]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.h
Turn allocate_computed_value into static "constructor"
[thirdparty/binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
27
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
36
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
40
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
46
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
49
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
54
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
58
59 - Any other similar scenario.
60
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
65
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
70
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
75
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
79
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
83 */
84
85 extern bool overload_resolution;
86
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
88
89 struct range
90 {
91 /* Lowest offset in the range. */
92 LONGEST offset;
93
94 /* Length of the range. */
95 ULONGEST length;
96
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
101
102 bool operator< (const range &other) const
103 {
104 return offset < other.offset;
105 }
106
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
109 {
110 return offset == other.offset && length == other.length;
111 }
112 };
113
114 /* Increase VAL's reference count. */
115
116 extern void value_incref (struct value *val);
117
118 /* Decrease VAL's reference count. When the reference count drops to
119 0, VAL will be freed. */
120
121 extern void value_decref (struct value *val);
122
123 /* A policy class to interface gdb::ref_ptr with struct value. */
124
125 struct value_ref_policy
126 {
127 static void incref (struct value *ptr)
128 {
129 value_incref (ptr);
130 }
131
132 static void decref (struct value *ptr)
133 {
134 value_decref (ptr);
135 }
136 };
137
138 /* A gdb:;ref_ptr pointer to a struct value. */
139
140 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
141
142 /* Note that the fields in this structure are arranged to save a bit
143 of memory. */
144
145 struct value
146 {
147 private:
148
149 /* Values can only be created via "static constructors". */
150 explicit value (struct type *type_)
151 : m_modifiable (1),
152 m_lazy (1),
153 m_initialized (1),
154 m_stack (0),
155 m_is_zero (false),
156 m_in_history (false),
157 m_type (type_),
158 m_enclosing_type (type_)
159 {
160 }
161
162 public:
163
164 /* Allocate a lazy value for type TYPE. Its actual content is
165 "lazily" allocated too: the content field of the return value is
166 NULL; it will be allocated when it is fetched from the target. */
167 static struct value *allocate_lazy (struct type *type);
168
169 /* Allocate a value and its contents for type TYPE. */
170 static struct value *allocate (struct type *type);
171
172 /* Create a computed lvalue, with type TYPE, function pointers
173 FUNCS, and closure CLOSURE. */
174 static struct value *allocate_computed (struct type *type,
175 const struct lval_funcs *funcs,
176 void *closure);
177
178 ~value ();
179
180 DISABLE_COPY_AND_ASSIGN (value);
181
182 /* Type of the value. */
183 struct type *type () const
184 { return m_type; }
185
186 /* This is being used to change the type of an existing value, that
187 code should instead be creating a new value with the changed type
188 (but possibly shared content). */
189 void deprecated_set_type (struct type *type)
190 { m_type = type; }
191
192 /* Return the gdbarch associated with the value. */
193 struct gdbarch *arch () const;
194
195 /* Only used for bitfields; number of bits contained in them. */
196 LONGEST bitsize () const
197 { return m_bitsize; }
198
199 void set_bitsize (LONGEST bit)
200 { m_bitsize = bit; }
201
202 /* Only used for bitfields; position of start of field. For
203 little-endian targets, it is the position of the LSB. For
204 big-endian targets, it is the position of the MSB. */
205 LONGEST bitpos () const
206 { return m_bitpos; }
207
208 void set_bitpos (LONGEST bit)
209 { m_bitpos = bit; }
210
211 /* Only used for bitfields; the containing value. This allows a
212 single read from the target when displaying multiple
213 bitfields. */
214 value *parent () const
215 { return m_parent.get (); }
216
217 void set_parent (struct value *parent)
218 { m_parent = value_ref_ptr::new_reference (parent); }
219
220 /* Describes offset of a value within lval of a structure in bytes.
221 If lval == lval_memory, this is an offset to the address. If
222 lval == lval_register, this is a further offset from
223 location.address within the registers structure. Note also the
224 member embedded_offset below. */
225 LONGEST offset () const
226 { return m_offset; }
227
228 void set_offset (LONGEST offset)
229 { m_offset = offset; }
230
231 /* The comment from "struct value" reads: ``Is it modifiable? Only
232 relevant if lval != not_lval.''. Shouldn't the value instead be
233 not_lval and be done with it? */
234 int deprecated_modifiable () const
235 { return m_modifiable; }
236
237 LONGEST pointed_to_offset () const
238 { return m_pointed_to_offset; }
239
240 void set_pointed_to_offset (LONGEST val)
241 { m_pointed_to_offset = val; }
242
243 LONGEST embedded_offset () const
244 { return m_embedded_offset; }
245
246 void set_embedded_offset (LONGEST val)
247 { m_embedded_offset = val; }
248
249 /* If zero, contents of this value are in the contents field. If
250 nonzero, contents are in inferior. If the lval field is lval_memory,
251 the contents are in inferior memory at location.address plus offset.
