]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.h
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* The structure which defines the type of a value. It should never
88 be possible for a program lval value to survive over a call to the
89 inferior (i.e. to be put into the history list or an internal
90 variable). */
91
92 struct value;
93
94 /* Increase VAL's reference count. */
95
96 extern void value_incref (struct value *val);
97
98 /* Decrease VAL's reference count. When the reference count drops to
99 0, VAL will be freed. */
100
101 extern void value_decref (struct value *val);
102
103 /* A policy class to interface gdb::ref_ptr with struct value. */
104
105 struct value_ref_policy
106 {
107 static void incref (struct value *ptr)
108 {
109 value_incref (ptr);
110 }
111
112 static void decref (struct value *ptr)
113 {
114 value_decref (ptr);
115 }
116 };
117
118 /* A gdb:;ref_ptr pointer to a struct value. */
119
120 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
121
122 /* Values are stored in a chain, so that they can be deleted easily
123 over calls to the inferior. Values assigned to internal variables,
124 put into the value history or exposed to Python are taken off this
125 list. */
126
127 struct value *value_next (const struct value *);
128
129 /* Type of the value. */
130
131 extern struct type *value_type (const struct value *);
132
133 /* Return the gdbarch associated with the value. */
134
135 extern struct gdbarch *get_value_arch (const struct value *value);
136
137 /* This is being used to change the type of an existing value, that
138 code should instead be creating a new value with the changed type
139 (but possibly shared content). */
140
141 extern void deprecated_set_value_type (struct value *value,
142 struct type *type);
143
144 /* Only used for bitfields; number of bits contained in them. */
145
146 extern LONGEST value_bitsize (const struct value *);
147 extern void set_value_bitsize (struct value *, LONGEST bit);
148
149 /* Only used for bitfields; position of start of field. For
150 little-endian targets, it is the position of the LSB. For
151 big-endian targets, it is the position of the MSB. */
152
153 extern LONGEST value_bitpos (const struct value *);
154 extern void set_value_bitpos (struct value *, LONGEST bit);
155
156 /* Only used for bitfields; the containing value. This allows a
157 single read from the target when displaying multiple
158 bitfields. */
159
160 struct value *value_parent (const struct value *);
161 extern void set_value_parent (struct value *value, struct value *parent);
162
163 /* Describes offset of a value within lval of a structure in bytes.
164 If lval == lval_memory, this is an offset to the address. If lval
165 == lval_register, this is a further offset from location.address
166 within the registers structure. Note also the member
167 embedded_offset below. */
168
169 extern LONGEST value_offset (const struct value *);
170 extern void set_value_offset (struct value *, LONGEST offset);
171
172 /* The comment from "struct value" reads: ``Is it modifiable? Only
173 relevant if lval != not_lval.''. Shouldn't the value instead be
174 not_lval and be done with it? */
175
176 extern int deprecated_value_modifiable (const struct value *value);
177
178 /* If a value represents a C++ object, then the `type' field gives the
179 object's compile-time type. If the object actually belongs to some
180 class derived from `type', perhaps with other base classes and
181 additional members, then `type' is just a subobject of the real
182 thing, and the full object is probably larger than `type' would
183 suggest.
184
185 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
186 actually determine the object's run-time type by looking at the
187 run-time type information in the vtable. When this information is
188 available, we may elect to read in the entire object, for several
189 reasons:
190
191 - When printing the value, the user would probably rather see the
192 full object, not just the limited portion apparent from the
193 compile-time type.
194
195 - If `type' has virtual base classes, then even printing `type'
196 alone may require reaching outside the `type' portion of the
197 object to wherever the virtual base class has been stored.
198
199 When we store the entire object, `enclosing_type' is the run-time
200 type -- the complete object -- and `embedded_offset' is the offset
201 of `type' within that larger type, in bytes. The value_contents()
202 macro takes `embedded_offset' into account, so most GDB code
203 continues to see the `type' portion of the value, just as the
204 inferior would.
205
206 If `type' is a pointer to an object, then `enclosing_type' is a
207 pointer to the object's run-time type, and `pointed_to_offset' is
208 the offset in bytes from the full object to the pointed-to object
209 -- that is, the value `embedded_offset' would have if we followed
210 the pointer and fetched the complete object. (I don't really see
211 the point. Why not just determine the run-time type when you
212 indirect, and avoid the special case? The contents don't matter
213 until you indirect anyway.)
214
215 If we're not doing anything fancy, `enclosing_type' is equal to
216 `type', and `embedded_offset' is zero, so everything works
217 normally. */
218
219 extern struct type *value_enclosing_type (const struct value *);
220 extern void set_value_enclosing_type (struct value *val,
221 struct type *new_type);
222
223 /* Returns value_type or value_enclosing_type depending on
224 value_print_options.objectprint.
