]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.h
gdb/fortran: resolve dynamic types when readjusting after an indirection
[thirdparty/binutils-gdb.git] / gdb / value.h
1 /* Definitions for values of C expressions, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
22
23 #include "frame.h" /* For struct frame_id. */
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26
27 struct block;
28 struct expression;
29 struct regcache;
30 struct symbol;
31 struct type;
32 struct ui_file;
33 struct language_defn;
34 struct value_print_options;
35
36 /* Values can be partially 'optimized out' and/or 'unavailable'.
37 These are distinct states and have different string representations
38 and related error strings.
39
40 'unavailable' has a specific meaning in this context. It means the
41 value exists in the program (at the machine level), but GDB has no
42 means to get to it. Such a value is normally printed as
43 <unavailable>. Examples of how to end up with an unavailable value
44 would be:
45
46 - We're inspecting a traceframe, and the memory or registers the
47 debug information says the value lives on haven't been collected.
48
49 - We're inspecting a core dump, the memory or registers the debug
50 information says the value lives aren't present in the dump
51 (that is, we have a partial/trimmed core dump, or we don't fully
52 understand/handle the core dump's format).
53
54 - We're doing live debugging, but the debug API has no means to
55 get at where the value lives in the machine, like e.g., ptrace
56 not having access to some register or register set.
57
58 - Any other similar scenario.
59
60 OTOH, "optimized out" is about what the compiler decided to generate
61 (or not generate). A chunk of a value that was optimized out does
62 not actually exist in the program. There's no way to get at it
63 short of compiling the program differently.
64
65 A register that has not been saved in a frame is likewise considered
66 optimized out, except not-saved registers have a different string
67 representation and related error strings. E.g., we'll print them as
68 <not-saved> instead of <optimized out>, as in:
69
70 (gdb) p/x $rax
71 $1 = <not saved>
72 (gdb) info registers rax
73 rax <not saved>
74
75 If the debug info describes a variable as being in such a register,
76 we'll still print the variable as <optimized out>. IOW, <not saved>
77 is reserved for inspecting registers at the machine level.
78
79 When comparing value contents, optimized out chunks, unavailable
80 chunks, and valid contents data are all considered different. See
81 value_contents_eq for more info.
82 */
83
84 extern bool overload_resolution;
85
86 /* The structure which defines the type of a value. It should never
87 be possible for a program lval value to survive over a call to the
88 inferior (i.e. to be put into the history list or an internal
89 variable). */
90
91 struct value;
92
93 /* Increase VAL's reference count. */
94
95 extern void value_incref (struct value *val);
96
97 /* Decrease VAL's reference count. When the reference count drops to
98 0, VAL will be freed. */
99
100 extern void value_decref (struct value *val);
101
102 /* A policy class to interface gdb::ref_ptr with struct value. */
103
104 struct value_ref_policy
105 {
106 static void incref (struct value *ptr)
107 {
108 value_incref (ptr);
109 }
110
111 static void decref (struct value *ptr)
112 {
113 value_decref (ptr);
114 }
115 };
116
117 /* A gdb:;ref_ptr pointer to a struct value. */
118
119 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
120
121 /* Values are stored in a chain, so that they can be deleted easily
122 over calls to the inferior. Values assigned to internal variables,
123 put into the value history or exposed to Python are taken off this
124 list. */
125
126 struct value *value_next (const struct value *);
127
128 /* Type of the value. */
129
130 extern struct type *value_type (const struct value *);
131
132 /* Return the gdbarch associated with the value. */
133
134 extern struct gdbarch *get_value_arch (const struct value *value);
135
136 /* This is being used to change the type of an existing value, that
137 code should instead be creating a new value with the changed type
138 (but possibly shared content). */
139
140 extern void deprecated_set_value_type (struct value *value,
141 struct type *type);
142
143 /* Only used for bitfields; number of bits contained in them. */
144
145 extern LONGEST value_bitsize (const struct value *);
146 extern void set_value_bitsize (struct value *, LONGEST bit);
147
148 /* Only used for bitfields; position of start of field. For
149 little-endian targets, it is the position of the LSB. For
150 big-endian targets, it is the position of the MSB. */
151
152 extern LONGEST value_bitpos (const struct value *);
153 extern void set_value_bitpos (struct value *, LONGEST bit);
154
155 /* Only used for bitfields; the containing value. This allows a
156 single read from the target when displaying multiple
157 bitfields. */
158
159 struct value *value_parent (const struct value *);
160 extern void set_value_parent (struct value *value, struct value *parent);
161
162 /* Describes offset of a value within lval of a structure in bytes.
163 If lval == lval_memory, this is an offset to the address. If lval
164 == lval_register, this is a further offset from location.address
165 within the registers structure. Note also the member
166 embedded_offset below. */
167
168 extern LONGEST value_offset (const struct value *);
169 extern void set_value_offset (struct value *, LONGEST offset);
170
171 /* The comment from "struct value" reads: ``Is it modifiable? Only
172 relevant if lval != not_lval.''. Shouldn't the value instead be
173 not_lval and be done with it? */
174
175 extern int deprecated_value_modifiable (const struct value *value);
176
177 /* If a value represents a C++ object, then the `type' field gives the
178 object's compile-time type. If the object actually belongs to some
179 class derived from `type', perhaps with other base classes and
180 additional members, then `type' is just a subobject of the real
181 thing, and the full object is probably larger than `type' would
182 suggest.