252 The lval field may also be lval_register.
253
254 WARNING: This field is used by the code which handles watchpoints
255 (see breakpoint.c) to decide whether a particular value can be
256 watched by hardware watchpoints. If the lazy flag is set for some
257 member of a value chain, it is assumed that this member of the
258 chain doesn't need to be watched as part of watching the value
259 itself. This is how GDB avoids watching the entire struct or array
260 when the user wants to watch a single struct member or array
261 element. If you ever change the way lazy flag is set and reset, be
262 sure to consider this use as well! */
263
264 int lazy () const
265 { return m_lazy; }
266
267 void set_lazy (int val)
268 { m_lazy = val; }
269
270
271 /* If a value represents a C++ object, then the `type' field gives the
272 object's compile-time type. If the object actually belongs to some
273 class derived from `type', perhaps with other base classes and
274 additional members, then `type' is just a subobject of the real
275 thing, and the full object is probably larger than `type' would
276 suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
279 actually determine the object's run-time type by looking at the
280 run-time type information in the vtable. When this information is
281 available, we may elect to read in the entire object, for several
282 reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the offset
294 of `type' within that larger type, in bytes. The value_contents()
295 macro takes `embedded_offset' into account, so most GDB code
296 continues to see the `type' portion of the value, just as the
297 inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311
312 struct type *enclosing_type () const
313 { return m_enclosing_type; }
314
315 void set_enclosing_type (struct type *new_type);
316
317 int stack () const
318 { return m_stack; }
319
320 void set_stack (int val)
321 { m_stack = val; }
322
323 /* If this value is lval_computed, return its lval_funcs
324 structure. */
325 const struct lval_funcs *computed_funcs () const;
326
327 /* If this value is lval_computed, return its closure. The meaning
328 of the returned value depends on the functions this value
329 uses. */
330 void *computed_closure () const;
331
332 enum lval_type *deprecated_lval_hack ()
333 { return &m_lval; }
334
335 enum lval_type lval () const
336 { return m_lval; }
337
338 /* Set or return field indicating whether a variable is initialized or
339 not, based on debugging information supplied by the compiler.
340 1 = initialized; 0 = uninitialized. */
341 int initialized () const
342 { return m_initialized; }
343
344 void set_initialized (int value)
345 { m_initialized = value; }
346
347 /* If lval == lval_memory, return the address in the inferior. If
348 lval == lval_register, return the byte offset into the registers
349 structure. Otherwise, return 0. The returned address
350 includes the offset, if any. */
351 CORE_ADDR address () const;
352
353 /* Like address, except the result does not include value's
354 offset. */
355 CORE_ADDR raw_address () const;
356
357 /* Set the address of a value. */
358 void set_address (CORE_ADDR);
359
360 struct internalvar **deprecated_internalvar_hack ()
361 { return &m_location.internalvar; }
362
363 struct frame_id *deprecated_next_frame_id_hack ();
364
365 int *deprecated_regnum_hack ();
366
367
368 /* Type of value; either not an lval, or one of the various
369 different possible kinds of lval. */
370 enum lval_type m_lval = not_lval;
371
372 /* Is it modifiable? Only relevant if lval != not_lval. */
373 unsigned int m_modifiable : 1;
374
375 /* If zero, contents of this value are in the contents field. If
376 nonzero, contents are in inferior. If the lval field is lval_memory,
377 the contents are in inferior memory at location.address plus offset.
378 The lval field may also be lval_register.
379
380 WARNING: This field is used by the code which handles watchpoints
381 (see breakpoint.c) to decide whether a particular value can be
382 watched by hardware watchpoints. If the lazy flag is set for
383 some member of a value chain, it is assumed that this member of
384 the chain doesn't need to be watched as part of watching the
385 value itself. This is how GDB avoids watching the entire struct
386 or array when the user wants to watch a single struct member or
387 array element. If you ever change the way lazy flag is set and
388 reset, be sure to consider this use as well! */
389 unsigned int m_lazy : 1;
390
391 /* If value is a variable, is it initialized or not. */
392 unsigned int m_initialized : 1;
393
394 /* If value is from the stack. If this is set, read_stack will be
395 used instead of read_memory to enable extra caching. */
396 unsigned int m_stack : 1;
397
398 /* True if this is a zero value, created by 'value_zero'; false
399 otherwise. */
400 bool m_is_zero : 1;
401
402 /* True if this a value recorded in value history; false otherwise. */
403 bool m_in_history : 1;
404
405 /* Location of value (if lval). */
406 union
407 {
408 /* If lval == lval_memory, this is the address in the inferior */
409 CORE_ADDR address;
410
411 /*If lval == lval_register, the value is from a register. */
412 struct
413 {
414 /* Register number. */
415 int regnum;
416 /* Frame ID of "next" frame to which a register value is relative.
417 If the register value is found relative to frame F, then the
418 frame id of F->next will be stored in next_frame_id. */
419 struct frame_id next_frame_id;
420 } reg;
421
422 /* Pointer to internal variable. */
423 struct internalvar *internalvar;
424
425 /* Pointer to xmethod worker. */
426 struct xmethod_worker *xm_worker;
427
428 /* If lval == lval_computed, this is a set of function pointers
429 to use to access and describe the value, and a closure pointer
430 for them to use. */
431 struct
432 {
433 /* Functions to call. */
434 const struct lval_funcs *funcs;
435
436 /* Closure for those functions to use. */
437 void *closure;
438 } computed;
439 } m_location {};
440
441 /* Describes offset of a value within lval of a structure in target
442 addressable memory units. Note also the member embedded_offset
443 below. */
444 LONGEST m_offset = 0;
445
446 /* Only used for bitfields; number of bits contained in them. */
447 LONGEST m_bitsize = 0;
448
449 /* Only used for bitfields; position of start of field. For
450 little-endian targets, it is the position of the LSB. For
451 big-endian targets, it is the position of the MSB. */
452 LONGEST m_bitpos = 0;
453
454 /* The number of references to this value. When a value is created,
455 the value chain holds a reference, so REFERENCE_COUNT is 1. If
456 release_value is called, this value is removed from the chain but
457 the caller of release_value now has a reference to this value.
458 The caller must arrange for a call to value_free later. */
459 int m_reference_count = 1;
460
461 /* Only used for bitfields; the containing value. This allows a
462 single read from the target when displaying multiple
463 bitfields. */
464 value_ref_ptr m_parent;
465
466 /* Type of the value. */
467 struct type *m_type;
468
469 /* If a value represents a C++ object, then the `type' field gives
470 the object's compile-time type. If the object actually belongs
471 to some class derived from `type', perhaps with other base
472 classes and additional members, then `type' is just a subobject
473 of the real thing, and the full object is probably larger than
474 `type' would suggest.
475
476 If `type' is a dynamic class (i.e. one with a vtable), then GDB
477 can actually determine the object's run-time type by looking at
478 the run-time type information in the vtable. When this
479 information is available, we may elect to read in the entire
480 object, for several reasons:
481
482 - When printing the value, the user would probably rather see the
483 full object, not just the limited portion apparent from the
484 compile-time type.
