]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
2011-07-28 Phil Muldoon <pmuldoon@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes. */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages. */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1. */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has. */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for
165 children. */
166 struct varobj_root *root;
167
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
170
171 /* Was this variable updated via a varobj_set_value operation. */
172 int updated;
173
174 /* Last print value. */
175 char *print_value;
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
186
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
212 };
213
214 struct cpstack
215 {
216 char *name;
217 struct cpstack *next;
218 };
219
220 /* A list of varobjs */
221
222 struct vlist
223 {
224 struct varobj *var;
225 struct vlist *next;
226 };
227
228 /* Private function prototypes */
229
230 /* Helper functions for the above subcommands. */
231
232 static int delete_variable (struct cpstack **, struct varobj *, int);
233
234 static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
236
237 static int install_variable (struct varobj *);
238
239 static void uninstall_variable (struct varobj *);
240
241 static struct varobj *create_child (struct varobj *, int, char *);
242
243 static struct varobj *
244 create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
247 /* Utility routines */
248
249 static struct varobj *new_variable (void);
250
251 static struct varobj *new_root_variable (void);
252
253 static void free_variable (struct varobj *var);
254
255 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
257 static struct type *get_type (struct varobj *var);
258
259 static struct type *get_value_type (struct varobj *var);
260
261 static struct type *get_target_type (struct type *);
262
263 static enum varobj_display_formats variable_default_display (struct varobj *);
264
265 static void cppush (struct cpstack **pstack, char *name);
266
267 static char *cppop (struct cpstack **pstack);
268
269 static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
272 /* Language-specific routines. */
273
274 static enum varobj_languages variable_language (struct varobj *var);
275
276 static int number_of_children (struct varobj *);
277
278 static char *name_of_variable (struct varobj *);
279
280 static char *name_of_child (struct varobj *, int);
281
282 static struct value *value_of_root (struct varobj **var_handle, int *);
283
284 static struct value *value_of_child (struct varobj *parent, int index);
285
286 static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
288
289 static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
291 struct varobj *var);
292
293 static int varobj_value_is_changeable_p (struct varobj *var);
294
295 static int is_root_p (struct varobj *var);
296
297 #if HAVE_PYTHON
298
299 static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
302
303 #endif /* HAVE_PYTHON */
304
305 /* C implementation */
306
307 static int c_number_of_children (struct varobj *var);
308
309 static char *c_name_of_variable (struct varobj *parent);
310
311 static char *c_name_of_child (struct varobj *parent, int index);
312
313 static char *c_path_expr_of_child (struct varobj *child);
314
315 static struct value *c_value_of_root (struct varobj **var_handle);
316
317 static struct value *c_value_of_child (struct varobj *parent, int index);
318
319 static struct type *c_type_of_child (struct varobj *parent, int index);
320
321 static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
323
324 /* C++ implementation */
325
326 static int cplus_number_of_children (struct varobj *var);
327
328 static void cplus_class_num_children (struct type *type, int children[3]);
329
330 static char *cplus_name_of_variable (struct varobj *parent);
331
332 static char *cplus_name_of_child (struct varobj *parent, int index);
333
334 static char *cplus_path_expr_of_child (struct varobj *child);
335
336 static struct value *cplus_value_of_root (struct varobj **var_handle);
337
338 static struct value *cplus_value_of_child (struct varobj *parent, int index);
339
340 static struct type *cplus_type_of_child (struct varobj *parent, int index);
341
342 static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
344
345 /* Java implementation */
346
347 static int java_number_of_children (struct varobj *var);
348
349 static char *java_name_of_variable (struct varobj *parent);
350
351 static char *java_name_of_child (struct varobj *parent, int index);
352
353 static char *java_path_expr_of_child (struct varobj *child);
354
355 static struct value *java_value_of_root (struct varobj **var_handle);
356
357 static struct value *java_value_of_child (struct varobj *parent, int index);
358
359 static struct type *java_type_of_child (struct varobj *parent, int index);
360
361 static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
363
364 /* Ada implementation */
365
366 static int ada_number_of_children (struct varobj *var);
367
368 static char *ada_name_of_variable (struct varobj *parent);
369
370 static char *ada_name_of_child (struct varobj *parent, int index);
371
372 static char *ada_path_expr_of_child (struct varobj *child);
373
374 static struct value *ada_value_of_root (struct varobj **var_handle);
375
376 static struct value *ada_value_of_child (struct varobj *parent, int index);
377
378 static struct type *ada_type_of_child (struct varobj *parent, int index);
379
380 static char *ada_value_of_variable (struct varobj *var,
381 enum varobj_display_formats format);
382
383 /* The language specific vector */
384
385 struct language_specific
386 {
387
388 /* The language of this variable. */
389 enum varobj_languages language;
390
391 /* The number of children of PARENT. */
392 int (*number_of_children) (struct varobj * parent);
393
394 /* The name (expression) of a root varobj. */
395 char *(*name_of_variable) (struct varobj * parent);
396
397 /* The name of the INDEX'th child of PARENT. */
398 char *(*name_of_child) (struct varobj * parent, int index);
399
400 /* Returns the rooted expression of CHILD, which is a variable
401 obtain that has some parent. */
402 char *(*path_expr_of_child) (struct varobj * child);
403
404 /* The ``struct value *'' of the root variable ROOT. */
405 struct value *(*value_of_root) (struct varobj ** root_handle);
406
407 /* The ``struct value *'' of the INDEX'th child of PARENT. */
408 struct value *(*value_of_child) (struct varobj * parent, int index);
409
410 /* The type of the INDEX'th child of PARENT. */
411 struct type *(*type_of_child) (struct varobj * parent, int index);
412
413 /* The current value of VAR. */
414 char *(*value_of_variable) (struct varobj * var,
415 enum varobj_display_formats format);
416 };
417
418 /* Array of known source language routines. */
419 static struct language_specific languages[vlang_end] = {
420 /* Unknown (try treating as C). */
421 {
422 vlang_unknown,
423 c_number_of_children,
424 c_name_of_variable,
425 c_name_of_child,
426 c_path_expr_of_child,
427 c_value_of_root,
428 c_value_of_child,
429 c_type_of_child,
430 c_value_of_variable}
431 ,
432 /* C */
433 {
434 vlang_c,
435 c_number_of_children,
436 c_name_of_variable,
437 c_name_of_child,
438 c_path_expr_of_child,
439 c_value_of_root,
440 c_value_of_child,
441 c_type_of_child,
442 c_value_of_variable}
443 ,
444 /* C++ */
445 {
446 vlang_cplus,
447 cplus_number_of_children,
448 cplus_name_of_variable,
449 cplus_name_of_child,
450 cplus_path_expr_of_child,
451 cplus_value_of_root,
452 cplus_value_of_child,
453 cplus_type_of_child,
454 cplus_value_of_variable}
455 ,
456 /* Java */
457 {
458 vlang_java,
459 java_number_of_children,
460 java_name_of_variable,
461 java_name_of_child,
462 java_path_expr_of_child,
463 java_value_of_root,
464 java_value_of_child,
465 java_type_of_child,
466 java_value_of_variable},
467 /* Ada */
468 {
469 vlang_ada,
470 ada_number_of_children,
471 ada_name_of_variable,
472 ada_name_of_child,
473 ada_path_expr_of_child,
474 ada_value_of_root,
475 ada_value_of_child,
476 ada_type_of_child,
477 ada_value_of_variable}
478 };
479
480 /* A little convenience enum for dealing with C++/Java. */
481 enum vsections
482 {
483 v_public = 0, v_private, v_protected
484 };
485
486 /* Private data */
487
488 /* Mappings of varobj_display_formats enums to gdb's format codes. */
489 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
490
491 /* Header of the list of root variable objects. */
492 static struct varobj_root *rootlist;
493
494 /* Prime number indicating the number of buckets in the hash table. */
495 /* A prime large enough to avoid too many colisions. */
496 #define VAROBJ_TABLE_SIZE 227
497
498 /* Pointer to the varobj hash table (built at run time). */
499 static struct vlist **varobj_table;
500
501 /* Is the variable X one of our "fake" children? */
502 #define CPLUS_FAKE_CHILD(x) \
503 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
504 \f
505
506 /* API Implementation */
507 static int
508 is_root_p (struct varobj *var)
509 {
510 return (var->root->rootvar == var);
511 }
512
513 #ifdef HAVE_PYTHON
514 /* Helper function to install a Python environment suitable for
515 use during operations on VAR. */
516 struct cleanup *
517 varobj_ensure_python_env (struct varobj *var)
518 {
519 return ensure_python_env (var->root->exp->gdbarch,
520 var->root->exp->language_defn);
521 }
522 #endif
523
524 /* Creates a varobj (not its children). */
525
526 /* Return the full FRAME which corresponds to the given CORE_ADDR
527 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
528
529 static struct frame_info *
530 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
531 {
532 struct frame_info *frame = NULL;
533
534 if (frame_addr == (CORE_ADDR) 0)
535 return NULL;
536
537 for (frame = get_current_frame ();
538 frame != NULL;
539 frame = get_prev_frame (frame))
540 {
541 /* The CORE_ADDR we get as argument was parsed from a string GDB
542 output as $fp. This output got truncated to gdbarch_addr_bit.
