches here is considered to be equivalent
2411 to an INT (or some size). After all, it is only an offset. */
2412
2413 LONGEST
2414 unpack_long (struct type *type, const gdb_byte *valaddr)
2415 {
2416 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2417 enum type_code code = TYPE_CODE (type);
2418 int len = TYPE_LENGTH (type);
2419 int nosign = TYPE_UNSIGNED (type);
2420
2421 switch (code)
2422 {
2423 case TYPE_CODE_TYPEDEF:
2424 return unpack_long (check_typedef (type), valaddr);
2425 case TYPE_CODE_ENUM:
2426 case TYPE_CODE_FLAGS:
2427 case TYPE_CODE_BOOL:
2428 case TYPE_CODE_INT:
2429 case TYPE_CODE_CHAR:
2430 case TYPE_CODE_RANGE:
2431 case TYPE_CODE_MEMBERPTR:
2432 if (nosign)
2433 return extract_unsigned_integer (valaddr, len, byte_order);
2434 else
2435 return extract_signed_integer (valaddr, len, byte_order);
2436
2437 case TYPE_CODE_FLT:
2438 return extract_typed_floating (valaddr, type);
2439
2440 case TYPE_CODE_DECFLOAT:
2441 /* libdecnumber has a function to convert from decimal to integer, but
2442 it doesn't work when the decimal number has a fractional part. */
2443 return decimal_to_doublest (valaddr, len, byte_order);
2444
2445 case TYPE_CODE_PTR:
2446 case TYPE_CODE_REF:
2447 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2448 whether we want this to be true eventually. */
2449 return extract_typed_address (valaddr, type);
2450
2451 default:
2452 error (_("Value can't be converted to integer."));
2453 }
2454 return 0; /* Placate lint. */
2455 }
2456
2457 /* Return a double value from the specified type and address.
2458 INVP points to an int which is set to 0 for valid value,
2459 1 for invalid value (bad float format). In either case,
2460 the returned double is OK to use. Argument is in target
2461 format, result is in host format. */
2462
2463 DOUBLEST
2464 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2465 {
2466 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2467 enum type_code code;
2468 int len;
2469 int nosign;
2470
2471 *invp = 0; /* Assume valid. */
2472 CHECK_TYPEDEF (type);
2473 code = TYPE_CODE (type);
2474 len = TYPE_LENGTH (type);
2475 nosign = TYPE_UNSIGNED (type);
2476 if (code == TYPE_CODE_FLT)
2477 {
2478 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2479 floating-point value was valid (using the macro
2480 INVALID_FLOAT). That test/macro have been removed.
2481
2482 It turns out that only the VAX defined this macro and then
2483 only in a non-portable way. Fixing the portability problem
2484 wouldn't help since the VAX floating-point code is also badly
2485 bit-rotten. The target needs to add definitions for the
2486 methods gdbarch_float_format and gdbarch_double_format - these
2487 exactly describe the target floating-point format. The
2488 problem here is that the corresponding floatformat_vax_f and
2489 floatformat_vax_d values these methods should be set to are
2490 also not defined either. Oops!
2491
2492 Hopefully someone will add both the missing floatformat
2493 definitions and the new cases for floatformat_is_valid (). */
2494
2495 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2496 {
2497 *invp = 1;
2498 return 0.0;
2499 }
2500
2501 return extract_typed_floating (valaddr, type);
2502 }
2503 else if (code == TYPE_CODE_DECFLOAT)
2504 return decimal_to_doublest (valaddr, len, byte_order);
2505 else if (nosign)
2506 {
2507 /* Unsigned -- be sure we compensate for signed LONGEST. */
2508 return (ULONGEST) unpack_long (type, valaddr);
2509 }
2510 else
2511 {
2512 /* Signed -- we are OK with unpack_long. */
2513 return unpack_long (type, valaddr);
2514 }
2515 }
2516
2517 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2518 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2519 We don't assume any alignment for the raw data. Return value is in
2520 host byte order.
2521
2522 If you want functions and arrays to be coerced to pointers, and
2523 references to be dereferenced, call value_as_address() instead.