225
226 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
227 only for pointers and references, else it will be returned
228 for all the types (e.g. structures). This option is useful
229 to prevent retrieving enclosing type for the base classes fields.
230
231 REAL_TYPE_FOUND is used to inform whether the real type was found
232 (or just static type was used). The NULL may be passed if it is not
233 necessary. */
234
235 extern struct type *value_actual_type (struct value *value,
236 int resolve_simple_types,
237 int *real_type_found);
238
239 extern LONGEST value_pointed_to_offset (const struct value *value);
240 extern void set_value_pointed_to_offset (struct value *value, LONGEST val);
241 extern LONGEST value_embedded_offset (const struct value *value);
242 extern void set_value_embedded_offset (struct value *value, LONGEST val);
243
244 /* For lval_computed values, this structure holds functions used to
245 retrieve and set the value (or portions of the value).
246
247 For each function, 'V' is the 'this' pointer: an lval_funcs
248 function F may always assume that the V it receives is an
249 lval_computed value, and has F in the appropriate slot of its
250 lval_funcs structure. */
251
252 struct lval_funcs
253 {
254 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
255 a problem arises in obtaining VALUE's bits, this function should
256 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
257 non-optimized-out value is an internal error. */
258 void (*read) (struct value *v);
259
260 /* Handle an assignment TOVAL = FROMVAL by writing the value of
261 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
262 been updated. If a problem arises in doing so, this function
263 should call 'error'. If it is NULL such TOVAL assignment is an error as
264 TOVAL is not considered as an lvalue. */
265 void (*write) (struct value *toval, struct value *fromval);
266
267 /* Return true if any part of V is optimized out, false otherwise.
268 This will only be called for lazy values -- if the value has been
269 fetched, then the value's optimized-out bits are consulted
270 instead. */
271 bool (*is_optimized_out) (struct value *v);
272
273 /* If non-NULL, this is used to implement pointer indirection for
274 this value. This method may return NULL, in which case value_ind
275 will fall back to ordinary indirection. */
276 struct value *(*indirect) (struct value *value);
277
278 /* If non-NULL, this is used to implement reference resolving for
279 this value. This method may return NULL, in which case coerce_ref
280 will fall back to ordinary references resolving. */
281 struct value *(*coerce_ref) (const struct value *value);
282
283 /* If non-NULL, this is used to determine whether the indicated bits
284 of VALUE are a synthetic pointer. */
285 int (*check_synthetic_pointer) (const struct value *value,
286 LONGEST offset, int length);
287
288 /* Return a duplicate of VALUE's closure, for use in a new value.
289 This may simply return the same closure, if VALUE's is
290 reference-counted or statically allocated.
291
292 This may be NULL, in which case VALUE's closure is re-used in the
293 new value. */
294 void *(*copy_closure) (const struct value *v);
295
296 /* Drop VALUE's reference to its closure. Maybe this frees the
297 closure; maybe this decrements a reference count; maybe the
298 closure is statically allocated and this does nothing.
299
300 This may be NULL, in which case no action is taken to free
301 VALUE's closure. */
302 void (*free_closure) (struct value *v);
303 };
304
305 /* Create a computed lvalue, with type TYPE, function pointers FUNCS,
306 and closure CLOSURE. */
307
308 extern struct value *allocate_computed_value (struct type *type,
309 const struct lval_funcs *funcs,
310 void *closure);
311
312 extern struct value *allocate_optimized_out_value (struct type *type);
313
314 /* If VALUE is lval_computed, return its lval_funcs structure. */
315
316 extern const struct lval_funcs *value_computed_funcs (const struct value *);
317
318 /* If VALUE is lval_computed, return its closure. The meaning of the
319 returned value depends on the functions VALUE uses. */
320
321 extern void *value_computed_closure (const struct value *value);
322
323 /* If zero, contents of this value are in the contents field. If
324 nonzero, contents are in inferior. If the lval field is lval_memory,
325 the contents are in inferior memory at location.address plus offset.
326 The lval field may also be lval_register.
327
328 WARNING: This field is used by the code which handles watchpoints
329 (see breakpoint.c) to decide whether a particular value can be
330 watched by hardware watchpoints. If the lazy flag is set for some
331 member of a value chain, it is assumed that this member of the
332 chain doesn't need to be watched as part of watching the value
333 itself. This is how GDB avoids watching the entire struct or array
334 when the user wants to watch a single struct member or array
335 element. If you ever change the way lazy flag is set and reset, be
336 sure to consider this use as well! */
337
338 extern int value_lazy (const struct value *);
339 extern void set_value_lazy (struct value *value, int val);
340
341 extern int value_stack (const struct value *);
342 extern void set_value_stack (struct value *value, int val);
343
344 /* Throw an error complaining that the value has been optimized
345 out. */
346
347 extern void error_value_optimized_out (void);
348
349 /* value_contents() and value_contents_raw() both return the address
350 of the gdb buffer used to hold a copy of the contents of the lval.
