]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/values.c
hp merge changes -- too numerous to mention here; see ChangeLog and
[thirdparty/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Prototypes for exported functions. */
36
37 void _initialize_values PARAMS ((void));
38
39 /* Prototypes for local functions. */
40
41 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
42 struct type *));
43
44 static void show_values PARAMS ((char *, int));
45
46 static void show_convenience PARAMS ((char *, int));
47
48 static int vb_match PARAMS ((struct type *, int, struct type *));
49
50 /* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56 #define VALUE_HISTORY_CHUNK 60
57
58 struct value_history_chunk
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
63
64 /* Chain of chunks now in use. */
65
66 static struct value_history_chunk *value_history_chain;
67
68 static int value_history_count; /* Abs number of last entry stored */
69 \f
70 /* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74 static value_ptr all_values;
75
76 /* Allocate a value that has the correct length for type TYPE. */
77
78 value_ptr
79 allocate_value (type)
80 struct type *type;
81 {
82 register value_ptr val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 value_ptr
110 allocate_repeat_value (type, count)
111 struct type *type;
112 int count;
113 {
114 int low_bound = current_language->string_lower_bound; /* ??? */
115 /* FIXME-type-allocation: need a way to free this type when we are
116 done with it. */
117 struct type *range_type
118 = create_range_type ((struct type *) NULL, builtin_type_int,
119 low_bound, count + low_bound - 1);
120 /* FIXME-type-allocation: need a way to free this type when we are
121 done with it. */
122 return allocate_value (create_array_type ((struct type *) NULL,
123 type, range_type));
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value_ptr
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value_ptr mark;
140 {
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value_ptr val;
174 {
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Release all values up to mark */
194 value_ptr
195 value_release_to_mark (mark)
196 value_ptr mark;
197 {
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209 }
210
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215 value_ptr
216 value_copy (arg)
217 value_ptr arg;
218 {
219 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
220 register value_ptr val = allocate_value (encl_type);
221 VALUE_TYPE (val) = VALUE_TYPE (arg);
222 VALUE_LVAL (val) = VALUE_LVAL (arg);
223 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
224 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
225 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
226 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
227 VALUE_FRAME (val) = VALUE_FRAME (arg);
228 VALUE_REGNO (val) = VALUE_REGNO (arg);
229 VALUE_LAZY (val) = VALUE_LAZY (arg);
230 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
231 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
232 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
233 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
234 val->modifiable = arg->modifiable;
235 if (!VALUE_LAZY (val))
236 {
237 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239
240 }
241 return val;
242 }
243 \f
244 /* Access to the value history. */
245
246 /* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
250
251 int
252 record_latest_value (val)
253 value_ptr val;
254 {
255 int i;
256
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val))
262 value_fetch_lazy (val);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
266 val->modifiable = 0;
267 release_value (val);
268
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
271
272 i = value_history_count % VALUE_HISTORY_CHUNK;
273 if (i == 0)
274 {
275 register struct value_history_chunk *new
276 = (struct value_history_chunk *)
277 xmalloc (sizeof (struct value_history_chunk));
278 memset (new->values, 0, sizeof new->values);
279 new->next = value_history_chain;
280 value_history_chain = new;
281 }
282
283 value_history_chain->values[i] = val;
284
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
287
288 return ++value_history_count;
289 }
290
291 /* Return a copy of the value in the history with sequence number NUM. */
292
293 value_ptr
294 access_value_history (num)
295 int num;
296 {
297 register struct value_history_chunk *chunk;
298 register int i;
299 register int absnum = num;
300
301 if (absnum <= 0)
302 absnum += value_history_count;
303
304 if (absnum <= 0)
305 {
306 if (num == 0)
307 error ("The history is empty.");
308 else if (num == 1)
309 error ("There is only one value in the history.");
310 else
311 error ("History does not go back to $$%d.", -num);
312 }
313 if (absnum > value_history_count)
314 error ("History has not yet reached $%d.", absnum);
315
316 absnum--;
317
318 /* Now absnum is always absolute and origin zero. */
319
320 chunk = value_history_chain;
321 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
322 i > 0; i--)
323 chunk = chunk->next;
324
325 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
326 }
327
328 /* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
331
332 void
333 clear_value_history ()
334 {
335 register struct value_history_chunk *next;
336 register int i;
