]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Fix ARI warning about function names in first column.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes. */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages. */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1. */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has. */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for
165 children. */
166 struct varobj_root *root;
167
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
170
171 /* Was this variable updated via a varobj_set_value operation. */
172 int updated;
173
174 /* Last print value. */
175 char *print_value;
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
186
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
212 };
213
214 struct cpstack
215 {
216 char *name;
217 struct cpstack *next;
218 };
219
220 /* A list of varobjs */
221
222 struct vlist
223 {
224 struct varobj *var;
225 struct vlist *next;
226 };
227
228 /* Private function prototypes */
229
230 /* Helper functions for the above subcommands. */
231
232 static int delete_variable (struct cpstack **, struct varobj *, int);
233
234 static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
236
237 static int install_variable (struct varobj *);
238
239 static void uninstall_variable (struct varobj *);
240
241 static struct varobj *create_child (struct varobj *, int, char *);
242
243 static struct varobj *
244 create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
247 /* Utility routines */
248
249 static struct varobj *new_variable (void);
250
251 static struct varobj *new_root_variable (void);
252
253 static void free_variable (struct varobj *var);
254
255 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
257 static struct type *get_type (struct varobj *var);
258
259 static struct type *get_value_type (struct varobj *var);
260
261 static struct type *get_target_type (struct type *);
262
263 static enum varobj_display_formats variable_default_display (struct varobj *);
264
265 static void cppush (struct cpstack **pstack, char *name);
266
267 static char *cppop (struct cpstack **pstack);
268
269 static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
272 /* Language-specific routines. */
273
274 static enum varobj_languages variable_language (struct varobj *var);
275
276 static int number_of_children (struct varobj *);
277
278 static char *name_of_variable (struct varobj *);
279
280 static char *name_of_child (struct varobj *, int);
281
282 static struct value *value_of_root (struct varobj **var_handle, int *);
283
284 static struct value *value_of_child (struct varobj *parent, int index);
285
286 static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
288
289 static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
291 struct varobj *var);
292
293 static int varobj_value_is_changeable_p (struct varobj *var);
294
295 static int is_root_p (struct varobj *var);
296
297 #if HAVE_PYTHON
298
299 static struct varobj * varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
302
303 #endif /* HAVE_PYTHON */
304
305 /* C implementation */
306
307 static int c_number_of_children (struct varobj *var);
308
309 static char *c_name_of_variable (struct varobj *parent);
310
311 static char *c_name_of_child (struct varobj *parent, int index);
312
313 static char *c_path_expr_of_child (struct varobj *child);
314
315 static struct value *c_value_of_root (struct varobj **var_handle);
316
317 static struct value *c_value_of_child (struct varobj *parent, int index);
318
319 static struct type *c_type_of_child (struct varobj *parent, int index);
320
321 static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
323
324 /* C++ implementation */
325
326 static int cplus_number_of_children (struct varobj *var);
327
328 static void cplus_class_num_children (struct type *type, int children[3]);
329
330 static char *cplus_name_of_variable (struct varobj *parent);
331
332 static char *cplus_name_of_child (struct varobj *parent, int index);
333
334 static char *cplus_path_expr_of_child (struct varobj *child);
335
336 static struct value *cplus_value_of_root (struct varobj **var_handle);
337
338 static struct value *cplus_value_of_child (struct varobj *parent, int index);
339
340 static struct type *cplus_type_of_child (struct varobj *parent, int index);
341
342 static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
344
345 /* Java implementation */
346
347 static int java_number_of_children (struct varobj *var);
348
349 static char *java_name_of_variable (struct varobj *parent);
350
351 static char *java_name_of_child (struct varobj *parent, int index);
352
353 static char *java_path_expr_of_child (struct varobj *child);
354
355 static struct value *java_value_of_root (struct varobj **var_handle);
356
357 static struct value *java_value_of_child (struct varobj *parent, int index);
358
359 static struct type *java_type_of_child (struct varobj *parent, int index);
360
361 static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
363
364 /* The language specific vector */
365
366 struct language_specific
367 {
368
369 /* The language of this variable. */
370 enum varobj_languages language;
371
372 /* The number of children of PARENT. */
373 int (*number_of_children) (struct varobj * parent);
374
375 /* The name (expression) of a root varobj. */
376 char *(*name_of_variable) (struct varobj * parent);
377
378 /* The name of the INDEX'th child of PARENT. */
379 char *(*name_of_child) (struct varobj * parent, int index);
380
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
384
385 /* The ``struct value *'' of the root variable ROOT. */
386 struct value *(*value_of_root) (struct varobj ** root_handle);
387
388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
389 struct value *(*value_of_child) (struct varobj * parent, int index);
390
391 /* The type of the INDEX'th child of PARENT. */
392 struct type *(*type_of_child) (struct varobj * parent, int index);
393
394 /* The current value of VAR. */
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
397 };
398
399 /* Array of known source language routines. */
400 static struct language_specific languages[vlang_end] = {
401 /* Unknown (try treating as C). */
402 {
403 vlang_unknown,
404 c_number_of_children,
405 c_name_of_variable,
406 c_name_of_child,
407 c_path_expr_of_child,
408 c_value_of_root,
409 c_value_of_child,
410 c_type_of_child,
411 c_value_of_variable}
412 ,
413 /* C */
414 {
415 vlang_c,
416 c_number_of_children,
417 c_name_of_variable,
418 c_name_of_child,
419 c_path_expr_of_child,
420 c_value_of_root,
421 c_value_of_child,
422 c_type_of_child,
423 c_value_of_variable}
424 ,
425 /* C++ */
426 {
427 vlang_cplus,
428 cplus_number_of_children,
429 cplus_name_of_variable,
430 cplus_name_of_child,
431 cplus_path_expr_of_child,
432 cplus_value_of_root,
433 cplus_value_of_child,
434 cplus_type_of_child,
435 cplus_value_of_variable}
436 ,
437 /* Java */
438 {
439 vlang_java,
440 java_number_of_children,
441 java_name_of_variable,
442 java_name_of_child,
443 java_path_expr_of_child,
444 java_value_of_root,
445 java_value_of_child,
446 java_type_of_child,
447 java_value_of_variable}
448 };
449
450 /* A little convenience enum for dealing with C++/Java. */
451 enum vsections
452 {
453 v_public = 0, v_private, v_protected
454 };
455
456 /* Private data */
457
458 /* Mappings of varobj_display_formats enums to gdb's format codes. */
459 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
460
461 /* Header of the list of root variable objects. */
462 static struct varobj_root *rootlist;
463
464 /* Prime number indicating the number of buckets in the hash table. */
465 /* A prime large enough to avoid too many colisions. */
466 #define VAROBJ_TABLE_SIZE 227
467
468 /* Pointer to the varobj hash table (built at run time). */
469 static struct vlist **varobj_table;
470
471 /* Is the variable X one of our "fake" children? */
472 #define CPLUS_FAKE_CHILD(x) \
473 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
474 \f
475
476 /* API Implementation */
477 static int
478 is_root_p (struct varobj *var)
479 {
480 return (var->root->rootvar == var);
481 }
482
483 #ifdef HAVE_PYTHON
484 /* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
486 struct cleanup *
487 varobj_ensure_python_env (struct varobj *var)
488 {
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
491 }
492 #endif
493
494 /* Creates a varobj (not its children). */
495
496 /* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
498
499 static struct frame_info *
500 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
501 {
502 struct frame_info *frame = NULL;
503
504 if (frame_addr == (CORE_ADDR) 0)
505 return NULL;
506
507 for (frame = get_current_frame ();
508 frame != NULL;
509 frame = get_prev_frame (frame))
510 {
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
517
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
520
521 if (frame_base == frame_addr)
522 return frame;
523 }
524
525 return NULL;
526 }
527
528 struct varobj *
529 varobj_create (char *objname,
530 char *expression, CORE_ADDR frame, enum varobj_type type)
531 {
532 struct varobj *var;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 struct frame_info *fi;
542 struct frame_id old_id = null_frame_id;
543 struct block *block;
544 char *p;
545 enum varobj_languages lang;
546 struct value *value = NULL;
547
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
550
551 if (has_stack_frames ())
552 {
553 /* Allow creator to specify context of variable. */
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
556 else
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
563 function. */
564 fi = find_frame_addr_in_frame_chain (frame);
565 }
566 else
567 fi = NULL;
568
569 /* frame = -2 means always use selected frame. */
570 if (type == USE_SELECTED_FRAME)
571 var->root->floating = 1;
572
573 block = NULL;
574 if (fi != NULL)
575 block = get_frame_block (fi, 0);
576
577 p = expression;
578 innermost_block = NULL;
579 /* Wrap the call to parse expression, so we can
580 return a sensible error. */
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
582 {
583 return NULL;
584 }
585
586 /* Don't allow variables to be created for types. */
587 if (var->root->exp->elts[0].opcode == OP_TYPE)
588 {
589 do_cleanups (old_chain);
590 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
591 " as an expression.\n");
592 return NULL;
593 }
594
595 var->format = variable_default_display (var);
596 var->root->valid_block = innermost_block;
597 var->name = xstrdup (expression);
598 /* For a root var, the name and the expr are the same. */
599 var->path_expr = xstrdup (expression);
600
601 /* When the frame is different from the current frame,
602 we must select the appropriate frame before parsing
603 the expression, otherwise the value will not be current.
604 Since select_frame is so benign, just call it for all cases. */
605 if (innermost_block)
606 {
607 /* User could specify explicit FRAME-ADDR which was not found but
608 EXPRESSION is frame specific and we would not be able to evaluate
609 it correctly next time. With VALID_BLOCK set we must also set
610 FRAME and THREAD_ID. */
611 if (fi == NULL)
612 error (_("Failed to find the specified frame"));
613
614 var->root->frame = get_frame_id (fi);
615 var->root->thread_id = pid_to_thread_id (inferior_ptid);
616 old_id = get_frame_id (get_selected_frame (NULL));
617 select_frame (fi);
618 }
619
620 /* We definitely need to catch errors here.