351 value_contents() is used when the contents of the buffer are needed
352 -- it uses value_fetch_lazy() to load the buffer from the process
353 being debugged if it hasn't already been loaded
354 (value_contents_writeable() is used when a writeable but fetched
355 buffer is required).. value_contents_raw() is used when data is
356 being stored into the buffer, or when it is certain that the
357 contents of the buffer are valid.
358
359 Note: The contents pointer is adjusted by the offset required to
360 get to the real subobject, if the value happens to represent
361 something embedded in a larger run-time object. */
362
363 extern gdb::array_view<gdb_byte> value_contents_raw (struct value *);
364
365 /* Actual contents of the value. For use of this value; setting it
366 uses the stuff above. Not valid if lazy is nonzero. Target
367 byte-order. We force it to be aligned properly for any possible
368 value. Note that a value therefore extends beyond what is
369 declared here. */
370
371 extern gdb::array_view<const gdb_byte> value_contents (struct value *);
372 extern gdb::array_view<gdb_byte> value_contents_writeable (struct value *);
373
374 /* The ALL variants of the above two macros do not adjust the returned
375 pointer by the embedded_offset value. */
376
377 extern gdb::array_view<gdb_byte> value_contents_all_raw (struct value *);
378 extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
379
380 /* Like value_contents_all, but does not require that the returned
381 bits be valid. This should only be used in situations where you
382 plan to check the validity manually. */
383 extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
384
385 /* Like value_contents_for_printing, but accepts a constant value
386 pointer. Unlike value_contents_for_printing however, the pointed
387 value must _not_ be lazy. */
388 extern gdb::array_view<const gdb_byte>
389 value_contents_for_printing_const (const struct value *value);
390
391 extern void value_fetch_lazy (struct value *val);
392
393 /* If nonzero, this is the value of a variable which does not actually
394 exist in the program, at least partially. If the value is lazy,
395 this may fetch it now. */
396 extern int value_optimized_out (struct value *value);
397
398 /* Given a value, return true if any of the contents bits starting at
399 OFFSET and extending for LENGTH bits is optimized out, false
400 otherwise. */
401
402 extern int value_bits_any_optimized_out (const struct value *value,
403 int bit_offset, int bit_length);
404
405 /* Like value_optimized_out, but return true iff the whole value is
406 optimized out. */
407 extern int value_entirely_optimized_out (struct value *value);
408
409 /* Mark VALUE's content bytes starting at OFFSET and extending for
410 LENGTH bytes as optimized out. */
411
412 extern void mark_value_bytes_optimized_out (struct value *value,
413 int offset, int length);
414
415 /* Mark VALUE's content bits starting at OFFSET and extending for
416 LENGTH bits as optimized out. */
417
418 extern void mark_value_bits_optimized_out (struct value *value,
419 LONGEST offset, LONGEST length);
420
421 /* Set or return field indicating whether a variable is initialized or
422 not, based on debugging information supplied by the compiler.
423 1 = initialized; 0 = uninitialized. */
424 extern int value_initialized (const struct value *);
425 extern void set_value_initialized (struct value *, int);
426
427 /* Set COMPONENT's location as appropriate for a component of WHOLE
428 --- regardless of what kind of lvalue WHOLE is. */
429 extern void set_value_component_location (struct value *component,
430 const struct value *whole);
431
432 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
433 single value might have multiple LVALs), this hacked interface is
434 limited to just the first PIECE. Expect further change. */
435 /* Type of value; either not an lval, or one of the various different
436 possible kinds of lval. */
437 extern enum lval_type *deprecated_value_lval_hack (struct value *);
438 #define VALUE_LVAL(val) (*deprecated_value_lval_hack (val))
439
440 /* Like VALUE_LVAL, except the parameter can be const. */
441 extern enum lval_type value_lval_const (const struct value *value);
442
443 /* If lval == lval_memory, return the address in the inferior. If
444 lval == lval_register, return the byte offset into the registers
445 structure. Otherwise, return 0. The returned address
446 includes the offset, if any. */
447 extern CORE_ADDR value_address (const struct value *);
448
449 /* Like value_address, except the result does not include value's
450 offset. */
451 extern CORE_ADDR value_raw_address (const struct value *);
452
453 /* Set the address of a value. */
454 extern void set_value_address (struct value *, CORE_ADDR);
455
456 /* Pointer to internal variable. */
457 extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
458 #define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
459
460 /* Frame ID of "next" frame to which a register value is relative. A
461 register value is indicated by VALUE_LVAL being set to lval_register.
462 So, if the register value is found relative to frame F, then the
463 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
464 extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
465 #define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
466
467 /* Register number if the value is from a register. */
468 extern int *deprecated_value_regnum_hack (struct value *);
469 #define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
470
471 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
472 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
473
474 extern struct value *coerce_ref_if_computed (const struct value *arg);
475
476 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
477 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
478 ORIGINAL_VAL are the type and value of the original reference or
479 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
480 the address that was dereferenced.