337 register value_ptr val;
338
339 while (value_history_chain)
340 {
341 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
342 if ((val = value_history_chain->values[i]) != NULL)
343 free ((PTR)val);
344 next = value_history_chain->next;
345 free ((PTR)value_history_chain);
346 value_history_chain = next;
347 }
348 value_history_count = 0;
349 }
350
351 static void
352 show_values (num_exp, from_tty)
353 char *num_exp;
354 int from_tty;
355 {
356 register int i;
357 register value_ptr val;
358 static int num = 1;
359
360 if (num_exp)
361 {
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
364 if (num_exp[0] != '+' || num_exp[1] != '\0')
365 num = parse_and_eval_address (num_exp) - 5;
366 }
367 else
368 {
369 /* "info history" means print the last 10 values. */
370 num = value_history_count - 9;
371 }
372
373 if (num <= 0)
374 num = 1;
375
376 for (i = num; i < num + 10 && i <= value_history_count; i++)
377 {
378 val = access_value_history (i);
379 printf_filtered ("$%d = ", i);
380 value_print (val, gdb_stdout, 0, Val_pretty_default);
381 printf_filtered ("\n");
382 }
383
384 /* The next "info history +" should start after what we just printed. */
385 num += 10;
386
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty && num_exp)
391 {
392 num_exp[0] = '+';
393 num_exp[1] = '\0';
394 }
395 }
396 \f
397 /* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
401
402 static struct internalvar *internalvars;
403
404 /* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
406
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
409
410 struct internalvar *
411 lookup_internalvar (name)
412 char *name;
413 {
414 register struct internalvar *var;
415
416 for (var = internalvars; var; var = var->next)
417 if (STREQ (var->name, name))
418 return var;
419
420 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
421 var->name = concat (name, NULL);
422 var->value = allocate_value (builtin_type_void);
423 release_value (var->value);
424 var->next = internalvars;
425 internalvars = var;
426 return var;
427 }
428
429 value_ptr
430 value_of_internalvar (var)
431 struct internalvar *var;
432 {
433 register value_ptr val;
434
435 #ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var->name))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var);
438 #endif
439
440 val = value_copy (var->value);
441 if (VALUE_LAZY (val))
442 value_fetch_lazy (val);
443 VALUE_LVAL (val) = lval_internalvar;
444 VALUE_INTERNALVAR (val) = var;
445 return val;
446 }
447
448 void
449 set_internalvar_component (var, offset, bitpos, bitsize, newval)
450 struct internalvar *var;
451 int offset, bitpos, bitsize;
452 value_ptr newval;
453 {
454 register char *addr = VALUE_CONTENTS (var->value) + offset;
455
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
459 #endif
460
461 if (bitsize)
462 modify_field (addr, value_as_long (newval),
463 bitpos, bitsize);
464 else
465 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
466 }
467
468 void
469 set_internalvar (var, val)
470 struct internalvar *var;
471 value_ptr val;
472 {
473 value_ptr newval;
474
475 #ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var->name))
477 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
478 #endif
479
480 newval = value_copy (val);
481 newval->modifiable = 1;
482
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
485 has changed. */
486 if (VALUE_LAZY (newval))
487 value_fetch_lazy (newval);
488
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
494 long. */
495 free ((PTR)var->value);
496 var->value = newval;
497 release_value (newval);
498 /* End code which must not call error(). */
499 }
500
501 char *
502 internalvar_name (var)
503 struct internalvar *var;
504 {
505 return var->name;
506 }
507
508 /* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
510
511 void
512 clear_internalvars ()
513 {
514 register struct internalvar *var;
515
516 while (internalvars)
517 {
518 var = internalvars;
519 internalvars = var->next;
520 free ((PTR)var->name);
521 free ((PTR)var->value);
522 free ((PTR)var);
523 }
524 }
525
526 static void
527 show_convenience (ignore, from_tty)
528 char *ignore;
529 int from_tty;
530 {
531 register struct internalvar *var;
532 int varseen = 0;
533
534 for (var = internalvars; var; var = var->next)
535 {
536 #ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var->name))
538 continue;
539 #endif
540 if (!varseen)
541 {
542 varseen = 1;
543 }
544 printf_filtered ("$%s = ", var->name);
545 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
546 printf_filtered ("\n");
547 }
548 if (!varseen)
549 printf_unfiltered ("No debugger convenience variables now defined.\n\
550 Convenience variables have names starting with \"$\";\n\
551 use \"set\" as in \"set $foo = 5\" to define them.\n");
552 }
553 \f
554 /* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
558
559 LONGEST
560 value_as_long (val)
561 register value_ptr val;
562 {
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
566 COERCE_ARRAY (val);
567 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
568 }
569
570 DOUBLEST
571 value_as_double (val)
572 register value_ptr val;
573 {
574 DOUBLEST foo;
575 int inv;
576
577 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
578 if (inv)
579 error ("Invalid floating value found in program.");
580 return foo;
581 }
582 /* Extract a value as a C pointer.