621 If evaluate_expression succeeds we got the value we wanted.
622 But if it fails, we still go on with a call to evaluate_type(). */
623 if (!gdb_evaluate_expression (var->root->exp, &value))
624 {
625 /* Error getting the value. Try to at least get the
626 right type. */
627 struct value *type_only_value = evaluate_type (var->root->exp);
628
629 var->type = value_type (type_only_value);
630 }
631 else
632 var->type = value_type (value);
633
634 install_new_value (var, value, 1 /* Initial assignment */);
635
636 /* Set language info */
637 lang = variable_language (var);
638 var->root->lang = &languages[lang];
639
640 /* Set ourselves as our root. */
641 var->root->rootvar = var;
642
643 /* Reset the selected frame. */
644 if (frame_id_p (old_id))
645 select_frame (frame_find_by_id (old_id));
646 }
647
648 /* If the variable object name is null, that means this
649 is a temporary variable, so don't install it. */
650
651 if ((var != NULL) && (objname != NULL))
652 {
653 var->obj_name = xstrdup (objname);
654
655 /* If a varobj name is duplicated, the install will fail so
656 we must cleanup. */
657 if (!install_variable (var))
658 {
659 do_cleanups (old_chain);
660 return NULL;
661 }
662 }
663
664 discard_cleanups (old_chain);
665 return var;
666 }
667
668 /* Generates an unique name that can be used for a varobj. */
669
670 char *
671 varobj_gen_name (void)
672 {
673 static int id = 0;
674 char *obj_name;
675
676 /* Generate a name for this object. */
677 id++;
678 obj_name = xstrprintf ("var%d", id);
679
680 return obj_name;
681 }
682
683 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
684 error if OBJNAME cannot be found. */
685
686 struct varobj *
687 varobj_get_handle (char *objname)
688 {
689 struct vlist *cv;
690 const char *chp;
691 unsigned int index = 0;
692 unsigned int i = 1;
693
694 for (chp = objname; *chp; chp++)
695 {
696 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
697 }
698
699 cv = *(varobj_table + index);
700 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
701 cv = cv->next;
702
703 if (cv == NULL)
704 error (_("Variable object not found"));
705
706 return cv->var;
707 }
708
709 /* Given the handle, return the name of the object. */
710
711 char *
712 varobj_get_objname (struct varobj *var)
713 {
714 return var->obj_name;
715 }
716
717 /* Given the handle, return the expression represented by the object. */
718
719 char *
720 varobj_get_expression (struct varobj *var)
721 {
722 return name_of_variable (var);
723 }
724
725 /* Deletes a varobj and all its children if only_children == 0,
726 otherwise deletes only the children; returns a malloc'ed list of
727 all the (malloc'ed) names of the variables that have been deleted
728 (NULL terminated). */
729
730 int
731 varobj_delete (struct varobj *var, char ***dellist, int only_children)
732 {
733 int delcount;
734 int mycount;
735 struct cpstack *result = NULL;
736 char **cp;
737
738 /* Initialize a stack for temporary results. */
739 cppush (&result, NULL);
740
741 if (only_children)
742 /* Delete only the variable children. */
743 delcount = delete_variable (&result, var, 1 /* only the children */ );
744 else
745 /* Delete the variable and all its children. */
746 delcount = delete_variable (&result, var, 0 /* parent+children */ );
747
748 /* We may have been asked to return a list of what has been deleted. */
749 if (dellist != NULL)
750 {
751 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
752
753 cp = *dellist;
754 mycount = delcount;
755 *cp = cppop (&result);
756 while ((*cp != NULL) && (mycount > 0))
757 {
758 mycount--;
759 cp++;
760 *cp = cppop (&result);
761 }
762
763 if (mycount || (*cp != NULL))
764 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
765 mycount);
766 }
767
768 return delcount;
769 }
770
771 #if HAVE_PYTHON
772
773 /* Convenience function for varobj_set_visualizer. Instantiate a
774 pretty-printer for a given value. */
775 static PyObject *
776 instantiate_pretty_printer (PyObject *constructor, struct value *value)
777 {
778 PyObject *val_obj = NULL;
779 PyObject *printer;
780
781 val_obj = value_to_value_object (value);
782 if (! val_obj)
783 return NULL;
784
785 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
786 Py_DECREF (val_obj);
787 return printer;
788 return NULL;
789 }
790
791 #endif
792
793 /* Set/Get variable object display format. */
794
795 enum varobj_display_formats
796 varobj_set_display_format (struct varobj *var,
797 enum varobj_display_formats format)
798 {
799 switch (format)
800 {
801 case FORMAT_NATURAL:
802 case FORMAT_BINARY:
803 case FORMAT_DECIMAL:
804 case FORMAT_HEXADECIMAL:
805 case FORMAT_OCTAL:
806 var->format = format;
807 break;
808
809 default:
810 var->format = variable_default_display (var);
811 }
812
813 if (varobj_value_is_changeable_p (var)
814 && var->value && !value_lazy (var->value))
815 {
816 xfree (var->print_value);
817 var->print_value = value_get_print_value (var->value, var->format, var);
818 }
819
820 return var->format;
821 }
822
823 enum varobj_display_formats
824 varobj_get_display_format (struct varobj *var)
825 {
826 return var->format;
827 }
828
829 char *
830 varobj_get_display_hint (struct varobj *var)
831 {
832 char *result = NULL;
833
834 #if HAVE_PYTHON
835 struct cleanup *back_to = varobj_ensure_python_env (var);
836
837 if (var->pretty_printer)
838 result = gdbpy_get_display_hint (var->pretty_printer);
839
840 do_cleanups (back_to);
841 #endif
842
843 return result;
844 }
845
846 /* Return true if the varobj has items after TO, false otherwise. */
847
848 int
849 varobj_has_more (struct varobj *var, int to)
850 {
851 if (VEC_length (varobj_p, var->children) > to)
852 return 1;
853 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
854 && var->saved_item != NULL);
855 }
856
857 /* If the variable object is bound to a specific thread, that
858 is its evaluation can always be done in context of a frame
859 inside that thread, returns GDB id of the thread -- which
860 is always positive. Otherwise, returns -1. */
861 int
862 varobj_get_thread_id (struct varobj *var)
863 {
864 if (var->root->valid_block && var->root->thread_id > 0)
865 return var->root->thread_id;
866 else
867 return -1;
868 }
869
870 void
871 varobj_set_frozen (struct varobj *var, int frozen)
872 {
873 /* When a variable is unfrozen, we don't fetch its value.
874 The 'not_fetched' flag remains set, so next -var-update
875 won't complain.
876
877 We don't fetch the value, because for structures the client
878 should do -var-update anyway. It would be bad to have different
879 client-size logic for structure and other types. */
880 var->frozen = frozen;
881 }
882
883 int
884 varobj_get_frozen (struct varobj *var)
885 {
886 return var->frozen;
887 }
888
889 /* A helper function that restricts a range to what is actually
890 available in a VEC. This follows the usual rules for the meaning
891 of FROM and TO -- if either is negative, the entire range is
892 used. */
893
894 static void
895 restrict_range (VEC (varobj_p) *children, int *from, int *to)
896 {
897 if (*from < 0 || *to < 0)
898 {
899 *from = 0;
900 *to = VEC_length (varobj_p, children);
901 }
902 else
903 {
904 if (*from > VEC_length (varobj_p, children))
905 *from = VEC_length (varobj_p, children);
906 if (*to > VEC_length (varobj_p, children))
907 *to = VEC_length (varobj_p, children);
908 if (*from > *to)
909 *from = *to;
910 }
911 }
912
913 #if HAVE_PYTHON
914
915 /* A helper for update_dynamic_varobj_children that installs a new
916 child when needed. */
917
918 static void
919 install_dynamic_child (struct varobj *var,
920 VEC (varobj_p) **changed,
921 VEC (varobj_p) **new,
922 VEC (varobj_p) **unchanged,
923 int *cchanged,
924 int index,
925 const char *name,
926 struct value *value)
927 {
928 if (VEC_length (varobj_p, var->children) < index + 1)
929 {
930 /* There's no child yet. */
931 struct varobj *child = varobj_add_child (var, name, value);
932
933 if (new)
934 {
935 VEC_safe_push (varobj_p, *new, child);
936 *cchanged = 1;
937 }
938 }
939 else
940 {
941 varobj_p existing = VEC_index (varobj_p, var->children, index);
942
943 if (install_new_value (existing, value, 0))
944 {
945 if (changed)
946 VEC_safe_push (varobj_p, *changed, existing);
947 }
948 else if (unchanged)
949 VEC_safe_push (varobj_p, *unchanged, existing);
950 }
951 }
952
953 static int
954 dynamic_varobj_has_child_method (struct varobj *var)
955 {
956 struct cleanup *back_to;
957 PyObject *printer = var->pretty_printer;
958 int result;
959
960 back_to = varobj_ensure_python_env (var);
961 result = PyObject_HasAttr (printer, gdbpy_children_cst);
962 do_cleanups (back_to);
963 return result;
964 }
965
966 #endif
967
968 static int
969 update_dynamic_varobj_children (struct varobj *var,
970 VEC (varobj_p) **changed,
971 VEC (varobj_p) **new,
972 VEC (varobj_p) **unchanged,
973 int *cchanged,
974 int update_children,
975 int from,
976 int to)
977 {
978 #if HAVE_PYTHON
979 struct cleanup *back_to;
980 PyObject *children;
981 int i;
982 PyObject *printer = var->pretty_printer;
983
984 back_to = varobj_ensure_python_env (var);
985
986 *cchanged = 0;
987 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
988 {
989 do_cleanups (back_to);
990 return 0;
991 }
992
993 if (update_children || !var->child_iter)
994 {
995 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
996 NULL);
997
998 if (!children)
999 {
1000 gdbpy_print_stack ();
1001 error (_("Null value returned for children"));
1002 }
1003
1004 make_cleanup_py_decref (children);
1005
1006 if (!PyIter_Check (children))
1007 error (_("Returned value is not iterable"));
1008
1009 Py_XDECREF (var->child_iter);
1010 var->child_iter = PyObject_GetIter (children);
1011 if (!var->child_iter)
1012 {
1013 gdbpy_print_stack ();
1014 error (_("Could not get children iterator"));
1015 }
1016
1017 Py_XDECREF (var->saved_item);
1018 var->saved_item = NULL;
1019
1020 i = 0;
1021 }
1022 else
1023 i = VEC_length (varobj_p, var->children);
1024
1025 /* We ask for one extra child, so that MI can report whether there
1026 are more children. */
1027 for (; to < 0 || i < to + 1; ++i)
1028 {
1029 PyObject *item;
1030
1031 /* See if there was a leftover from last time. */
1032 if (var->saved_item)
1033 {
1034 item = var->saved_item;
1035 var->saved_item = NULL;
1036 }
1037 else
1038 item = PyIter_Next (var->child_iter);
1039
1040 if (!item)
1041 break;
1042
1043 /* We don't want to push the extra child on any report list. */
1044 if (to < 0 || i < to)
1045 {
1046 PyObject *py_v;
1047 char *name;
1048 struct value *v;
1049 struct cleanup *inner;
1050 int can_mention = from < 0 || i >= from;
1051
1052 inner = make_cleanup_py_decref (item);
1053
1054 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1055 error (_("Invalid item from the child list"));
1056
1057 v = convert_value_from_python (py_v);
1058 if (v == NULL)
1059 gdbpy_print_stack ();
1060 install_dynamic_child (var, can_mention ? changed : NULL,
1061 can_mention ? new : NULL,
1062 can_mention ? unchanged : NULL,
1063 can_mention ? cchanged : NULL, i, name, v);
1064 do_cleanups (inner);
1065 }
1066 else
1067 {
1068 Py_XDECREF (var->saved_item);
1069 var->saved_item = item;
1070
1071 /* We want to truncate the child list just before this
1072 element. */
1073 break;
1074 }
1075 }
1076
1077 if (i < VEC_length (varobj_p, var->children))
1078 {
1079 int j;
1080
1081 *cchanged = 1;
1082 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1083 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1084 VEC_truncate (varobj_p, var->children, i);
1085 }
1086
1087 /* If there are fewer children than requested, note that the list of
1088 children changed. */
1089 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1090 *cchanged = 1;
1091
1092 var->num_children = VEC_length (varobj_p, var->children);
1093
1094 do_cleanups (back_to);
1095
1096 return 1;
1097 #else
1098 gdb_assert (0 && "should never be called if Python is not enabled");
1099 #endif
1100 }
1101
1102 int
1103 varobj_get_num_children (struct varobj *var)
1104 {
1105 if (var->num_children == -1)
1106 {
1107 if (var->pretty_printer)
1108 {
1109 int dummy;
1110
1111 /* If we have a dynamic varobj, don't report -1 children.