543 Truncate the frame base address in the same manner before
544 comparing it against our argument. */
545 CORE_ADDR frame_base = get_frame_base_address (frame);
546 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
547
548 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
549 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
550
551 if (frame_base == frame_addr)
552 return frame;
553 }
554
555 return NULL;
556 }
557
558 struct varobj *
559 varobj_create (char *objname,
560 char *expression, CORE_ADDR frame, enum varobj_type type)
561 {
562 struct varobj *var;
563 struct cleanup *old_chain;
564
565 /* Fill out a varobj structure for the (root) variable being constructed. */
566 var = new_root_variable ();
567 old_chain = make_cleanup_free_variable (var);
568
569 if (expression != NULL)
570 {
571 struct frame_info *fi;
572 struct frame_id old_id = null_frame_id;
573 struct block *block;
574 char *p;
575 enum varobj_languages lang;
576 struct value *value = NULL;
577
578 /* Parse and evaluate the expression, filling in as much of the
579 variable's data as possible. */
580
581 if (has_stack_frames ())
582 {
583 /* Allow creator to specify context of variable. */
584 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
585 fi = get_selected_frame (NULL);
586 else
587 /* FIXME: cagney/2002-11-23: This code should be doing a
588 lookup using the frame ID and not just the frame's
589 ``address''. This, of course, means an interface
590 change. However, with out that interface change ISAs,
591 such as the ia64 with its two stacks, won't work.
592 Similar goes for the case where there is a frameless
593 function. */
594 fi = find_frame_addr_in_frame_chain (frame);
595 }
596 else
597 fi = NULL;
598
599 /* frame = -2 means always use selected frame. */
600 if (type == USE_SELECTED_FRAME)
601 var->root->floating = 1;
602
603 block = NULL;
604 if (fi != NULL)
605 block = get_frame_block (fi, 0);
606
607 p = expression;
608 innermost_block = NULL;
609 /* Wrap the call to parse expression, so we can
610 return a sensible error. */
611 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
612 {
613 do_cleanups (old_chain);
614 return NULL;
615 }
616
617 /* Don't allow variables to be created for types. */
618 if (var->root->exp->elts[0].opcode == OP_TYPE)
619 {
620 do_cleanups (old_chain);
621 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
622 " as an expression.\n");
623 return NULL;
624 }
625
626 var->format = variable_default_display (var);
627 var->root->valid_block = innermost_block;
628 var->name = xstrdup (expression);
629 /* For a root var, the name and the expr are the same. */
630 var->path_expr = xstrdup (expression);
631
632 /* When the frame is different from the current frame,
633 we must select the appropriate frame before parsing
634 the expression, otherwise the value will not be current.
635 Since select_frame is so benign, just call it for all cases. */
636 if (innermost_block)
637 {
638 /* User could specify explicit FRAME-ADDR which was not found but
639 EXPRESSION is frame specific and we would not be able to evaluate
640 it correctly next time. With VALID_BLOCK set we must also set
641 FRAME and THREAD_ID. */
642 if (fi == NULL)
643 error (_("Failed to find the specified frame"));
644
645 var->root->frame = get_frame_id (fi);
646 var->root->thread_id = pid_to_thread_id (inferior_ptid);
647 old_id = get_frame_id (get_selected_frame (NULL));
648 select_frame (fi);
649 }
650
651 /* We definitely need to catch errors here.
652 If evaluate_expression succeeds we got the value we wanted.
653 But if it fails, we still go on with a call to evaluate_type(). */
654 if (!gdb_evaluate_expression (var->root->exp, &value))
655 {
656 /* Error getting the value. Try to at least get the
657 right type. */
658 struct value *type_only_value = evaluate_type (var->root->exp);
659
660 var->type = value_type (type_only_value);
661 }
662 else
663 var->type = value_type (value);
664
665 install_new_value (var, value, 1 /* Initial assignment */);
666
667 /* Set language info */
668 lang = variable_language (var);
669 var->root->lang = &languages[lang];
670
671 /* Set ourselves as our root. */
672 var->root->rootvar = var;
673
674 /* Reset the selected frame. */
675 if (frame_id_p (old_id))
676 select_frame (frame_find_by_id (old_id));
677 }
678
679 /* If the variable object name is null, that means this
680 is a temporary variable, so don't install it. */
681
682 if ((var != NULL) && (objname != NULL))
683 {
684 var->obj_name = xstrdup (objname);
685
686 /* If a varobj name is duplicated, the install will fail so
687 we must cleanup. */
688 if (!install_variable (var))
689 {
690 do_cleanups (old_chain);
691 return NULL;
692 }
693 }
694
695 discard_cleanups (old_chain);
696 return var;
697 }
698
699 /* Generates an unique name that can be used for a varobj. */
700
701 char *
702 varobj_gen_name (void)
703 {
704 static int id = 0;
705 char *obj_name;
706
707 /* Generate a name for this object. */
708 id++;
709 obj_name = xstrprintf ("var%d", id);
710
711 return obj_name;
712 }
713
714 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
715 error if OBJNAME cannot be found. */
716
717 struct varobj *
718 varobj_get_handle (char *objname)
719 {
720 struct vlist *cv;
721 const char *chp;
722 unsigned int index = 0;
723 unsigned int i = 1;
724
725 for (chp = objname; *chp; chp++)
726 {
727 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
728 }
729
730 cv = *(varobj_table + index);
731 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
732 cv = cv->next;
733
734 if (cv == NULL)
735 error (_("Variable object not found"));
736
737 return cv->var;
738 }
739
740 /* Given the handle, return the name of the object. */
741
742 char *
743 varobj_get_objname (struct varobj *var)
744 {
745 return var->obj_name;
746 }
747
748 /* Given the handle, return the expression represented by the object. */
749
750 char *
751 varobj_get_expression (struct varobj *var)
752 {
753 return name_of_variable (var);
754 }
755
756 /* Deletes a varobj and all its children if only_children == 0,
757 otherwise deletes only the children; returns a malloc'ed list of
758 all the (malloc'ed) names of the variables that have been deleted
759 (NULL terminated). */
760
761 int
762 varobj_delete (struct varobj *var, char ***dellist, int only_children)
763 {
764 int delcount;
765 int mycount;
766 struct cpstack *result = NULL;
767 char **cp;
768
769 /* Initialize a stack for temporary results. */
770 cppush (&result, NULL);
771
772 if (only_children)
773 /* Delete only the variable children. */
774 delcount = delete_variable (&result, var, 1 /* only the children */ );
775 else
776 /* Delete the variable and all its children. */
777 delcount = delete_variable (&result, var, 0 /* parent+children */ );
778
779 /* We may have been asked to return a list of what has been deleted. */
780 if (dellist != NULL)
781 {
782 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
783
784 cp = *dellist;
785 mycount = delcount;
786 *cp = cppop (&result);
787 while ((*cp != NULL) && (mycount > 0))
788 {
789 mycount--;
790 cp++;
791 *cp = cppop (&result);
792 }
793
794 if (mycount || (*cp != NULL))
795 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
796 mycount);
797 }
798
799 return delcount;
800 }
801
802 #if HAVE_PYTHON
803
804 /* Convenience function for varobj_set_visualizer. Instantiate a
805 pretty-printer for a given value. */
806 static PyObject *
807 instantiate_pretty_printer (PyObject *constructor, struct value *value)
808 {
809 PyObject *val_obj = NULL;
810 PyObject *printer;
811
812 val_obj = value_to_value_object (value);
813 if (! val_obj)
814 return NULL;
815
816 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
817 Py_DECREF (val_obj);
818 return printer;
819 }
820
821 #endif
822
823 /* Set/Get variable object display format. */
824
825 enum varobj_display_formats
826 varobj_set_display_format (struct varobj *var,
827 enum varobj_display_formats format)
828 {
829 switch (format)
830 {
831 case FORMAT_NATURAL:
832 case FORMAT_BINARY:
833 case FORMAT_DECIMAL:
834 case FORMAT_HEXADECIMAL:
835 case FORMAT_OCTAL:
836 var->format = format;
837 break;
838
839 default:
840 var->format = variable_default_display (var);
841 }
842
843 if (varobj_value_is_changeable_p (var)
844 && var->value && !value_lazy (var->value))
845 {
846 xfree (var->print_value);
847 var->print_value = value_get_print_value (var->value, var->format, var);
848 }
849
850 return var->format;
851 }
852
853 enum varobj_display_formats
854 varobj_get_display_format (struct varobj *var)
855 {
856 return var->format;
857 }
858
859 char *
860 varobj_get_display_hint (struct varobj *var)
861 {
862 char *result = NULL;
863
864 #if HAVE_PYTHON
865 struct cleanup *back_to = varobj_ensure_python_env (var);
866
867 if (var->pretty_printer)
868 result = gdbpy_get_display_hint (var->pretty_printer);
869
870 do_cleanups (back_to);
871 #endif
872
873 return result;
874 }
875
876 /* Return true if the varobj has items after TO, false otherwise. */
877
878 int
879 varobj_has_more (struct varobj *var, int to)
880 {
881 if (VEC_length (varobj_p, var->children) > to)
882 return 1;
883 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
884 && var->saved_item != NULL);
885 }
886
887 /* If the variable object is bound to a specific thread, that
888 is its evaluation can always be done in context of a frame
889 inside that thread, returns GDB id of the thread -- which
890 is always positive. Otherwise, returns -1. */
891 int
892 varobj_get_thread_id (struct varobj *var)
893 {
894 if (var->root->valid_block && var->root->thread_id > 0)
895 return var->root->thread_id;
896 else
897 return -1;
898 }
899
900 void
901 varobj_set_frozen (struct varobj *var, int frozen)
902 {
903 /* When a variable is unfrozen, we don't fetch its value.