583 Does not deallocate the value. */
584 CORE_ADDR
585 value_as_pointer (val)
586 value_ptr val;
587 {
588 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
589 whether we want this to be true eventually. */
590 #if 0
591 /* ADDR_BITS_REMOVE is wrong if we are being called for a
592 non-address (e.g. argument to "signal", "info break", etc.), or
593 for pointers to char, in which the low bits *are* significant. */
594 return ADDR_BITS_REMOVE(value_as_long (val));
595 #else
596 return value_as_long (val);
597 #endif
598 }
599 \f
600 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
601 as a long, or as a double, assuming the raw data is described
602 by type TYPE. Knows how to convert different sizes of values
603 and can convert between fixed and floating point. We don't assume
604 any alignment for the raw data. Return value is in host byte order.
605
606 If you want functions and arrays to be coerced to pointers, and
607 references to be dereferenced, call value_as_long() instead.
608
609 C++: It is assumed that the front-end has taken care of
610 all matters concerning pointers to members. A pointer
611 to member which reaches here is considered to be equivalent
612 to an INT (or some size). After all, it is only an offset. */
613
614 LONGEST
615 unpack_long (type, valaddr)
616 struct type *type;
617 char *valaddr;
618 {
619 register enum type_code code = TYPE_CODE (type);
620 register int len = TYPE_LENGTH (type);
621 register int nosign = TYPE_UNSIGNED (type);
622
623 if (current_language->la_language == language_scm
624 && is_scmvalue_type (type))
625 return scm_unpack (type, valaddr, TYPE_CODE_INT);
626
627 switch (code)
628 {
629 case TYPE_CODE_TYPEDEF:
630 return unpack_long (check_typedef (type), valaddr);
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
635 case TYPE_CODE_RANGE:
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
638 else
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 #ifdef GDB_TARGET_IS_D10V
649 if (len == 2)
650 return D10V_MAKE_DADDR(extract_address (valaddr, len));
651 #endif
652 return extract_address (valaddr, len);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
660 return 0; /* Placate lint. */
661 }
662
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669 DOUBLEST
670 unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674 {
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686 #ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692 #endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698 #if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700 #else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703 #endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710 }
711
712 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725 CORE_ADDR
726 unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729 {
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
733 }
734 \f
735 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737 value_ptr
738 value_static_field (type, fieldno)
739 struct type *type;
740 int fieldno;
741 {
742 CORE_ADDR addr;
743 asection *sect;
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
745 {
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
747 sect = NULL;
748 }
749 else
750 {
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 if (sym == NULL)
754 {
755 /* With some compilers, e.g. HP aCC, static data members are reported
756 as non-debuggable symbols */
757 struct minimal_symbol * msym = lookup_minimal_symbol (phys_name, NULL, NULL);
758 if (!msym)
759 return NULL;
760 else
761 {
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
764 }
765 }
766 else
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774 }
775
776 /* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
780
781 value_ptr
782 value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
784 int offset;
785 register int fieldno;
786 register struct type *arg_type;
787 {
788 register value_ptr v;
789 register struct type *type;
790
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
793
794 /* Handle packed fields */
795
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
797 {
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
801 + offset,
802 fieldno));
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
805 }
806 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
807 {
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
810 bases, etc. */
811 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
812 VALUE_TYPE (v) = arg_type;
813 if (VALUE_LAZY (arg1))
814 VALUE_LAZY (v) = 1;
815 else
816 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
818 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
819 VALUE_EMBEDDED_OFFSET (v)
820 = offset +
821 VALUE_EMBEDDED_OFFSET (arg1) +
822 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
823 }
824 else
825 {
826 /* Plain old data member */
827 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
828 v = allocate_value (type);
829 if (VALUE_LAZY (arg1))
830 VALUE_LAZY (v) = 1;
831 else
832 memcpy (VALUE_CONTENTS_RAW (v),
833 VALUE_CONTENTS_RAW (arg1) + offset,
834 TYPE_LENGTH (type));
835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
836 }
837 VALUE_LVAL (v) = VALUE_LVAL (arg1);
838 if (VALUE_LVAL (arg1) == lval_internalvar)
839 VALUE_LVAL (v) = lval_internalvar_component;
840 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
841 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
843 return v;
844 }
845
846 /* Given a value ARG1 of a struct or union type,
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
849
850 value_ptr
851 value_field (arg1, fieldno)
852 register value_ptr arg1;
853 register int fieldno;
854 {
855 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
856 }
857
858 /* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
861
862 value_ptr
863 value_fn_field (arg1p, f, j, type, offset)
864 value_ptr *arg1p;
865 struct fn_field *f;
866 int j;
867 struct type *type;
868 int offset;
869 {
870 register value_ptr v;
871 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
872 struct symbol *sym;
873
874 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
875 0, VAR_NAMESPACE, 0, NULL);
876 if (! sym)
877 return NULL;
878 /*
879 error ("Internal error: could not find physical method named %s",
880 TYPE_FN_FIELD_PHYSNAME (f, j));
881 */
882
883 v = allocate_value (ftype);
884 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
885 VALUE_TYPE (v) = ftype;
886
887 if (arg1p)
888 {
889 if (type != VALUE_TYPE (*arg1p))
890 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
891 value_addr (*arg1p)));
892
893 /* Move the `this' pointer according to the offset.