1112 So, try to fetch some children first. */
1113 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1114 0, 0, 0);
1115 }
1116 else
1117 var->num_children = number_of_children (var);
1118 }
1119
1120 return var->num_children >= 0 ? var->num_children : 0;
1121 }
1122
1123 /* Creates a list of the immediate children of a variable object;
1124 the return code is the number of such children or -1 on error. */
1125
1126 VEC (varobj_p)*
1127 varobj_list_children (struct varobj *var, int *from, int *to)
1128 {
1129 char *name;
1130 int i, children_changed;
1131
1132 var->children_requested = 1;
1133
1134 if (var->pretty_printer)
1135 {
1136 /* This, in theory, can result in the number of children changing without
1137 frontend noticing. But well, calling -var-list-children on the same
1138 varobj twice is not something a sane frontend would do. */
1139 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1140 0, 0, *to);
1141 restrict_range (var->children, from, to);
1142 return var->children;
1143 }
1144
1145 if (var->num_children == -1)
1146 var->num_children = number_of_children (var);
1147
1148 /* If that failed, give up. */
1149 if (var->num_children == -1)
1150 return var->children;
1151
1152 /* If we're called when the list of children is not yet initialized,
1153 allocate enough elements in it. */
1154 while (VEC_length (varobj_p, var->children) < var->num_children)
1155 VEC_safe_push (varobj_p, var->children, NULL);
1156
1157 for (i = 0; i < var->num_children; i++)
1158 {
1159 varobj_p existing = VEC_index (varobj_p, var->children, i);
1160
1161 if (existing == NULL)
1162 {
1163 /* Either it's the first call to varobj_list_children for
1164 this variable object, and the child was never created,
1165 or it was explicitly deleted by the client. */
1166 name = name_of_child (var, i);
1167 existing = create_child (var, i, name);
1168 VEC_replace (varobj_p, var->children, i, existing);
1169 }
1170 }
1171
1172 restrict_range (var->children, from, to);
1173 return var->children;
1174 }
1175
1176 #if HAVE_PYTHON
1177
1178 static struct varobj *
1179 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1180 {
1181 varobj_p v = create_child_with_value (var,
1182 VEC_length (varobj_p, var->children),
1183 name, value);
1184
1185 VEC_safe_push (varobj_p, var->children, v);
1186 return v;
1187 }
1188
1189 #endif /* HAVE_PYTHON */
1190
1191 /* Obtain the type of an object Variable as a string similar to the one gdb
1192 prints on the console. */
1193
1194 char *
1195 varobj_get_type (struct varobj *var)
1196 {
1197 /* For the "fake" variables, do not return a type. (It's type is
1198 NULL, too.)
1199 Do not return a type for invalid variables as well. */
1200 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1201 return NULL;
1202
1203 return type_to_string (var->type);
1204 }
1205
1206 /* Obtain the type of an object variable. */
1207
1208 struct type *
1209 varobj_get_gdb_type (struct varobj *var)
1210 {
1211 return var->type;
1212 }
1213
1214 /* Return a pointer to the full rooted expression of varobj VAR.
1215 If it has not been computed yet, compute it. */
1216 char *
1217 varobj_get_path_expr (struct varobj *var)
1218 {
1219 if (var->path_expr != NULL)
1220 return var->path_expr;
1221 else
1222 {
1223 /* For root varobjs, we initialize path_expr
1224 when creating varobj, so here it should be
1225 child varobj. */
1226 gdb_assert (!is_root_p (var));
1227 return (*var->root->lang->path_expr_of_child) (var);
1228 }
1229 }
1230
1231 enum varobj_languages
1232 varobj_get_language (struct varobj *var)
1233 {
1234 return variable_language (var);
1235 }
1236
1237 int
1238 varobj_get_attributes (struct varobj *var)
1239 {
1240 int attributes = 0;
1241
1242 if (varobj_editable_p (var))
1243 /* FIXME: define masks for attributes. */
1244 attributes |= 0x00000001; /* Editable */
1245
1246 return attributes;
1247 }
1248
1249 int
1250 varobj_pretty_printed_p (struct varobj *var)
1251 {
1252 return var->pretty_printer != NULL;
1253 }
1254
1255 char *
1256 varobj_get_formatted_value (struct varobj *var,
1257 enum varobj_display_formats format)
1258 {
1259 return my_value_of_variable (var, format);
1260 }
1261
1262 char *
1263 varobj_get_value (struct varobj *var)
1264 {
1265 return my_value_of_variable (var, var->format);
1266 }
1267
1268 /* Set the value of an object variable (if it is editable) to the
1269 value of the given expression. */
1270 /* Note: Invokes functions that can call error(). */
1271
1272 int
1273 varobj_set_value (struct varobj *var, char *expression)
1274 {
1275 struct value *val;
1276
1277 /* The argument "expression" contains the variable's new value.
1278 We need to first construct a legal expression for this -- ugh! */
1279 /* Does this cover all the bases? */
1280 struct expression *exp;
1281 struct value *value;
1282 int saved_input_radix = input_radix;
1283 char *s = expression;
1284
1285 gdb_assert (varobj_editable_p (var));
1286
1287 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1288 exp = parse_exp_1 (&s, 0, 0);
1289 if (!gdb_evaluate_expression (exp, &value))
1290 {
1291 /* We cannot proceed without a valid expression. */
1292 xfree (exp);
1293 return 0;
1294 }
1295
1296 /* All types that are editable must also be changeable. */
1297 gdb_assert (varobj_value_is_changeable_p (var));
1298
1299 /* The value of a changeable variable object must not be lazy. */
1300 gdb_assert (!value_lazy (var->value));
1301
1302 /* Need to coerce the input. We want to check if the
1303 value of the variable object will be different
1304 after assignment, and the first thing value_assign
1305 does is coerce the input.
1306 For example, if we are assigning an array to a pointer variable we
1307 should compare the pointer with the array's address, not with the
1308 array's content. */
1309 value = coerce_array (value);
1310
1311 /* The new value may be lazy. gdb_value_assign, or
1312 rather value_contents, will take care of this.
1313 If fetching of the new value will fail, gdb_value_assign
1314 with catch the exception. */
1315 if (!gdb_value_assign (var->value, value, &val))
1316 return 0;
1317
1318 /* If the value has changed, record it, so that next -var-update can
1319 report this change. If a variable had a value of '1', we've set it
1320 to '333' and then set again to '1', when -var-update will report this
1321 variable as changed -- because the first assignment has set the
1322 'updated' flag. There's no need to optimize that, because return value
1323 of -var-update should be considered an approximation. */
1324 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1325 input_radix = saved_input_radix;
1326 return 1;
1327 }
1328
1329 #if HAVE_PYTHON
1330
1331 /* A helper function to install a constructor function and visualizer
1332 in a varobj. */
1333
1334 static void
1335 install_visualizer (struct varobj *var, PyObject *constructor,
1336 PyObject *visualizer)
1337 {
1338 Py_XDECREF (var->constructor);
1339 var->constructor = constructor;
1340
1341 Py_XDECREF (var->pretty_printer);
1342 var->pretty_printer = visualizer;
1343
1344 Py_XDECREF (var->child_iter);
1345 var->child_iter = NULL;
1346 }
1347
1348 /* Install the default visualizer for VAR. */
1349
1350 static void
1351 install_default_visualizer (struct varobj *var)
1352 {
1353 if (pretty_printing)
1354 {
1355 PyObject *pretty_printer = NULL;
1356
1357 if (var->value)
1358 {
1359 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1360 if (! pretty_printer)
1361 {
1362 gdbpy_print_stack ();
1363 error (_("Cannot instantiate printer for default visualizer"));
1364 }
1365 }
1366
1367 if (pretty_printer == Py_None)
1368 {
1369 Py_DECREF (pretty_printer);
1370 pretty_printer = NULL;
1371 }
1372
1373 install_visualizer (var, NULL, pretty_printer);
1374 }
1375 }
1376
1377 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1378 make a new object. */
1379
1380 static void
1381 construct_visualizer (struct varobj *var, PyObject *constructor)
1382 {
1383 PyObject *pretty_printer;
1384
1385 Py_INCREF (constructor);
1386 if (constructor == Py_None)
1387 pretty_printer = NULL;
1388 else
1389 {
1390 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1391 if (! pretty_printer)
1392 {
1393 gdbpy_print_stack ();
1394 Py_DECREF (constructor);
1395 constructor = Py_None;
1396 Py_INCREF (constructor);
1397 }
1398
1399 if (pretty_printer == Py_None)
1400 {
1401 Py_DECREF (pretty_printer);
1402 pretty_printer = NULL;
1403 }
1404 }
1405
1406 install_visualizer (var, constructor, pretty_printer);
1407 }
1408
1409 #endif /* HAVE_PYTHON */
1410
1411 /* A helper function for install_new_value. This creates and installs
1412 a visualizer for VAR, if appropriate. */
1413
1414 static void
1415 install_new_value_visualizer (struct varobj *var)
1416 {
1417 #if HAVE_PYTHON
1418 /* If the constructor is None, then we want the raw value. If VAR
1419 does not have a value, just skip this. */
1420 if (var->constructor != Py_None && var->value)
1421 {
1422 struct cleanup *cleanup;
1423
1424 cleanup = varobj_ensure_python_env (var);
1425
1426 if (!var->constructor)
1427 install_default_visualizer (var);
1428 else
1429 construct_visualizer (var, var->constructor);
1430
1431 do_cleanups (cleanup);
1432 }
1433 #else
1434 /* Do nothing. */
1435 #endif
1436 }
1437
1438 /* Assign a new value to a variable object. If INITIAL is non-zero,
1439 this is the first assignement after the variable object was just
1440 created, or changed type. In that case, just assign the value
1441 and return 0.
1442 Otherwise, assign the new value, and return 1 if the value is
1443 different from the current one, 0 otherwise. The comparison is
1444 done on textual representation of value. Therefore, some types
1445 need not be compared. E.g. for structures the reported value is
1446 always "{...}", so no comparison is necessary here. If the old
1447 value was NULL and new one is not, or vice versa, we always return 1.
1448
1449 The VALUE parameter should not be released -- the function will
1450 take care of releasing it when needed. */
1451 static int
1452 install_new_value (struct varobj *var, struct value *value, int initial)
1453 {
1454 int changeable;
1455 int need_to_fetch;
1456 int changed = 0;
1457 int intentionally_not_fetched = 0;
1458 char *print_value = NULL;
1459
1460 /* We need to know the varobj's type to decide if the value should
1461 be fetched or not. C++ fake children (public/protected/private)
1462 don't have a type. */
1463 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1464 changeable = varobj_value_is_changeable_p (var);
1465
1466 /* If the type has custom visualizer, we consider it to be always
1467 changeable. FIXME: need to make sure this behaviour will not
1468 mess up read-sensitive values. */
1469 if (var->pretty_printer)
1470 changeable = 1;
1471
1472 need_to_fetch = changeable;
1473
1474 /* We are not interested in the address of references, and given
1475 that in C++ a reference is not rebindable, it cannot
1476 meaningfully change. So, get hold of the real value. */
1477 if (value)
1478 value = coerce_ref (value);
1479
1480 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1481 /* For unions, we need to fetch the value implicitly because
1482 of implementation of union member fetch. When gdb
1483 creates a value for a field and the value of the enclosing
1484 structure is not lazy, it immediately copies the necessary
1485 bytes from the enclosing values. If the enclosing value is
1486 lazy, the call to value_fetch_lazy on the field will read
1487 the data from memory. For unions, that means we'll read the
1488 same memory more than once, which is not desirable. So
1489 fetch now. */
1490 need_to_fetch = 1;
1491
1492 /* The new value might be lazy. If the type is changeable,
1493 that is we'll be comparing values of this type, fetch the
1494 value now. Otherwise, on the next update the old value
1495 will be lazy, which means we've lost that old value. */
1496 if (need_to_fetch && value && value_lazy (value))
1497 {
1498 struct varobj *parent = var->parent;
1499 int frozen = var->frozen;
1500
1501 for (; !frozen && parent; parent = parent->parent)
1502 frozen |= parent->frozen;
1503
1504 if (frozen && initial)
1505 {
1506 /* For variables that are frozen, or are children of frozen
1507 variables, we don't do fetch on initial assignment.