904 The 'not_fetched' flag remains set, so next -var-update
905 won't complain.
906
907 We don't fetch the value, because for structures the client
908 should do -var-update anyway. It would be bad to have different
909 client-size logic for structure and other types. */
910 var->frozen = frozen;
911 }
912
913 int
914 varobj_get_frozen (struct varobj *var)
915 {
916 return var->frozen;
917 }
918
919 /* A helper function that restricts a range to what is actually
920 available in a VEC. This follows the usual rules for the meaning
921 of FROM and TO -- if either is negative, the entire range is
922 used. */
923
924 static void
925 restrict_range (VEC (varobj_p) *children, int *from, int *to)
926 {
927 if (*from < 0 || *to < 0)
928 {
929 *from = 0;
930 *to = VEC_length (varobj_p, children);
931 }
932 else
933 {
934 if (*from > VEC_length (varobj_p, children))
935 *from = VEC_length (varobj_p, children);
936 if (*to > VEC_length (varobj_p, children))
937 *to = VEC_length (varobj_p, children);
938 if (*from > *to)
939 *from = *to;
940 }
941 }
942
943 #if HAVE_PYTHON
944
945 /* A helper for update_dynamic_varobj_children that installs a new
946 child when needed. */
947
948 static void
949 install_dynamic_child (struct varobj *var,
950 VEC (varobj_p) **changed,
951 VEC (varobj_p) **new,
952 VEC (varobj_p) **unchanged,
953 int *cchanged,
954 int index,
955 const char *name,
956 struct value *value)
957 {
958 if (VEC_length (varobj_p, var->children) < index + 1)
959 {
960 /* There's no child yet. */
961 struct varobj *child = varobj_add_child (var, name, value);
962
963 if (new)
964 {
965 VEC_safe_push (varobj_p, *new, child);
966 *cchanged = 1;
967 }
968 }
969 else
970 {
971 varobj_p existing = VEC_index (varobj_p, var->children, index);
972
973 if (install_new_value (existing, value, 0))
974 {
975 if (changed)
976 VEC_safe_push (varobj_p, *changed, existing);
977 }
978 else if (unchanged)
979 VEC_safe_push (varobj_p, *unchanged, existing);
980 }
981 }
982
983 static int
984 dynamic_varobj_has_child_method (struct varobj *var)
985 {
986 struct cleanup *back_to;
987 PyObject *printer = var->pretty_printer;
988 int result;
989
990 back_to = varobj_ensure_python_env (var);
991 result = PyObject_HasAttr (printer, gdbpy_children_cst);
992 do_cleanups (back_to);
993 return result;
994 }
995
996 #endif
997
998 static int
999 update_dynamic_varobj_children (struct varobj *var,
1000 VEC (varobj_p) **changed,
1001 VEC (varobj_p) **new,
1002 VEC (varobj_p) **unchanged,
1003 int *cchanged,
1004 int update_children,
1005 int from,
1006 int to)
1007 {
1008 #if HAVE_PYTHON
1009 struct cleanup *back_to;
1010 PyObject *children;
1011 int i;
1012 PyObject *printer = var->pretty_printer;
1013
1014 back_to = varobj_ensure_python_env (var);
1015
1016 *cchanged = 0;
1017 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1018 {
1019 do_cleanups (back_to);
1020 return 0;
1021 }
1022
1023 if (update_children || !var->child_iter)
1024 {
1025 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1026 NULL);
1027
1028 if (!children)
1029 {
1030 gdbpy_print_stack ();
1031 error (_("Null value returned for children"));
1032 }
1033
1034 make_cleanup_py_decref (children);
1035
1036 if (!PyIter_Check (children))
1037 error (_("Returned value is not iterable"));
1038
1039 Py_XDECREF (var->child_iter);
1040 var->child_iter = PyObject_GetIter (children);
1041 if (!var->child_iter)
1042 {
1043 gdbpy_print_stack ();
1044 error (_("Could not get children iterator"));
1045 }
1046
1047 Py_XDECREF (var->saved_item);
1048 var->saved_item = NULL;
1049
1050 i = 0;
1051 }
1052 else
1053 i = VEC_length (varobj_p, var->children);
1054
1055 /* We ask for one extra child, so that MI can report whether there
1056 are more children. */
1057 for (; to < 0 || i < to + 1; ++i)
1058 {
1059 PyObject *item;
1060 int force_done = 0;
1061
1062 /* See if there was a leftover from last time. */
1063 if (var->saved_item)
1064 {
1065 item = var->saved_item;
1066 var->saved_item = NULL;
1067 }
1068 else
1069 item = PyIter_Next (var->child_iter);
1070
1071 if (!item)
1072 {
1073 /* Normal end of iteration. */
1074 if (!PyErr_Occurred ())
1075 break;
1076
1077 /* If we got a memory error, just use the text as the
1078 item. */
1079 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1080 {
1081 PyObject *type, *value, *trace;
1082 char *name_str, *value_str;
1083
1084 PyErr_Fetch (&type, &value, &trace);
1085 value_str = gdbpy_exception_to_string (type, value);
1086 Py_XDECREF (type);
1087 Py_XDECREF (value);
1088 Py_XDECREF (trace);
1089 if (!value_str)
1090 {
1091 gdbpy_print_stack ();
1092 break;
1093 }
1094
1095 name_str = xstrprintf ("<error at %d>", i);
1096 item = Py_BuildValue ("(ss)", name_str, value_str);
1097 xfree (name_str);
1098 xfree (value_str);
1099 if (!item)
1100 {
1101 gdbpy_print_stack ();
1102 break;
1103 }
1104
1105 force_done = 1;
1106 }
1107 else
1108 {
1109 /* Any other kind of error. */
1110 gdbpy_print_stack ();
1111 break;
1112 }
1113 }
1114
1115 /* We don't want to push the extra child on any report list. */
1116 if (to < 0 || i < to)
1117 {
1118 PyObject *py_v;
1119 const char *name;
1120 struct value *v;
1121 struct cleanup *inner;
1122 int can_mention = from < 0 || i >= from;
1123
1124 inner = make_cleanup_py_decref (item);
1125
1126 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1127 {
1128 gdbpy_print_stack ();
1129 error (_("Invalid item from the child list"));
1130 }
1131
1132 v = convert_value_from_python (py_v);
1133 if (v == NULL)
1134 gdbpy_print_stack ();
1135 install_dynamic_child (var, can_mention ? changed : NULL,
1136 can_mention ? new : NULL,
1137 can_mention ? unchanged : NULL,
1138 can_mention ? cchanged : NULL, i, name, v);
1139 do_cleanups (inner);
1140 }
1141 else
1142 {
1143 Py_XDECREF (var->saved_item);
1144 var->saved_item = item;
1145
1146 /* We want to truncate the child list just before this
1147 element. */
1148 break;
1149 }
1150
1151 if (force_done)
1152 break;
1153 }
1154
1155 if (i < VEC_length (varobj_p, var->children))
1156 {
1157 int j;
1158
1159 *cchanged = 1;
1160 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1161 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1162 VEC_truncate (varobj_p, var->children, i);
1163 }
1164
1165 /* If there are fewer children than requested, note that the list of
1166 children changed. */
1167 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1168 *cchanged = 1;
1169
1170 var->num_children = VEC_length (varobj_p, var->children);
1171
1172 do_cleanups (back_to);
1173
1174 return 1;
1175 #else
1176 gdb_assert (0 && "should never be called if Python is not enabled");
1177 #endif
1178 }
1179
1180 int
1181 varobj_get_num_children (struct varobj *var)
1182 {
1183 if (var->num_children == -1)
1184 {
1185 if (var->pretty_printer)
1186 {
1187 int dummy;
1188
1189 /* If we have a dynamic varobj, don't report -1 children.