2524
2525 C++: It is assumed that the front-end has taken care of
2526 all matters concerning pointers to members. A pointer
2527 to member which reaches here is considered to be equivalent
2528 to an INT (or some size). After all, it is only an offset. */
2529
2530 CORE_ADDR
2531 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2532 {
2533 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2534 whether we want this to be true eventually. */
2535 return unpack_long (type, valaddr);
2536 }
2537
2538 \f
2539 /* Get the value of the FIELDNO'th field (which must be static) of
2540 TYPE. Return NULL if the field doesn't exist or has been
2541 optimized out. */
2542
2543 struct value *
2544 value_static_field (struct type *type, int fieldno)
2545 {
2546 struct value *retval;
2547
2548 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2549 {
2550 case FIELD_LOC_KIND_PHYSADDR:
2551 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2552 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2553 break;
2554 case FIELD_LOC_KIND_PHYSNAME:
2555 {
2556 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2557 /* TYPE_FIELD_NAME (type, fieldno); */
2558 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2559
2560 if (sym == NULL)
2561 {
2562 /* With some compilers, e.g. HP aCC, static data members are
2563 reported as non-debuggable symbols. */
2564 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2565 NULL, NULL);
2566
2567 if (!msym)
2568 return NULL;
2569 else
2570 {
2571 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2572 SYMBOL_VALUE_ADDRESS (msym));
2573 }
2574 }
2575 else
2576 retval = value_of_variable (sym, NULL);
2577 break;
2578 }
2579 default:
2580 gdb_assert_not_reached ("unexpected field location kind");
2581 }
2582
2583 return retval;
2584 }
2585
2586 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2587 You have to be careful here, since the size of the data area for the value
2588 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2589 than the old enclosing type, you have to allocate more space for the
2590 data. */
2591
2592 void
2593 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2594 {
2595 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2596 val->contents =
2597 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2598
2599 val->enclosing_type = new_encl_type;
2600 }
2601
2602 /* Given a value ARG1 (offset by OFFSET bytes)
2603 of a struct or union type ARG_TYPE,
2604 extract and return the value of one of its (non-static) fields.
2605 FIELDNO says which field. */
2606
2607 struct value *
2608 value_primitive_field (struct value *arg1, int offset,
2609 int fieldno, struct type *arg_type)
2610 {
2611 struct value *v;
2612 struct type *type;
2613
2614 CHECK_TYPEDEF (arg_type);
2615 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2616
2617 /* Call check_typedef on our type to make sure that, if TYPE
2618 is a TYPE_CODE_TYPEDEF, its length is set to the length
2619 of the target type instead of zero. However, we do not
2620 replace the typedef type by the target type, because we want
2621 to keep the typedef in order to be able to print the type
2622 description correctly. */
2623 check_typedef (type);
2624
2625 if (value_optimized_out (arg1))
2626 v = allocate_optimized_out_value (type);
2627 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2628 {
2629 /* Handle packed fields.
2630
2631 Create a new value for the bitfield, with bitpos and bitsize
2632 set. If possible, arrange offset and bitpos so that we can
2633 do a single aligned read of the size of the containing type.