1508 For non-initial assignemnt we do the fetch, since it means we're
1509 explicitly asked to compare the new value with the old one. */
1510 intentionally_not_fetched = 1;
1511 }
1512 else if (!gdb_value_fetch_lazy (value))
1513 {
1514 /* Set the value to NULL, so that for the next -var-update,
1515 we don't try to compare the new value with this value,
1516 that we couldn't even read. */
1517 value = NULL;
1518 }
1519 }
1520
1521
1522 /* Below, we'll be comparing string rendering of old and new
1523 values. Don't get string rendering if the value is
1524 lazy -- if it is, the code above has decided that the value
1525 should not be fetched. */
1526 if (value && !value_lazy (value) && !var->pretty_printer)
1527 print_value = value_get_print_value (value, var->format, var);
1528
1529 /* If the type is changeable, compare the old and the new values.
1530 If this is the initial assignment, we don't have any old value
1531 to compare with. */
1532 if (!initial && changeable)
1533 {
1534 /* If the value of the varobj was changed by -var-set-value,
1535 then the value in the varobj and in the target is the same.
1536 However, that value is different from the value that the
1537 varobj had after the previous -var-update. So need to the
1538 varobj as changed. */
1539 if (var->updated)
1540 {
1541 changed = 1;
1542 }
1543 else if (! var->pretty_printer)
1544 {
1545 /* Try to compare the values. That requires that both
1546 values are non-lazy. */
1547 if (var->not_fetched && value_lazy (var->value))
1548 {
1549 /* This is a frozen varobj and the value was never read.
1550 Presumably, UI shows some "never read" indicator.
1551 Now that we've fetched the real value, we need to report
1552 this varobj as changed so that UI can show the real
1553 value. */
1554 changed = 1;
1555 }
1556 else if (var->value == NULL && value == NULL)
1557 /* Equal. */
1558 ;
1559 else if (var->value == NULL || value == NULL)
1560 {
1561 changed = 1;
1562 }
1563 else
1564 {
1565 gdb_assert (!value_lazy (var->value));
1566 gdb_assert (!value_lazy (value));
1567
1568 gdb_assert (var->print_value != NULL && print_value != NULL);
1569 if (strcmp (var->print_value, print_value) != 0)
1570 changed = 1;
1571 }
1572 }
1573 }
1574
1575 if (!initial && !changeable)
1576 {
1577 /* For values that are not changeable, we don't compare the values.
1578 However, we want to notice if a value was not NULL and now is NULL,
1579 or vise versa, so that we report when top-level varobjs come in scope
1580 and leave the scope. */
1581 changed = (var->value != NULL) != (value != NULL);
1582 }
1583
1584 /* We must always keep the new value, since children depend on it. */
1585 if (var->value != NULL && var->value != value)
1586 value_free (var->value);
1587 var->value = value;
1588 if (value != NULL)
1589 value_incref (value);
1590 if (value && value_lazy (value) && intentionally_not_fetched)
1591 var->not_fetched = 1;
1592 else
1593 var->not_fetched = 0;
1594 var->updated = 0;
1595
1596 install_new_value_visualizer (var);
1597
1598 /* If we installed a pretty-printer, re-compare the printed version
1599 to see if the variable changed. */
1600 if (var->pretty_printer)
1601 {
1602 xfree (print_value);
1603 print_value = value_get_print_value (var->value, var->format, var);
1604 if ((var->print_value == NULL && print_value != NULL)
1605 || (var->print_value != NULL && print_value == NULL)
1606 || (var->print_value != NULL && print_value != NULL
1607 && strcmp (var->print_value, print_value) != 0))
1608 changed = 1;
1609 }
1610 if (var->print_value)
1611 xfree (var->print_value);
1612 var->print_value = print_value;
1613
1614 gdb_assert (!var->value || value_type (var->value));
1615
1616 return changed;
1617 }
1618
1619 /* Return the requested range for a varobj. VAR is the varobj. FROM
1620 and TO are out parameters; *FROM and *TO will be set to the
1621 selected sub-range of VAR. If no range was selected using
1622 -var-set-update-range, then both will be -1. */
1623 void
1624 varobj_get_child_range (struct varobj *var, int *from, int *to)
1625 {
1626 *from = var->from;
1627 *to = var->to;
1628 }
1629
1630 /* Set the selected sub-range of children of VAR to start at index
1631 FROM and end at index TO. If either FROM or TO is less than zero,
1632 this is interpreted as a request for all children. */
1633 void
1634 varobj_set_child_range (struct varobj *var, int from, int to)
1635 {
1636 var->from = from;
1637 var->to = to;
1638 }
1639
1640 void
1641 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1642 {
1643 #if HAVE_PYTHON
1644 PyObject *mainmod, *globals, *constructor;
1645 struct cleanup *back_to;
1646
1647 back_to = varobj_ensure_python_env (var);
1648
1649 mainmod = PyImport_AddModule ("__main__");
1650 globals = PyModule_GetDict (mainmod);
1651 Py_INCREF (globals);
1652 make_cleanup_py_decref (globals);
1653
1654 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1655
1656 if (! constructor)
1657 {
1658 gdbpy_print_stack ();
1659 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1660 }
1661
1662 construct_visualizer (var, constructor);
1663 Py_XDECREF (constructor);
1664
1665 /* If there are any children now, wipe them. */
1666 varobj_delete (var, NULL, 1 /* children only */);
1667 var->num_children = -1;
1668
1669 do_cleanups (back_to);
1670 #else
1671 error (_("Python support required"));
1672 #endif
1673 }
1674
1675 /* Update the values for a variable and its children. This is a
1676 two-pronged attack. First, re-parse the value for the root's
1677 expression to see if it's changed. Then go all the way
1678 through its children, reconstructing them and noting if they've
1679 changed.
1680
1681 The EXPLICIT parameter specifies if this call is result
1682 of MI request to update this specific variable, or
1683 result of implicit -var-update *. For implicit request, we don't
1684 update frozen variables.
1685
1686 NOTE: This function may delete the caller's varobj. If it
1687 returns TYPE_CHANGED, then it has done this and VARP will be modified
1688 to point to the new varobj. */
1689
1690 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1691 {
1692 int changed = 0;
1693 int type_changed = 0;
1694 int i;
1695 struct value *new;
1696 VEC (varobj_update_result) *stack = NULL;
1697 VEC (varobj_update_result) *result = NULL;
1698
1699 /* Frozen means frozen -- we don't check for any change in
1700 this varobj, including its going out of scope, or
1701 changing type. One use case for frozen varobjs is
1702 retaining previously evaluated expressions, and we don't
1703 want them to be reevaluated at all. */
1704 if (!explicit && (*varp)->frozen)
1705 return result;
1706
1707 if (!(*varp)->root->is_valid)
1708 {
1709 varobj_update_result r = {0};
1710
1711 r.varobj = *varp;
1712 r.status = VAROBJ_INVALID;
1713 VEC_safe_push (varobj_update_result, result, &r);
1714 return result;
1715 }
1716
1717 if ((*varp)->root->rootvar == *varp)
1718 {
1719 varobj_update_result r = {0};
1720
1721 r.varobj = *varp;
1722 r.status = VAROBJ_IN_SCOPE;
1723
1724 /* Update the root variable. value_of_root can return NULL
1725 if the variable is no longer around, i.e. we stepped out of
1726 the frame in which a local existed. We are letting the
1727 value_of_root variable dispose of the varobj if the type
1728 has changed. */
1729 new = value_of_root (varp, &type_changed);
1730 r.varobj = *varp;
1731
1732 r.type_changed = type_changed;
1733 if (install_new_value ((*varp), new, type_changed))
1734 r.changed = 1;
1735
1736 if (new == NULL)
1737 r.status = VAROBJ_NOT_IN_SCOPE;
1738 r.value_installed = 1;
1739
1740 if (r.status == VAROBJ_NOT_IN_SCOPE)
1741 {
1742 if (r.type_changed || r.changed)
1743 VEC_safe_push (varobj_update_result, result, &r);
1744 return result;
1745 }
1746
1747 VEC_safe_push (varobj_update_result, stack, &r);
1748 }
1749 else
1750 {
1751 varobj_update_result r = {0};
1752
1753 r.varobj = *varp;
1754 VEC_safe_push (varobj_update_result, stack, &r);
1755 }
1756
1757 /* Walk through the children, reconstructing them all. */
1758 while (!VEC_empty (varobj_update_result, stack))
1759 {
1760 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1761 struct varobj *v = r.varobj;
1762
1763 VEC_pop (varobj_update_result, stack);
1764
1765 /* Update this variable, unless it's a root, which is already
1766 updated. */
1767 if (!r.value_installed)
1768 {
1769 new = value_of_child (v->parent, v->index);
1770 if (install_new_value (v, new, 0 /* type not changed */))
1771 {
1772 r.changed = 1;
1773 v->updated = 0;
1774 }
1775 }
1776
1777 /* We probably should not get children of a varobj that has a
1778 pretty-printer, but for which -var-list-children was never
1779 invoked. */
1780 if (v->pretty_printer)
1781 {
1782 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1783 int i, children_changed = 0;
1784
1785 if (v->frozen)
1786 continue;
1787
1788 if (!v->children_requested)
1789 {
1790 int dummy;
1791
1792 /* If we initially did not have potential children, but
1793 now we do, consider the varobj as changed.