1190 So, try to fetch some children first. */
1191 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1192 0, 0, 0);
1193 }
1194 else
1195 var->num_children = number_of_children (var);
1196 }
1197
1198 return var->num_children >= 0 ? var->num_children : 0;
1199 }
1200
1201 /* Creates a list of the immediate children of a variable object;
1202 the return code is the number of such children or -1 on error. */
1203
1204 VEC (varobj_p)*
1205 varobj_list_children (struct varobj *var, int *from, int *to)
1206 {
1207 char *name;
1208 int i, children_changed;
1209
1210 var->children_requested = 1;
1211
1212 if (var->pretty_printer)
1213 {
1214 /* This, in theory, can result in the number of children changing without
1215 frontend noticing. But well, calling -var-list-children on the same
1216 varobj twice is not something a sane frontend would do. */
1217 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1218 0, 0, *to);
1219 restrict_range (var->children, from, to);
1220 return var->children;
1221 }
1222
1223 if (var->num_children == -1)
1224 var->num_children = number_of_children (var);
1225
1226 /* If that failed, give up. */
1227 if (var->num_children == -1)
1228 return var->children;
1229
1230 /* If we're called when the list of children is not yet initialized,
1231 allocate enough elements in it. */
1232 while (VEC_length (varobj_p, var->children) < var->num_children)
1233 VEC_safe_push (varobj_p, var->children, NULL);
1234
1235 for (i = 0; i < var->num_children; i++)
1236 {
1237 varobj_p existing = VEC_index (varobj_p, var->children, i);
1238
1239 if (existing == NULL)
1240 {
1241 /* Either it's the first call to varobj_list_children for
1242 this variable object, and the child was never created,
1243 or it was explicitly deleted by the client. */
1244 name = name_of_child (var, i);
1245 existing = create_child (var, i, name);
1246 VEC_replace (varobj_p, var->children, i, existing);
1247 }
1248 }
1249
1250 restrict_range (var->children, from, to);
1251 return var->children;
1252 }
1253
1254 #if HAVE_PYTHON
1255
1256 static struct varobj *
1257 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1258 {
1259 varobj_p v = create_child_with_value (var,
1260 VEC_length (varobj_p, var->children),
1261 name, value);
1262
1263 VEC_safe_push (varobj_p, var->children, v);
1264 return v;
1265 }
1266
1267 #endif /* HAVE_PYTHON */
1268
1269 /* Obtain the type of an object Variable as a string similar to the one gdb
1270 prints on the console. */
1271
1272 char *
1273 varobj_get_type (struct varobj *var)
1274 {
1275 /* For the "fake" variables, do not return a type. (It's type is
1276 NULL, too.)
1277 Do not return a type for invalid variables as well. */
1278 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1279 return NULL;
1280
1281 return type_to_string (var->type);
1282 }
1283
1284 /* Obtain the type of an object variable. */
1285
1286 struct type *
1287 varobj_get_gdb_type (struct varobj *var)
1288 {
1289 return var->type;
1290 }
1291
1292 /* Return a pointer to the full rooted expression of varobj VAR.
1293 If it has not been computed yet, compute it. */
1294 char *
1295 varobj_get_path_expr (struct varobj *var)
1296 {
1297 if (var->path_expr != NULL)
1298 return var->path_expr;
1299 else
1300 {
1301 /* For root varobjs, we initialize path_expr
1302 when creating varobj, so here it should be
1303 child varobj. */
1304 gdb_assert (!is_root_p (var));
1305 return (*var->root->lang->path_expr_of_child) (var);
1306 }
1307 }
1308
1309 enum varobj_languages
1310 varobj_get_language (struct varobj *var)
1311 {
1312 return variable_language (var);
1313 }
1314
1315 int
1316 varobj_get_attributes (struct varobj *var)
1317 {
1318 int attributes = 0;
1319
1320 if (varobj_editable_p (var))
1321 /* FIXME: define masks for attributes. */
1322 attributes |= 0x00000001; /* Editable */
1323
1324 return attributes;
1325 }
1326
1327 int
1328 varobj_pretty_printed_p (struct varobj *var)
1329 {
1330 return var->pretty_printer != NULL;
1331 }
1332
1333 char *
1334 varobj_get_formatted_value (struct varobj *var,
1335 enum varobj_display_formats format)
1336 {
1337 return my_value_of_variable (var, format);
1338 }
1339
1340 char *
1341 varobj_get_value (struct varobj *var)
1342 {
1343 return my_value_of_variable (var, var->format);
1344 }
1345
1346 /* Set the value of an object variable (if it is editable) to the
1347 value of the given expression. */
1348 /* Note: Invokes functions that can call error(). */
1349
1350 int
1351 varobj_set_value (struct varobj *var, char *expression)
1352 {
1353 struct value *val;
1354
1355 /* The argument "expression" contains the variable's new value.
1356 We need to first construct a legal expression for this -- ugh! */
1357 /* Does this cover all the bases? */
1358 struct expression *exp;
1359 struct value *value;
1360 int saved_input_radix = input_radix;
1361 char *s = expression;
1362
1363 gdb_assert (varobj_editable_p (var));
1364
1365 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1366 exp = parse_exp_1 (&s, 0, 0);
1367 if (!gdb_evaluate_expression (exp, &value))
1368 {
1369 /* We cannot proceed without a valid expression. */
1370 xfree (exp);
1371 return 0;
1372 }
1373
1374 /* All types that are editable must also be changeable. */
1375 gdb_assert (varobj_value_is_changeable_p (var));
1376
1377 /* The value of a changeable variable object must not be lazy. */
1378 gdb_assert (!value_lazy (var->value));
1379
1380 /* Need to coerce the input. We want to check if the
1381 value of the variable object will be different
1382 after assignment, and the first thing value_assign
1383 does is coerce the input.
1384 For example, if we are assigning an array to a pointer variable we
1385 should compare the pointer with the array's address, not with the
1386 array's content. */
1387 value = coerce_array (value);
1388
1389 /* The new value may be lazy. gdb_value_assign, or
1390 rather value_contents, will take care of this.
1391 If fetching of the new value will fail, gdb_value_assign
1392 with catch the exception. */
1393 if (!gdb_value_assign (var->value, value, &val))
1394 return 0;
1395
1396 /* If the value has changed, record it, so that next -var-update can
1397 report this change. If a variable had a value of '1', we've set it
1398 to '333' and then set again to '1', when -var-update will report this
1399 variable as changed -- because the first assignment has set the
1400 'updated' flag. There's no need to optimize that, because return value
1401 of -var-update should be considered an approximation. */
1402 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1403 input_radix = saved_input_radix;
1404 return 1;
1405 }
1406
1407 #if HAVE_PYTHON
1408
1409 /* A helper function to install a constructor function and visualizer
1410 in a varobj. */
1411
1412 static void
1413 install_visualizer (struct varobj *var, PyObject *constructor,
1414 PyObject *visualizer)
1415 {
1416 Py_XDECREF (var->constructor);
1417 var->constructor = constructor;
1418
1419 Py_XDECREF (var->pretty_printer);
1420 var->pretty_printer = visualizer;
1421
1422 Py_XDECREF (var->child_iter);
1423 var->child_iter = NULL;
1424 }
1425
1426 /* Install the default visualizer for VAR. */
1427
1428 static void
1429 install_default_visualizer (struct varobj *var)
1430 {
1431 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1432 if (CPLUS_FAKE_CHILD (var))
1433 return;
1434
1435 if (pretty_printing)
1436 {
1437 PyObject *pretty_printer = NULL;
1438
1439 if (var->value)
1440 {
1441 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1442 if (! pretty_printer)
1443 {
1444 gdbpy_print_stack ();
1445 error (_("Cannot instantiate printer for default visualizer"));
1446 }
1447 }
1448
1449 if (pretty_printer == Py_None)
1450 {
1451 Py_DECREF (pretty_printer);
1452 pretty_printer = NULL;
1453 }
1454
1455 install_visualizer (var, NULL, pretty_printer);
1456 }
1457 }
1458
1459 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1460 make a new object. */
1461
1462 static void
1463 construct_visualizer (struct varobj *var, PyObject *constructor)
1464 {
1465 PyObject *pretty_printer;
1466
1467 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1468 if (CPLUS_FAKE_CHILD (var))
1469 return;
1470
1471 Py_INCREF (constructor);
1472 if (constructor == Py_None)
1473 pretty_printer = NULL;
1474 else
1475 {
1476 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1477 if (! pretty_printer)
1478 {
1479 gdbpy_print_stack ();
1480 Py_DECREF (constructor);
1481 constructor = Py_None;
1482 Py_INCREF (constructor);
1483 }
1484
1485 if (pretty_printer == Py_None)
1486 {
1487 Py_DECREF (pretty_printer);
1488 pretty_printer = NULL;
1489 }
1490 }
1491
1492 install_visualizer (var, constructor, pretty_printer);
1493 }
1494
1495 #endif /* HAVE_PYTHON */
1496
1497 /* A helper function for install_new_value. This creates and installs
1498 a visualizer for VAR, if appropriate. */
1499
1500 static void
1501 install_new_value_visualizer (struct varobj *var)
1502 {
1503 #if HAVE_PYTHON
1504 /* If the constructor is None, then we want the raw value. If VAR
1505 does not have a value, just skip this. */
1506 if (var->constructor != Py_None && var->value)
1507 {
1508 struct cleanup *cleanup;
1509
1510 cleanup = varobj_ensure_python_env (var);
1511
1512 if (!var->constructor)
1513 install_default_visualizer (var);
1514 else
1515 construct_visualizer (var, var->constructor);
1516
1517 do_cleanups (cleanup);
1518 }
1519 #else
1520 /* Do nothing. */
1521 #endif
1522 }
1523
1524 /* Assign a new value to a variable object. If INITIAL is non-zero,
1525 this is the first assignement after the variable object was just
1526 created, or changed type. In that case, just assign the value
1527 and return 0.
1528 Otherwise, assign the new value, and return 1 if the value is
1529 different from the current one, 0 otherwise. The comparison is
1530 done on textual representation of value. Therefore, some types
1531 need not be compared. E.g. for structures the reported value is
1532 always "{...}", so no comparison is necessary here. If the old
1533 value was NULL and new one is not, or vice versa, we always return 1.