2634 Otherwise, adjust offset to the byte containing the first
2635 bit. Assume that the address, offset, and embedded offset
2636 are sufficiently aligned. */
2637
2638 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2639 int container_bitsize = TYPE_LENGTH (type) * 8;
2640
2641 v = allocate_value_lazy (type);
2642 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2643 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2644 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2645 v->bitpos = bitpos % container_bitsize;
2646 else
2647 v->bitpos = bitpos % 8;
2648 v->offset = (value_embedded_offset (arg1)
2649 + offset
2650 + (bitpos - v->bitpos) / 8);
2651 v->parent = arg1;
2652 value_incref (v->parent);
2653 if (!value_lazy (arg1))
2654 value_fetch_lazy (v);
2655 }
2656 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2657 {
2658 /* This field is actually a base subobject, so preserve the
2659 entire object's contents for later references to virtual
2660 bases, etc. */
2661 int boffset;
2662
2663 /* Lazy register values with offsets are not supported. */
2664 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2665 value_fetch_lazy (arg1);
2666
2667 /* We special case virtual inheritance here because this
2668 requires access to the contents, which we would rather avoid
2669 for references to ordinary fields of unavailable values. */
2670 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2671 boffset = baseclass_offset (arg_type, fieldno,
2672 value_contents (arg1),
2673 value_embedded_offset (arg1),
2674 value_address (arg1),
2675 arg1);
2676 else
2677 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2678
2679 if (value_lazy (arg1))
2680 v = allocate_value_lazy (value_enclosing_type (arg1));
2681 else
2682 {
2683 v = allocate_value (value_enclosing_type (arg1));
2684 value_contents_copy_raw (v, 0, arg1, 0,
2685 TYPE_LENGTH (value_enclosing_type (arg1)));
2686 }
2687 v->type = type;
2688 v->offset = value_offset (arg1);
2689 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2690 }
2691 else
2692 {
2693 /* Plain old data member */
2694 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2695
2696 /* Lazy register values with offsets are not supported. */
2697 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2698 value_fetch_lazy (arg1);
2699
2700 if (value_lazy (arg1))
2701 v = allocate_value_lazy (type);
2702 else
2703 {
2704 v = allocate_value (type);
2705 value_contents_copy_raw (v, value_embedded_offset (v),
2706 arg1, value_embedded_offset (arg1) + offset,
2707 TYPE_LENGTH (type));
2708 }
2709 v->offset = (value_offset (arg1) + offset
2710 + value_embedded_offset (arg1));
2711 }
2712 set_value_component_location (v, arg1);
2713 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2714 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2715 return v;
2716 }
2717
2718 /* Given a value ARG1 of a struct or union type,
2719 extract and return the value of one of its (non-static) fields.
2720 FIELDNO says which field. */
2721
2722 struct value *
2723 value_field (struct value *arg1, int fieldno)
2724 {
2725 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2726 }
2727
2728 /* Return a non-virtual function as a value.
2729 F is the list of member functions which contains the desired method.
2730 J is an index into F which provides the desired method.
2731
2732 We only use the symbol for its address, so be happy with either a
2733 full symbol or a minimal symbol. */
2734
2735 struct value *
2736 value_fn_field (struct value **arg1p, struct fn_field *f,
2737 int j, struct type *type,
2738 int offset)
2739 {
2740 struct value *v;
2741 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2742 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2743 struct symbol *sym;
2744 struct minimal_symbol *msym;
2745
2746 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2747 if (sym != NULL)
2748 {
2749 msym = NULL;
2750 }
2751 else
2752 {
2753 gdb_assert (sym == NULL);
2754 msym = lookup_minimal_symbol (physname, NULL, NULL);
2755 if (msym == NULL)
2756 return NULL;
2757 }
2758
2759 v = allocate_value (ftype);
2760 if (sym)
2761 {
2762 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2763 }
2764 else
2765 {
2766 /* The minimal symbol might point to a function descriptor;
2767 resolve it to the actual code address instead. */
2768 struct objfile *objfile = msymbol_objfile (msym);
2769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2770
2771 set_value_address (v,
2772 gdbarch_convert_from_func_ptr_addr
2773 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2774 }
2775
2776 if (arg1p)
2777 {
2778 if (type != value_type (*arg1p))
2779 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2780 value_addr (*arg1p)));
2781
2782 /* Move the `this' pointer according to the offset.