1794 Otherwise, if children were never requested, consider
1795 it as unchanged -- presumably, such varobj is not yet
1796 expanded in the UI, so we need not bother getting
1797 it. */
1798 if (!varobj_has_more (v, 0))
1799 {
1800 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1801 &dummy, 0, 0, 0);
1802 if (varobj_has_more (v, 0))
1803 r.changed = 1;
1804 }
1805
1806 if (r.changed)
1807 VEC_safe_push (varobj_update_result, result, &r);
1808
1809 continue;
1810 }
1811
1812 /* If update_dynamic_varobj_children returns 0, then we have
1813 a non-conforming pretty-printer, so we skip it. */
1814 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1815 &children_changed, 1,
1816 v->from, v->to))
1817 {
1818 if (children_changed || new)
1819 {
1820 r.children_changed = 1;
1821 r.new = new;
1822 }
1823 /* Push in reverse order so that the first child is
1824 popped from the work stack first, and so will be
1825 added to result first. This does not affect
1826 correctness, just "nicer". */
1827 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1828 {
1829 varobj_p tmp = VEC_index (varobj_p, changed, i);
1830 varobj_update_result r = {0};
1831
1832 r.varobj = tmp;
1833 r.changed = 1;
1834 r.value_installed = 1;
1835 VEC_safe_push (varobj_update_result, stack, &r);
1836 }
1837 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1838 {
1839 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1840
1841 if (!tmp->frozen)
1842 {
1843 varobj_update_result r = {0};
1844
1845 r.varobj = tmp;
1846 r.value_installed = 1;
1847 VEC_safe_push (varobj_update_result, stack, &r);
1848 }
1849 }
1850 if (r.changed || r.children_changed)
1851 VEC_safe_push (varobj_update_result, result, &r);
1852
1853 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1854 has been put into the result vector. */
1855 VEC_free (varobj_p, changed);
1856 VEC_free (varobj_p, unchanged);
1857
1858 continue;
1859 }
1860 }
1861
1862 /* Push any children. Use reverse order so that the first
1863 child is popped from the work stack first, and so
1864 will be added to result first. This does not
1865 affect correctness, just "nicer". */
1866 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1867 {
1868 varobj_p c = VEC_index (varobj_p, v->children, i);
1869
1870 /* Child may be NULL if explicitly deleted by -var-delete. */
1871 if (c != NULL && !c->frozen)
1872 {
1873 varobj_update_result r = {0};
1874
1875 r.varobj = c;
1876 VEC_safe_push (varobj_update_result, stack, &r);
1877 }
1878 }
1879
1880 if (r.changed || r.type_changed)
1881 VEC_safe_push (varobj_update_result, result, &r);
1882 }
1883
1884 VEC_free (varobj_update_result, stack);
1885
1886 return result;
1887 }
1888 \f
1889
1890 /* Helper functions */
1891
1892 /*
1893 * Variable object construction/destruction
1894 */
1895
1896 static int
1897 delete_variable (struct cpstack **resultp, struct varobj *var,
1898 int only_children_p)
1899 {
1900 int delcount = 0;
1901
1902 delete_variable_1 (resultp, &delcount, var,
1903 only_children_p, 1 /* remove_from_parent_p */ );
1904
1905 return delcount;
1906 }
1907
1908 /* Delete the variable object VAR and its children. */
1909 /* IMPORTANT NOTE: If we delete a variable which is a child
1910 and the parent is not removed we dump core. It must be always
1911 initially called with remove_from_parent_p set. */
1912 static void
1913 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1914 struct varobj *var, int only_children_p,
1915 int remove_from_parent_p)
1916 {
1917 int i;
1918
1919 /* Delete any children of this variable, too. */
1920 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1921 {
1922 varobj_p child = VEC_index (varobj_p, var->children, i);
1923
1924 if (!child)
1925 continue;
1926 if (!remove_from_parent_p)
1927 child->parent = NULL;
1928 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1929 }
1930 VEC_free (varobj_p, var->children);
1931
1932 /* if we were called to delete only the children we are done here. */
1933 if (only_children_p)
1934 return;
1935
1936 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1937 /* If the name is null, this is a temporary variable, that has not
1938 yet been installed, don't report it, it belongs to the caller... */
1939 if (var->obj_name != NULL)
1940 {
1941 cppush (resultp, xstrdup (var->obj_name));
1942 *delcountp = *delcountp + 1;
1943 }
1944
1945 /* If this variable has a parent, remove it from its parent's list. */
1946 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1947 (as indicated by remove_from_parent_p) we don't bother doing an
1948 expensive list search to find the element to remove when we are
1949 discarding the list afterwards. */
1950 if ((remove_from_parent_p) && (var->parent != NULL))
1951 {
1952 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1953 }
1954
1955 if (var->obj_name != NULL)
1956 uninstall_variable (var);
1957
1958 /* Free memory associated with this variable. */
1959 free_variable (var);
1960 }
1961
1962 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1963 static int
1964 install_variable (struct varobj *var)
1965 {
1966 struct vlist *cv;
1967 struct vlist *newvl;
1968 const char *chp;
1969 unsigned int index = 0;
1970 unsigned int i = 1;
1971
1972 for (chp = var->obj_name; *chp; chp++)
1973 {
1974 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1975 }
1976
1977 cv = *(varobj_table + index);
1978 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1979 cv = cv->next;
1980
1981 if (cv != NULL)
1982 error (_("Duplicate variable object name"));
1983
1984 /* Add varobj to hash table. */
1985 newvl = xmalloc (sizeof (struct vlist));
1986 newvl->next = *(varobj_table + index);
1987 newvl->var = var;
1988 *(varobj_table + index) = newvl;
1989
1990 /* If root, add varobj to root list. */
1991 if (is_root_p (var))
1992 {
1993 /* Add to list of root variables. */
1994 if (rootlist == NULL)
1995 var->root->next = NULL;
1996 else
1997 var->root->next = rootlist;
1998 rootlist = var->root;
1999 }
2000
2001 return 1; /* OK */
2002 }
2003
2004 /* Unistall the object VAR. */
2005 static void
2006 uninstall_variable (struct varobj *var)
2007 {
2008 struct vlist *cv;
2009 struct vlist *prev;
2010 struct varobj_root *cr;
2011 struct varobj_root *prer;
2012 const char *chp;
2013 unsigned int index = 0;
2014 unsigned int i = 1;
2015
2016 /* Remove varobj from hash table. */
2017 for (chp = var->obj_name; *chp; chp++)
2018 {
2019 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2020 }
2021
2022 cv = *(varobj_table + index);
2023 prev = NULL;
2024 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2025 {
2026 prev = cv;
2027 cv = cv->next;
2028 }
2029
2030 if (varobjdebug)
2031 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2032
2033 if (cv == NULL)
2034 {
2035 warning
2036 ("Assertion failed: Could not find variable object \"%s\" to delete",
2037 var->obj_name);
2038 return;
2039 }
2040
2041 if (prev == NULL)
2042 *(varobj_table + index) = cv->next;
2043 else
2044 prev->next = cv->next;
2045
2046 xfree (cv);
2047
2048 /* If root, remove varobj from root list. */
2049 if (is_root_p (var))
2050 {
2051 /* Remove from list of root variables. */
2052 if (rootlist == var->root)
2053 rootlist = var->root->next;
2054 else
2055 {
2056 prer = NULL;
2057 cr = rootlist;
2058 while ((cr != NULL) && (cr->rootvar != var))
2059 {
2060 prer = cr;
2061 cr = cr->next;
2062 }
2063 if (cr == NULL)
2064 {
2065 warning (_("Assertion failed: Could not find "
2066 "varobj \"%s\" in root list"),
2067 var->obj_name);
2068 return;
2069 }
2070 if (prer == NULL)
2071 rootlist = NULL;
2072 else
2073 prer->next = cr->next;
2074 }
2075 }
2076
2077 }
2078
2079 /* Create and install a child of the parent of the given name. */
2080 static struct varobj *
2081 create_child (struct varobj *parent, int index, char *name)
2082 {
2083 return create_child_with_value (parent, index, name,
2084 value_of_child (parent, index));
2085 }
2086
2087 static struct varobj *
2088 create_child_with_value (struct varobj *parent, int index, const char *name,
2089 struct value *value)
2090 {
2091 struct varobj *child;
2092 char *childs_name;
2093
2094 child = new_variable ();
2095
2096 /* Name is allocated by name_of_child. */
2097 /* FIXME: xstrdup should not be here. */
2098 child->name = xstrdup (name);
2099 child->index = index;
2100 child->parent = parent;
2101 child->root = parent->root;
2102 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2103 child->obj_name = childs_name;
2104 install_variable (child);
2105
2106 /* Compute the type of the child. Must do this before
2107 calling install_new_value. */
2108 if (value != NULL)
2109 /* If the child had no evaluation errors, var->value
2110 will be non-NULL and contain a valid type. */
2111 child->type = value_type (value);
2112 else
2113 /* Otherwise, we must compute the type. */
2114 child->type = (*child->root->lang->type_of_child) (child->parent,
2115 child->index);
2116 install_new_value (child, value, 1);
2117
2118 return child;
2119 }
2120 \f
2121
2122 /*
2123 * Miscellaneous utility functions.
2124 */
2125
2126 /* Allocate memory and initialize a new variable. */
2127 static struct varobj *
2128 new_variable (void)
2129 {
2130 struct varobj *var;
2131
2132 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2133 var->name = NULL;
2134 var->path_expr = NULL;
2135 var->obj_name = NULL;
2136 var->index = -1;
2137 var->type = NULL;
2138 var->value = NULL;
2139 var->num_children = -1;
2140 var->parent = NULL;
2141 var->children = NULL;
2142 var->format = 0;
2143 var->root = NULL;
2144 var->updated = 0;
2145 var->print_value = NULL;
2146 var->frozen = 0;
2147 var->not_fetched = 0;
2148 var->children_requested = 0;
2149 var->from = -1;
2150 var->to = -1;
2151 var->constructor = 0;
2152 var->pretty_printer = 0;
2153 var->child_iter = 0;
2154 var->saved_item = 0;
2155
2156 return var;
2157 }
2158
2159 /* Allocate memory and initialize a new root variable. */
2160 static struct varobj *
2161 new_root_variable (void)
2162 {
2163 struct varobj *var = new_variable ();
2164
2165 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2166 var->root->lang = NULL;
2167 var->root->exp = NULL;
2168 var->root->valid_block = NULL;
2169 var->root->frame = null_frame_id;
2170 var->root->floating = 0;
2171 var->root->rootvar = NULL;
2172 var->root->is_valid = 1;
2173
2174 return var;
2175 }
2176
2177 /* Free any allocated memory associated with VAR. */
2178 static void
2179 free_variable (struct varobj *var)
2180 {
2181 #if HAVE_PYTHON
2182 if (var->pretty_printer)
2183 {
2184 struct cleanup *cleanup = varobj_ensure_python_env (var);
2185 Py_XDECREF (var->constructor);
2186 Py_XDECREF (var->pretty_printer);
2187 Py_XDECREF (var->child_iter);
2188 Py_XDECREF (var->saved_item);
2189 do_cleanups (cleanup);
2190 }
2191 #endif
2192
2193 value_free (var->value);
2194
2195 /* Free the expression if this is a root variable. */
2196 if (is_root_p (var))
2197 {
2198 xfree (var->root->exp);
2199 xfree (var->root);
2200 }
2201
2202 xfree (var->name);
2203 xfree (var->obj_name);
2204 xfree (var->print_value);
2205 xfree (var->path_expr);
2206 xfree (var);
2207 }
2208
2209 static void
2210 do_free_variable_cleanup (void *var)
2211 {
2212 free_variable (var);
2213 }
2214
2215 static struct cleanup *
2216 make_cleanup_free_variable (struct varobj *var)
2217 {
2218 return make_cleanup (do_free_variable_cleanup, var);
2219 }
2220
2221 /* This returns the type of the variable. It also skips past typedefs
2222 to return the real type of the variable.
2223
2224 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2225 except within get_target_type and get_type. */
2226 static struct type *
2227 get_type (struct varobj *var)
2228 {
2229 struct type *type;
2230
2231 type = var->type;
2232 if (type != NULL)
2233 type = check_typedef (type);
2234
2235 return type;
2236 }
2237
2238 /* Return the type of the value that's stored in VAR,
2239 or that would have being stored there if the
2240 value were accessible.
2241
2242 This differs from VAR->type in that VAR->type is always
2243 the true type of the expession in the source language.
2244 The return value of this function is the type we're
2245 actually storing in varobj, and using for displaying
2246 the values and for comparing previous and new values.
2247
2248 For example, top-level references are always stripped. */
2249 static struct type *
2250 get_value_type (struct varobj *var)
2251 {
2252 struct type *type;
2253
2254 if (var->value)
2255 type = value_type (var->value);
2256 else
2257 type = var->type;
2258
2259 type = check_typedef (type);
2260
2261 if (TYPE_CODE (type) == TYPE_CODE_REF)
2262 type = get_target_type (type);
2263
2264 type = check_typedef (type);
2265
2266 return type;
2267 }
2268
2269 /* This returns the target type (or NULL) of TYPE, also skipping
2270 past typedefs, just like get_type ().
2271
2272 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2273 except within get_target_type and get_type. */
2274 static struct type *
2275 get_target_type (struct type *type)
2276 {
2277 if (type != NULL)
2278 {
2279 type = TYPE_TARGET_TYPE (type);
2280 if (type != NULL)
2281 type = check_typedef (type);
2282 }
2283
2284 return type;
2285 }
2286
2287 /* What is the default display for this variable? We assume that
2288 everything is "natural". Any exceptions? */
2289 static enum varobj_display_formats
2290 variable_default_display (struct varobj *var)
2291 {
2292 return FORMAT_NATURAL;
2293 }
2294
2295 /* FIXME: The following should be generic for any pointer. */
2296 static void
2297 cppush (struct cpstack **pstack, char *name)
2298 {
2299 struct cpstack *s;
2300
2301 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2302 s->name = name;
2303 s->next = *pstack;
2304 *pstack = s;
2305 }
2306
2307 /* FIXME: The following should be generic for any pointer. */
2308 static char *
2309 cppop (struct cpstack **pstack)
2310 {
2311 struct cpstack *s;
2312 char *v;
2313
2314 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2315 return NULL;
2316
2317 s = *pstack;
2318 v = s->name;
2319 *pstack = (*pstack)->next;
2320 xfree (s);
2321
2322 return v;
2323 }
2324 \f
2325 /*
2326 * Language-dependencies
2327 */
2328
2329 /* Common entry points */
2330
2331 /* Get the language of variable VAR. */
2332 static enum varobj_languages
2333 variable_language (struct varobj *var)
2334 {
2335 enum varobj_languages lang;
2336
2337 switch (var->root->exp->language_defn->la_language)
2338 {
2339 default:
2340 case language_c:
2341 lang = vlang_c;
2342 break;
2343 case language_cplus:
2344 lang = vlang_cplus;
2345 break;
2346 case language_java:
2347 lang = vlang_java;
2348 break;
2349 }
2350
2351 return lang;
2352 }
2353
2354 /* Return the number of children for a given variable.