1534
1535 The VALUE parameter should not be released -- the function will
1536 take care of releasing it when needed. */
1537 static int
1538 install_new_value (struct varobj *var, struct value *value, int initial)
1539 {
1540 int changeable;
1541 int need_to_fetch;
1542 int changed = 0;
1543 int intentionally_not_fetched = 0;
1544 char *print_value = NULL;
1545
1546 /* We need to know the varobj's type to decide if the value should
1547 be fetched or not. C++ fake children (public/protected/private)
1548 don't have a type. */
1549 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1550 changeable = varobj_value_is_changeable_p (var);
1551
1552 /* If the type has custom visualizer, we consider it to be always
1553 changeable. FIXME: need to make sure this behaviour will not
1554 mess up read-sensitive values. */
1555 if (var->pretty_printer)
1556 changeable = 1;
1557
1558 need_to_fetch = changeable;
1559
1560 /* We are not interested in the address of references, and given
1561 that in C++ a reference is not rebindable, it cannot
1562 meaningfully change. So, get hold of the real value. */
1563 if (value)
1564 value = coerce_ref (value);
1565
1566 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1567 /* For unions, we need to fetch the value implicitly because
1568 of implementation of union member fetch. When gdb
1569 creates a value for a field and the value of the enclosing
1570 structure is not lazy, it immediately copies the necessary
1571 bytes from the enclosing values. If the enclosing value is
1572 lazy, the call to value_fetch_lazy on the field will read
1573 the data from memory. For unions, that means we'll read the
1574 same memory more than once, which is not desirable. So
1575 fetch now. */
1576 need_to_fetch = 1;
1577
1578 /* The new value might be lazy. If the type is changeable,
1579 that is we'll be comparing values of this type, fetch the
1580 value now. Otherwise, on the next update the old value
1581 will be lazy, which means we've lost that old value. */
1582 if (need_to_fetch && value && value_lazy (value))
1583 {
1584 struct varobj *parent = var->parent;
1585 int frozen = var->frozen;
1586
1587 for (; !frozen && parent; parent = parent->parent)
1588 frozen |= parent->frozen;
1589
1590 if (frozen && initial)
1591 {
1592 /* For variables that are frozen, or are children of frozen
1593 variables, we don't do fetch on initial assignment.
1594 For non-initial assignemnt we do the fetch, since it means we're
1595 explicitly asked to compare the new value with the old one. */
1596 intentionally_not_fetched = 1;
1597 }
1598 else if (!gdb_value_fetch_lazy (value))
1599 {
1600 /* Set the value to NULL, so that for the next -var-update,
1601 we don't try to compare the new value with this value,
1602 that we couldn't even read. */
1603 value = NULL;
1604 }
1605 }
1606
1607
1608 /* Below, we'll be comparing string rendering of old and new
1609 values. Don't get string rendering if the value is
1610 lazy -- if it is, the code above has decided that the value
1611 should not be fetched. */
1612 if (value && !value_lazy (value) && !var->pretty_printer)
1613 print_value = value_get_print_value (value, var->format, var);
1614
1615 /* If the type is changeable, compare the old and the new values.
1616 If this is the initial assignment, we don't have any old value
1617 to compare with. */
1618 if (!initial && changeable)
1619 {
1620 /* If the value of the varobj was changed by -var-set-value,
1621 then the value in the varobj and in the target is the same.
1622 However, that value is different from the value that the
1623 varobj had after the previous -var-update. So need to the
1624 varobj as changed. */
1625 if (var->updated)
1626 {
1627 changed = 1;
1628 }
1629 else if (! var->pretty_printer)
1630 {
1631 /* Try to compare the values. That requires that both
1632 values are non-lazy. */
1633 if (var->not_fetched && value_lazy (var->value))
1634 {
1635 /* This is a frozen varobj and the value was never read.
1636 Presumably, UI shows some "never read" indicator.
1637 Now that we've fetched the real value, we need to report
1638 this varobj as changed so that UI can show the real
1639 value. */
1640 changed = 1;
1641 }
1642 else if (var->value == NULL && value == NULL)
1643 /* Equal. */
1644 ;
1645 else if (var->value == NULL || value == NULL)
1646 {
1647 changed = 1;
1648 }
1649 else
1650 {
1651 gdb_assert (!value_lazy (var->value));
1652 gdb_assert (!value_lazy (value));
1653
1654 gdb_assert (var->print_value != NULL && print_value != NULL);
1655 if (strcmp (var->print_value, print_value) != 0)
1656 changed = 1;
1657 }
1658 }
1659 }
1660
1661 if (!initial && !changeable)
1662 {
1663 /* For values that are not changeable, we don't compare the values.
1664 However, we want to notice if a value was not NULL and now is NULL,
1665 or vise versa, so that we report when top-level varobjs come in scope
1666 and leave the scope. */
1667 changed = (var->value != NULL) != (value != NULL);
1668 }
1669
1670 /* We must always keep the new value, since children depend on it. */
1671 if (var->value != NULL && var->value != value)
1672 value_free (var->value);
1673 var->value = value;
1674 if (value != NULL)
1675 value_incref (value);
1676 if (value && value_lazy (value) && intentionally_not_fetched)
1677 var->not_fetched = 1;
1678 else
1679 var->not_fetched = 0;
1680 var->updated = 0;
1681
1682 install_new_value_visualizer (var);
1683
1684 /* If we installed a pretty-printer, re-compare the printed version
1685 to see if the variable changed. */
1686 if (var->pretty_printer)
1687 {
1688 xfree (print_value);
1689 print_value = value_get_print_value (var->value, var->format, var);
1690 if ((var->print_value == NULL && print_value != NULL)
1691 || (var->print_value != NULL && print_value == NULL)
1692 || (var->print_value != NULL && print_value != NULL
1693 && strcmp (var->print_value, print_value) != 0))
1694 changed = 1;
1695 }
1696 if (var->print_value)
1697 xfree (var->print_value);
1698 var->print_value = print_value;
1699
1700 gdb_assert (!var->value || value_type (var->value));
1701
1702 return changed;
1703 }
1704
1705 /* Return the requested range for a varobj. VAR is the varobj. FROM
1706 and TO are out parameters; *FROM and *TO will be set to the
1707 selected sub-range of VAR. If no range was selected using
1708 -var-set-update-range, then both will be -1. */
1709 void
1710 varobj_get_child_range (struct varobj *var, int *from, int *to)
1711 {
1712 *from = var->from;
1713 *to = var->to;
1714 }
1715
1716 /* Set the selected sub-range of children of VAR to start at index
1717 FROM and end at index TO. If either FROM or TO is less than zero,
1718 this is interpreted as a request for all children. */
1719 void
1720 varobj_set_child_range (struct varobj *var, int from, int to)
1721 {
1722 var->from = from;
1723 var->to = to;
1724 }
1725
1726 void
1727 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1728 {
1729 #if HAVE_PYTHON
1730 PyObject *mainmod, *globals, *constructor;
1731 struct cleanup *back_to;
1732
1733 back_to = varobj_ensure_python_env (var);
1734
1735 mainmod = PyImport_AddModule ("__main__");
1736 globals = PyModule_GetDict (mainmod);
1737 Py_INCREF (globals);
1738 make_cleanup_py_decref (globals);
1739
1740 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1741
1742 if (! constructor)
1743 {
1744 gdbpy_print_stack ();
1745 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1746 }
1747
1748 construct_visualizer (var, constructor);
1749 Py_XDECREF (constructor);
1750
1751 /* If there are any children now, wipe them. */
1752 varobj_delete (var, NULL, 1 /* children only */);
1753 var->num_children = -1;
1754
1755 do_cleanups (back_to);
1756 #else
1757 error (_("Python support required"));
1758 #endif
1759 }
1760
1761 /* Update the values for a variable and its children. This is a
1762 two-pronged attack. First, re-parse the value for the root's
1763 expression to see if it's changed. Then go all the way
1764 through its children, reconstructing them and noting if they've
1765 changed.
1766
1767 The EXPLICIT parameter specifies if this call is result
1768 of MI request to update this specific variable, or
1769 result of implicit -var-update *. For implicit request, we don't
1770 update frozen variables.