2783 VALUE_OFFSET (*arg1p) += offset; */
2784 }
2785
2786 return v;
2787 }
2788
2789 \f
2790
2791 /* Helper function for both unpack_value_bits_as_long and
2792 unpack_bits_as_long. See those functions for more details on the
2793 interface; the only difference is that this function accepts either
2794 a NULL or a non-NULL ORIGINAL_VALUE. */
2795
2796 static int
2797 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2798 int embedded_offset, int bitpos, int bitsize,
2799 const struct value *original_value,
2800 LONGEST *result)
2801 {
2802 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2803 ULONGEST val;
2804 ULONGEST valmask;
2805 int lsbcount;
2806 int bytes_read;
2807 int read_offset;
2808
2809 /* Read the minimum number of bytes required; there may not be
2810 enough bytes to read an entire ULONGEST. */
2811 CHECK_TYPEDEF (field_type);
2812 if (bitsize)
2813 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2814 else
2815 bytes_read = TYPE_LENGTH (field_type);
2816
2817 read_offset = bitpos / 8;
2818
2819 if (original_value != NULL
2820 && !value_bytes_available (original_value, embedded_offset + read_offset,
2821 bytes_read))
2822 return 0;
2823
2824 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2825 bytes_read, byte_order);
2826
2827 /* Extract bits. See comment above. */
2828
2829 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2830 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2831 else
2832 lsbcount = (bitpos % 8);
2833 val >>= lsbcount;
2834
2835 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2836 If the field is signed, and is negative, then sign extend. */
2837
2838 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2839 {
2840 valmask = (((ULONGEST) 1) << bitsize) - 1;
2841 val &= valmask;
2842 if (!TYPE_UNSIGNED (field_type))
2843 {
2844 if (val & (valmask ^ (valmask >> 1)))
2845 {
2846 val |= ~valmask;
2847 }
2848 }
2849 }
2850
2851 *result = val;
2852 return 1;
2853 }
2854
2855 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2856 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2857 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2858 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2859 bits.
2860
2861 Returns false if the value contents are unavailable, otherwise
2862 returns true, indicating a valid value has been stored in *RESULT.
2863
2864 Extracting bits depends on endianness of the machine. Compute the
2865 number of least significant bits to discard. For big endian machines,
2866 we compute the total number of bits in the anonymous object, subtract
2867 off the bit count from the MSB of the object to the MSB of the
2868 bitfield, then the size of the bitfield, which leaves the LSB discard
2869 count. For little endian machines, the discard count is simply the
2870 number of bits from the LSB of the anonymous object to the LSB of the
2871 bitfield.
2872
2873 If the field is signed, we also do sign extension. */
2874
2875 int
2876 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2877 int embedded_offset, int bitpos, int bitsize,
2878 const struct value *original_value,
2879 LONGEST *result)
2880 {
2881 gdb_assert (original_value != NULL);
2882
2883 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2884 bitpos, bitsize, original_value, result);
2885
2886 }
2887
2888 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2889 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2890 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2891 details. */
2892
2893 static int
2894 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2895 int embedded_offset, int fieldno,
2896 const struct value *val, LONGEST *result)
2897 {
2898 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2899 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2900 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2901
2902 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2903 bitpos, bitsize, val,
2904 result);
2905 }
2906
2907 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2908 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2909 ORIGINAL_VALUE, which must not be NULL. See
2910 unpack_value_bits_as_long for more details. */
2911
2912 int
2913 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2914 int embedded_offset, int fieldno,
2915 const struct value *val, LONGEST *result)
2916 {
2917 gdb_assert (val != NULL);
2918
2919 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2920 fieldno, val, result);
2921 }
2922
2923 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2924 object at VALADDR. See unpack_value_bits_as_long for more details.
2925 This function differs from unpack_value_field_as_long in that it
2926 operates without a struct value object. */
2927
2928 LONGEST
2929 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2930 {
2931 LONGEST result;
2932
2933 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2934 return result;
2935 }
2936
2937 /* Return a new value with type TYPE, which is FIELDNO field of the
2938 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2939 of VAL. If the VAL's contents required to extract the bitfield
2940 from are unavailable, the new value is correspondingly marked as
2941 unavailable. */
2942
2943 struct value *
2944 value_field_bitfield (struct type *type, int fieldno,
2945 const gdb_byte *valaddr,
2946 int embedded_offset, const struct value *val)
2947 {
2948 LONGEST l;
2949
2950 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2951 val, &l))
2952 {
2953 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2954 struct value *retval = allocate_value (field_type);
2955 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2956 return retval;
2957 }
2958 else
2959 {
2960 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2961 }
2962 }
2963
2964 /* Modify the value of a bitfield. ADDR points to a block of memory in
2965 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2966 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2967 indicate which bits (in target bit order) comprise the bitfield.