2355 The result of this function is defined by the language
2356 implementation. The number of children returned by this function
2357 is the number of children that the user will see in the variable
2358 display. */
2359 static int
2360 number_of_children (struct varobj *var)
2361 {
2362 return (*var->root->lang->number_of_children) (var);
2363 }
2364
2365 /* What is the expression for the root varobj VAR? Returns a malloc'd
2366 string. */
2367 static char *
2368 name_of_variable (struct varobj *var)
2369 {
2370 return (*var->root->lang->name_of_variable) (var);
2371 }
2372
2373 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2374 string. */
2375 static char *
2376 name_of_child (struct varobj *var, int index)
2377 {
2378 return (*var->root->lang->name_of_child) (var, index);
2379 }
2380
2381 /* What is the ``struct value *'' of the root variable VAR?
2382 For floating variable object, evaluation can get us a value
2383 of different type from what is stored in varobj already. In
2384 that case:
2385 - *type_changed will be set to 1
2386 - old varobj will be freed, and new one will be
2387 created, with the same name.
2388 - *var_handle will be set to the new varobj
2389 Otherwise, *type_changed will be set to 0. */
2390 static struct value *
2391 value_of_root (struct varobj **var_handle, int *type_changed)
2392 {
2393 struct varobj *var;
2394
2395 if (var_handle == NULL)
2396 return NULL;
2397
2398 var = *var_handle;
2399
2400 /* This should really be an exception, since this should
2401 only get called with a root variable. */
2402
2403 if (!is_root_p (var))
2404 return NULL;
2405
2406 if (var->root->floating)
2407 {
2408 struct varobj *tmp_var;
2409 char *old_type, *new_type;
2410
2411 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2412 USE_SELECTED_FRAME);
2413 if (tmp_var == NULL)
2414 {
2415 return NULL;
2416 }
2417 old_type = varobj_get_type (var);
2418 new_type = varobj_get_type (tmp_var);
2419 if (strcmp (old_type, new_type) == 0)
2420 {
2421 /* The expression presently stored inside var->root->exp
2422 remembers the locations of local variables relatively to
2423 the frame where the expression was created (in DWARF location
2424 button, for example). Naturally, those locations are not
2425 correct in other frames, so update the expression. */
2426
2427 struct expression *tmp_exp = var->root->exp;
2428
2429 var->root->exp = tmp_var->root->exp;
2430 tmp_var->root->exp = tmp_exp;
2431
2432 varobj_delete (tmp_var, NULL, 0);
2433 *type_changed = 0;
2434 }
2435 else
2436 {
2437 tmp_var->obj_name = xstrdup (var->obj_name);
2438 tmp_var->from = var->from;
2439 tmp_var->to = var->to;
2440 varobj_delete (var, NULL, 0);
2441
2442 install_variable (tmp_var);
2443 *var_handle = tmp_var;
2444 var = *var_handle;
2445 *type_changed = 1;
2446 }
2447 xfree (old_type);
2448 xfree (new_type);
2449 }
2450 else
2451 {
2452 *type_changed = 0;
2453 }
2454
2455 return (*var->root->lang->value_of_root) (var_handle);
2456 }
2457
2458 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2459 static struct value *
2460 value_of_child (struct varobj *parent, int index)
2461 {
2462 struct value *value;
2463
2464 value = (*parent->root->lang->value_of_child) (parent, index);
2465
2466 return value;
2467 }
2468
2469 /* GDB already has a command called "value_of_variable". Sigh. */
2470 static char *
2471 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2472 {
2473 if (var->root->is_valid)
2474 {
2475 if (var->pretty_printer)
2476 return value_get_print_value (var->value, var->format, var);
2477 return (*var->root->lang->value_of_variable) (var, format);
2478 }
2479 else
2480 return NULL;
2481 }
2482
2483 static char *
2484 value_get_print_value (struct value *value, enum varobj_display_formats format,
2485 struct varobj *var)
2486 {
2487 struct ui_file *stb;
2488 struct cleanup *old_chain;
2489 gdb_byte *thevalue = NULL;
2490 struct value_print_options opts;
2491 struct type *type = NULL;
2492 long len = 0;
2493 char *encoding = NULL;
2494 struct gdbarch *gdbarch = NULL;
2495 /* Initialize it just to avoid a GCC false warning. */
2496 CORE_ADDR str_addr = 0;
2497 int string_print = 0;
2498
2499 if (value == NULL)
2500 return NULL;
2501
2502 stb = mem_fileopen ();
2503 old_chain = make_cleanup_ui_file_delete (stb);
2504
2505 gdbarch = get_type_arch (value_type (value));
2506 #if HAVE_PYTHON
2507 {
2508 PyObject *value_formatter = var->pretty_printer;
2509
2510 varobj_ensure_python_env (var);
2511
2512 if (value_formatter)
2513 {
2514 /* First check to see if we have any children at all. If so,
2515 we simply return {...}. */
2516 if (dynamic_varobj_has_child_method (var))
2517 {
2518 do_cleanups (old_chain);
2519 return xstrdup ("{...}");
2520 }
2521
2522 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2523 {
2524 char *hint;
2525 struct value *replacement;
2526 PyObject *output = NULL;
2527
2528 hint = gdbpy_get_display_hint (value_formatter);
2529 if (hint)
2530 {
2531 if (!strcmp (hint, "string"))
2532 string_print = 1;
2533 xfree (hint);
2534 }
2535
2536 output = apply_varobj_pretty_printer (value_formatter,
2537 &replacement,
2538 stb);
2539 if (output)
2540 {
2541 make_cleanup_py_decref (output);
2542
2543 if (gdbpy_is_lazy_string (output))
2544 {
2545 gdbpy_extract_lazy_string (output, &str_addr, &type,
2546 &len, &encoding);
2547 make_cleanup (free_current_contents, &encoding);
2548 string_print = 1;
2549 }
2550 else
2551 {
2552 PyObject *py_str
2553 = python_string_to_target_python_string (output);
2554
2555 if (py_str)
2556 {
2557 char *s = PyString_AsString (py_str);
2558
2559 len = PyString_Size (py_str);
2560 thevalue = xmemdup (s, len + 1, len + 1);
2561 type = builtin_type (gdbarch)->builtin_char;
2562 Py_DECREF (py_str);
2563
2564 if (!string_print)
2565 {
2566 do_cleanups (old_chain);
2567 return thevalue;
2568 }
2569
2570 make_cleanup (xfree, thevalue);
2571 }
2572 else
2573 gdbpy_print_stack ();
2574 }
2575 }
2576 if (replacement)
2577 value = replacement;
2578 }
2579 }
2580 }
2581 #endif
2582
2583 get_formatted_print_options (&opts, format_code[(int) format]);
2584 opts.deref_ref = 0;
2585 opts.raw = 1;
2586 if (thevalue)
2587 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2588 else if (string_print)
2589 val_print_string (type, encoding, str_addr, len, stb, &opts);
2590 else
2591 common_val_print (value, stb, 0, &opts, current_language);
2592 thevalue = ui_file_xstrdup (stb, NULL);
2593
2594 do_cleanups (old_chain);
2595 return thevalue;
2596 }
2597
2598 int
2599 varobj_editable_p (struct varobj *var)
2600 {
2601 struct type *type;
2602
2603 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2604 return 0;
2605
2606 type = get_value_type (var);
2607
2608 switch (TYPE_CODE (type))
2609 {
2610 case TYPE_CODE_STRUCT:
2611 case TYPE_CODE_UNION:
2612 case TYPE_CODE_ARRAY:
2613 case TYPE_CODE_FUNC:
2614 case TYPE_CODE_METHOD:
2615 return 0;
2616 break;
2617
2618 default:
2619 return 1;
2620 break;
2621 }
2622 }
2623
2624 /* Return non-zero if changes in value of VAR
2625 must be detected and reported by -var-update.
2626 Return zero is -var-update should never report
2627 changes of such values. This makes sense for structures
2628 (since the changes in children values will be reported separately),
2629 or for artifical objects (like 'public' pseudo-field in C++).
2630
2631 Return value of 0 means that gdb need not call value_fetch_lazy
2632 for the value of this variable object. */
2633 static int
2634 varobj_value_is_changeable_p (struct varobj *var)
2635 {
2636 int r;
2637 struct type *type;
2638
2639 if (CPLUS_FAKE_CHILD (var))
2640 return 0;
2641
2642 type = get_value_type (var);
2643
2644 switch (TYPE_CODE (type))
2645 {
2646 case TYPE_CODE_STRUCT:
2647 case TYPE_CODE_UNION:
2648 case TYPE_CODE_ARRAY:
2649 r = 0;
2650 break;
2651
2652 default:
2653 r = 1;
2654 }
2655
2656 return r;
2657 }
2658
2659 /* Return 1 if that varobj is floating, that is is always evaluated in the
2660 selected frame, and not bound to thread/frame. Such variable objects
2661 are created using '@' as frame specifier to -var-create. */
2662 int
2663 varobj_floating_p (struct varobj *var)
2664 {
2665 return var->root->floating;
2666 }
2667
2668 /* Given the value and the type of a variable object,
2669 adjust the value and type to those necessary
2670 for getting children of the variable object.
2671 This includes dereferencing top-level references
2672 to all types and dereferencing pointers to
2673 structures.
2674
2675 Both TYPE and *TYPE should be non-null. VALUE
2676 can be null if we want to only translate type.
2677 *VALUE can be null as well -- if the parent
2678 value is not known.
2679
2680 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2681 depending on whether pointer was dereferenced
2682 in this function. */
2683 static void
2684 adjust_value_for_child_access (struct value **value,
2685 struct type **type,
2686 int *was_ptr)
2687 {
2688 gdb_assert (type && *type);
2689
2690 if (was_ptr)
2691 *was_ptr = 0;
2692
2693 *type = check_typedef (*type);
2694
2695 /* The type of value stored in varobj, that is passed
2696 to us, is already supposed to be
2697 reference-stripped. */
2698
2699 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2700
2701 /* Pointers to structures are treated just like
2702 structures when accessing children. Don't
2703 dererences pointers to other types. */
2704 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2705 {
2706 struct type *target_type = get_target_type (*type);
2707 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2708 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2709 {
2710 if (value && *value)
2711 {
2712 int success = gdb_value_ind (*value, value);
2713
2714 if (!success)
2715 *value = NULL;
2716 }
2717 *type = target_type;
2718 if (was_ptr)
2719 *was_ptr = 1;
2720 }
2721 }
2722
2723 /* The 'get_target_type' function calls check_typedef on
2724 result, so we can immediately check type code. No
2725 need to call check_typedef here. */
2726 }
2727
2728 /* C */
2729 static int
2730 c_number_of_children (struct varobj *var)
2731 {
2732 struct type *type = get_value_type (var);
2733 int children = 0;
2734 struct type *target;
2735
2736 adjust_value_for_child_access (NULL, &type, NULL);
2737 target = get_target_type (type);
2738
2739 switch (TYPE_CODE (type))
2740 {
2741 case TYPE_CODE_ARRAY:
2742 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2743 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2744 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2745 else
2746 /* If we don't know how many elements there are, don't display
2747 any. */
2748 children = 0;
2749 break;
2750
2751 case TYPE_CODE_STRUCT:
2752 case TYPE_CODE_UNION:
2753 children = TYPE_NFIELDS (type);
2754 break;
2755
2756 case TYPE_CODE_PTR:
2757 /* The type here is a pointer to non-struct. Typically, pointers
2758 have one child, except for function ptrs, which have no children,
2759 and except for void*, as we don't know what to show.