1771
1772 NOTE: This function may delete the caller's varobj. If it
1773 returns TYPE_CHANGED, then it has done this and VARP will be modified
1774 to point to the new varobj. */
1775
1776 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1777 {
1778 int changed = 0;
1779 int type_changed = 0;
1780 int i;
1781 struct value *new;
1782 VEC (varobj_update_result) *stack = NULL;
1783 VEC (varobj_update_result) *result = NULL;
1784
1785 /* Frozen means frozen -- we don't check for any change in
1786 this varobj, including its going out of scope, or
1787 changing type. One use case for frozen varobjs is
1788 retaining previously evaluated expressions, and we don't
1789 want them to be reevaluated at all. */
1790 if (!explicit && (*varp)->frozen)
1791 return result;
1792
1793 if (!(*varp)->root->is_valid)
1794 {
1795 varobj_update_result r = {0};
1796
1797 r.varobj = *varp;
1798 r.status = VAROBJ_INVALID;
1799 VEC_safe_push (varobj_update_result, result, &r);
1800 return result;
1801 }
1802
1803 if ((*varp)->root->rootvar == *varp)
1804 {
1805 varobj_update_result r = {0};
1806
1807 r.varobj = *varp;
1808 r.status = VAROBJ_IN_SCOPE;
1809
1810 /* Update the root variable. value_of_root can return NULL
1811 if the variable is no longer around, i.e. we stepped out of
1812 the frame in which a local existed. We are letting the
1813 value_of_root variable dispose of the varobj if the type
1814 has changed. */
1815 new = value_of_root (varp, &type_changed);
1816 r.varobj = *varp;
1817
1818 r.type_changed = type_changed;
1819 if (install_new_value ((*varp), new, type_changed))
1820 r.changed = 1;
1821
1822 if (new == NULL)
1823 r.status = VAROBJ_NOT_IN_SCOPE;
1824 r.value_installed = 1;
1825
1826 if (r.status == VAROBJ_NOT_IN_SCOPE)
1827 {
1828 if (r.type_changed || r.changed)
1829 VEC_safe_push (varobj_update_result, result, &r);
1830 return result;
1831 }
1832
1833 VEC_safe_push (varobj_update_result, stack, &r);
1834 }
1835 else
1836 {
1837 varobj_update_result r = {0};
1838
1839 r.varobj = *varp;
1840 VEC_safe_push (varobj_update_result, stack, &r);
1841 }
1842
1843 /* Walk through the children, reconstructing them all. */
1844 while (!VEC_empty (varobj_update_result, stack))
1845 {
1846 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1847 struct varobj *v = r.varobj;
1848
1849 VEC_pop (varobj_update_result, stack);
1850
1851 /* Update this variable, unless it's a root, which is already
1852 updated. */
1853 if (!r.value_installed)
1854 {
1855 new = value_of_child (v->parent, v->index);
1856 if (install_new_value (v, new, 0 /* type not changed */))
1857 {
1858 r.changed = 1;
1859 v->updated = 0;
1860 }
1861 }
1862
1863 /* We probably should not get children of a varobj that has a
1864 pretty-printer, but for which -var-list-children was never
1865 invoked. */
1866 if (v->pretty_printer)
1867 {
1868 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1869 int i, children_changed = 0;
1870
1871 if (v->frozen)
1872 continue;
1873
1874 if (!v->children_requested)
1875 {
1876 int dummy;
1877
1878 /* If we initially did not have potential children, but
1879 now we do, consider the varobj as changed.
1880 Otherwise, if children were never requested, consider
1881 it as unchanged -- presumably, such varobj is not yet
1882 expanded in the UI, so we need not bother getting
1883 it. */
1884 if (!varobj_has_more (v, 0))
1885 {
1886 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1887 &dummy, 0, 0, 0);
1888 if (varobj_has_more (v, 0))
1889 r.changed = 1;
1890 }
1891
1892 if (r.changed)
1893 VEC_safe_push (varobj_update_result, result, &r);
1894
1895 continue;
1896 }
1897
1898 /* If update_dynamic_varobj_children returns 0, then we have
1899 a non-conforming pretty-printer, so we skip it. */
1900 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1901 &children_changed, 1,
1902 v->from, v->to))
1903 {
1904 if (children_changed || new)
1905 {
1906 r.children_changed = 1;
1907 r.new = new;
1908 }
1909 /* Push in reverse order so that the first child is
1910 popped from the work stack first, and so will be
1911 added to result first. This does not affect
1912 correctness, just "nicer". */
1913 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1914 {
1915 varobj_p tmp = VEC_index (varobj_p, changed, i);
1916 varobj_update_result r = {0};
1917
1918 r.varobj = tmp;
1919 r.changed = 1;
1920 r.value_installed = 1;
1921 VEC_safe_push (varobj_update_result, stack, &r);
1922 }
1923 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1924 {
1925 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1926
1927 if (!tmp->frozen)
1928 {
1929 varobj_update_result r = {0};
1930
1931 r.varobj = tmp;
1932 r.value_installed = 1;
1933 VEC_safe_push (varobj_update_result, stack, &r);
1934 }
1935 }
1936 if (r.changed || r.children_changed)
1937 VEC_safe_push (varobj_update_result, result, &r);
1938
1939 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1940 has been put into the result vector. */
1941 VEC_free (varobj_p, changed);
1942 VEC_free (varobj_p, unchanged);
1943
1944 continue;
1945 }
1946 }
1947
1948 /* Push any children. Use reverse order so that the first
1949 child is popped from the work stack first, and so
1950 will be added to result first. This does not
1951 affect correctness, just "nicer". */
1952 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1953 {
1954 varobj_p c = VEC_index (varobj_p, v->children, i);
1955
1956 /* Child may be NULL if explicitly deleted by -var-delete. */
1957 if (c != NULL && !c->frozen)
1958 {
1959 varobj_update_result r = {0};
1960
1961 r.varobj = c;
1962 VEC_safe_push (varobj_update_result, stack, &r);
1963 }
1964 }
1965
1966 if (r.changed || r.type_changed)
1967 VEC_safe_push (varobj_update_result, result, &r);
1968 }
1969
1970 VEC_free (varobj_update_result, stack);
1971
1972 return result;
1973 }
1974 \f
1975
1976 /* Helper functions */
1977
1978 /*
1979 * Variable object construction/destruction
1980 */
1981
1982 static int
1983 delete_variable (struct cpstack **resultp, struct varobj *var,
1984 int only_children_p)
1985 {
1986 int delcount = 0;
1987
1988 delete_variable_1 (resultp, &delcount, var,
1989 only_children_p, 1 /* remove_from_parent_p */ );
1990
1991 return delcount;
1992 }
1993
1994 /* Delete the variable object VAR and its children. */
1995 /* IMPORTANT NOTE: If we delete a variable which is a child
1996 and the parent is not removed we dump core. It must be always
1997 initially called with remove_from_parent_p set. */
1998 static void
1999 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2000 struct varobj *var, int only_children_p,
2001 int remove_from_parent_p)
2002 {
2003 int i;
2004
2005 /* Delete any children of this variable, too. */
2006 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2007 {
2008 varobj_p child = VEC_index (varobj_p, var->children, i);
2009
2010 if (!child)
2011 continue;
2012 if (!remove_from_parent_p)
2013 child->parent = NULL;
2014 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2015 }
2016 VEC_free (varobj_p, var->children);
2017
2018 /* if we were called to delete only the children we are done here. */
2019 if (only_children_p)
2020 return;
2021
2022 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2023 /* If the name is null, this is a temporary variable, that has not
2024 yet been installed, don't report it, it belongs to the caller... */
2025 if (var->obj_name != NULL)
2026 {
2027 cppush (resultp, xstrdup (var->obj_name));
2028 *delcountp = *delcountp + 1;
2029 }
2030
2031 /* If this variable has a parent, remove it from its parent's list. */
2032 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2033 (as indicated by remove_from_parent_p) we don't bother doing an
2034 expensive list search to find the element to remove when we are
2035 discarding the list afterwards. */
2036 if ((remove_from_parent_p) && (var->parent != NULL))
2037 {
2038 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2039 }
2040
2041 if (var->obj_name != NULL)
2042 uninstall_variable (var);
2043
2044 /* Free memory associated with this variable. */
2045 free_variable (var);
2046 }
2047
2048 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2049 static int
2050 install_variable (struct varobj *var)
2051 {
2052 struct vlist *cv;
2053 struct vlist *newvl;
2054 const char *chp;
2055 unsigned int index = 0;
2056 unsigned int i = 1;
2057
2058 for (chp = var->obj_name; *chp; chp++)
2059 {
2060 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2061 }
2062
2063 cv = *(varobj_table + index);
2064 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2065 cv = cv->next;
2066
2067 if (cv != NULL)
2068 error (_("Duplicate variable object name"));
2069
2070 /* Add varobj to hash table. */
2071 newvl = xmalloc (sizeof (struct vlist));
2072 newvl->next = *(varobj_table + index);
2073 newvl->var = var;
2074 *(varobj_table + index) = newvl;
2075
2076 /* If root, add varobj to root list. */
2077 if (is_root_p (var))
2078 {
2079 /* Add to list of root variables. */
2080 if (rootlist == NULL)
2081 var->root->next = NULL;
2082 else
2083 var->root->next = rootlist;
2084 rootlist = var->root;
2085 }
2086
2087 return 1; /* OK */
2088 }
2089
2090 /* Unistall the object VAR. */
2091 static void
2092 uninstall_variable (struct varobj *var)
2093 {
2094 struct vlist *cv;
2095 struct vlist *prev;
2096 struct varobj_root *cr;
2097 struct varobj_root *prer;
2098 const char *chp;
2099 unsigned int index = 0;
2100 unsigned int i = 1;
2101
2102 /* Remove varobj from hash table. */
2103 for (chp = var->obj_name; *chp; chp++)
2104 {
2105 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2106 }
2107
2108 cv = *(varobj_table + index);
2109 prev = NULL;
2110 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2111 {
2112 prev = cv;
2113 cv = cv->next;
2114 }
2115
2116 if (varobjdebug)
2117 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2118
2119 if (cv == NULL)
2120 {
2121 warning
2122 ("Assertion failed: Could not find variable object \"%s\" to delete",
2123 var->obj_name);
2124 return;
2125 }
2126
2127 if (prev == NULL)
2128 *(varobj_table + index) = cv->next;
2129 else
2130 prev->next = cv->next;
2131
2132 xfree (cv);
2133
2134 /* If root, remove varobj from root list. */
2135 if (is_root_p (var))
2136 {
2137 /* Remove from list of root variables. */
2138 if (rootlist == var->root)
2139 rootlist = var->root->next;
2140 else
2141 {
2142 prer = NULL;
2143 cr = rootlist;
2144 while ((cr != NULL) && (cr->rootvar != var))
2145 {
2146 prer = cr;
2147 cr = cr->next;
2148 }
2149 if (cr == NULL)
2150 {
2151 warning (_("Assertion failed: Could not find "
2152 "varobj \"%s\" in root list"),
2153 var->obj_name);
2154 return;
2155 }
2156 if (prer == NULL)
2157 rootlist = NULL;
2158 else
2159 prer->next = cr->next;
2160 }
2161 }
2162
2163 }
2164
2165 /* Create and install a child of the parent of the given name. */
2166 static struct varobj *
2167 create_child (struct varobj *parent, int index, char *name)
2168 {
2169 return create_child_with_value (parent, index, name,
2170 value_of_child (parent, index));
2171 }
2172
2173 static struct varobj *
2174 create_child_with_value (struct varobj *parent, int index, const char *name,
2175 struct value *value)
2176 {
2177 struct varobj *child;
2178 char *childs_name;
2179
2180 child = new_variable ();
2181
2182 /* Name is allocated by name_of_child. */
2183 /* FIXME: xstrdup should not be here. */
2184 child->name = xstrdup (name);
2185 child->index = index;
2186 child->parent = parent;
2187 child->root = parent->root;
2188 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2189 child->obj_name = childs_name;
2190 install_variable (child);
2191
2192 /* Compute the type of the child. Must do this before
2193 calling install_new_value. */
2194 if (value != NULL)
2195 /* If the child had no evaluation errors, var->value
2196 will be non-NULL and contain a valid type. */
2197 child->type = value_type (value);
2198 else
2199 /* Otherwise, we must compute the type. */
2200 child->type = (*child->root->lang->type_of_child) (child->parent,
2201 child->index);
2202 install_new_value (child, value, 1);
2203
2204 return child;
2205 }
2206 \f
2207
2208 /*
2209 * Miscellaneous utility functions.