2968 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2969 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2970
2971 void
2972 modify_field (struct type *type, gdb_byte *addr,
2973 LONGEST fieldval, int bitpos, int bitsize)
2974 {
2975 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2976 ULONGEST oword;
2977 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2978 int bytesize;
2979
2980 /* Normalize BITPOS. */
2981 addr += bitpos / 8;
2982 bitpos %= 8;
2983
2984 /* If a negative fieldval fits in the field in question, chop
2985 off the sign extension bits. */
2986 if ((~fieldval & ~(mask >> 1)) == 0)
2987 fieldval &= mask;
2988
2989 /* Warn if value is too big to fit in the field in question. */
2990 if (0 != (fieldval & ~mask))
2991 {
2992 /* FIXME: would like to include fieldval in the message, but
2993 we don't have a sprintf_longest. */
2994 warning (_("Value does not fit in %d bits."), bitsize);
2995
2996 /* Truncate it, otherwise adjoining fields may be corrupted. */
2997 fieldval &= mask;
2998 }
2999
3000 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3001 false valgrind reports. */
3002
3003 bytesize = (bitpos + bitsize + 7) / 8;
3004 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3005
3006 /* Shifting for bit field depends on endianness of the target machine. */
3007 if (gdbarch_bits_big_endian (get_type_arch (type)))
3008 bitpos = bytesize * 8 - bitpos - bitsize;
3009
3010 oword &= ~(mask << bitpos);
3011 oword |= fieldval << bitpos;
3012
3013 store_unsigned_integer (addr, bytesize, byte_order, oword);
3014 }
3015 \f
3016 /* Pack NUM into BUF using a target format of TYPE. */
3017
3018 void
3019 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3020 {
3021 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3022 int len;
3023
3024 type = check_typedef (type);
3025 len = TYPE_LENGTH (type);
3026
3027 switch (TYPE_CODE (type))
3028 {
3029 case TYPE_CODE_INT:
3030 case TYPE_CODE_CHAR:
3031 case TYPE_CODE_ENUM:
3032 case TYPE_CODE_FLAGS:
3033 case TYPE_CODE_BOOL:
3034 case TYPE_CODE_RANGE:
3035 case TYPE_CODE_MEMBERPTR:
3036 store_signed_integer (buf, len, byte_order, num);
3037 break;
3038
3039 case TYPE_CODE_REF:
3040 case TYPE_CODE_PTR:
3041 store_typed_address (buf, type, (CORE_ADDR) num);
3042 break;
3043
3044 default:
3045 error (_("Unexpected type (%d) encountered for integer constant."),
3046 TYPE_CODE (type));
3047 }
3048 }
3049
3050
3051 /* Pack NUM into BUF using a target format of TYPE. */
3052
3053 static void
3054 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3055 {
3056 int len;
3057 enum bfd_endian byte_order;
3058
3059 type = check_typedef (type);
3060 len = TYPE_LENGTH (type);
3061 byte_order = gdbarch_byte_order (get_type_arch (type));
3062
3063 switch (TYPE_CODE (type))
3064 {
3065 case TYPE_CODE_INT:
3066 case TYPE_CODE_CHAR:
3067 case TYPE_CODE_ENUM:
3068 case TYPE_CODE_FLAGS:
3069 case TYPE_CODE_BOOL:
3070 case TYPE_CODE_RANGE:
3071 case TYPE_CODE_MEMBERPTR:
3072 store_unsigned_integer (buf, len, byte_order, num);
3073 break;
3074
3075 case TYPE_CODE_REF:
3076 case TYPE_CODE_PTR:
3077 store_typed_address (buf, type, (CORE_ADDR) num);
3078 break;
3079
3080 default:
3081 error (_("Unexpected type (%d) encountered "
3082 "for unsigned integer constant."),
3083 TYPE_CODE (type));
3084 }
3085 }
3086
3087
3088 /* Convert C numbers into newly allocated values. */
3089
3090 struct value *
3091 value_from_longest (struct type *type, LONGEST num)
3092 {
3093 struct value *val = allocate_value (type);
3094
3095 pack_long (value_contents_raw (val), type, num);
3096 return val;
3097 }
3098
3099
3100 /* Convert C unsigned numbers into newly allocated values. */
3101
3102 struct value *
3103 value_from_ulongest (struct type *type, ULONGEST num)
3104 {
3105 struct value *val = allocate_value (type);
3106