183
184 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
185 actually determine the object's run-time type by looking at the
186 run-time type information in the vtable. When this information is
187 available, we may elect to read in the entire object, for several
188 reasons:
189
190 - When printing the value, the user would probably rather see the
191 full object, not just the limited portion apparent from the
192 compile-time type.
193
194 - If `type' has virtual base classes, then even printing `type'
195 alone may require reaching outside the `type' portion of the
196 object to wherever the virtual base class has been stored.
197
198 When we store the entire object, `enclosing_type' is the run-time
199 type -- the complete object -- and `embedded_offset' is the offset
200 of `type' within that larger type, in bytes. The value_contents()
201 macro takes `embedded_offset' into account, so most GDB code
202 continues to see the `type' portion of the value, just as the
203 inferior would.
204
205 If `type' is a pointer to an object, then `enclosing_type' is a
206 pointer to the object's run-time type, and `pointed_to_offset' is
207 the offset in bytes from the full object to the pointed-to object
208 -- that is, the value `embedded_offset' would have if we followed
209 the pointer and fetched the complete object. (I don't really see
210 the point. Why not just determine the run-time type when you
211 indirect, and avoid the special case? The contents don't matter
212 until you indirect anyway.)
213
214 If we're not doing anything fancy, `enclosing_type' is equal to
215 `type', and `embedded_offset' is zero, so everything works
216 normally. */
217
218 extern struct type *value_enclosing_type (const struct value *);
219 extern void set_value_enclosing_type (struct value *val,
220 struct type *new_type);
221
222 /* Returns value_type or value_enclosing_type depending on
223 value_print_options.objectprint.
224
225 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
226 only for pointers and references, else it will be returned
227 for all the types (e.g. structures). This option is useful
228 to prevent retrieving enclosing type for the base classes fields.
229
230 REAL_TYPE_FOUND is used to inform whether the real type was found
231 (or just static type was used). The NULL may be passed if it is not
232 necessary. */
233
234 extern struct type *value_actual_type (struct value *value,
235 int resolve_simple_types,
236 int *real_type_found);
237
238 extern LONGEST value_pointed_to_offset (const struct value *value);
239 extern void set_value_pointed_to_offset (struct value *value, LONGEST val);
240 extern LONGEST value_embedded_offset (const struct value *value);
241 extern void set_value_embedded_offset (struct value *value, LONGEST val);
242
243 /* For lval_computed values, this structure holds functions used to
244 retrieve and set the value (or portions of the value).
245
246 For each function, 'V' is the 'this' pointer: an lval_funcs
247 function F may always assume that the V it receives is an
248 lval_computed value, and has F in the appropriate slot of its
249 lval_funcs structure. */
250
251 struct lval_funcs
252 {
253 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
254 a problem arises in obtaining VALUE's bits, this function should
255 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
256 non-optimized-out value is an internal error. */
257 void (*read) (struct value *v);
258
259 /* Handle an assignment TOVAL = FROMVAL by writing the value of
260 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
261 been updated. If a problem arises in doing so, this function
262 should call 'error'. If it is NULL such TOVAL assignment is an error as
263 TOVAL is not considered as an lvalue. */
264 void (*write) (struct value *toval, struct value *fromval);
265
266 /* If non-NULL, this is used to implement pointer indirection for
267 this value. This method may return NULL, in which case value_ind
268 will fall back to ordinary indirection. */
269 struct value *(*indirect) (struct value *value);
270
271 /* If non-NULL, this is used to implement reference resolving for
272 this value. This method may return NULL, in which case coerce_ref
273 will fall back to ordinary references resolving. */
274 struct value *(*coerce_ref) (const struct value *value);
275
276 /* If non-NULL, this is used to determine whether the indicated bits
277 of VALUE are a synthetic pointer. */
278 int (*check_synthetic_pointer) (const struct value *value,
279 LONGEST offset, int length);
280
281 /* Return a duplicate of VALUE's closure, for use in a new value.
282 This may simply return the same closure, if VALUE's is
283 reference-counted or statically allocated.
284
285 This may be NULL, in which case VALUE's closure is re-used in the
286 new value. */
287 void *(*copy_closure) (const struct value *v);
288
289 /* Drop VALUE's reference to its closure. Maybe this frees the
290 closure; maybe this decrements a reference count; maybe the
291 closure is statically allocated and this does nothing.
292
293 This may be NULL, in which case no action is taken to free
294 VALUE's closure. */
295 void (*free_closure) (struct value *v);
296 };
297
298 /* Create a computed lvalue, with type TYPE, function pointers FUNCS,
299 and closure CLOSURE. */
300
301 extern struct value *allocate_computed_value (struct type *type,
302 const struct lval_funcs *funcs,
303 void *closure);
304
305 /* Helper function to check the validity of some bits of a value.
306
307 If TYPE represents some aggregate type (e.g., a structure), return 1.
308
309 Otherwise, any of the bytes starting at OFFSET and extending for
310 TYPE_LENGTH(TYPE) bytes are invalid, print a message to STREAM and
311 return 0. The checking is done using FUNCS.