485
486 - If `type' has virtual base classes, then even printing `type'
487 alone may require reaching outside the `type' portion of the
488 object to wherever the virtual base class has been stored.
489
490 When we store the entire object, `enclosing_type' is the run-time
491 type -- the complete object -- and `embedded_offset' is the
492 offset of `type' within that larger type, in target addressable memory
493 units. The value_contents() macro takes `embedded_offset' into account,
494 so most GDB code continues to see the `type' portion of the value, just
495 as the inferior would.
496
497 If `type' is a pointer to an object, then `enclosing_type' is a
498 pointer to the object's run-time type, and `pointed_to_offset' is
499 the offset in target addressable memory units from the full object
500 to the pointed-to object -- that is, the value `embedded_offset' would
501 have if we followed the pointer and fetched the complete object.
502 (I don't really see the point. Why not just determine the
503 run-time type when you indirect, and avoid the special case? The
504 contents don't matter until you indirect anyway.)
505
506 If we're not doing anything fancy, `enclosing_type' is equal to
507 `type', and `embedded_offset' is zero, so everything works
508 normally. */
509 struct type *m_enclosing_type;
510 LONGEST m_embedded_offset = 0;
511 LONGEST m_pointed_to_offset = 0;
512
513 /* Actual contents of the value. Target byte-order.
514
515 May be nullptr if the value is lazy or is entirely optimized out.
516 Guaranteed to be non-nullptr otherwise. */
517 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
518
519 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
520 rather than available, since the common and default case is for a
521 value to be available. This is filled in at value read time.
522 The unavailable ranges are tracked in bits. Note that a contents
523 bit that has been optimized out doesn't really exist in the
524 program, so it can't be marked unavailable either. */
525 std::vector<range> m_unavailable;
526
527 /* Likewise, but for optimized out contents (a chunk of the value of
528 a variable that does not actually exist in the program). If LVAL
529 is lval_register, this is a register ($pc, $sp, etc., never a
530 program variable) that has not been saved in the frame. Not
531 saved registers and optimized-out program variables values are
532 treated pretty much the same, except not-saved registers have a
533 different string representation and related error strings. */
534 std::vector<range> m_optimized_out;
535
536 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
537 the array in inferior memory is greater than max_value_size. If these
538 conditions are met then, when the value is loaded from the inferior
539 GDB will only load a portion of the array into memory, and
540 limited_length will be set to indicate the length in octets that were
541 loaded from the inferior. */
542 ULONGEST m_limited_length = 0;
543
544 private:
545
546 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
547 is true, then apply the usual max-value-size checks. */
548 static struct value *allocate (struct type *type, bool check_size);
549 };
550
551 /* Returns value_type or value_enclosing_type depending on
552 value_print_options.objectprint.
553
554 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
555 only for pointers and references, else it will be returned
556 for all the types (e.g. structures). This option is useful
557 to prevent retrieving enclosing type for the base classes fields.
558
559 REAL_TYPE_FOUND is used to inform whether the real type was found
560 (or just static type was used). The NULL may be passed if it is not
561 necessary. */
562
563 extern struct type *value_actual_type (struct value *value,
564 int resolve_simple_types,
565 int *real_type_found);
566
567 /* For lval_computed values, this structure holds functions used to
568 retrieve and set the value (or portions of the value).
569
570 For each function, 'V' is the 'this' pointer: an lval_funcs
571 function F may always assume that the V it receives is an
572 lval_computed value, and has F in the appropriate slot of its
573 lval_funcs structure. */
574
575 struct lval_funcs
576 {
577 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
578 a problem arises in obtaining VALUE's bits, this function should
579 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
580 non-optimized-out value is an internal error. */
581 void (*read) (struct value *v);
582
583 /* Handle an assignment TOVAL = FROMVAL by writing the value of
584 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
585 been updated. If a problem arises in doing so, this function
586 should call 'error'. If it is NULL such TOVAL assignment is an error as
587 TOVAL is not considered as an lvalue. */
588 void (*write) (struct value *toval, struct value *fromval);
589
590 /* Return true if any part of V is optimized out, false otherwise.
591 This will only be called for lazy values -- if the value has been
592 fetched, then the value's optimized-out bits are consulted
593 instead. */
594 bool (*is_optimized_out) (struct value *v);
595
596 /* If non-NULL, this is used to implement pointer indirection for
597 this value. This method may return NULL, in which case value_ind
598 will fall back to ordinary indirection. */
599 struct value *(*indirect) (struct value *value);
600
601 /* If non-NULL, this is used to implement reference resolving for
602 this value. This method may return NULL, in which case coerce_ref
603 will fall back to ordinary references resolving. */
604 struct value *(*coerce_ref) (const struct value *value);
605
606 /* If non-NULL, this is used to determine whether the indicated bits
607 of VALUE are a synthetic pointer. */
608 int (*check_synthetic_pointer) (const struct value *value,
609 LONGEST offset, int length);
610
611 /* Return a duplicate of VALUE's closure, for use in a new value.
612 This may simply return the same closure, if VALUE's is
613 reference-counted or statically allocated.
614
615 This may be NULL, in which case VALUE's closure is re-used in the
616 new value. */
617 void *(*copy_closure) (const struct value *v);
618
619 /* Drop VALUE's reference to its closure. Maybe this frees the
620 closure; maybe this decrements a reference count; maybe the
621 closure is statically allocated and this does nothing.
622
623 This may be NULL, in which case no action is taken to free
624 VALUE's closure. */
625 void (*free_closure) (struct value *v);
626 };
627
628 extern struct value *allocate_optimized_out_value (struct type *type);
629
630 /* Throw an error complaining that the value has been optimized
631 out. */
632
633 extern void error_value_optimized_out (void);
634
635 /* value_contents() and value_contents_raw() both return the address
636 of the gdb buffer used to hold a copy of the contents of the lval.