3107 pack_unsigned_long (value_contents_raw (val), type, num);
3108
3109 return val;
3110 }
3111
3112
3113 /* Create a value representing a pointer of type TYPE to the address
3114 ADDR. */
3115 struct value *
3116 value_from_pointer (struct type *type, CORE_ADDR addr)
3117 {
3118 struct value *val = allocate_value (type);
3119
3120 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3121 return val;
3122 }
3123
3124
3125 /* Create a value of type TYPE whose contents come from VALADDR, if it
3126 is non-null, and whose memory address (in the inferior) is
3127 ADDRESS. */
3128
3129 struct value *
3130 value_from_contents_and_address (struct type *type,
3131 const gdb_byte *valaddr,
3132 CORE_ADDR address)
3133 {
3134 struct value *v;
3135
3136 if (valaddr == NULL)
3137 v = allocate_value_lazy (type);
3138 else
3139 {
3140 v = allocate_value (type);
3141 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3142 }
3143 set_value_address (v, address);
3144 VALUE_LVAL (v) = lval_memory;
3145 return v;
3146 }
3147
3148 /* Create a value of type TYPE holding the contents CONTENTS.
3149 The new value is `not_lval'. */
3150
3151 struct value *
3152 value_from_contents (struct type *type, const gdb_byte *contents)
3153 {
3154 struct value *result;
3155
3156 result = allocate_value (type);
3157 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3158 return result;
3159 }
3160
3161 struct value *
3162 value_from_double (struct type *type, DOUBLEST num)
3163 {
3164 struct value *val = allocate_value (type);
3165 struct type *base_type = check_typedef (type);
3166 enum type_code code = TYPE_CODE (base_type);
3167
3168 if (code == TYPE_CODE_FLT)
3169 {
3170 store_typed_floating (value_contents_raw (val), base_type, num);
3171 }
3172 else
3173 error (_("Unexpected type encountered for floating constant."));
3174
3175 return val;
3176 }
3177
3178 struct value *
3179 value_from_decfloat (struct type *type, const gdb_byte *dec)
3180 {
3181 struct value *val = allocate_value (type);
3182
3183 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3184 return val;
3185 }
3186
3187 /* Extract a value from the history file. Input will be of the form
3188 $digits or $$digits. See block comment above 'write_dollar_variable'
3189 for details. */
3190
3191 struct value *
3192 value_from_history_ref (char *h, char **endp)
3193 {
3194 int index, len;
3195
3196 if (h[0] == '$')
3197 len = 1;
3198 else
3199 return NULL;
3200
3201 if (h[1] == '$')
3202 len = 2;
3203
3204 /* Find length of numeral string. */
3205 for (; isdigit (h[len]); len++)
3206 ;
3207
3208 /* Make sure numeral string is not part of an identifier. */
3209 if (h[len] == '_' || isalpha (h[len]))
3210 return NULL;
3211
3212 /* Now collect the index value. */
3213 if (h[1] == '$')
3214 {
3215 if (len == 2)
3216 {
3217 /* For some bizarre reason, "$$" is equivalent to "$$1",
3218 rather than to "$$0" as it ought to be! */
3219 index = -1;
3220 *endp += len;
3221 }
3222 else
3223 index = -strtol (&h[2], endp, 10);
3224 }
3225 else
3226 {
3227 if (len == 1)
3228 {
3229 /* "$" is equivalent to "$0". */
3230 index = 0;
3231 *endp += len;
3232 }
3233 else
3234 index = strtol (&h[1], endp, 10);
3235 }
3236
3237 return access_value_history (index);
3238 }
3239
3240 struct value *
3241 coerce_ref_if_computed (const struct value *arg)
3242 {
3243 const struct lval_funcs *funcs;
3244
3245 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3246 return NULL;
3247
3248 if (value_lval_const (arg) != lval_computed)
3249 return NULL;
3250
3251 funcs = value_computed_funcs (arg);
3252 if (funcs->coerce_ref == NULL)
3253 return NULL;
3254
3255 return funcs->coerce_ref (arg);
3256 }
3257
3258 /* Look at value.h for description. */
3259
3260 struct value *
3261 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3262 struct type *original_type,
3263 struct value *original_value)
3264 {