312
313 Otherwise, return 1. */
314
315 extern int valprint_check_validity (struct ui_file *stream, struct type *type,
316 LONGEST embedded_offset,
317 const struct value *val);
318
319 extern struct value *allocate_optimized_out_value (struct type *type);
320
321 /* If VALUE is lval_computed, return its lval_funcs structure. */
322
323 extern const struct lval_funcs *value_computed_funcs (const struct value *);
324
325 /* If VALUE is lval_computed, return its closure. The meaning of the
326 returned value depends on the functions VALUE uses. */
327
328 extern void *value_computed_closure (const struct value *value);
329
330 /* If zero, contents of this value are in the contents field. If
331 nonzero, contents are in inferior. If the lval field is lval_memory,
332 the contents are in inferior memory at location.address plus offset.
333 The lval field may also be lval_register.
334
335 WARNING: This field is used by the code which handles watchpoints
336 (see breakpoint.c) to decide whether a particular value can be
337 watched by hardware watchpoints. If the lazy flag is set for some
338 member of a value chain, it is assumed that this member of the
339 chain doesn't need to be watched as part of watching the value
340 itself. This is how GDB avoids watching the entire struct or array
341 when the user wants to watch a single struct member or array
342 element. If you ever change the way lazy flag is set and reset, be
343 sure to consider this use as well! */
344
345 extern int value_lazy (const struct value *);
346 extern void set_value_lazy (struct value *value, int val);
347
348 extern int value_stack (const struct value *);
349 extern void set_value_stack (struct value *value, int val);
350
351 /* Throw an error complaining that the value has been optimized
352 out. */
353
354 extern void error_value_optimized_out (void);
355
356 /* value_contents() and value_contents_raw() both return the address
357 of the gdb buffer used to hold a copy of the contents of the lval.
358 value_contents() is used when the contents of the buffer are needed
359 -- it uses value_fetch_lazy() to load the buffer from the process
360 being debugged if it hasn't already been loaded
361 (value_contents_writeable() is used when a writeable but fetched
362 buffer is required).. value_contents_raw() is used when data is
363 being stored into the buffer, or when it is certain that the
364 contents of the buffer are valid.
365
366 Note: The contents pointer is adjusted by the offset required to
367 get to the real subobject, if the value happens to represent
368 something embedded in a larger run-time object. */
369
370 extern gdb_byte *value_contents_raw (struct value *);
371
372 /* Actual contents of the value. For use of this value; setting it
373 uses the stuff above. Not valid if lazy is nonzero. Target
374 byte-order. We force it to be aligned properly for any possible
375 value. Note that a value therefore extends beyond what is
376 declared here. */
377
378 extern const gdb_byte *value_contents (struct value *);
379 extern gdb_byte *value_contents_writeable (struct value *);
380
381 /* The ALL variants of the above two macros do not adjust the returned
382 pointer by the embedded_offset value. */
383
384 extern gdb_byte *value_contents_all_raw (struct value *);
385 extern const gdb_byte *value_contents_all (struct value *);
386
387 /* Like value_contents_all, but does not require that the returned
388 bits be valid. This should only be used in situations where you
389 plan to check the validity manually. */
390 extern const gdb_byte *value_contents_for_printing (struct value *value);
391
392 /* Like value_contents_for_printing, but accepts a constant value
393 pointer. Unlike value_contents_for_printing however, the pointed
394 value must _not_ be lazy. */
395 extern const gdb_byte *
396 value_contents_for_printing_const (const struct value *value);
397
398 extern void value_fetch_lazy (struct value *val);
399
400 /* If nonzero, this is the value of a variable which does not actually
401 exist in the program, at least partially. If the value is lazy,
402 this may fetch it now. */
403 extern int value_optimized_out (struct value *value);
404
405 /* Given a value, return true if any of the contents bits starting at
406 OFFSET and extending for LENGTH bits is optimized out, false
407 otherwise. */
408
409 extern int value_bits_any_optimized_out (const struct value *value,
410 int bit_offset, int bit_length);
411
412 /* Like value_optimized_out, but return true iff the whole value is
413 optimized out. */
414 extern int value_entirely_optimized_out (struct value *value);
415
416 /* Mark VALUE's content bytes starting at OFFSET and extending for
417 LENGTH bytes as optimized out. */
418
419 extern void mark_value_bytes_optimized_out (struct value *value,
420 int offset, int length);
421
422 /* Mark VALUE's content bits starting at OFFSET and extending for
423 LENGTH bits as optimized out. */
424
425 extern void mark_value_bits_optimized_out (struct value *value,
426 LONGEST offset, LONGEST length);
427
428 /* Set or return field indicating whether a variable is initialized or
429 not, based on debugging information supplied by the compiler.