2210 */
2211
2212 /* Allocate memory and initialize a new variable. */
2213 static struct varobj *
2214 new_variable (void)
2215 {
2216 struct varobj *var;
2217
2218 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2219 var->name = NULL;
2220 var->path_expr = NULL;
2221 var->obj_name = NULL;
2222 var->index = -1;
2223 var->type = NULL;
2224 var->value = NULL;
2225 var->num_children = -1;
2226 var->parent = NULL;
2227 var->children = NULL;
2228 var->format = 0;
2229 var->root = NULL;
2230 var->updated = 0;
2231 var->print_value = NULL;
2232 var->frozen = 0;
2233 var->not_fetched = 0;
2234 var->children_requested = 0;
2235 var->from = -1;
2236 var->to = -1;
2237 var->constructor = 0;
2238 var->pretty_printer = 0;
2239 var->child_iter = 0;
2240 var->saved_item = 0;
2241
2242 return var;
2243 }
2244
2245 /* Allocate memory and initialize a new root variable. */
2246 static struct varobj *
2247 new_root_variable (void)
2248 {
2249 struct varobj *var = new_variable ();
2250
2251 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2252 var->root->lang = NULL;
2253 var->root->exp = NULL;
2254 var->root->valid_block = NULL;
2255 var->root->frame = null_frame_id;
2256 var->root->floating = 0;
2257 var->root->rootvar = NULL;
2258 var->root->is_valid = 1;
2259
2260 return var;
2261 }
2262
2263 /* Free any allocated memory associated with VAR. */
2264 static void
2265 free_variable (struct varobj *var)
2266 {
2267 #if HAVE_PYTHON
2268 if (var->pretty_printer)
2269 {
2270 struct cleanup *cleanup = varobj_ensure_python_env (var);
2271 Py_XDECREF (var->constructor);
2272 Py_XDECREF (var->pretty_printer);
2273 Py_XDECREF (var->child_iter);
2274 Py_XDECREF (var->saved_item);
2275 do_cleanups (cleanup);
2276 }
2277 #endif
2278
2279 value_free (var->value);
2280
2281 /* Free the expression if this is a root variable. */
2282 if (is_root_p (var))
2283 {
2284 xfree (var->root->exp);
2285 xfree (var->root);
2286 }
2287
2288 xfree (var->name);
2289 xfree (var->obj_name);
2290 xfree (var->print_value);
2291 xfree (var->path_expr);
2292 xfree (var);
2293 }
2294
2295 static void
2296 do_free_variable_cleanup (void *var)
2297 {
2298 free_variable (var);
2299 }
2300
2301 static struct cleanup *
2302 make_cleanup_free_variable (struct varobj *var)
2303 {
2304 return make_cleanup (do_free_variable_cleanup, var);
2305 }
2306
2307 /* This returns the type of the variable. It also skips past typedefs
2308 to return the real type of the variable.
2309
2310 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2311 except within get_target_type and get_type. */
2312 static struct type *
2313 get_type (struct varobj *var)
2314 {
2315 struct type *type;
2316
2317 type = var->type;
2318 if (type != NULL)
2319 type = check_typedef (type);
2320
2321 return type;
2322 }
2323
2324 /* Return the type of the value that's stored in VAR,
2325 or that would have being stored there if the
2326 value were accessible.
2327
2328 This differs from VAR->type in that VAR->type is always
2329 the true type of the expession in the source language.
2330 The return value of this function is the type we're
2331 actually storing in varobj, and using for displaying
2332 the values and for comparing previous and new values.
2333
2334 For example, top-level references are always stripped. */
2335 static struct type *
2336 get_value_type (struct varobj *var)
2337 {
2338 struct type *type;
2339
2340 if (var->value)
2341 type = value_type (var->value);
2342 else
2343 type = var->type;
2344
2345 type = check_typedef (type);
2346
2347 if (TYPE_CODE (type) == TYPE_CODE_REF)
2348 type = get_target_type (type);
2349
2350 type = check_typedef (type);
2351
2352 return type;
2353 }
2354
2355 /* This returns the target type (or NULL) of TYPE, also skipping
2356 past typedefs, just like get_type ().
2357
2358 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2359 except within get_target_type and get_type. */
2360 static struct type *
2361 get_target_type (struct type *type)
2362 {
2363 if (type != NULL)
2364 {
2365 type = TYPE_TARGET_TYPE (type);
2366 if (type != NULL)
2367 type = check_typedef (type);
2368 }
2369
2370 return type;
2371 }
2372
2373 /* What is the default display for this variable? We assume that
2374 everything is "natural". Any exceptions? */
2375 static enum varobj_display_formats
2376 variable_default_display (struct varobj *var)
2377 {
2378 return FORMAT_NATURAL;
2379 }
2380
2381 /* FIXME: The following should be generic for any pointer. */
2382 static void
2383 cppush (struct cpstack **pstack, char *name)
2384 {
2385 struct cpstack *s;
2386
2387 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2388 s->name = name;
2389 s->next = *pstack;
2390 *pstack = s;
2391 }
2392
2393 /* FIXME: The following should be generic for any pointer. */
2394 static char *
2395 cppop (struct cpstack **pstack)
2396 {
2397 struct cpstack *s;
2398 char *v;
2399
2400 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2401 return NULL;
2402
2403 s = *pstack;
2404 v = s->name;
2405 *pstack = (*pstack)->next;
2406 xfree (s);
2407
2408 return v;
2409 }
2410 \f
2411 /*
2412 * Language-dependencies
2413 */
2414
2415 /* Common entry points */
2416
2417 /* Get the language of variable VAR. */
2418 static enum varobj_languages
2419 variable_language (struct varobj *var)
2420 {
2421 enum varobj_languages lang;
2422
2423 switch (var->root->exp->language_defn->la_language)
2424 {
2425 default:
2426 case language_c:
2427 lang = vlang_c;
2428 break;
2429 case language_cplus:
2430 lang = vlang_cplus;
2431 break;
2432 case language_java:
2433 lang = vlang_java;
2434 break;
2435 case language_ada:
2436 lang = vlang_ada;
2437 break;
2438 }
2439
2440 return lang;
2441 }
2442
2443 /* Return the number of children for a given variable.
2444 The result of this function is defined by the language
2445 implementation. The number of children returned by this function
2446 is the number of children that the user will see in the variable
2447 display. */
2448 static int
2449 number_of_children (struct varobj *var)
2450 {
2451 return (*var->root->lang->number_of_children) (var);
2452 }
2453
2454 /* What is the expression for the root varobj VAR? Returns a malloc'd
2455 string. */
2456 static char *
2457 name_of_variable (struct varobj *var)
2458 {
2459 return (*var->root->lang->name_of_variable) (var);
2460 }
2461
2462 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2463 string. */
2464 static char *
2465 name_of_child (struct varobj *var, int index)
2466 {
2467 return (*var->root->lang->name_of_child) (var, index);
2468 }
2469
2470 /* What is the ``struct value *'' of the root variable VAR?
2471 For floating variable object, evaluation can get us a value
2472 of different type from what is stored in varobj already. In
2473 that case:
2474 - *type_changed will be set to 1
2475 - old varobj will be freed, and new one will be
2476 created, with the same name.