637 value_contents() is used when the contents of the buffer are needed
638 -- it uses value_fetch_lazy() to load the buffer from the process
639 being debugged if it hasn't already been loaded
640 (value_contents_writeable() is used when a writeable but fetched
641 buffer is required).. value_contents_raw() is used when data is
642 being stored into the buffer, or when it is certain that the
643 contents of the buffer are valid.
644
645 Note: The contents pointer is adjusted by the offset required to
646 get to the real subobject, if the value happens to represent
647 something embedded in a larger run-time object. */
648
649 extern gdb::array_view<gdb_byte> value_contents_raw (struct value *);
650
651 /* Actual contents of the value. For use of this value; setting it
652 uses the stuff above. Not valid if lazy is nonzero. Target
653 byte-order. We force it to be aligned properly for any possible
654 value. Note that a value therefore extends beyond what is
655 declared here. */
656
657 extern gdb::array_view<const gdb_byte> value_contents (struct value *);
658 extern gdb::array_view<gdb_byte> value_contents_writeable (struct value *);
659
660 /* The ALL variants of the above two macros do not adjust the returned
661 pointer by the embedded_offset value. */
662
663 extern gdb::array_view<gdb_byte> value_contents_all_raw (struct value *);
664 extern gdb::array_view<const gdb_byte> value_contents_all (struct value *);
665
666 /* Like value_contents_all, but does not require that the returned
667 bits be valid. This should only be used in situations where you
668 plan to check the validity manually. */
669 extern gdb::array_view<const gdb_byte> value_contents_for_printing (struct value *value);
670
671 /* Like value_contents_for_printing, but accepts a constant value
672 pointer. Unlike value_contents_for_printing however, the pointed
673 value must _not_ be lazy. */
674 extern gdb::array_view<const gdb_byte>
675 value_contents_for_printing_const (const struct value *value);
676
677 extern void value_fetch_lazy (struct value *val);
678
679 /* If nonzero, this is the value of a variable which does not actually
680 exist in the program, at least partially. If the value is lazy,
681 this may fetch it now. */
682 extern int value_optimized_out (struct value *value);
683
684 /* Given a value, return true if any of the contents bits starting at
685 OFFSET and extending for LENGTH bits is optimized out, false
686 otherwise. */
687
688 extern int value_bits_any_optimized_out (const struct value *value,
689 int bit_offset, int bit_length);
690
691 /* Like value_optimized_out, but return true iff the whole value is
692 optimized out. */
693 extern int value_entirely_optimized_out (struct value *value);
694
695 /* Mark VALUE's content bytes starting at OFFSET and extending for
696 LENGTH bytes as optimized out. */
697
698 extern void mark_value_bytes_optimized_out (struct value *value,
699 int offset, int length);
700
701 /* Mark VALUE's content bits starting at OFFSET and extending for
702 LENGTH bits as optimized out. */
703
704 extern void mark_value_bits_optimized_out (struct value *value,
705 LONGEST offset, LONGEST length);
706
707 /* Set COMPONENT's location as appropriate for a component of WHOLE
708 --- regardless of what kind of lvalue WHOLE is. */
709 extern void set_value_component_location (struct value *component,
710 const struct value *whole);
711
712 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
713 single value might have multiple LVALs), this hacked interface is
714 limited to just the first PIECE. Expect further change. */
715 /* Type of value; either not an lval, or one of the various different
716 possible kinds of lval. */
717 #define VALUE_LVAL(val) (*((val)->deprecated_lval_hack ()))
718
719 /* Pointer to internal variable. */
720 #define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
721
722 /* Frame ID of "next" frame to which a register value is relative. A
723 register value is indicated by VALUE_LVAL being set to lval_register.
724 So, if the register value is found relative to frame F, then the
725 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
726 #define VALUE_NEXT_FRAME_ID(val) (*((val)->deprecated_next_frame_id_hack ()))
727
728 /* Register number if the value is from a register. */
729 #define VALUE_REGNUM(val) (*((val)->deprecated_regnum_hack ()))
730
731 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
732 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
733
734 extern struct value *coerce_ref_if_computed (const struct value *arg);
735
736 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
737 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
738 ORIGINAL_VAL are the type and value of the original reference or
739 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
740 the address that was dereferenced.
741
742 Note, that VALUE is modified by this function.
743
744 It is a common implementation for coerce_ref and value_ind. */
745
746 extern struct value * readjust_indirect_value_type (struct value *value,
747 struct type *enc_type,
748 const struct type *original_type,
749 struct value *original_val,
750 CORE_ADDR original_value_address);
751
752 /* Convert a REF to the object referenced. */
753
754 extern struct value *coerce_ref (struct value *value);
755
756 /* If ARG is an array, convert it to a pointer.
757 If ARG is a function, convert it to a function pointer.
758
759 References are dereferenced. */
760
761 extern struct value *coerce_array (struct value *value);
762
763 /* Given a value, determine whether the bits starting at OFFSET and
764 extending for LENGTH bits are a synthetic pointer. */
765
766 extern int value_bits_synthetic_pointer (const struct value *value,
767 LONGEST offset, LONGEST length);
768
769 /* Given a value, determine whether the contents bytes starting at
770 OFFSET and extending for LENGTH bytes are available. This returns
771 nonzero if all bytes in the given range are available, zero if any
772 byte is unavailable. */
773
774 extern int value_bytes_available (const struct value *value,
775 LONGEST offset, ULONGEST length);
776
777 /* Given a value, determine whether the contents bits starting at
778 OFFSET and extending for LENGTH bits are available. This returns
779 nonzero if all bits in the given range are available, zero if any
780 bit is unavailable. */
781
782 extern int value_bits_available (const struct value *value,
783 LONGEST offset, ULONGEST length);
784
785 /* Like value_bytes_available, but return false if any byte in the
786 whole object is unavailable. */
787 extern int value_entirely_available (struct value *value);
788
789 /* Like value_entirely_available, but return false if any byte in the
790 whole object is available. */
791 extern int value_entirely_unavailable (struct value *value);