481
482 Note, that VALUE is modified by this function.
483
484 It is a common implementation for coerce_ref and value_ind. */
485
486 extern struct value * readjust_indirect_value_type (struct value *value,
487 struct type *enc_type,
488 const struct type *original_type,
489 struct value *original_val,
490 CORE_ADDR original_value_address);
491
492 /* Convert a REF to the object referenced. */
493
494 extern struct value *coerce_ref (struct value *value);
495
496 /* If ARG is an array, convert it to a pointer.
497 If ARG is a function, convert it to a function pointer.
498
499 References are dereferenced. */
500
501 extern struct value *coerce_array (struct value *value);
502
503 /* Given a value, determine whether the bits starting at OFFSET and
504 extending for LENGTH bits are a synthetic pointer. */
505
506 extern int value_bits_synthetic_pointer (const struct value *value,
507 LONGEST offset, LONGEST length);
508
509 /* Given a value, determine whether the contents bytes starting at
510 OFFSET and extending for LENGTH bytes are available. This returns
511 nonzero if all bytes in the given range are available, zero if any
512 byte is unavailable. */
513
514 extern int value_bytes_available (const struct value *value,
515 LONGEST offset, LONGEST length);
516
517 /* Given a value, determine whether the contents bits starting at
518 OFFSET and extending for LENGTH bits are available. This returns
519 nonzero if all bits in the given range are available, zero if any
520 bit is unavailable. */
521
522 extern int value_bits_available (const struct value *value,
523 LONGEST offset, LONGEST length);
524
525 /* Like value_bytes_available, but return false if any byte in the
526 whole object is unavailable. */
527 extern int value_entirely_available (struct value *value);
528
529 /* Like value_entirely_available, but return false if any byte in the
530 whole object is available. */
531 extern int value_entirely_unavailable (struct value *value);
532
533 /* Mark VALUE's content bytes starting at OFFSET and extending for
534 LENGTH bytes as unavailable. */
535
536 extern void mark_value_bytes_unavailable (struct value *value,
537 LONGEST offset, LONGEST length);
538
539 /* Mark VALUE's content bits starting at OFFSET and extending for
540 LENGTH bits as unavailable. */
541
542 extern void mark_value_bits_unavailable (struct value *value,
543 LONGEST offset, LONGEST length);
544
545 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
546 LENGTH bytes of VAL2's contents starting at OFFSET2.
547
548 Note that "contents" refers to the whole value's contents
549 (value_contents_all), without any embedded offset adjustment. For
550 example, to compare a complete object value with itself, including
551 its enclosing type chunk, you'd do:
552
553 int len = check_typedef (value_enclosing_type (val))->length ();
554 value_contents_eq (val, 0, val, 0, len);
555
556 Returns true iff the set of available/valid contents match.
557
558 Optimized-out contents are equal to optimized-out contents, and are
559 not equal to non-optimized-out contents.
560
561 Unavailable contents are equal to unavailable contents, and are not
562 equal to non-unavailable contents.
563
564 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
565 represent different available/valid bytes, in a value with length
566 16:
567
568 offset: 0 4 8 12 16
569 contents: xxxxVVVVxxxxVVZZ
570
571 then:
572
573 value_contents_eq(val, 0, val, 8, 6) => true
574 value_contents_eq(val, 0, val, 4, 4) => false
575 value_contents_eq(val, 0, val, 8, 8) => false
576 value_contents_eq(val, 4, val, 12, 2) => true
577 value_contents_eq(val, 4, val, 12, 4) => true
578 value_contents_eq(val, 3, val, 4, 4) => true
579
580 If 'x's represent an unavailable byte, 'o' represents an optimized
581 out byte, in a value with length 8:
582
583 offset: 0 4 8
584 contents: xxxxoooo
585
586 then:
587
588 value_contents_eq(val, 0, val, 2, 2) => true
589 value_contents_eq(val, 4, val, 6, 2) => true
590 value_contents_eq(val, 0, val, 4, 4) => true
591
592 We only know whether a value chunk is unavailable or optimized out
593 if we've tried to read it. As this routine is used by printing
594 routines, which may be printing values in the value history, long
595 after the inferior is gone, it works with const values. Therefore,
596 this routine must not be called with lazy values. */
597
598 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
599 const struct value *val2, LONGEST offset2,
600 LONGEST length);
601
602 /* An overload of value_contents_eq that compares the entirety of both
603 values. */
604
605 extern bool value_contents_eq (const struct value *val1,
606 const struct value *val2);
607
608 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
609 which is (or will be copied to) VAL's contents buffer offset by
610 BIT_OFFSET bits. Marks value contents ranges as unavailable if
611 the corresponding memory is likewise unavailable. STACK indicates
612 whether the memory is known to be stack memory. */
613
614 extern void read_value_memory (struct value *val, LONGEST bit_offset,
615 int stack, CORE_ADDR memaddr,
616 gdb_byte *buffer, size_t length);
617
618 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
619 into each element of a new vector value with VECTOR_TYPE. */
620
621 struct value *value_vector_widen (struct value *scalar_value,
622 struct type *vector_type);
623
624 \f
625
626 #include "symtab.h"
627 #include "gdbtypes.h"
628 #include "expression.h"
629
630 class frame_info_ptr;
631 struct fn_field;
632
633 extern int print_address_demangle (const struct value_print_options *,
634 struct gdbarch *, CORE_ADDR,
635 struct ui_file *, int);
636
637 /* Returns true if VAL is of floating-point type. In addition,
638 throws an error if the value is an invalid floating-point value. */
639 extern bool is_floating_value (struct value *val);
640
641 extern LONGEST value_as_long (struct value *val);
642 extern CORE_ADDR value_as_address (struct value *val);
643
644 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
645 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
646
647 extern LONGEST unpack_field_as_long (struct type *type,
648 const gdb_byte *valaddr,
649 int fieldno);