430 1 = initialized; 0 = uninitialized. */
431 extern int value_initialized (const struct value *);
432 extern void set_value_initialized (struct value *, int);
433
434 /* Set COMPONENT's location as appropriate for a component of WHOLE
435 --- regardless of what kind of lvalue WHOLE is. */
436 extern void set_value_component_location (struct value *component,
437 const struct value *whole);
438
439 /* While the following fields are per- VALUE .CONTENT .PIECE (i.e., a
440 single value might have multiple LVALs), this hacked interface is
441 limited to just the first PIECE. Expect further change. */
442 /* Type of value; either not an lval, or one of the various different
443 possible kinds of lval. */
444 extern enum lval_type *deprecated_value_lval_hack (struct value *);
445 #define VALUE_LVAL(val) (*deprecated_value_lval_hack (val))
446
447 /* Like VALUE_LVAL, except the parameter can be const. */
448 extern enum lval_type value_lval_const (const struct value *value);
449
450 /* If lval == lval_memory, return the address in the inferior. If
451 lval == lval_register, return the byte offset into the registers
452 structure. Otherwise, return 0. The returned address
453 includes the offset, if any. */
454 extern CORE_ADDR value_address (const struct value *);
455
456 /* Like value_address, except the result does not include value's
457 offset. */
458 extern CORE_ADDR value_raw_address (const struct value *);
459
460 /* Set the address of a value. */
461 extern void set_value_address (struct value *, CORE_ADDR);
462
463 /* Pointer to internal variable. */
464 extern struct internalvar **deprecated_value_internalvar_hack (struct value *);
465 #define VALUE_INTERNALVAR(val) (*deprecated_value_internalvar_hack (val))
466
467 /* Frame ID of "next" frame to which a register value is relative. A
468 register value is indicated by VALUE_LVAL being set to lval_register.
469 So, if the register value is found relative to frame F, then the
470 frame id of F->next will be stored in VALUE_NEXT_FRAME_ID. */
471 extern struct frame_id *deprecated_value_next_frame_id_hack (struct value *);
472 #define VALUE_NEXT_FRAME_ID(val) (*deprecated_value_next_frame_id_hack (val))
473
474 /* Frame ID of frame to which a register value is relative. This is
475 similar to VALUE_NEXT_FRAME_ID, above, but may not be assigned to.
476 Note that VALUE_FRAME_ID effectively undoes the "next" operation
477 that was performed during the assignment to VALUE_NEXT_FRAME_ID. */
478 #define VALUE_FRAME_ID(val) (get_prev_frame_id_by_id (VALUE_NEXT_FRAME_ID (val)))
479
480 /* Register number if the value is from a register. */
481 extern int *deprecated_value_regnum_hack (struct value *);
482 #define VALUE_REGNUM(val) (*deprecated_value_regnum_hack (val))
483
484 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
485 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
486
487 extern struct value *coerce_ref_if_computed (const struct value *arg);
488
489 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
490 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
491 ORIGINAL_VAL are the type and value of the original reference or
492 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
493 the address that was dereferenced.
494
495 Note, that VALUE is modified by this function.
496
497 It is a common implementation for coerce_ref and value_ind. */
498
499 extern struct value * readjust_indirect_value_type (struct value *value,
500 struct type *enc_type,
501 const struct type *original_type,
502 struct value *original_val,
503 CORE_ADDR original_value_address);
504
505 /* Convert a REF to the object referenced. */
506
507 extern struct value *coerce_ref (struct value *value);
508
509 /* If ARG is an array, convert it to a pointer.
510 If ARG is a function, convert it to a function pointer.
511
512 References are dereferenced. */
513
514 extern struct value *coerce_array (struct value *value);
515
516 /* Given a value, determine whether the bits starting at OFFSET and
517 extending for LENGTH bits are a synthetic pointer. */
518
519 extern int value_bits_synthetic_pointer (const struct value *value,
520 LONGEST offset, LONGEST length);
521
522 /* Given a value, determine whether the contents bytes starting at
523 OFFSET and extending for LENGTH bytes are available. This returns
524 nonzero if all bytes in the given range are available, zero if any
525 byte is unavailable. */
526
527 extern int value_bytes_available (const struct value *value,
528 LONGEST offset, LONGEST length);
529
530 /* Given a value, determine whether the contents bits starting at
531 OFFSET and extending for LENGTH bits are available. This returns
532 nonzero if all bits in the given range are available, zero if any
533 bit is unavailable. */
534
535 extern int value_bits_available (const struct value *value,
536 LONGEST offset, LONGEST length);
537
538 /* Like value_bytes_available, but return false if any byte in the
539 whole object is unavailable. */
540 extern int value_entirely_available (struct value *value);
541
542 /* Like value_entirely_available, but return false if any byte in the
543 whole object is available. */
544 extern int value_entirely_unavailable (struct value *value);
545
546 /* Mark VALUE's content bytes starting at OFFSET and extending for
547 LENGTH bytes as unavailable. */
548
549 extern void mark_value_bytes_unavailable (struct value *value,
550 LONGEST offset, LONGEST length);
551
552 /* Mark VALUE's content bits starting at OFFSET and extending for
553 LENGTH bits as unavailable. */
554
555 extern void mark_value_bits_unavailable (struct value *value,
556 LONGEST offset, LONGEST length);
557
558 /* Compare LENGTH bytes of VAL1's contents starting at OFFSET1 with
559 LENGTH bytes of VAL2's contents starting at OFFSET2.
560
561 Note that "contents" refers to the whole value's contents
562 (value_contents_all), without any embedded offset adjustment. For
563 example, to compare a complete object value with itself, including
564 its enclosing type chunk, you'd do:
565
566 int len = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
567 value_contents_eq (val, 0, val, 0, len);
568
569 Returns true iff the set of available/valid contents match.
570
571 Optimized-out contents are equal to optimized-out contents, and are
572 not equal to non-optimized-out contents.
573
574 Unavailable contents are equal to unavailable contents, and are not
575 equal to non-unavailable contents.