792
793 /* Mark VALUE's content bytes starting at OFFSET and extending for
794 LENGTH bytes as unavailable. */
795
796 extern void mark_value_bytes_unavailable (struct value *value,
797 LONGEST offset, ULONGEST length);
798
799 /* Mark VALUE's content bits starting at OFFSET and extending for
800 LENGTH bits as unavailable. */
801
802 extern void mark_value_bits_unavailable (struct value *value,
803 LONGEST offset, ULONGEST length);
804
805 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
806 LENGTH bytes of VAL2's contents starting at OFFSET2.
807
808 Note that "contents" refers to the whole value's contents
809 (value_contents_all), without any embedded offset adjustment. For
810 example, to compare a complete object value with itself, including
811 its enclosing type chunk, you'd do:
812
813 int len = check_typedef (val->enclosing_type ())->length ();
814 value_contents_eq (val, 0, val, 0, len);
815
816 Returns true iff the set of available/valid contents match.
817
818 Optimized-out contents are equal to optimized-out contents, and are
819 not equal to non-optimized-out contents.
820
821 Unavailable contents are equal to unavailable contents, and are not
822 equal to non-unavailable contents.
823
824 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
825 represent different available/valid bytes, in a value with length
826 16:
827
828 offset: 0 4 8 12 16
829 contents: xxxxVVVVxxxxVVZZ
830
831 then:
832
833 value_contents_eq(val, 0, val, 8, 6) => true
834 value_contents_eq(val, 0, val, 4, 4) => false
835 value_contents_eq(val, 0, val, 8, 8) => false
836 value_contents_eq(val, 4, val, 12, 2) => true
837 value_contents_eq(val, 4, val, 12, 4) => true
838 value_contents_eq(val, 3, val, 4, 4) => true
839
840 If 'x's represent an unavailable byte, 'o' represents an optimized
841 out byte, in a value with length 8:
842
843 offset: 0 4 8
844 contents: xxxxoooo
845
846 then:
847
848 value_contents_eq(val, 0, val, 2, 2) => true
849 value_contents_eq(val, 4, val, 6, 2) => true
850 value_contents_eq(val, 0, val, 4, 4) => true
851
852 We only know whether a value chunk is unavailable or optimized out
853 if we've tried to read it. As this routine is used by printing
854 routines, which may be printing values in the value history, long
855 after the inferior is gone, it works with const values. Therefore,
856 this routine must not be called with lazy values. */
857
858 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
859 const struct value *val2, LONGEST offset2,
860 LONGEST length);
861
862 /* An overload of value_contents_eq that compares the entirety of both
863 values. */
864
865 extern bool value_contents_eq (const struct value *val1,
866 const struct value *val2);
867
868 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
869 which is (or will be copied to) VAL's contents buffer offset by
870 BIT_OFFSET bits. Marks value contents ranges as unavailable if
871 the corresponding memory is likewise unavailable. STACK indicates
872 whether the memory is known to be stack memory. */
873
874 extern void read_value_memory (struct value *val, LONGEST bit_offset,
875 int stack, CORE_ADDR memaddr,
876 gdb_byte *buffer, size_t length);
877
878 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
879 into each element of a new vector value with VECTOR_TYPE. */
880
881 struct value *value_vector_widen (struct value *scalar_value,
882 struct type *vector_type);
883
884 \f
885
886 #include "symtab.h"
887 #include "gdbtypes.h"
888 #include "expression.h"
889
890 class frame_info_ptr;
891 struct fn_field;
892
893 extern int print_address_demangle (const struct value_print_options *,
894 struct gdbarch *, CORE_ADDR,
895 struct ui_file *, int);
896
897 /* Returns true if VAL is of floating-point type. In addition,
898 throws an error if the value is an invalid floating-point value. */
899 extern bool is_floating_value (struct value *val);
900
901 extern LONGEST value_as_long (struct value *val);
902 extern CORE_ADDR value_as_address (struct value *val);
903
904 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
905 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
906
907 extern LONGEST unpack_field_as_long (struct type *type,
908 const gdb_byte *valaddr,
909 int fieldno);
910
911 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
912 VALADDR, and store the result in *RESULT.
913 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
914 BITSIZE is zero, then the length is taken from FIELD_TYPE.
915
916 Extracting bits depends on endianness of the machine. Compute the
917 number of least significant bits to discard. For big endian machines,
918 we compute the total number of bits in the anonymous object, subtract
919 off the bit count from the MSB of the object to the MSB of the
920 bitfield, then the size of the bitfield, which leaves the LSB discard
921 count. For little endian machines, the discard count is simply the
922 number of bits from the LSB of the anonymous object to the LSB of the
923 bitfield.
924
925 If the field is signed, we also do sign extension. */
926
927 extern LONGEST unpack_bits_as_long (struct type *field_type,
928 const gdb_byte *valaddr,
929 LONGEST bitpos, LONGEST bitsize);
930
931 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
932 LONGEST embedded_offset, int fieldno,
933 const struct value *val, LONGEST *result);
934
935 extern void unpack_value_bitfield (struct value *dest_val,
936 LONGEST bitpos, LONGEST bitsize,
937 const gdb_byte *valaddr,
938 LONGEST embedded_offset,
939 const struct value *val);
940
941 extern struct value *value_field_bitfield (struct type *type, int fieldno,
942 const gdb_byte *valaddr,
943 LONGEST embedded_offset,
944 const struct value *val);
945
946 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
947
948 extern struct value *value_from_longest (struct type *type, LONGEST num);
949 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
950 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
951 extern struct value *value_from_host_double (struct type *type, double d);
952 extern struct value *value_from_history_ref (const char *, const char **);
953 extern struct value *value_from_component (struct value *, struct type *,
954 LONGEST);
955
956
957 /* Create a new value by extracting it from WHOLE. TYPE is the type
958 of the new value. BIT_OFFSET and BIT_LENGTH describe the offset
959 and field width of the value to extract from WHOLE -- BIT_LENGTH
960 may differ from TYPE's length in the case where WHOLE's type is
961 packed.