894 VALUE_OFFSET (*arg1p) += offset;
895 */
896 }
897
898 return v;
899 }
900
901 /* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
903 table pointer. *ARG1P is side-effected in calling this function.
904 F is the list of member functions which contains the desired virtual
905 function.
906 J is an index into F which provides the desired virtual function.
907
908 TYPE is the type in which F is located. */
909 value_ptr
910 value_virtual_fn_field (arg1p, f, j, type, offset)
911 value_ptr *arg1p;
912 struct fn_field *f;
913 int j;
914 struct type *type;
915 int offset;
916 {
917 value_ptr arg1 = *arg1p;
918 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
919
920 if (TYPE_HAS_VTABLE (type))
921 {
922 /* Deal with HP/Taligent runtime model for virtual functions */
923 value_ptr vp;
924 value_ptr argp; /* arg1 cast to base */
925 CORE_ADDR vfunc_addr; /* address of virtual method */
926 CORE_ADDR coreptr; /* pointer to target address */
927 int class_index; /* which class segment pointer to use */
928 struct type * ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
929
930 argp = value_cast (type, *arg1p);
931
932 if (VALUE_ADDRESS (argp) == 0)
933 error ("Address of object is null; object may not have been created.");
934
935 /* pai: FIXME -- 32x64 possible problem? */
936 /* First word (4 bytes) in object layout is the vtable pointer */
937 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
938 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
939
940 if (!coreptr)
941 error ("Virtual table pointer is null for object; object may not have been created.");
942
943 /* pai/1997-05-09
944 * FIXME: The code here currently handles only
945 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
946 * is introduced, the condition for the "if" below will have to
947 * be changed to be a test for the RRBC case. */
948
949 if (1)
950 {
951 /* Non-RRBC case; the virtual function pointers are stored at fixed
952 * offsets in the virtual table. */
953
954 /* Retrieve the offset in the virtual table from the debug
955 * info. The offset of the vfunc's entry is in words from
956 * the beginning of the vtable; but first we have to adjust
957 * by HP_ACC_VFUNC_START to account for other entries */
958
959 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
960 * which case the multiplier should be 8 and values should be long */
961 vp = value_at (builtin_type_int,
962 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
963
964 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
965 /* coreptr now contains the address of the virtual function */
966 /* (Actually, it contains the pointer to the plabel for the function. */
967 }
968 else
969 {
970 /* RRBC case; the virtual function pointers are found by double
971 * indirection through the class segment tables. */
972
973 /* Choose class segment depending on type we were passed */
974 class_index = class_index_in_primary_list (type);
975
976 /* Find class segment pointer. These are in the vtable slots after
977 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
978 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
979 * the multiplier below has to be 8 and value should be long. */
980 vp = value_at (builtin_type_int,
981 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
982 /* Indirect once more, offset by function index */
983 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
984 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
985 vp = value_at (builtin_type_int, coreptr, NULL);
986 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
987
988 /* coreptr now contains the address of the virtual function */
989 /* (Actually, it contains the pointer to the plabel for the function.) */
990
991 }
992
993 if (!coreptr)
994 error ("Address of virtual function is null; error in virtual table?");
995
996 /* Wrap this addr in a value and return pointer */
997 vp = allocate_value (ftype);
998 VALUE_TYPE (vp) = ftype;
999 VALUE_ADDRESS (vp) = coreptr;
1000
1001 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1002 return vp;
1003 }
1004 else
1005 { /* Not using HP/Taligent runtime conventions; so try to
1006 * use g++ conventions for virtual table */
1007
1008 struct type *entry_type;
1009 /* First, get the virtual function table pointer. That comes
1010 with a strange type, so cast it to type `pointer to long' (which
1011 should serve just fine as a function type). Then, index into
1012 the table, and convert final value to appropriate function type. */
1013 value_ptr entry, vfn, vtbl;
1014 value_ptr vi = value_from_longest (builtin_type_int,
1015 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1016 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1017 struct type *context;
1018 if (fcontext == NULL)
1019 /* We don't have an fcontext (e.g. the program was compiled with