576
577 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
578 represent different available/valid bytes, in a value with length
579 16:
580
581 offset: 0 4 8 12 16
582 contents: xxxxVVVVxxxxVVZZ
583
584 then:
585
586 value_contents_eq(val, 0, val, 8, 6) => true
587 value_contents_eq(val, 0, val, 4, 4) => false
588 value_contents_eq(val, 0, val, 8, 8) => false
589 value_contents_eq(val, 4, val, 12, 2) => true
590 value_contents_eq(val, 4, val, 12, 4) => true
591 value_contents_eq(val, 3, val, 4, 4) => true
592
593 If 'x's represent an unavailable byte, 'o' represents an optimized
594 out byte, in a value with length 8:
595
596 offset: 0 4 8
597 contents: xxxxoooo
598
599 then:
600
601 value_contents_eq(val, 0, val, 2, 2) => true
602 value_contents_eq(val, 4, val, 6, 2) => true
603 value_contents_eq(val, 0, val, 4, 4) => true
604
605 We only know whether a value chunk is unavailable or optimized out
606 if we've tried to read it. As this routine is used by printing
607 routines, which may be printing values in the value history, long
608 after the inferior is gone, it works with const values. Therefore,
609 this routine must not be called with lazy values. */
610
611 extern bool value_contents_eq (const struct value *val1, LONGEST offset1,
612 const struct value *val2, LONGEST offset2,
613 LONGEST length);
614
615 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
616 which is (or will be copied to) VAL's contents buffer offset by
617 BIT_OFFSET bits. Marks value contents ranges as unavailable if
618 the corresponding memory is likewise unavailable. STACK indicates
619 whether the memory is known to be stack memory. */
620
621 extern void read_value_memory (struct value *val, LONGEST bit_offset,
622 int stack, CORE_ADDR memaddr,
623 gdb_byte *buffer, size_t length);
624
625 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
626 into each element of a new vector value with VECTOR_TYPE. */
627
628 struct value *value_vector_widen (struct value *scalar_value,
629 struct type *vector_type);
630
631 \f
632
633 #include "symtab.h"
634 #include "gdbtypes.h"
635 #include "expression.h"
636
637 struct frame_info;
638 struct fn_field;
639
640 extern int print_address_demangle (const struct value_print_options *,
641 struct gdbarch *, CORE_ADDR,
642 struct ui_file *, int);
643
644 /* Returns true if VAL is of floating-point type. In addition,
645 throws an error if the value is an invalid floating-point value. */
646 extern bool is_floating_value (struct value *val);
647
648 extern LONGEST value_as_long (struct value *val);
649 extern CORE_ADDR value_as_address (struct value *val);
650
651 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
652 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
653
654 extern LONGEST unpack_field_as_long (struct type *type,
655 const gdb_byte *valaddr,
656 int fieldno);
657
658 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
659 VALADDR, and store the result in *RESULT.
660 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
661 BITSIZE is zero, then the length is taken from FIELD_TYPE.
662
663 Extracting bits depends on endianness of the machine. Compute the
664 number of least significant bits to discard. For big endian machines,
665 we compute the total number of bits in the anonymous object, subtract
666 off the bit count from the MSB of the object to the MSB of the
667 bitfield, then the size of the bitfield, which leaves the LSB discard
668 count. For little endian machines, the discard count is simply the
669 number of bits from the LSB of the anonymous object to the LSB of the
670 bitfield.
671
672 If the field is signed, we also do sign extension. */
673
674 extern LONGEST unpack_bits_as_long (struct type *field_type,
675 const gdb_byte *valaddr,
676 LONGEST bitpos, LONGEST bitsize);
677
678 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
679 LONGEST embedded_offset, int fieldno,
680 const struct value *val, LONGEST *result);
681
682 extern void unpack_value_bitfield (struct value *dest_val,
683 LONGEST bitpos, LONGEST bitsize,
684 const gdb_byte *valaddr,
685 LONGEST embedded_offset,
686 const struct value *val);
687
688 extern struct value *value_field_bitfield (struct type *type, int fieldno,
689 const gdb_byte *valaddr,
690 LONGEST embedded_offset,
691 const struct value *val);
692
693 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
694
695 extern struct value *value_from_longest (struct type *type, LONGEST num);
696 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
697 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
698 extern struct value *value_from_host_double (struct type *type, double d);
699 extern struct value *value_from_history_ref (const char *, const char **);
700 extern struct value *value_from_component (struct value *, struct type *,
701 LONGEST);
702
703 extern struct value *value_at (struct type *type, CORE_ADDR addr);
704 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr);
705
706 extern struct value *value_from_contents_and_address_unresolved
707 (struct type *, const gdb_byte *, CORE_ADDR);
708 extern struct value *value_from_contents_and_address (struct type *,
709 const gdb_byte *,
710 CORE_ADDR);
711 extern struct value *value_from_contents (struct type *, const gdb_byte *);
712
713 extern struct value *default_value_from_register (struct gdbarch *gdbarch,
714 struct type *type,
715 int regnum,
716 struct frame_id frame_id);
717
718 extern void read_frame_register_value (struct value *value,
719 struct frame_info *frame);
720
721 extern struct value *value_from_register (struct type *type, int regnum,
722 struct frame_info *frame);
723
724 extern CORE_ADDR address_from_register (int regnum,
725 struct frame_info *frame);