962
963 When the value does come from a non-byte-aligned offset or field
964 width, it will be marked non_lval. */
965
966 extern struct value *value_from_component_bitsize (struct value *whole,
967 struct type *type,
968 LONGEST bit_offset,
969 LONGEST bit_length);
970
971 extern struct value *value_at (struct type *type, CORE_ADDR addr);
972 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
973
974 /* Like value_at, but ensures that the result is marked not_lval.
975 This can be important if the memory is "volatile". */
976 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
977
978 extern struct value *value_from_contents_and_address_unresolved
979 (struct type *, const gdb_byte *, CORE_ADDR);
980 extern struct value *value_from_contents_and_address (struct type *,
981 const gdb_byte *,
982 CORE_ADDR);
983 extern struct value *value_from_contents (struct type *, const gdb_byte *);
984
985 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
986 struct type *type,
987 int regnum,
988 struct frame_id frame_id);
989
990 extern void read_frame_register_value (struct value *value,
991 frame_info_ptr frame);
992
993 extern struct value *value_from_register (struct type *type, int regnum,
994 frame_info_ptr frame);
995
996 extern CORE_ADDR address_from_register (int regnum,
997 frame_info_ptr frame);
998
999 extern struct value *value_of_variable (struct symbol *var,
1000 const struct block *b);
1001
1002 extern struct value *address_of_variable (struct symbol *var,
1003 const struct block *b);
1004
1005 extern struct value *value_of_register (int regnum, frame_info_ptr frame);
1006
1007 struct value *value_of_register_lazy (frame_info_ptr frame, int regnum);
1008
1009 /* Return the symbol's reading requirement. */
1010
1011 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1012
1013 /* Return true if the symbol needs a frame. This is a wrapper for
1014 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1015
1016 extern int symbol_read_needs_frame (struct symbol *);
1017
1018 extern struct value *read_var_value (struct symbol *var,
1019 const struct block *var_block,
1020 frame_info_ptr frame);
1021
1022 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
1023 struct value *src, LONGEST src_offset,
1024 LONGEST length);
1025
1026 extern struct value *allocate_repeat_value (struct type *type, int count);
1027
1028 extern struct value *value_mark (void);
1029
1030 extern void value_free_to_mark (const struct value *mark);
1031
1032 /* A helper class that uses value_mark at construction time and calls
1033 value_free_to_mark in the destructor. This is used to clear out
1034 temporary values created during the lifetime of this object. */
1035 class scoped_value_mark
1036 {
1037 public:
1038
1039 scoped_value_mark ()
1040 : m_value (value_mark ())
1041 {
1042 }
1043
1044 ~scoped_value_mark ()
1045 {
1046 free_to_mark ();
1047 }
1048
1049 scoped_value_mark (scoped_value_mark &&other) = default;
1050
1051 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1052
1053 /* Free the values currently on the value stack. */
1054 void free_to_mark ()
1055 {
1056 if (m_value != NULL)
1057 {
1058 value_free_to_mark (m_value);
1059 m_value = NULL;
1060 }
1061 }
1062
1063 private:
1064
1065 const struct value *m_value;
1066 };
1067
1068 extern struct value *value_cstring (const char *ptr, ssize_t len,
1069 struct type *char_type);
1070 extern struct value *value_string (const char *ptr, ssize_t len,
1071 struct type *char_type);
1072
1073 extern struct value *value_array (int lowbound, int highbound,
1074 struct value **elemvec);
1075
1076 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1077
1078 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1079 enum exp_opcode op);
1080
1081 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1082
1083 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1084
1085 /* Return true if VAL does not live in target memory, but should in order
1086 to operate on it. Otherwise return false. */
1087
1088 extern bool value_must_coerce_to_target (struct value *arg1);
1089
1090 extern struct value *value_coerce_to_target (struct value *arg1);
1091
1092 extern struct value *value_coerce_array (struct value *arg1);
1093
1094 extern struct value *value_coerce_function (struct value *arg1);
1095
1096 extern struct value *value_ind (struct value *arg1);
1097
1098 extern struct value *value_addr (struct value *arg1);
1099
1100 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1101
1102 extern struct value *value_assign (struct value *toval,
1103 struct value *fromval);
1104
1105 extern struct value *value_pos (struct value *arg1);
1106
1107 extern struct value *value_neg (struct value *arg1);
1108
1109 extern struct value *value_complement (struct value *arg1);
1110
1111 extern struct value *value_struct_elt (struct value **argp,
1112 gdb::optional<gdb::array_view <value *>> args,
1113 const char *name, int *static_memfuncp,
1114 const char *err);
1115
1116 extern struct value *value_struct_elt_bitpos (struct value **argp,
1117 int bitpos,
1118 struct type *field_type,
1119 const char *err);
1120
1121 extern struct value *value_aggregate_elt (struct type *curtype,
1122 const char *name,
1123 struct type *expect_type,
1124 int want_address,
1125 enum noside noside);
1126
1127 extern struct value *value_static_field (struct type *type, int fieldno);
1128
1129 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1130
1131 extern int find_overload_match (gdb::array_view<value *> args,
1132 const char *name,
1133 enum oload_search_type method,
1134 struct value **objp, struct symbol *fsym,
1135 struct value **valp, struct symbol **symp,
1136 int *staticp, const int no_adl,
1137 enum noside noside);
1138
1139 extern struct value *value_field (struct value *arg1, int fieldno);
1140
1141 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
1142 int fieldno,
1143 struct type *arg_type);
1144
1145
1146 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1147 int *);
1148
1149 extern struct value *value_full_object (struct value *, struct type *, int,
1150 int, int);
1151
1152 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1153
1154 extern struct value *value_cast (struct type *type, struct value *arg2);
1155
1156 extern struct value *value_reinterpret_cast (struct type *type,