1020 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1021 This won't work right for multiple inheritance, but at least we
1022 should do as well as GDB 3.x did. */
1023 fcontext = TYPE_VPTR_BASETYPE (type);
1024 context = lookup_pointer_type (fcontext);
1025 /* Now context is a pointer to the basetype containing the vtbl. */
1026 if (TYPE_TARGET_TYPE (context) != type1)
1027 {
1028 arg1 = value_ind (value_cast (context, value_addr (arg1)));
1029 type1 = check_typedef (VALUE_TYPE (arg1));
1030 }
1031
1032 context = type1;
1033 /* Now context is the basetype containing the vtbl. */
1034
1035 /* This type may have been defined before its virtual function table
1036 was. If so, fill in the virtual function table entry for the
1037 type now. */
1038 if (TYPE_VPTR_FIELDNO (context) < 0)
1039 fill_in_vptr_fieldno (context);
1040
1041 /* The virtual function table is now an array of structures
1042 which have the form { int16 offset, delta; void *pfn; }. */
1043 vtbl = value_ind (value_primitive_field (arg1, 0,
1044 TYPE_VPTR_FIELDNO (context),
1045 TYPE_VPTR_BASETYPE (context)));
1046
1047 /* Index into the virtual function table. This is hard-coded because
1048 looking up a field is not cheap, and it may be important to save
1049 time, e.g. if the user has set a conditional breakpoint calling
1050 a virtual function. */
1051 entry = value_subscript (vtbl, vi);
1052 entry_type = check_typedef (VALUE_TYPE (entry));
1053
1054 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1055 {
1056 /* Move the `this' pointer according to the virtual function table. */
1057 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1058
1059 if (! VALUE_LAZY (arg1))
1060 {
1061 VALUE_LAZY (arg1) = 1;
1062 value_fetch_lazy (arg1);
1063 }
1064
1065 vfn = value_field (entry, 2);
1066 }
1067 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1068 vfn = entry;
1069 else
1070 error ("I'm confused: virtual function table has bad type");
1071 /* Reinstantiate the function pointer with the correct type. */
1072 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1073
1074 *arg1p = arg1;
1075 return vfn;
1076 }
1077 }
1078
1079 /* ARG is a pointer to an object we know to be at least
1080 a DTYPE. BTYPE is the most derived basetype that has
1081 already been searched (and need not be searched again).
1082 After looking at the vtables between BTYPE and DTYPE,
1083 return the most derived type we find. The caller must
1084 be satisfied when the return value == DTYPE.
1085
1086 FIXME-tiemann: should work with dossier entries as well. */
1087
1088 static value_ptr
1089 value_headof (in_arg, btype, dtype)
1090 value_ptr in_arg;
1091 struct type *btype, *dtype;
1092 {
1093 /* First collect the vtables we must look at for this object. */
1094 /* FIXME-tiemann: right now, just look at top-most vtable. */
1095 value_ptr arg, vtbl, entry, best_entry = 0;
1096 int i, nelems;
1097 int offset, best_offset = 0;
1098 struct symbol *sym;
1099 CORE_ADDR pc_for_sym;
1100 char *demangled_name;
1101 struct minimal_symbol *msymbol;
1102
1103 btype = TYPE_VPTR_BASETYPE (dtype);
1104 CHECK_TYPEDEF (btype);
1105 arg = in_arg;
1106 if (btype != dtype)
1107 arg = value_cast (lookup_pointer_type (btype), arg);
1108 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1109
1110 /* Check that VTBL looks like it points to a virtual function table. */
1111 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1112 if (msymbol == NULL
1113 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1114 || !VTBL_PREFIX_P (demangled_name))
1115 {
1116 /* If we expected to find a vtable, but did not, let the user
1117 know that we aren't happy, but don't throw an error.
1118 FIXME: there has to be a better way to do this. */
1119 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1120 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1121 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1122 VALUE_TYPE (in_arg) = error_type;
1123 return in_arg;
1124 }
1125
1126 /* Now search through the virtual function table. */
1127 entry = value_ind (vtbl);
1128 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1129 for (i = 1; i <= nelems; i++)
1130 {
1131 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1132 (LONGEST) i));
1133 /* This won't work if we're using thunks. */
1134 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1135 break;
1136 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1137 /* If we use '<=' we can handle single inheritance
1138 * where all offsets are zero - just use the first entry found. */
1139 if (offset <= best_offset)
1140 {
1141 best_offset = offset;
1142 best_entry = entry;
1143 }
1144 }
1145 /* Move the pointer according to BEST_ENTRY's offset, and figure
1146 out what type we should return as the new pointer. */
1147 if (best_entry == 0)
1148 {
1149 /* An alternative method (which should no longer be necessary).