726
727 extern struct value *value_of_variable (struct symbol *var,
728 const struct block *b);
729
730 extern struct value *address_of_variable (struct symbol *var,
731 const struct block *b);
732
733 extern struct value *value_of_register (int regnum, struct frame_info *frame);
734
735 struct value *value_of_register_lazy (struct frame_info *frame, int regnum);
736
737 /* Return the symbol's reading requirement. */
738
739 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
740
741 /* Return true if the symbol needs a frame. This is a wrapper for
742 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
743
744 extern int symbol_read_needs_frame (struct symbol *);
745
746 extern struct value *read_var_value (struct symbol *var,
747 const struct block *var_block,
748 struct frame_info *frame);
749
750 extern struct value *allocate_value (struct type *type);
751 extern struct value *allocate_value_lazy (struct type *type);
752 extern void value_contents_copy (struct value *dst, LONGEST dst_offset,
753 struct value *src, LONGEST src_offset,
754 LONGEST length);
755 extern void value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
756 struct value *src, LONGEST src_offset,
757 LONGEST length);
758
759 extern struct value *allocate_repeat_value (struct type *type, int count);
760
761 extern struct value *value_mark (void);
762
763 extern void value_free_to_mark (const struct value *mark);
764
765 /* A helper class that uses value_mark at construction time and calls
766 value_free_to_mark in the destructor. This is used to clear out
767 temporary values created during the lifetime of this object. */
768 class scoped_value_mark
769 {
770 public:
771
772 scoped_value_mark ()
773 : m_value (value_mark ())
774 {
775 }
776
777 ~scoped_value_mark ()
778 {
779 free_to_mark ();
780 }
781
782 scoped_value_mark (scoped_value_mark &&other) = default;
783
784 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
785
786 /* Free the values currently on the value stack. */
787 void free_to_mark ()
788 {
789 if (m_value != NULL)
790 {
791 value_free_to_mark (m_value);
792 m_value = NULL;
793 }
794 }
795
796 private:
797
798 const struct value *m_value;
799 };
800
801 extern struct value *value_cstring (const char *ptr, ssize_t len,
802 struct type *char_type);
803 extern struct value *value_string (const char *ptr, ssize_t len,
804 struct type *char_type);
805
806 extern struct value *value_array (int lowbound, int highbound,
807 struct value **elemvec);
808
809 extern struct value *value_concat (struct value *arg1, struct value *arg2);
810
811 extern struct value *value_binop (struct value *arg1, struct value *arg2,
812 enum exp_opcode op);
813
814 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
815
816 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
817
818 /* Return true if VAL does not live in target memory, but should in order
819 to operate on it. Otherwise return false. */
820
821 extern bool value_must_coerce_to_target (struct value *arg1);
822
823 extern struct value *value_coerce_to_target (struct value *arg1);
824
825 extern struct value *value_coerce_array (struct value *arg1);
826
827 extern struct value *value_coerce_function (struct value *arg1);
828
829 extern struct value *value_ind (struct value *arg1);
830
831 extern struct value *value_addr (struct value *arg1);
832
833 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
834
835 extern struct value *value_assign (struct value *toval,
836 struct value *fromval);
837
838 extern struct value *value_pos (struct value *arg1);
839
840 extern struct value *value_neg (struct value *arg1);
841
842 extern struct value *value_complement (struct value *arg1);
843
844 extern struct value *value_struct_elt (struct value **argp,
845 struct value **args,
846 const char *name, int *static_memfuncp,
847 const char *err);
848
849 extern struct value *value_struct_elt_bitpos (struct value **argp,
850 int bitpos,
851 struct type *field_type,
852 const char *err);
853
854 extern struct value *value_aggregate_elt (struct type *curtype,
855 const char *name,
856 struct type *expect_type,
857 int want_address,
858 enum noside noside);
859
860 extern struct value *value_static_field (struct type *type, int fieldno);
861
862 enum oload_search_type { NON_METHOD, METHOD, BOTH };
863
864 extern int find_overload_match (gdb::array_view<value *> args,
865 const char *name,
866 enum oload_search_type method,
867 struct value **objp, struct symbol *fsym,
868 struct value **valp, struct symbol **symp,
869 int *staticp, const int no_adl,
870 enum noside noside);
871
872 extern struct value *value_field (struct value *arg1, int fieldno);
873
874 extern struct value *value_primitive_field (struct value *arg1, LONGEST offset,
875 int fieldno,
876 struct type *arg_type);
877
878
879 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
880 int *);
881
882 extern struct value *value_full_object (struct value *, struct type *, int,
883 int, int);
884
885 extern struct value *value_cast_pointers (struct type *, struct value *, int);
886
887 extern struct value *value_cast (struct type *type, struct value *arg2);
888
889 extern struct value *value_reinterpret_cast (struct type *type,
890 struct value *arg);
891
892 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
893
894 extern struct value *value_zero (struct type *type, enum lval_type lv);
895
896 extern struct value *value_one (struct type *type);
897
898 extern struct value *value_repeat (struct value *arg1, int count);
899
900 extern struct value *value_subscript (struct value *array, LONGEST index);
901
902 extern struct value *value_bitstring_subscript (struct type *type,
903 struct value *bitstring,
904 LONGEST index);