1157 struct value *arg);
1158
1159 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1160
1161 extern struct value *value_zero (struct type *type, enum lval_type lv);
1162
1163 extern struct value *value_one (struct type *type);
1164
1165 extern struct value *value_repeat (struct value *arg1, int count);
1166
1167 extern struct value *value_subscript (struct value *array, LONGEST index);
1168
1169 extern struct value *value_bitstring_subscript (struct type *type,
1170 struct value *bitstring,
1171 LONGEST index);
1172
1173 extern struct value *register_value_being_returned (struct type *valtype,
1174 struct regcache *retbuf);
1175
1176 extern int value_in (struct value *element, struct value *set);
1177
1178 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1179 int index);
1180
1181 extern enum return_value_convention
1182 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1183 struct type *value_type);
1184
1185 extern int using_struct_return (struct gdbarch *gdbarch,
1186 struct value *function,
1187 struct type *value_type);
1188
1189 /* Evaluate the expression EXP. If set, EXPECT_TYPE is passed to the
1190 outermost operation's evaluation. This is ignored by most
1191 operations, but may be used, e.g., to determine the type of an
1192 otherwise untyped symbol. The caller should not assume that the
1193 returned value has this type. */
1194
1195 extern struct value *evaluate_expression (struct expression *exp,
1196 struct type *expect_type = nullptr);
1197
1198 extern struct value *evaluate_type (struct expression *exp);
1199
1200 extern value *evaluate_var_value (enum noside noside, const block *blk,
1201 symbol *var);
1202
1203 extern value *evaluate_var_msym_value (enum noside noside,
1204 struct objfile *objfile,
1205 minimal_symbol *msymbol);
1206
1207 namespace expr { class operation; };
1208 extern void fetch_subexp_value (struct expression *exp,
1209 expr::operation *op,
1210 struct value **valp, struct value **resultp,
1211 std::vector<value_ref_ptr> *val_chain,
1212 bool preserve_errors);
1213
1214 extern struct value *parse_and_eval (const char *exp);
1215
1216 extern struct value *parse_to_comma_and_eval (const char **expp);
1217
1218 extern struct type *parse_and_eval_type (const char *p, int length);
1219
1220 extern CORE_ADDR parse_and_eval_address (const char *exp);
1221
1222 extern LONGEST parse_and_eval_long (const char *exp);
1223
1224 extern void unop_promote (const struct language_defn *language,
1225 struct gdbarch *gdbarch,
1226 struct value **arg1);
1227
1228 extern void binop_promote (const struct language_defn *language,
1229 struct gdbarch *gdbarch,
1230 struct value **arg1, struct value **arg2);
1231
1232 extern struct value *access_value_history (int num);
1233
1234 /* Return the number of items in the value history. */
1235
1236 extern ULONGEST value_history_count ();
1237
1238 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1239 struct internalvar *var);
1240
1241 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1242
1243 extern void set_internalvar (struct internalvar *var, struct value *val);
1244
1245 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1246
1247 extern void set_internalvar_string (struct internalvar *var,
1248 const char *string);
1249
1250 extern void clear_internalvar (struct internalvar *var);
1251
1252 extern void set_internalvar_component (struct internalvar *var,
1253 LONGEST offset,
1254 LONGEST bitpos, LONGEST bitsize,
1255 struct value *newvalue);
1256
1257 extern struct internalvar *lookup_only_internalvar (const char *name);
1258
1259 extern struct internalvar *create_internalvar (const char *name);
1260
1261 extern void complete_internalvar (completion_tracker &tracker,
1262 const char *name);
1263
1264 /* An internalvar can be dynamically computed by supplying a vector of
1265 function pointers to perform various operations. */
1266
1267 struct internalvar_funcs
1268 {
1269 /* Compute the value of the variable. The DATA argument passed to
1270 the function is the same argument that was passed to
1271 `create_internalvar_type_lazy'. */
1272
1273 struct value *(*make_value) (struct gdbarch *arch,
1274 struct internalvar *var,
1275 void *data);
1276
1277 /* Update the agent expression EXPR with bytecode to compute the
1278 value. VALUE is the agent value we are updating. The DATA
1279 argument passed to this function is the same argument that was
1280 passed to `create_internalvar_type_lazy'. If this pointer is
1281 NULL, then the internalvar cannot be compiled to an agent
1282 expression. */
1283
1284 void (*compile_to_ax) (struct internalvar *var,
1285 struct agent_expr *expr,
1286 struct axs_value *value,
1287 void *data);
1288 };
1289
1290 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1291 const struct internalvar_funcs *funcs,
1292 void *data);
1293
1294 /* Compile an internal variable to an agent expression. VAR is the
1295 variable to compile; EXPR and VALUE are the agent expression we are
1296 updating. This will return 0 if there is no known way to compile
1297 VAR, and 1 if VAR was successfully compiled. It may also throw an
1298 exception on error. */
1299
1300 extern int compile_internalvar_to_ax (struct internalvar *var,
1301 struct agent_expr *expr,
1302 struct axs_value *value);
1303
1304 extern struct internalvar *lookup_internalvar (const char *name);
1305
1306 extern int value_equal (struct value *arg1, struct value *arg2);
1307
1308 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1309
1310 extern int value_less (struct value *arg1, struct value *arg2);
1311
1312 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1313 extern bool value_logical_not (struct value *arg1);
1314
1315 /* Returns true if the value VAL represents a true value. */
1316 static inline bool
1317 value_true (struct value *val)
1318 {
1319 return !value_logical_not (val);
1320 }
1321
1322 /* C++ */
1323
1324 extern struct value *value_of_this (const struct language_defn *lang);
1325
1326 extern struct value *value_of_this_silent (const struct language_defn *lang);
1327
1328 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1329 enum exp_opcode op,
1330 enum exp_opcode otherop,
1331 enum noside noside);
1332
1333 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1334 enum noside noside);