650
651 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
652 VALADDR, and store the result in *RESULT.
653 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
654 BITSIZE is zero, then the length is taken from FIELD_TYPE.
655
656 Extracting bits depends on endianness of the machine. Compute the
657 number of least significant bits to discard. For big endian machines,
658 we compute the total number of bits in the anonymous object, subtract
659 off the bit count from the MSB of the object to the MSB of the
660 bitfield, then the size of the bitfield, which leaves the LSB discard
661 count. For little endian machines, the discard count is simply the
662 number of bits from the LSB of the anonymous object to the LSB of the
663 bitfield.
664
665 If the field is signed, we also do sign extension. */
666
667 extern LONGEST unpack_bits_as_long (struct type *field_type,
668 const gdb_byte *valaddr,
669 LONGEST bitpos, LONGEST bitsize);
670
671 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
672 LONGEST embedded_offset, int fieldno,
673 const struct value *val, LONGEST *result);
674
675 extern void unpack_value_bitfield (struct value *dest_val,
676 LONGEST bitpos, LONGEST bitsize,
677 const gdb_byte *valaddr,
678 LONGEST embedded_offset,
679 const struct value *val);
680
681 extern struct value *value_field_bitfield (struct type *type, int fieldno,
682 const gdb_byte *valaddr,
683 LONGEST embedded_offset,
684 const struct value *val);
685
686 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
687
688 extern struct value *value_from_longest (struct type *type, LONGEST num);
689 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
690 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
691 extern struct value *value_from_host_double (struct type *type, double d);
692 extern struct value *value_from_history_ref (const char *, const char **);
693 extern struct value *value_from_component (struct value *, struct type *,
694 LONGEST);
695
696
697 /* Create a new value by extracting it from WHOLE. TYPE is the type
698 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
699 and field width of the value to extract from WHOLE -- BIT_LENGTH
700 may differ from TYPE's length in the case where WHOLE's type is
701 packed.
702
703 When the value does come from a non-byte-aligned offset or field
704 width, it will be marked non_lval. */
705
706 extern struct value *value_from_component_bitsize (struct value *whole,
707 struct type *type,
708 LONGEST bit_offset,
709 LONGEST bit_length);
710
711 extern struct value *value_at (struct type *type, CORE_ADDR addr);
712 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
713
714 extern struct value *value_from_contents_and_address_unresolved
715 (struct type *, const gdb_byte *, CORE_ADDR);
716 extern struct value *value_from_contents_and_address (struct type *,
717 const gdb_byte *,
718 CORE_ADDR);
719 extern struct value *value_from_contents (struct type *, const gdb_byte *);
720
721 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
722 struct type *type,
723 int regnum,
724 struct frame_id frame_id);
725
726 extern void read_frame_register_value (struct value *value,
727 frame_info_ptr frame);
728
729 extern struct value *value_from_register (struct type *type, int regnum,
730 frame_info_ptr frame);
731
732 extern CORE_ADDR address_from_register (int regnum,
733 frame_info_ptr frame);
734
735 extern struct value *value_of_variable (struct symbol *var,
736 const struct block *b);
737
738 extern struct value *address_of_variable (struct symbol *var,
739 const struct block *b);
740
741 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
742
743 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
744
745 /* Return the symbol's reading requirement. */
746
747 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
748
749 /* Return true if the symbol needs a frame. This is a wrapper for
750 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
751
752 extern int symbol_read_needs_frame (struct symbol *);
753
754 extern struct value *read_var_value (struct symbol *var,
755 const struct block *var_block,
756 frame_info_ptr frame);
757
758 extern struct value *allocate_value (struct type *type);
759 extern struct value *allocate_value_lazy (struct type *type);
760 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
761 struct value *src, LONGEST src_offset,
762 LONGEST length);
763
764 extern struct value *allocate_repeat_value (struct type *type, int count);
765
766 extern struct value *value_mark (void);
767
768 extern void value_free_to_mark (const struct value *mark);
769
770 /* A helper class that uses value_mark at construction time and calls
771 value_free_to_mark in the destructor. This is used to clear out
772 temporary values created during the lifetime of this object. */
773 class scoped_value_mark
774 {
775 public:
776
777 scoped_value_mark ()
778 : m_value (value_mark ())
779 {
780 }
781
782 ~scoped_value_mark ()
783 {
784 free_to_mark ();
785 }
786
787 scoped_value_mark (scoped_value_mark &&other) = default;
788