905
906 extern struct value *register_value_being_returned (struct type *valtype,
907 struct regcache *retbuf);
908
909 extern int value_in (struct value *element, struct value *set);
910
911 extern int value_bit_index (struct type *type, const gdb_byte *addr,
912 int index);
913
914 extern enum return_value_convention
915 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
916 struct type *value_type);
917
918 extern int using_struct_return (struct gdbarch *gdbarch,
919 struct value *function,
920 struct type *value_type);
921
922 extern struct value *evaluate_expression (struct expression *exp);
923
924 extern struct value *evaluate_type (struct expression *exp);
925
926 extern struct value *evaluate_subexp (struct type *expect_type,
927 struct expression *exp,
928 int *pos, enum noside noside);
929
930 extern struct value *evaluate_subexpression_type (struct expression *exp,
931 int subexp);
932
933 extern value *evaluate_var_value (enum noside noside, const block *blk,
934 symbol *var);
935
936 extern value *evaluate_var_msym_value (enum noside noside,
937 struct objfile *objfile,
938 minimal_symbol *msymbol);
939
940 extern value *eval_skip_value (expression *exp);
941
942 extern void fetch_subexp_value (struct expression *exp, int *pc,
943 struct value **valp, struct value **resultp,
944 std::vector<value_ref_ptr> *val_chain,
945 int preserve_errors);
946
947 extern const char *extract_field_op (struct expression *exp, int *subexp);
948
949 extern struct value *evaluate_subexp_with_coercion (struct expression *,
950 int *, enum noside);
951
952 extern struct value *parse_and_eval (const char *exp);
953
954 extern struct value *parse_to_comma_and_eval (const char **expp);
955
956 extern struct type *parse_and_eval_type (char *p, int length);
957
958 extern CORE_ADDR parse_and_eval_address (const char *exp);
959
960 extern LONGEST parse_and_eval_long (const char *exp);
961
962 extern void unop_promote (const struct language_defn *language,
963 struct gdbarch *gdbarch,
964 struct value **arg1);
965
966 extern void binop_promote (const struct language_defn *language,
967 struct gdbarch *gdbarch,
968 struct value **arg1, struct value **arg2);
969
970 extern struct value *access_value_history (int num);
971
972 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
973 struct internalvar *var);
974
975 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
976
977 extern void set_internalvar (struct internalvar *var, struct value *val);
978
979 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
980
981 extern void set_internalvar_string (struct internalvar *var,
982 const char *string);
983
984 extern void clear_internalvar (struct internalvar *var);
985
986 extern void set_internalvar_component (struct internalvar *var,
987 LONGEST offset,
988 LONGEST bitpos, LONGEST bitsize,
989 struct value *newvalue);
990
991 extern struct internalvar *lookup_only_internalvar (const char *name);
992
993 extern struct internalvar *create_internalvar (const char *name);
994
995 extern void complete_internalvar (completion_tracker &tracker,
996 const char *name);
997
998 /* An internalvar can be dynamically computed by supplying a vector of
999 function pointers to perform various operations. */
1000
1001 struct internalvar_funcs
1002 {
1003 /* Compute the value of the variable. The DATA argument passed to
1004 the function is the same argument that was passed to
1005 `create_internalvar_type_lazy'. */
1006
1007 struct value *(*make_value) (struct gdbarch *arch,
1008 struct internalvar *var,
1009 void *data);
1010
1011 /* Update the agent expression EXPR with bytecode to compute the
1012 value. VALUE is the agent value we are updating. The DATA
1013 argument passed to this function is the same argument that was
1014 passed to `create_internalvar_type_lazy'. If this pointer is
1015 NULL, then the internalvar cannot be compiled to an agent
1016 expression. */
1017
1018 void (*compile_to_ax) (struct internalvar *var,
1019 struct agent_expr *expr,
1020 struct axs_value *value,
1021 void *data);
1022
1023 /* If non-NULL, this is called to destroy DATA. The DATA argument
1024 passed to this function is the same argument that was passed to
1025 `create_internalvar_type_lazy'. */
1026
1027 void (*destroy) (void *data);
1028 };
1029
1030 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1031 const struct internalvar_funcs *funcs,
1032 void *data);
1033
1034 /* Compile an internal variable to an agent expression. VAR is the
1035 variable to compile; EXPR and VALUE are the agent expression we are
1036 updating. This will return 0 if there is no known way to compile
1037 VAR, and 1 if VAR was successfully compiled. It may also throw an
1038 exception on error. */
1039
1040 extern int compile_internalvar_to_ax (struct internalvar *var,
1041 struct agent_expr *expr,
1042 struct axs_value *value);
1043
1044 extern struct internalvar *lookup_internalvar (const char *name);
1045
1046 extern int value_equal (struct value *arg1, struct value *arg2);
1047
1048 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1049
1050 extern int value_less (struct value *arg1, struct value *arg2);
1051
1052 extern int value_logical_not (struct value *arg1);
1053
1054 /* C++ */
1055
1056 extern struct value *value_of_this (const struct language_defn *lang);
1057
1058 extern struct value *value_of_this_silent (const struct language_defn *lang);
1059
1060 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1061 enum exp_opcode op,
1062 enum exp_opcode otherop,
1063 enum noside noside);
1064
1065 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1066 enum noside noside);
1067
1068 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1069 int j, struct type *type, LONGEST offset);