1150 * But we leave it in for future use, when we will hopefully
1151 * have optimizes the vtable to use thunks instead of offsets. */
1152 /* Use the name of vtable itself to extract a base type. */
1153 demangled_name += 4; /* Skip _vt$ prefix. */
1154 }
1155 else
1156 {
1157 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1158 sym = find_pc_function (pc_for_sym);
1159 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1160 *(strchr (demangled_name, ':')) = '\0';
1161 }
1162 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1163 if (sym == NULL)
1164 error ("could not find type declaration for `%s'", demangled_name);
1165 if (best_entry)
1166 {
1167 free (demangled_name);
1168 arg = value_add (value_cast (builtin_type_int, arg),
1169 value_field (best_entry, 0));
1170 }
1171 else arg = in_arg;
1172 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1173 return arg;
1174 }
1175
1176 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1177 function tables, probe ARG's tables (including the vtables
1178 of its baseclasses) to figure out the most derived type that ARG
1179 could actually be a pointer to. */
1180
1181 value_ptr
1182 value_from_vtable_info (arg, type)
1183 value_ptr arg;
1184 struct type *type;
1185 {
1186 /* Take care of preliminaries. */
1187 if (TYPE_VPTR_FIELDNO (type) < 0)
1188 fill_in_vptr_fieldno (type);
1189 if (TYPE_VPTR_FIELDNO (type) < 0)
1190 return 0;
1191
1192 return value_headof (arg, 0, type);
1193 }
1194
1195 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1196 pointer which is for the base class whose type is BASECLASS. */
1197
1198 static int
1199 vb_match (type, index, basetype)
1200 struct type *type;
1201 int index;
1202 struct type *basetype;
1203 {
1204 struct type *fieldtype;
1205 char *name = TYPE_FIELD_NAME (type, index);
1206 char *field_class_name = NULL;
1207
1208 if (*name != '_')
1209 return 0;
1210 /* gcc 2.4 uses _vb$. */
1211 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1212 field_class_name = name + 4;
1213 /* gcc 2.5 will use __vb_. */
1214 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1215 field_class_name = name + 5;
1216
1217 if (field_class_name == NULL)
1218 /* This field is not a virtual base class pointer. */
1219 return 0;
1220
1221 /* It's a virtual baseclass pointer, now we just need to find out whether
1222 it is for this baseclass. */
1223 fieldtype = TYPE_FIELD_TYPE (type, index);
1224 if (fieldtype == NULL
1225 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1226 /* "Can't happen". */
1227 return 0;
1228
1229 /* What we check for is that either the types are equal (needed for
1230 nameless types) or have the same name. This is ugly, and a more
1231 elegant solution should be devised (which would probably just push
1232 the ugliness into symbol reading unless we change the stabs format). */
1233 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1234 return 1;
1235
1236 if (TYPE_NAME (basetype) != NULL
1237 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1238 && STREQ (TYPE_NAME (basetype),
1239 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1240 return 1;
1241 return 0;
1242 }
1243
1244 /* Compute the offset of the baseclass which is
1245 the INDEXth baseclass of class TYPE,
1246 for value at VALADDR (in host) at ADDRESS (in target).
1247 The result is the offset of the baseclass value relative
1248 to (the address of)(ARG) + OFFSET.
1249
1250 -1 is returned on error. */
1251
1252 int
1253 baseclass_offset (type, index, valaddr, address)
1254 struct type *type;
1255 int index;
1256 char *valaddr;
1257 CORE_ADDR address;
1258 {
1259 struct type *basetype = TYPE_BASECLASS (type, index);
1260
1261 if (BASETYPE_VIA_VIRTUAL (type, index))
1262 {
1263 /* Must hunt for the pointer to this virtual baseclass. */
1264 register int i, len = TYPE_NFIELDS (type);
1265 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1266
1267 /* First look for the virtual baseclass pointer
1268 in the fields. */
1269 for (i = n_baseclasses; i < len; i++)
1270 {
1271 if (vb_match (type, i, basetype))
1272 {
1273 CORE_ADDR addr
1274 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1275 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1276
1277 return addr - (LONGEST) address;
1278 }
1279 }
1280 /* Not in the fields, so try looking through the baseclasses. */
1281 for (i = index+1; i < n_baseclasses; i++)
1282 {
1283 int boffset =
1284 baseclass_offset (type, i, valaddr, address);
1285 if (boffset)
1286 return boffset;
1287 }
1288 /* Not found. */
1289 return -1;
1290 }
1291
1292 /* Baseclass is easily computed. */
1293 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1294 }
1295 \f
1296 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1297 VALADDR.
1298
1299 Extracting bits depends on endianness of the machine. Compute the
1300 number of least significant bits to discard. For big endian machines,
1301 we compute the total number of bits in the anonymous object, subtract
1302 off the bit count from the MSB of the object to the MSB of the
1303 bitfield, then the size of the bitfield, which leaves the LSB discard
1304 count. For little endian machines, the discard count is simply the
1305 number of bits from the LSB of the anonymous object to the LSB of the
1306 bitfield.