789 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
790
791 /* Free the values currently on the value stack. */
792 void free_to_mark ()
793 {
794 if (m_value != NULL)
795 {
796 value_free_to_mark (m_value);
797 m_value = NULL;
798 }
799 }
800
801 private:
802
803 const struct value *m_value;
804 };
805
806 extern struct value *value_cstring (const char *ptr, ssize_t len,
807 struct type *char_type);
808 extern struct value *value_string (const char *ptr, ssize_t len,
809 struct type *char_type);
810
811 extern struct value *value_array (int lowbound, int highbound,
812 struct value **elemvec);
813
814 extern struct value *value_concat (struct value *arg1, struct value *arg2);
815
816 extern struct value *value_binop (struct value *arg1, struct value *arg2,
817 enum exp_opcode op);
818
819 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
820
821 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
822
823 /* Return true if VAL does not live in target memory, but should in order
824 to operate on it. Otherwise return false. */
825
826 extern bool value_must_coerce_to_target (struct value *arg1);
827
828 extern struct value *value_coerce_to_target (struct value *arg1);
829
830 extern struct value *value_coerce_array (struct value *arg1);
831
832 extern struct value *value_coerce_function (struct value *arg1);
833
834 extern struct value *value_ind (struct value *arg1);
835
836 extern struct value *value_addr (struct value *arg1);
837
838 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
839
840 extern struct value *value_assign (struct value *toval,
841 struct value *fromval);
842
843 extern struct value *value_pos (struct value *arg1);
844
845 extern struct value *value_neg (struct value *arg1);
846
847 extern struct value *value_complement (struct value *arg1);
848
849 extern struct value *value_struct_elt (struct value **argp,
850 gdb::optional<gdb::array_view <value *>> args,
851 const char *name, int *static_memfuncp,
852 const char *err);
853
854 extern struct value *value_struct_elt_bitpos (struct value **argp,
855 int bitpos,
856 struct type *field_type,
857 const char *err);
858
859 extern struct value *value_aggregate_elt (struct type *curtype,
860 const char *name,
861 struct type *expect_type,
862 int want_address,
863 enum noside noside);
864
865 extern struct value *value_static_field (struct type *type, int fieldno);
866
867 enum oload_search_type { NON_METHOD, METHOD, BOTH };
868
869 extern int find_overload_match (gdb::array_view<value *> args,
870 const char *name,
871 enum oload_search_type method,
872 struct value **objp, struct symbol *fsym,
873 struct value **valp, struct symbol **symp,
874 int *staticp, const int no_adl,
875 enum noside noside);
876
877 extern struct value *value_field (struct value *arg1, int fieldno);
878
879 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
880 int fieldno,
881 struct type *arg_type);
882
883
884 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
885 int *);
886
887 extern struct value *value_full_object (struct value *, struct type *, int,
888 int, int);
889
890 extern struct value *value_cast_pointers (struct type *, struct value *, int);
891
892 extern struct value *value_cast (struct type *type, struct value *arg2);
893
894 extern struct value *value_reinterpret_cast (struct type *type,
895 struct value *arg);
896
897 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
898
899 extern struct value *value_zero (struct type *type, enum lval_type lv);
900
901 extern struct value *value_one (struct type *type);
902
903 extern struct value *value_repeat (struct value *arg1, int count);
904
905 extern struct value *value_subscript (struct value *array, LONGEST index);
906
907 extern struct value *value_bitstring_subscript (struct type *type,
908 struct value *bitstring,
909 LONGEST index);
910
911 extern struct value *register_value_being_returned (struct type *valtype,
912 struct regcache *retbuf);
913
914 extern int value_in (struct value *element, struct value *set);
915
916 extern int value_bit_index (struct type *type, const gdb_byte *addr,
917 int index);
918
919 extern enum return_value_convention
920 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
921 struct type *value_type);
922
923 extern int using_struct_return (struct gdbarch *gdbarch,
924 struct value *function,
925 struct type *value_type);
926
927 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
928 outermost operation's evaluation. This is ignored by most
929 operations, but may be used, e.g., to determine the type of an
930 otherwise untyped symbol. The caller should not assume that the
931 returned value has this type. */
932
933 extern struct value *evaluate_expression (struct expression *exp,
934 struct type *expect_type = nullptr);
935
936 extern struct value *evaluate_type (struct expression *exp);
937
938 extern value *evaluate_var_value (enum noside noside, const block *blk,
939 symbol *var);
940
941 extern value *evaluate_var_msym_value (enum noside noside,
942 struct objfile *objfile,
943 minimal_symbol *msymbol);