1070
1071 extern int binop_types_user_defined_p (enum exp_opcode op,
1072 struct type *type1,
1073 struct type *type2);
1074
1075 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1076 struct value *arg2);
1077
1078 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1079
1080 extern int destructor_name_p (const char *name, struct type *type);
1081
1082 extern value_ref_ptr release_value (struct value *val);
1083
1084 extern int record_latest_value (struct value *val);
1085
1086 extern void modify_field (struct type *type, gdb_byte *addr,
1087 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1088
1089 extern void type_print (struct type *type, const char *varstring,
1090 struct ui_file *stream, int show);
1091
1092 extern std::string type_to_string (struct type *type);
1093
1094 extern gdb_byte *baseclass_addr (struct type *type, int index,
1095 gdb_byte *valaddr,
1096 struct value **valuep, int *errp);
1097
1098 extern void print_longest (struct ui_file *stream, int format,
1099 int use_local, LONGEST val);
1100
1101 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1102 struct ui_file *stream);
1103
1104 extern void value_print (struct value *val, struct ui_file *stream,
1105 const struct value_print_options *options);
1106
1107 extern void value_print_array_elements (struct value *val,
1108 struct ui_file *stream, int format,
1109 enum val_prettyformat pretty);
1110
1111 /* Release values from the value chain and return them. Values
1112 created after MARK are released. If MARK is nullptr, or if MARK is
1113 not found on the value chain, then all values are released. Values
1114 are returned in reverse order of creation; that is, newest
1115 first. */
1116
1117 extern std::vector<value_ref_ptr> value_release_to_mark
1118 (const struct value *mark);
1119
1120 extern void common_val_print (struct value *val,
1121 struct ui_file *stream, int recurse,
1122 const struct value_print_options *options,
1123 const struct language_defn *language);
1124
1125 extern int val_print_string (struct type *elttype, const char *encoding,
1126 CORE_ADDR addr, int len,
1127 struct ui_file *stream,
1128 const struct value_print_options *options);
1129
1130 extern void print_variable_and_value (const char *name,
1131 struct symbol *var,
1132 struct frame_info *frame,
1133 struct ui_file *stream,
1134 int indent);
1135
1136 extern void typedef_print (struct type *type, struct symbol *news,
1137 struct ui_file *stream);
1138
1139 extern char *internalvar_name (const struct internalvar *var);
1140
1141 extern void preserve_values (struct objfile *);
1142
1143 /* From values.c */
1144
1145 extern struct value *value_copy (struct value *);
1146
1147 extern struct value *value_non_lval (struct value *);
1148
1149 extern void value_force_lval (struct value *, CORE_ADDR);
1150
1151 extern struct value *make_cv_value (int, int, struct value *);
1152
1153 extern void preserve_one_value (struct value *, struct objfile *, htab_t);
1154
1155 /* From valops.c */
1156
1157 extern struct value *varying_to_slice (struct value *);
1158
1159 extern struct value *value_slice (struct value *, int, int);
1160
1161 /* Create a complex number. The type is the complex type; the values
1162 are cast to the underlying scalar type before the complex number is
1163 created. */
1164
1165 extern struct value *value_literal_complex (struct value *, struct value *,
1166 struct type *);
1167
1168 /* Return the real part of a complex value. */
1169
1170 extern struct value *value_real_part (struct value *value);
1171
1172 /* Return the imaginary part of a complex value. */
1173
1174 extern struct value *value_imaginary_part (struct value *value);
1175
1176 extern struct value *find_function_in_inferior (const char *,
1177 struct objfile **);
1178
1179 extern struct value *value_allocate_space_in_inferior (int);
1180
1181 extern struct value *value_subscripted_rvalue (struct value *array,
1182 LONGEST index,
1183 LONGEST lowerbound);
1184
1185 /* User function handler. */
1186
1187 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1188 const struct language_defn *language,
1189 void *cookie,
1190 int argc,
1191 struct value **argv);
1192
1193 /* Add a new internal function. NAME is the name of the function; DOC
1194 is a documentation string describing the function. HANDLER is
1195 called when the function is invoked. COOKIE is an arbitrary
1196 pointer which is passed to HANDLER and is intended for "user
1197 data". */
1198
1199 extern void add_internal_function (const char *name, const char *doc,
1200 internal_function_fn handler,
1201 void *cookie);
1202
1203 /* This overload takes an allocated documentation string. */
1204
1205 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1206 gdb::unique_xmalloc_ptr<char> &&doc,
1207 internal_function_fn handler,
1208 void *cookie);
1209
1210 struct value *call_internal_function (struct gdbarch *gdbarch,
1211 const struct language_defn *language,
1212 struct value *function,
1213 int argc, struct value **argv);
1214
1215 char *value_internal_function_name (struct value *);
1216
1217 /* Build a value wrapping and representing WORKER. The value takes ownership
1218 of the xmethod_worker object. */
1219
1220 extern struct value *value_from_xmethod (xmethod_worker_up &&worker);
1221
1222 extern struct type *result_type_of_xmethod (struct value *method,
1223 gdb::array_view<value *> argv);
1224
1225 extern struct value *call_xmethod (struct value *method,
1226 gdb::array_view<value *> argv);
1227
1228 /* Destroy the values currently allocated. This is called when GDB is
1229 exiting (e.g., on quit_force). */
1230 extern void finalize_values ();
1231
1232 #endif /* !defined (VALUE_H) */