1307
1308 If the field is signed, we also do sign extension. */
1309
1310 LONGEST
1311 unpack_field_as_long (type, valaddr, fieldno)
1312 struct type *type;
1313 char *valaddr;
1314 int fieldno;
1315 {
1316 ULONGEST val;
1317 ULONGEST valmask;
1318 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1319 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1320 int lsbcount;
1321 struct type *field_type;
1322
1323 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1324 field_type = TYPE_FIELD_TYPE (type, fieldno);
1325 CHECK_TYPEDEF (field_type);
1326
1327 /* Extract bits. See comment above. */
1328
1329 if (BITS_BIG_ENDIAN)
1330 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1331 else
1332 lsbcount = (bitpos % 8);
1333 val >>= lsbcount;
1334
1335 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1336 If the field is signed, and is negative, then sign extend. */
1337
1338 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1339 {
1340 valmask = (((ULONGEST) 1) << bitsize) - 1;
1341 val &= valmask;
1342 if (!TYPE_UNSIGNED (field_type))
1343 {
1344 if (val & (valmask ^ (valmask >> 1)))
1345 {
1346 val |= ~valmask;
1347 }
1348 }
1349 }
1350 return (val);
1351 }
1352
1353 /* Modify the value of a bitfield. ADDR points to a block of memory in
1354 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1355 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1356 indicate which bits (in target bit order) comprise the bitfield. */
1357
1358 void
1359 modify_field (addr, fieldval, bitpos, bitsize)
1360 char *addr;
1361 LONGEST fieldval;
1362 int bitpos, bitsize;
1363 {
1364 LONGEST oword;
1365
1366 /* If a negative fieldval fits in the field in question, chop
1367 off the sign extension bits. */
1368 if (bitsize < (8 * (int) sizeof (fieldval))
1369 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1370 fieldval = fieldval & ((1 << bitsize) - 1);
1371
1372 /* Warn if value is too big to fit in the field in question. */
1373 if (bitsize < (8 * (int) sizeof (fieldval))
1374 && 0 != (fieldval & ~((1<<bitsize)-1)))
1375 {
1376 /* FIXME: would like to include fieldval in the message, but
1377 we don't have a sprintf_longest. */
1378 warning ("Value does not fit in %d bits.", bitsize);
1379
1380 /* Truncate it, otherwise adjoining fields may be corrupted. */
1381 fieldval = fieldval & ((1 << bitsize) - 1);
1382 }
1383
1384 oword = extract_signed_integer (addr, sizeof oword);
1385
1386 /* Shifting for bit field depends on endianness of the target machine. */
1387 if (BITS_BIG_ENDIAN)
1388 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1389
1390 /* Mask out old value, while avoiding shifts >= size of oword */
1391 if (bitsize < 8 * (int) sizeof (oword))
1392 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1393 else
1394 oword &= ~((~(ULONGEST)0) << bitpos);
1395 oword |= fieldval << bitpos;
1396
1397 store_signed_integer (addr, sizeof oword, oword);
1398 }
1399 \f
1400 /* Convert C numbers into newly allocated values */
1401
1402 value_ptr
1403 value_from_longest (type, num)
1404 struct type *type;
1405 register LONGEST num;
1406 {
1407 register value_ptr val = allocate_value (type);
1408 register enum type_code code;
1409 register int len;
1410 retry:
1411 code = TYPE_CODE (type);
1412 len = TYPE_LENGTH (type);
1413
1414 switch (code)
1415 {
1416 case TYPE_CODE_TYPEDEF:
1417 type = check_typedef (type);
1418 goto retry;
1419 case TYPE_CODE_INT:
1420 case TYPE_CODE_CHAR:
1421 case TYPE_CODE_ENUM:
1422 case TYPE_CODE_BOOL:
1423 case TYPE_CODE_RANGE:
1424 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1425 break;
1426
1427 case TYPE_CODE_REF:
1428 case TYPE_CODE_PTR:
1429 /* This assumes that all pointers of a given length
1430 have the same form. */
1431 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1432 break;
1433
1434 default:
1435 error ("Unexpected type (%d) encountered for integer constant.", code);
1436 }
1437 return val;
1438 }
1439
1440 value_ptr
1441 value_from_double (type, num)
1442 struct type *type;
1443 DOUBLEST num;
1444 {
1445 register value_ptr val = allocate_value (type);
1446 struct type *base_type = check_typedef (type);
1447 register enum type_code code = TYPE_CODE (base_type);
1448 register int len = TYPE_LENGTH (base_type);
1449
1450 if (code == TYPE_CODE_FLT)
1451 {
1452 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1453 }
1454 else
1455 error ("Unexpected type encountered for floating constant.");
1456
1457 return val;
1458 }
1459 \f
1460 /* Deal with the value that is "about to be returned". */
1461
1462 /* Return the value that a function returning now
1463 would be returning to its caller, assuming its type is VALTYPE.