1335
1336 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1337 int j, struct type *type, LONGEST offset);
1338
1339 extern int binop_types_user_defined_p (enum exp_opcode op,
1340 struct type *type1,
1341 struct type *type2);
1342
1343 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1344 struct value *arg2);
1345
1346 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1347
1348 extern int destructor_name_p (const char *name, struct type *type);
1349
1350 extern value_ref_ptr release_value (struct value *val);
1351
1352 extern int record_latest_value (struct value *val);
1353
1354 extern void modify_field (struct type *type, gdb_byte *addr,
1355 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1356
1357 extern void type_print (struct type *type, const char *varstring,
1358 struct ui_file *stream, int show);
1359
1360 extern std::string type_to_string (struct type *type);
1361
1362 extern gdb_byte *baseclass_addr (struct type *type, int index,
1363 gdb_byte *valaddr,
1364 struct value **valuep, int *errp);
1365
1366 extern void print_longest (struct ui_file *stream, int format,
1367 int use_local, LONGEST val);
1368
1369 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1370 struct ui_file *stream);
1371
1372 extern void value_print (struct value *val, struct ui_file *stream,
1373 const struct value_print_options *options);
1374
1375 /* Release values from the value chain and return them. Values
1376 created after MARK are released. If MARK is nullptr, or if MARK is
1377 not found on the value chain, then all values are released. Values
1378 are returned in reverse order of creation; that is, newest
1379 first. */
1380
1381 extern std::vector<value_ref_ptr> value_release_to_mark
1382 (const struct value *mark);
1383
1384 extern void common_val_print (struct value *val,
1385 struct ui_file *stream, int recurse,
1386 const struct value_print_options *options,
1387 const struct language_defn *language);
1388
1389 extern int val_print_string (struct type *elttype, const char *encoding,
1390 CORE_ADDR addr, int len,
1391 struct ui_file *stream,
1392 const struct value_print_options *options);
1393
1394 extern void print_variable_and_value (const char *name,
1395 struct symbol *var,
1396 frame_info_ptr frame,
1397 struct ui_file *stream,
1398 int indent);
1399
1400 extern void typedef_print (struct type *type, struct symbol *news,
1401 struct ui_file *stream);
1402
1403 extern const char *internalvar_name (const struct internalvar *var);
1404
1405 extern void preserve_values (struct objfile *);
1406
1407 /* From values.c */
1408
1409 extern struct value *value_copy (const value *);
1410
1411 extern struct value *value_non_lval (struct value *);
1412
1413 extern void value_force_lval (struct value *, CORE_ADDR);
1414
1415 extern struct value *make_cv_value (int, int, struct value *);
1416
1417 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1418
1419 /* From valops.c */
1420
1421 extern struct value *varying_to_slice (struct value *);
1422
1423 extern struct value *value_slice (struct value *, int, int);
1424
1425 /* Create a complex number. The type is the complex type; the values
1426 are cast to the underlying scalar type before the complex number is
1427 created. */
1428
1429 extern struct value *value_literal_complex (struct value *, struct value *,
1430 struct type *);
1431
1432 /* Return the real part of a complex value. */
1433
1434 extern struct value *value_real_part (struct value *value);
1435
1436 /* Return the imaginary part of a complex value. */
1437
1438 extern struct value *value_imaginary_part (struct value *value);
1439
1440 extern struct value *find_function_in_inferior (const char *,
1441 struct objfile **);
1442
1443 extern struct value *value_allocate_space_in_inferior (int);
1444
1445 /* User function handler. */
1446
1447 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1448 const struct language_defn *language,
1449 void *cookie,
1450 int argc,
1451 struct value **argv);
1452
1453 /* Add a new internal function. NAME is the name of the function; DOC
1454 is a documentation string describing the function. HANDLER is
1455 called when the function is invoked. COOKIE is an arbitrary
1456 pointer which is passed to HANDLER and is intended for "user
1457 data". */
1458
1459 extern void add_internal_function (const char *name, const char *doc,
1460 internal_function_fn handler,
1461 void *cookie);
1462
1463 /* This overload takes an allocated documentation string. */
1464
1465 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1466 gdb::unique_xmalloc_ptr<char> &&doc,
1467 internal_function_fn handler,
1468 void *cookie);
1469
1470 struct value *call_internal_function (struct gdbarch *gdbarch,
1471 const struct language_defn *language,
1472 struct value *function,
1473 int argc, struct value **argv);
1474
1475 const char *value_internal_function_name (struct value *);
1476
1477 /* Build a value wrapping and representing WORKER. The value takes ownership
1478 of the xmethod_worker object. */
1479
1480 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1481
1482 extern struct type *result_type_of_xmethod (struct value *method,
1483 gdb::array_view<value *> argv);
1484
1485 extern struct value *call_xmethod (struct value *method,
1486 gdb::array_view<value *> argv);
1487
1488 /* Destroy the values currently allocated. This is called when GDB is
1489 exiting (e.g., on quit_force). */
1490 extern void finalize_values ();
1491
1492 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1493 of floating-point, fixed-point, or integer type. */
1494 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1495
1496 /* While an instance of this class is live, and array values that are
1497 created, that are larger than max_value_size, will be restricted in size
1498 to a particular number of elements. */
1499
1500 struct scoped_array_length_limiting
1501 {
1502 /* Limit any large array values to only contain ELEMENTS elements. */
1503 scoped_array_length_limiting (int elements);
1504
1505 /* Restore the previous array value limit. */
1506 ~scoped_array_length_limiting ();
1507
1508 private:
1509 /* Used to hold the previous array value element limit. */
1510 gdb::optional<int> m_old_value;
1511 };
1512
1513 #endif /* !defined (VALUE_H) */