2760
2761 We can show char* so we allow it to be dereferenced. If you decide
2762 to test for it, please mind that a little magic is necessary to
2763 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2764 TYPE_NAME == "char". */
2765 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2766 || TYPE_CODE (target) == TYPE_CODE_VOID)
2767 children = 0;
2768 else
2769 children = 1;
2770 break;
2771
2772 default:
2773 /* Other types have no children. */
2774 break;
2775 }
2776
2777 return children;
2778 }
2779
2780 static char *
2781 c_name_of_variable (struct varobj *parent)
2782 {
2783 return xstrdup (parent->name);
2784 }
2785
2786 /* Return the value of element TYPE_INDEX of a structure
2787 value VALUE. VALUE's type should be a structure,
2788 or union, or a typedef to struct/union.
2789
2790 Returns NULL if getting the value fails. Never throws. */
2791 static struct value *
2792 value_struct_element_index (struct value *value, int type_index)
2793 {
2794 struct value *result = NULL;
2795 volatile struct gdb_exception e;
2796 struct type *type = value_type (value);
2797
2798 type = check_typedef (type);
2799
2800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2801 || TYPE_CODE (type) == TYPE_CODE_UNION);
2802
2803 TRY_CATCH (e, RETURN_MASK_ERROR)
2804 {
2805 if (field_is_static (&TYPE_FIELD (type, type_index)))
2806 result = value_static_field (type, type_index);
2807 else
2808 result = value_primitive_field (value, 0, type_index, type);
2809 }
2810 if (e.reason < 0)
2811 {
2812 return NULL;
2813 }
2814 else
2815 {
2816 return result;
2817 }
2818 }
2819
2820 /* Obtain the information about child INDEX of the variable
2821 object PARENT.
2822 If CNAME is not null, sets *CNAME to the name of the child relative
2823 to the parent.
2824 If CVALUE is not null, sets *CVALUE to the value of the child.
2825 If CTYPE is not null, sets *CTYPE to the type of the child.
2826
2827 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2828 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2829 to NULL. */
2830 static void
2831 c_describe_child (struct varobj *parent, int index,
2832 char **cname, struct value **cvalue, struct type **ctype,
2833 char **cfull_expression)
2834 {
2835 struct value *value = parent->value;
2836 struct type *type = get_value_type (parent);
2837 char *parent_expression = NULL;
2838 int was_ptr;
2839
2840 if (cname)
2841 *cname = NULL;
2842 if (cvalue)
2843 *cvalue = NULL;
2844 if (ctype)
2845 *ctype = NULL;
2846 if (cfull_expression)
2847 {
2848 *cfull_expression = NULL;
2849 parent_expression = varobj_get_path_expr (parent);
2850 }
2851 adjust_value_for_child_access (&value, &type, &was_ptr);
2852
2853 switch (TYPE_CODE (type))
2854 {
2855 case TYPE_CODE_ARRAY:
2856 if (cname)
2857 *cname
2858 = xstrdup (int_string (index
2859 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2860 10, 1, 0, 0));
2861
2862 if (cvalue && value)
2863 {
2864 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2865
2866 gdb_value_subscript (value, real_index, cvalue);
2867 }
2868
2869 if (ctype)
2870 *ctype = get_target_type (type);
2871
2872 if (cfull_expression)
2873 *cfull_expression =
2874 xstrprintf ("(%s)[%s]", parent_expression,
2875 int_string (index
2876 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2877 10, 1, 0, 0));
2878
2879
2880 break;
2881
2882 case TYPE_CODE_STRUCT:
2883 case TYPE_CODE_UNION:
2884 if (cname)
2885 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2886
2887 if (cvalue && value)
2888 {
2889 /* For C, varobj index is the same as type index. */
2890 *cvalue = value_struct_element_index (value, index);
2891 }
2892
2893 if (ctype)
2894 *ctype = TYPE_FIELD_TYPE (type, index);
2895
2896 if (cfull_expression)
2897 {
2898 char *join = was_ptr ? "->" : ".";
2899
2900 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2901 TYPE_FIELD_NAME (type, index));
2902 }
2903
2904 break;
2905
2906 case TYPE_CODE_PTR:
2907 if (cname)
2908 *cname = xstrprintf ("*%s", parent->name);
2909
2910 if (cvalue && value)
2911 {
2912 int success = gdb_value_ind (value, cvalue);
2913
2914 if (!success)
2915 *cvalue = NULL;
2916 }
2917
2918 /* Don't use get_target_type because it calls
2919 check_typedef and here, we want to show the true
2920 declared type of the variable. */
2921 if (ctype)
2922 *ctype = TYPE_TARGET_TYPE (type);
2923
2924 if (cfull_expression)
2925 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2926
2927 break;
2928
2929 default:
2930 /* This should not happen. */
2931 if (cname)
2932 *cname = xstrdup ("???");
2933 if (cfull_expression)
2934 *cfull_expression = xstrdup ("???");
2935 /* Don't set value and type, we don't know then. */
2936 }
2937 }
2938
2939 static char *
2940 c_name_of_child (struct varobj *parent, int index)
2941 {
2942 char *name;
2943
2944 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2945 return name;
2946 }
2947
2948 static char *
2949 c_path_expr_of_child (struct varobj *child)
2950 {
2951 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2952 &child->path_expr);
2953 return child->path_expr;
2954 }
2955
2956 /* If frame associated with VAR can be found, switch
2957 to it and return 1. Otherwise, return 0. */
2958 static int
2959 check_scope (struct varobj *var)
2960 {
2961 struct frame_info *fi;
2962 int scope;
2963
2964 fi = frame_find_by_id (var->root->frame);
2965 scope = fi != NULL;
2966
2967 if (fi)
2968 {
2969 CORE_ADDR pc = get_frame_pc (fi);
2970
2971 if (pc < BLOCK_START (var->root->valid_block) ||
2972 pc >= BLOCK_END (var->root->valid_block))
2973 scope = 0;
2974 else
2975 select_frame (fi);
2976 }
2977 return scope;
2978 }
2979
2980 static struct value *
2981 c_value_of_root (struct varobj **var_handle)
2982 {
2983 struct value *new_val = NULL;
2984 struct varobj *var = *var_handle;
2985 int within_scope = 0;
2986 struct cleanup *back_to;
2987
2988 /* Only root variables can be updated... */
2989 if (!is_root_p (var))
2990 /* Not a root var. */
2991 return NULL;
2992
2993 back_to = make_cleanup_restore_current_thread ();
2994
2995 /* Determine whether the variable is still around. */
2996 if (var->root->valid_block == NULL || var->root->floating)
2997 within_scope = 1;
2998 else if (var->root->thread_id == 0)
2999 {
3000 /* The program was single-threaded when the variable object was
3001 created. Technically, it's possible that the program became
3002 multi-threaded since then, but we don't support such
3003 scenario yet. */
3004 within_scope = check_scope (var);
3005 }
3006 else
3007 {
3008 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3009 if (in_thread_list (ptid))
3010 {
3011 switch_to_thread (ptid);
3012 within_scope = check_scope (var);
3013 }
3014 }
3015
3016 if (within_scope)
3017 {
3018 /* We need to catch errors here, because if evaluate
3019 expression fails we want to just return NULL. */
3020 gdb_evaluate_expression (var->root->exp, &new_val);
3021 return new_val;
3022 }
3023
3024 do_cleanups (back_to);
3025
3026 return NULL;
3027 }
3028
3029 static struct value *
3030 c_value_of_child (struct varobj *parent, int index)
3031 {
3032 struct value *value = NULL;
3033
3034 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3035 return value;
3036 }
3037
3038 static struct type *
3039 c_type_of_child (struct varobj *parent, int index)
3040 {
3041 struct type *type = NULL;
3042
3043 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3044 return type;
3045 }
3046
3047 static char *
3048 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3049 {
3050 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3051 it will print out its children instead of "{...}". So we need to
3052 catch that case explicitly. */
3053 struct type *type = get_type (var);
3054
3055 /* If we have a custom formatter, return whatever string it has
3056 produced. */
3057 if (var->pretty_printer && var->print_value)
3058 return xstrdup (var->print_value);
3059
3060 /* Strip top-level references. */
3061 while (TYPE_CODE (type) == TYPE_CODE_REF)
3062 type = check_typedef (TYPE_TARGET_TYPE (type));
3063
3064 switch (TYPE_CODE (type))
3065 {
3066 case TYPE_CODE_STRUCT:
3067 case TYPE_CODE_UNION:
3068 return xstrdup ("{...}");
3069 /* break; */
3070
3071 case TYPE_CODE_ARRAY:
3072 {
3073 char *number;
3074
3075 number = xstrprintf ("[%d]", var->num_children);
3076 return (number);
3077 }
3078 /* break; */
3079
3080 default:
3081 {
3082 if (var->value == NULL)
3083 {
3084 /* This can happen if we attempt to get the value of a struct
3085 member when the parent is an invalid pointer. This is an
3086 error condition, so we should tell the caller. */
3087 return NULL;
3088 }
3089 else
3090 {
3091 if (var->not_fetched && value_lazy (var->value))
3092 /* Frozen variable and no value yet. We don't
3093 implicitly fetch the value. MI response will
3094 use empty string for the value, which is OK. */
3095 return NULL;
3096
3097 gdb_assert (varobj_value_is_changeable_p (var));
3098 gdb_assert (!value_lazy (var->value));
3099
3100 /* If the specified format is the current one,
3101 we can reuse print_value. */
3102 if (format == var->format)
3103 return xstrdup (var->print_value);
3104 else
3105 return value_get_print_value (var->value, format, var);
3106 }
3107 }
3108 }
3109 }
3110 \f
3111
3112 /* C++ */
3113
3114 static int
3115 cplus_number_of_children (struct varobj *var)
3116 {
3117 struct type *type;
3118 int children, dont_know;
3119
3120 dont_know = 1;
3121 children = 0;
3122
3123 if (!CPLUS_FAKE_CHILD (var))
3124 {
3125 type = get_value_type (var);
3126 adjust_value_for_child_access (NULL, &type, NULL);
3127
3128 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3129 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3130 {
3131 int kids[3];
3132
3133 cplus_class_num_children (type, kids);
3134 if (kids[v_public] != 0)
3135 children++;
3136 if (kids[v_private] != 0)
3137 children++;
3138 if (kids[v_protected] != 0)
3139 children++;
3140
3141 /* Add any baseclasses. */
3142 children += TYPE_N_BASECLASSES (type);
3143 dont_know = 0;
3144
3145 /* FIXME: save children in var. */
3146 }
3147 }
3148 else
3149 {
3150 int kids[3];
3151
3152 type = get_value_type (var->parent);
3153 adjust_value_for_child_access (NULL, &type, NULL);
3154
3155 cplus_class_num_children (type, kids);
3156 if (strcmp (var->name, "public") == 0)
3157 children = kids[v_public];
3158 else if (strcmp (var->name, "private") == 0)
3159 children = kids[v_private];
3160 else
3161 children = kids[v_protected];
3162 dont_know = 0;
3163 }
3164
3165 if (dont_know)
3166 children = c_number_of_children (var);
3167
3168 return children;
3169 }
3170
3171 /* Compute # of public, private, and protected variables in this class.