944
945 namespace expr { class operation; };
946 extern void fetch_subexp_value (struct expression *exp,
947 expr::operation *op,
948 struct value **valp, struct value **resultp,
949 std::vector<value_ref_ptr> *val_chain,
950 bool preserve_errors);
951
952 extern struct value *parse_and_eval (const char *exp);
953
954 extern struct value *parse_to_comma_and_eval (const char **expp);
955
956 extern struct type *parse_and_eval_type (const char *p, int length);
957
958 extern CORE_ADDR parse_and_eval_address (const char *exp);
959
960 extern LONGEST parse_and_eval_long (const char *exp);
961
962 extern void unop_promote (const struct language_defn *language,
963 struct gdbarch *gdbarch,
964 struct value **arg1);
965
966 extern void binop_promote (const struct language_defn *language,
967 struct gdbarch *gdbarch,
968 struct value **arg1, struct value **arg2);
969
970 extern struct value *access_value_history (int num);
971
972 /* Return the number of items in the value history. */
973
974 extern ULONGEST value_history_count ();
975
976 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
977 struct internalvar *var);
978
979 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
980
981 extern void set_internalvar (struct internalvar *var, struct value *val);
982
983 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
984
985 extern void set_internalvar_string (struct internalvar *var,
986 const char *string);
987
988 extern void clear_internalvar (struct internalvar *var);
989
990 extern void set_internalvar_component (struct internalvar *var,
991 LONGEST offset,
992 LONGEST bitpos, LONGEST bitsize,
993 struct value *newvalue);
994
995 extern struct internalvar *lookup_only_internalvar (const char *name);
996
997 extern struct internalvar *create_internalvar (const char *name);
998
999 extern void complete_internalvar (completion_tracker &tracker,
1000 const char *name);
1001
1002 /* An internalvar can be dynamically computed by supplying a vector of
1003 function pointers to perform various operations. */
1004
1005 struct internalvar_funcs
1006 {
1007 /* Compute the value of the variable. The DATA argument passed to
1008 the function is the same argument that was passed to
1009 `create_internalvar_type_lazy'. */
1010
1011 struct value *(*make_value) (struct gdbarch *arch,
1012 struct internalvar *var,
1013 void *data);
1014
1015 /* Update the agent expression EXPR with bytecode to compute the
1016 value. VALUE is the agent value we are updating. The DATA
1017 argument passed to this function is the same argument that was
1018 passed to `create_internalvar_type_lazy'. If this pointer is
1019 NULL, then the internalvar cannot be compiled to an agent
1020 expression. */
1021
1022 void (*compile_to_ax) (struct internalvar *var,
1023 struct agent_expr *expr,
1024 struct axs_value *value,
1025 void *data);
1026 };
1027
1028 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1029 const struct internalvar_funcs *funcs,
1030 void *data);
1031
1032 /* Compile an internal variable to an agent expression. VAR is the
1033 variable to compile; EXPR and VALUE are the agent expression we are
1034 updating. This will return 0 if there is no known way to compile
1035 VAR, and 1 if VAR was successfully compiled. It may also throw an
1036 exception on error. */
1037
1038 extern int compile_internalvar_to_ax (struct internalvar *var,
1039 struct agent_expr *expr,
1040 struct axs_value *value);
1041
1042 extern struct internalvar *lookup_internalvar (const char *name);
1043
1044 extern int value_equal (struct value *arg1, struct value *arg2);
1045
1046 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1047
1048 extern int value_less (struct value *arg1, struct value *arg2);
1049
1050 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1051 extern bool value_logical_not (struct value *arg1);
1052
1053 /* Returns true if the value VAL represents a true value. */
1054 static inline bool
1055 value_true (struct value *val)
1056 {
1057 return !value_logical_not (val);
1058 }
1059
1060 /* C++ */
1061
1062 extern struct value *value_of_this (const struct language_defn *lang);
1063
1064 extern struct value *value_of_this_silent (const struct language_defn *lang);
1065
1066 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1067 enum exp_opcode op,
1068 enum exp_opcode otherop,
1069 enum noside noside);
1070
1071 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1072 enum noside noside);
1073
1074 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1075 int j, struct type *type, LONGEST offset);
1076
1077 extern int binop_types_user_defined_p (enum exp_opcode op,
1078 struct type *type1,
1079 struct type *type2);
1080
1081 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1082 struct value *arg2);
1083
1084 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1085
1086 extern int destructor_name_p (const char *name, struct type *type);
1087
1088 extern value_ref_ptr release_value (struct value *val);
1089
1090 extern int record_latest_value (struct value *val);
1091