1464 RETBUF is where we look for what ought to be the contents
1465 of the registers (in raw form). This is because it is often
1466 desirable to restore old values to those registers
1467 after saving the contents of interest, and then call
1468 this function using the saved values.
1469 struct_return is non-zero when the function in question is
1470 using the structure return conventions on the machine in question;
1471 0 when it is using the value returning conventions (this often
1472 means returning pointer to where structure is vs. returning value). */
1473
1474 value_ptr
1475 value_being_returned (valtype, retbuf, struct_return)
1476 register struct type *valtype;
1477 char retbuf[REGISTER_BYTES];
1478 int struct_return;
1479 /*ARGSUSED*/
1480 {
1481 register value_ptr val;
1482 CORE_ADDR addr;
1483
1484 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1485 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1486 if (struct_return) {
1487 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1488 if (!addr)
1489 error ("Function return value unknown");
1490 return value_at (valtype, addr, NULL);
1491 }
1492 #endif
1493
1494 val = allocate_value (valtype);
1495 CHECK_TYPEDEF (valtype);
1496 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1497
1498 return val;
1499 }
1500
1501 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1502 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1503 and TYPE is the type (which is known to be struct, union or array).
1504
1505 On most machines, the struct convention is used unless we are
1506 using gcc and the type is of a special size. */
1507 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1508 native compiler. GCC 2.3.3 was the last release that did it the
1509 old way. Since gcc2_compiled was not changed, we have no
1510 way to correctly win in all cases, so we just do the right thing
1511 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1512 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1513 would cause more chaos than dealing with some struct returns being
1514 handled wrong. */
1515
1516 int
1517 generic_use_struct_convention (gcc_p, value_type)
1518 int gcc_p;
1519 struct type *value_type;
1520 {
1521 return !((gcc_p == 1)
1522 && (TYPE_LENGTH (value_type) == 1
1523 || TYPE_LENGTH (value_type) == 2
1524 || TYPE_LENGTH (value_type) == 4
1525 || TYPE_LENGTH (value_type) == 8));
1526 }
1527
1528 #ifndef USE_STRUCT_CONVENTION
1529 #define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1530 #endif
1531
1532 /* Some fundamental types (such as long double) are returned on the stack for
1533 certain architectures. This macro should return true for any type besides
1534 struct, union or array that gets returned on the stack. */
1535
1536 #ifndef RETURN_VALUE_ON_STACK
1537 #define RETURN_VALUE_ON_STACK(TYPE) 0
1538 #endif
1539
1540 /* Return true if the function specified is using the structure returning
1541 convention on this machine to return arguments, or 0 if it is using
1542 the value returning convention. FUNCTION is the value representing
1543 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1544 is the type returned by the function. GCC_P is nonzero if compiled
1545 with GCC. */
1546
1547 int
1548 using_struct_return (function, funcaddr, value_type, gcc_p)
1549 value_ptr function;
1550 CORE_ADDR funcaddr;
1551 struct type *value_type;
1552 int gcc_p;
1553 /*ARGSUSED*/
1554 {
1555 register enum type_code code = TYPE_CODE (value_type);
1556
1557 if (code == TYPE_CODE_ERROR)
1558 error ("Function return type unknown.");
1559
1560 if (code == TYPE_CODE_STRUCT
1561 || code == TYPE_CODE_UNION
1562 || code == TYPE_CODE_ARRAY
1563 || RETURN_VALUE_ON_STACK (value_type))
1564 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1565
1566 return 0;
1567 }
1568
1569 /* Store VAL so it will be returned if a function returns now.
1570 Does not verify that VAL's type matches what the current
1571 function wants to return. */
1572
1573 void
1574 set_return_value (val)
1575 value_ptr val;
1576 {
1577 struct type *type = check_typedef (VALUE_TYPE (val));
1578 register enum type_code code = TYPE_CODE (type);
1579
1580 if (code == TYPE_CODE_ERROR)
1581 error ("Function return type unknown.");
1582
1583 if ( code == TYPE_CODE_STRUCT
1584 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1585 error ("GDB does not support specifying a struct or union return value.");
1586
1587 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1588 }
1589 \f
1590 void
1591 _initialize_values ()
1592 {
1593 add_cmd ("convenience", no_class, show_convenience,
1594 "Debugger convenience (\"$foo\") variables.\n\
1595 These variables are created when you assign them values;\n\
1596 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1597 A few convenience variables are given values automatically:\n\
1598 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1599 \"$__\" holds the contents of the last address examined with \"x\".",
1600 &showlist);
1601
1602 add_cmd ("values", no_class, show_values,
1603 "Elements of value history around item number IDX (or last ten).",
1604 &showlist);
1605 }