3172 That means we need to descend into all baseclasses and find out
3173 how many are there, too. */
3174 static void
3175 cplus_class_num_children (struct type *type, int children[3])
3176 {
3177 int i, vptr_fieldno;
3178 struct type *basetype = NULL;
3179
3180 children[v_public] = 0;
3181 children[v_private] = 0;
3182 children[v_protected] = 0;
3183
3184 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3185 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3186 {
3187 /* If we have a virtual table pointer, omit it. Even if virtual
3188 table pointers are not specifically marked in the debug info,
3189 they should be artificial. */
3190 if ((type == basetype && i == vptr_fieldno)
3191 || TYPE_FIELD_ARTIFICIAL (type, i))
3192 continue;
3193
3194 if (TYPE_FIELD_PROTECTED (type, i))
3195 children[v_protected]++;
3196 else if (TYPE_FIELD_PRIVATE (type, i))
3197 children[v_private]++;
3198 else
3199 children[v_public]++;
3200 }
3201 }
3202
3203 static char *
3204 cplus_name_of_variable (struct varobj *parent)
3205 {
3206 return c_name_of_variable (parent);
3207 }
3208
3209 enum accessibility { private_field, protected_field, public_field };
3210
3211 /* Check if field INDEX of TYPE has the specified accessibility.
3212 Return 0 if so and 1 otherwise. */
3213 static int
3214 match_accessibility (struct type *type, int index, enum accessibility acc)
3215 {
3216 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3217 return 1;
3218 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3219 return 1;
3220 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3221 && !TYPE_FIELD_PROTECTED (type, index))
3222 return 1;
3223 else
3224 return 0;
3225 }
3226
3227 static void
3228 cplus_describe_child (struct varobj *parent, int index,
3229 char **cname, struct value **cvalue, struct type **ctype,
3230 char **cfull_expression)
3231 {
3232 struct value *value;
3233 struct type *type;
3234 int was_ptr;
3235 char *parent_expression = NULL;
3236
3237 if (cname)
3238 *cname = NULL;
3239 if (cvalue)
3240 *cvalue = NULL;
3241 if (ctype)
3242 *ctype = NULL;
3243 if (cfull_expression)
3244 *cfull_expression = NULL;
3245
3246 if (CPLUS_FAKE_CHILD (parent))
3247 {
3248 value = parent->parent->value;
3249 type = get_value_type (parent->parent);
3250 if (cfull_expression)
3251 parent_expression = varobj_get_path_expr (parent->parent);
3252 }
3253 else
3254 {
3255 value = parent->value;
3256 type = get_value_type (parent);
3257 if (cfull_expression)
3258 parent_expression = varobj_get_path_expr (parent);
3259 }
3260
3261 adjust_value_for_child_access (&value, &type, &was_ptr);
3262
3263 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3264 || TYPE_CODE (type) == TYPE_CODE_UNION)
3265 {
3266 char *join = was_ptr ? "->" : ".";
3267
3268 if (CPLUS_FAKE_CHILD (parent))
3269 {
3270 /* The fields of the class type are ordered as they
3271 appear in the class. We are given an index for a
3272 particular access control type ("public","protected",
3273 or "private"). We must skip over fields that don't
3274 have the access control we are looking for to properly
3275 find the indexed field. */
3276 int type_index = TYPE_N_BASECLASSES (type);
3277 enum accessibility acc = public_field;
3278 int vptr_fieldno;
3279 struct type *basetype = NULL;
3280
3281 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3282 if (strcmp (parent->name, "private") == 0)
3283 acc = private_field;
3284 else if (strcmp (parent->name, "protected") == 0)
3285 acc = protected_field;
3286
3287 while (index >= 0)
3288 {
3289 if ((type == basetype && type_index == vptr_fieldno)
3290 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3291 ; /* ignore vptr */
3292 else if (match_accessibility (type, type_index, acc))
3293 --index;
3294 ++type_index;
3295 }
3296 --type_index;
3297
3298 if (cname)
3299 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3300
3301 if (cvalue && value)
3302 *cvalue = value_struct_element_index (value, type_index);
3303
3304 if (ctype)
3305 *ctype = TYPE_FIELD_TYPE (type, type_index);
3306
3307 if (cfull_expression)
3308 *cfull_expression
3309 = xstrprintf ("((%s)%s%s)", parent_expression,
3310 join,
3311 TYPE_FIELD_NAME (type, type_index));
3312 }
3313 else if (index < TYPE_N_BASECLASSES (type))
3314 {
3315 /* This is a baseclass. */
3316 if (cname)
3317 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3318
3319 if (cvalue && value)
3320 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3321
3322 if (ctype)
3323 {
3324 *ctype = TYPE_FIELD_TYPE (type, index);
3325 }
3326
3327 if (cfull_expression)
3328 {
3329 char *ptr = was_ptr ? "*" : "";
3330
3331 /* Cast the parent to the base' type. Note that in gdb,
3332 expression like
3333 (Base1)d
3334 will create an lvalue, for all appearences, so we don't
3335 need to use more fancy:
3336 *(Base1*)(&d)
3337 construct. */
3338 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3339 ptr,
3340 TYPE_FIELD_NAME (type, index),
3341 ptr,
3342 parent_expression);
3343 }
3344 }
3345 else
3346 {
3347 char *access = NULL;
3348 int children[3];
3349
3350 cplus_class_num_children (type, children);
3351
3352 /* Everything beyond the baseclasses can
3353 only be "public", "private", or "protected"
3354
3355 The special "fake" children are always output by varobj in
3356 this order. So if INDEX == 2, it MUST be "protected". */
3357 index -= TYPE_N_BASECLASSES (type);
3358 switch (index)
3359 {
3360 case 0:
3361 if (children[v_public] > 0)
3362 access = "public";
3363 else if (children[v_private] > 0)
3364 access = "private";
3365 else
3366 access = "protected";
3367 break;
3368 case 1:
3369 if (children[v_public] > 0)
3370 {
3371 if (children[v_private] > 0)
3372 access = "private";
3373 else
3374 access = "protected";
3375 }
3376 else if (children[v_private] > 0)
3377 access = "protected";
3378 break;
3379 case 2:
3380 /* Must be protected. */
3381 access = "protected";
3382 break;
3383 default:
3384 /* error! */
3385 break;
3386 }
3387
3388 gdb_assert (access);
3389 if (cname)
3390 *cname = xstrdup (access);
3391
3392 /* Value and type and full expression are null here. */
3393 }
3394 }
3395 else
3396 {
3397 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3398 }
3399 }
3400
3401 static char *
3402 cplus_name_of_child (struct varobj *parent, int index)
3403 {
3404 char *name = NULL;
3405
3406 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3407 return name;
3408 }
3409
3410 static char *
3411 cplus_path_expr_of_child (struct varobj *child)
3412 {
3413 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3414 &child->path_expr);
3415 return child->path_expr;
3416 }
3417
3418 static struct value *
3419 cplus_value_of_root (struct varobj **var_handle)
3420 {
3421 return c_value_of_root (var_handle);
3422 }
3423
3424 static struct value *
3425 cplus_value_of_child (struct varobj *parent, int index)
3426 {
3427 struct value *value = NULL;
3428
3429 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3430 return value;
3431 }
3432
3433 static struct type *
3434 cplus_type_of_child (struct varobj *parent, int index)
3435 {
3436 struct type *type = NULL;
3437
3438 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3439 return type;
3440 }
3441
3442 static char *
3443 cplus_value_of_variable (struct varobj *var,
3444 enum varobj_display_formats format)
3445 {
3446
3447 /* If we have one of our special types, don't print out
3448 any value. */
3449 if (CPLUS_FAKE_CHILD (var))
3450 return xstrdup ("");
3451
3452 return c_value_of_variable (var, format);
3453 }
3454 \f
3455 /* Java */
3456
3457 static int
3458 java_number_of_children (struct varobj *var)
3459 {
3460 return cplus_number_of_children (var);
3461 }
3462
3463 static char *
3464 java_name_of_variable (struct varobj *parent)
3465 {
3466 char *p, *name;
3467
3468 name = cplus_name_of_variable (parent);
3469 /* If the name has "-" in it, it is because we
3470 needed to escape periods in the name... */
3471 p = name;
3472
3473 while (*p != '\000')
3474 {
3475 if (*p == '-')
3476 *p = '.';
3477 p++;
3478 }
3479
3480 return name;
3481 }
3482
3483 static char *
3484 java_name_of_child (struct varobj *parent, int index)
3485 {
3486 char *name, *p;
3487
3488 name = cplus_name_of_child (parent, index);
3489 /* Escape any periods in the name... */
3490 p = name;
3491
3492 while (*p != '\000')
3493 {
3494 if (*p == '.')
3495 *p = '-';
3496 p++;
3497 }
3498
3499 return name;
3500 }
3501
3502 static char *
3503 java_path_expr_of_child (struct varobj *child)
3504 {
3505 return NULL;
3506 }
3507
3508 static struct value *
3509 java_value_of_root (struct varobj **var_handle)
3510 {
3511 return cplus_value_of_root (var_handle);
3512 }
3513
3514 static struct value *
3515 java_value_of_child (struct varobj *parent, int index)
3516 {
3517 return cplus_value_of_child (parent, index);
3518 }
3519
3520 static struct type *
3521 java_type_of_child (struct varobj *parent, int index)
3522 {
3523 return cplus_type_of_child (parent, index);
3524 }
3525
3526 static char *
3527 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3528 {
3529 return cplus_value_of_variable (var, format);
3530 }
3531
3532 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3533 with an arbitrary caller supplied DATA pointer. */
3534
3535 void
3536 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3537 {
3538 struct varobj_root *var_root, *var_root_next;
3539
3540 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3541
3542 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3543 {
3544 var_root_next = var_root->next;
3545
3546 (*func) (var_root->rootvar, data);
3547 }
3548 }
3549 \f
3550 extern void _initialize_varobj (void);
3551 void
3552 _initialize_varobj (void)
3553 {
3554 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3555
3556 varobj_table = xmalloc (sizeof_table);
3557 memset (varobj_table, 0, sizeof_table);
3558
3559 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3560 &varobjdebug,
3561 _("Set varobj debugging."),
3562 _("Show varobj debugging."),
3563 _("When non-zero, varobj debugging is enabled."),
3564 NULL, show_varobjdebug,
3565 &setlist, &showlist);
3566 }
3567
3568 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3569 defined on globals. It is a helper for varobj_invalidate. */
3570
3571 static void
3572 varobj_invalidate_iter (struct varobj *var, void *unused)
3573 {
3574 /* Floating varobjs are reparsed on each stop, so we don't care if the
3575 presently parsed expression refers to something that's gone. */
3576 if (var->root->floating)
3577 return;
3578
3579 /* global var must be re-evaluated. */
3580 if (var->root->valid_block == NULL)
3581 {
3582 struct varobj *tmp_var;
3583
3584 /* Try to create a varobj with same expression. If we succeed
3585 replace the old varobj, otherwise invalidate it. */
3586 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3587 USE_CURRENT_FRAME);
3588 if (tmp_var != NULL)
3589 {
3590 tmp_var->obj_name = xstrdup (var->obj_name);
3591 varobj_delete (var, NULL, 0);
3592 install_variable (tmp_var);
3593 }
3594 else
3595 var->root->is_valid = 0;
3596 }
3597 else /* locals must be invalidated. */
3598 var->root->is_valid = 0;
3599 }
3600
3601 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3602 are defined on globals.
3603 Invalidated varobjs will be always printed in_scope="invalid". */
3604
3605 void
3606 varobj_invalidate (void)
3607 {
3608 all_root_varobjs (varobj_invalidate_iter, NULL);
3609 }