1092 extern void modify_field (struct type *type, gdb_byte *addr,
1093 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1094
1095 extern void type_print (struct type *type, const char *varstring,
1096 struct ui_file *stream, int show);
1097
1098 extern std::string type_to_string (struct type *type);
1099
1100 extern gdb_byte *baseclass_addr (struct type *type, int index,
1101 gdb_byte *valaddr,
1102 struct value **valuep, int *errp);
1103
1104 extern void print_longest (struct ui_file *stream, int format,
1105 int use_local, LONGEST val);
1106
1107 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1108 struct ui_file *stream);
1109
1110 extern void value_print (struct value *val, struct ui_file *stream,
1111 const struct value_print_options *options);
1112
1113 /* Release values from the value chain and return them. Values
1114 created after MARK are released. If MARK is nullptr, or if MARK is
1115 not found on the value chain, then all values are released. Values
1116 are returned in reverse order of creation; that is, newest
1117 first. */
1118
1119 extern std::vector<value_ref_ptr> value_release_to_mark
1120 (const struct value *mark);
1121
1122 extern void common_val_print (struct value *val,
1123 struct ui_file *stream, int recurse,
1124 const struct value_print_options *options,
1125 const struct language_defn *language);
1126
1127 extern int val_print_string (struct type *elttype, const char *encoding,
1128 CORE_ADDR addr, int len,
1129 struct ui_file *stream,
1130 const struct value_print_options *options);
1131
1132 extern void print_variable_and_value (const char *name,
1133 struct symbol *var,
1134 frame_info_ptr frame,
1135 struct ui_file *stream,
1136 int indent);
1137
1138 extern void typedef_print (struct type *type, struct symbol *news,
1139 struct ui_file *stream);
1140
1141 extern const char *internalvar_name (const struct internalvar *var);
1142
1143 extern void preserve_values (struct objfile *);
1144
1145 /* From values.c */
1146
1147 extern struct value *value_copy (const value *);
1148
1149 extern struct value *value_non_lval (struct value *);
1150
1151 extern void value_force_lval (struct value *, CORE_ADDR);
1152
1153 extern struct value *make_cv_value (int, int, struct value *);
1154
1155 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1156
1157 /* From valops.c */
1158
1159 extern struct value *varying_to_slice (struct value *);
1160
1161 extern struct value *value_slice (struct value *, int, int);
1162
1163 /* Create a complex number. The type is the complex type; the values
1164 are cast to the underlying scalar type before the complex number is
1165 created. */
1166
1167 extern struct value *value_literal_complex (struct value *, struct value *,
1168 struct type *);
1169
1170 /* Return the real part of a complex value. */
1171
1172 extern struct value *value_real_part (struct value *value);
1173
1174 /* Return the imaginary part of a complex value. */
1175
1176 extern struct value *value_imaginary_part (struct value *value);
1177
1178 extern struct value *find_function_in_inferior (const char *,
1179 struct objfile **);
1180
1181 extern struct value *value_allocate_space_in_inferior (int);
1182
1183 /* User function handler. */
1184
1185 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1186 const struct language_defn *language,
1187 void *cookie,
1188 int argc,
1189 struct value **argv);
1190
1191 /* Add a new internal function. NAME is the name of the function; DOC
1192 is a documentation string describing the function. HANDLER is
1193 called when the function is invoked. COOKIE is an arbitrary
1194 pointer which is passed to HANDLER and is intended for "user
1195 data". */
1196
1197 extern void add_internal_function (const char *name, const char *doc,
1198 internal_function_fn handler,
1199 void *cookie);
1200
1201 /* This overload takes an allocated documentation string. */
1202
1203 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1204 gdb::unique_xmalloc_ptr<char> &&doc,
1205 internal_function_fn handler,
1206 void *cookie);
1207
1208 struct value *call_internal_function (struct gdbarch *gdbarch,
1209 const struct language_defn *language,
1210 struct value *function,
1211 int argc, struct value **argv);
1212
1213 const char *value_internal_function_name (struct value *);
1214
1215 /* Build a value wrapping and representing WORKER. The value takes ownership
1216 of the xmethod_worker object. */
1217
1218 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1219
1220 extern struct type *result_type_of_xmethod (struct value *method,
1221 gdb::array_view<value *> argv);
1222
1223 extern struct value *call_xmethod (struct value *method,
1224 gdb::array_view<value *> argv);
1225
1226 /* Destroy the values currently allocated. This is called when GDB is
1227 exiting (e.g., on quit_force). */
1228 extern void finalize_values ();
1229
1230 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1231 of floating-point, fixed-point, or integer type. */
1232 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1233
1234 #endif /* !defined (VALUE_H) */