3265 /* Re-adjust type. */
3266 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3267
3268 /* Add embedding info. */
3269 set_value_enclosing_type (value, enc_type);
3270 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3271
3272 /* We may be pointing to an object of some derived type. */
3273 return value_full_object (value, NULL, 0, 0, 0);
3274 }
3275
3276 struct value *
3277 coerce_ref (struct value *arg)
3278 {
3279 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3280 struct value *retval;
3281 struct type *enc_type;
3282
3283 retval = coerce_ref_if_computed (arg);
3284 if (retval)
3285 return retval;
3286
3287 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3288 return arg;
3289
3290 enc_type = check_typedef (value_enclosing_type (arg));
3291 enc_type = TYPE_TARGET_TYPE (enc_type);
3292
3293 retval = value_at_lazy (enc_type,
3294 unpack_pointer (value_type (arg),
3295 value_contents (arg)));
3296 return readjust_indirect_value_type (retval, enc_type,
3297 value_type_arg_tmp, arg);
3298 }
3299
3300 struct value *
3301 coerce_array (struct value *arg)
3302 {
3303 struct type *type;
3304
3305 arg = coerce_ref (arg);
3306 type = check_typedef (value_type (arg));
3307
3308 switch (TYPE_CODE (type))
3309 {
3310 case TYPE_CODE_ARRAY:
3311 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3312 arg = value_coerce_array (arg);
3313 break;
3314 case TYPE_CODE_FUNC:
3315 arg = value_coerce_function (arg);
3316 break;
3317 }
3318 return arg;
3319 }
3320 \f
3321
3322 /* Return true if the function returning the specified type is using
3323 the convention of returning structures in memory (passing in the
3324 address as a hidden first parameter). */
3325
3326 int
3327 using_struct_return (struct gdbarch *gdbarch,
3328 struct value *function, struct type *value_type)
3329 {
3330 enum type_code code = TYPE_CODE (value_type);
3331
3332 if (code == TYPE_CODE_ERROR)
3333 error (_("Function return type unknown."));
3334
3335 if (code == TYPE_CODE_VOID)
3336 /* A void return value is never in memory. See also corresponding
3337 code in "print_return_value". */
3338 return 0;
3339
3340 /* Probe the architecture for the return-value convention. */
3341 return (gdbarch_return_value (gdbarch, function, value_type,
3342 NULL, NULL, NULL)
3343 != RETURN_VALUE_REGISTER_CONVENTION);
3344 }
3345
3346 /* Set the initialized field in a value struct. */
3347
3348 void
3349 set_value_initialized (struct value *val, int status)
3350 {
3351 val->initialized = status;
3352 }
3353
3354 /* Return the initialized field in a value struct. */
3355
3356 int
3357 value_initialized (struct value *val)
3358 {
3359 return val->initialized;
3360 }
3361
3362 void
3363 _initialize_values (void)
3364 {
3365 add_cmd ("convenience", no_class, show_convenience, _("\
3366 Debugger convenience (\"$foo\") variables.\n\
3367 These variables are created when you assign them values;\n\
3368 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3369 \n\
3370 A few convenience variables are given values automatically:\n\
3371 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3372 \"$__\" holds the contents of the last address examined with \"x\"."),
3373 &showlist);
3374
3375 add_cmd ("values", no_set_class, show_values, _("\
3376 Elements of value history around item number IDX (or last ten)."),
3377 &showlist);
3378
3379 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3380 Initialize a convenience variable if necessary.\n\
3381 init-if-undefined VARIABLE = EXPRESSION\n\
3382 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3383 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3384 VARIABLE is already initialized."));
3385
3386 add_prefix_cmd ("function", no_class, function_command, _("\
3387 Placeholder command for showing help on convenience functions."),
3388 &functionlist, "function ", 0, &cmdlist);
3389 }