2477 - *var_handle will be set to the new varobj
2478 Otherwise, *type_changed will be set to 0. */
2479 static struct value *
2480 value_of_root (struct varobj **var_handle, int *type_changed)
2481 {
2482 struct varobj *var;
2483
2484 if (var_handle == NULL)
2485 return NULL;
2486
2487 var = *var_handle;
2488
2489 /* This should really be an exception, since this should
2490 only get called with a root variable. */
2491
2492 if (!is_root_p (var))
2493 return NULL;
2494
2495 if (var->root->floating)
2496 {
2497 struct varobj *tmp_var;
2498 char *old_type, *new_type;
2499
2500 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2501 USE_SELECTED_FRAME);
2502 if (tmp_var == NULL)
2503 {
2504 return NULL;
2505 }
2506 old_type = varobj_get_type (var);
2507 new_type = varobj_get_type (tmp_var);
2508 if (strcmp (old_type, new_type) == 0)
2509 {
2510 /* The expression presently stored inside var->root->exp
2511 remembers the locations of local variables relatively to
2512 the frame where the expression was created (in DWARF location
2513 button, for example). Naturally, those locations are not
2514 correct in other frames, so update the expression. */
2515
2516 struct expression *tmp_exp = var->root->exp;
2517
2518 var->root->exp = tmp_var->root->exp;
2519 tmp_var->root->exp = tmp_exp;
2520
2521 varobj_delete (tmp_var, NULL, 0);
2522 *type_changed = 0;
2523 }
2524 else
2525 {
2526 tmp_var->obj_name = xstrdup (var->obj_name);
2527 tmp_var->from = var->from;
2528 tmp_var->to = var->to;
2529 varobj_delete (var, NULL, 0);
2530
2531 install_variable (tmp_var);
2532 *var_handle = tmp_var;
2533 var = *var_handle;
2534 *type_changed = 1;
2535 }
2536 xfree (old_type);
2537 xfree (new_type);
2538 }
2539 else
2540 {
2541 *type_changed = 0;
2542 }
2543
2544 return (*var->root->lang->value_of_root) (var_handle);
2545 }
2546
2547 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2548 static struct value *
2549 value_of_child (struct varobj *parent, int index)
2550 {
2551 struct value *value;
2552
2553 value = (*parent->root->lang->value_of_child) (parent, index);
2554
2555 return value;
2556 }
2557
2558 /* GDB already has a command called "value_of_variable". Sigh. */
2559 static char *
2560 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2561 {
2562 if (var->root->is_valid)
2563 {
2564 if (var->pretty_printer)
2565 return value_get_print_value (var->value, var->format, var);
2566 return (*var->root->lang->value_of_variable) (var, format);
2567 }
2568 else
2569 return NULL;
2570 }
2571
2572 static char *
2573 value_get_print_value (struct value *value, enum varobj_display_formats format,
2574 struct varobj *var)
2575 {
2576 struct ui_file *stb;
2577 struct cleanup *old_chain;
2578 gdb_byte *thevalue = NULL;
2579 struct value_print_options opts;
2580 struct type *type = NULL;
2581 long len = 0;
2582 char *encoding = NULL;
2583 struct gdbarch *gdbarch = NULL;
2584 /* Initialize it just to avoid a GCC false warning. */
2585 CORE_ADDR str_addr = 0;
2586 int string_print = 0;
2587
2588 if (value == NULL)
2589 return NULL;
2590
2591 stb = mem_fileopen ();
2592 old_chain = make_cleanup_ui_file_delete (stb);
2593
2594 gdbarch = get_type_arch (value_type (value));
2595 #if HAVE_PYTHON
2596 {
2597 PyObject *value_formatter = var->pretty_printer;
2598
2599 varobj_ensure_python_env (var);
2600
2601 if (value_formatter)
2602 {
2603 /* First check to see if we have any children at all. If so,
2604 we simply return {...}. */
2605 if (dynamic_varobj_has_child_method (var))
2606 {
2607 do_cleanups (old_chain);
2608 return xstrdup ("{...}");
2609 }
2610
2611 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2612 {
2613 struct value *replacement;
2614 PyObject *output = NULL;
2615
2616 output = apply_varobj_pretty_printer (value_formatter,
2617 &replacement,
2618 stb);
2619
2620 /* If we have string like output ... */
2621 if (output)
2622 {
2623 make_cleanup_py_decref (output);
2624
2625 /* If this is a lazy string, extract it. For lazy
2626 strings we always print as a string, so set
2627 string_print. */
2628 if (gdbpy_is_lazy_string (output))
2629 {
2630 gdbpy_extract_lazy_string (output, &str_addr, &type,
2631 &len, &encoding);
2632 make_cleanup (free_current_contents, &encoding);
2633 string_print = 1;
2634 }
2635 else
2636 {
2637 /* If it is a regular (non-lazy) string, extract
2638 it and copy the contents into THEVALUE. If the
2639 hint says to print it as a string, set
2640 string_print. Otherwise just return the extracted
2641 string as a value. */
2642
2643 PyObject *py_str
2644 = python_string_to_target_python_string (output);
2645
2646 if (py_str)
2647 {
2648 char *s = PyString_AsString (py_str);
2649 char *hint;
2650
2651 hint = gdbpy_get_display_hint (value_formatter);
2652 if (hint)
2653 {
2654 if (!strcmp (hint, "string"))
2655 string_print = 1;
2656 xfree (hint);
2657 }
2658
2659 len = PyString_Size (py_str);
2660 thevalue = xmemdup (s, len + 1, len + 1);
2661 type = builtin_type (gdbarch)->builtin_char;
2662 Py_DECREF (py_str);
2663
2664 if (!string_print)
2665 {
2666 do_cleanups (old_chain);
2667 return thevalue;
2668 }
2669
2670 make_cleanup (xfree, thevalue);
2671 }
2672 else
2673 gdbpy_print_stack ();
2674 }
2675 }
2676 /* If the printer returned a replacement value, set VALUE
2677 to REPLACEMENT. If there is not a replacement value,
2678 just use the value passed to this function. */
2679 if (replacement)
2680 value = replacement;
2681 }
2682 }
2683 }
2684 #endif
2685
2686 get_formatted_print_options (&opts, format_code[(int) format]);
2687 opts.deref_ref = 0;
2688 opts.raw = 1;
2689
2690 /* If the THEVALUE has contents, it is a regular string. */
2691 if (thevalue)
2692 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2693 else if (string_print)
2694 /* Otherwise, if string_print is set, and it is not a regular
2695 string, it is a lazy string. */
2696 val_print_string (type, encoding, str_addr, len, stb, &opts);
2697 else
2698 /* All other cases. */
2699 common_val_print (value, stb, 0, &opts, current_language);
2700
2701 thevalue = ui_file_xstrdup (stb, NULL);
2702
2703 do_cleanups (old_chain);
2704 return thevalue;
2705 }
2706
2707 int
2708 varobj_editable_p (struct varobj *var)
2709 {
2710 struct type *type;
2711
2712 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2713 return 0;
2714
2715 type = get_value_type (var);
2716
2717 switch (TYPE_CODE (type))
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_ARRAY:
2722 case TYPE_CODE_FUNC:
2723 case TYPE_CODE_METHOD:
2724 return 0;
2725 break;
2726
2727 default:
2728 return 1;
2729 break;
2730 }
2731 }
2732
2733 /* Return non-zero if changes in value of VAR
2734 must be detected and reported by -var-update.
2735 Return zero is -var-update should never report
2736 changes of such values. This makes sense for structures
2737 (since the changes in children values will be reported separately),
2738 or for artifical objects (like 'public' pseudo-field in C++).
2739
2740 Return value of 0 means that gdb need not call value_fetch_lazy
2741 for the value of this variable object. */
2742 static int
2743 varobj_value_is_changeable_p (struct varobj *var)
2744 {
2745 int r;
2746 struct type *type;
2747
2748 if (CPLUS_FAKE_CHILD (var))
2749 return 0;
2750
2751 type = get_value_type (var);
2752
2753 switch (TYPE_CODE (type))
2754 {
2755 case TYPE_CODE_STRUCT:
2756 case TYPE_CODE_UNION:
2757 case TYPE_CODE_ARRAY:
2758 r = 0;
2759 break;
2760
2761 default:
2762 r = 1;
2763 }
2764
2765 return r;
2766 }
2767
2768 /* Return 1 if that varobj is floating, that is is always evaluated in the
2769 selected frame, and not bound to thread/frame. Such variable objects
2770 are created using '@' as frame specifier to -var-create. */
2771 int
2772 varobj_floating_p (struct varobj *var)
2773 {
2774 return var->root->floating;
2775 }
2776
2777 /* Given the value and the type of a variable object,
2778 adjust the value and type to those necessary
2779 for getting children of the variable object.
2780 This includes dereferencing top-level references
2781 to all types and dereferencing pointers to
2782 structures.
2783
2784 Both TYPE and *TYPE should be non-null. VALUE
2785 can be null if we want to only translate type.
2786 *VALUE can be null as well -- if the parent
2787 value is not known.
2788
2789 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2790 depending on whether pointer was dereferenced
2791 in this function. */
2792 static void
2793 adjust_value_for_child_access (struct value **value,
2794 struct type **type,
2795 int *was_ptr)
2796 {
2797 gdb_assert (type && *type);
2798
2799 if (was_ptr)
2800 *was_ptr = 0;
2801
2802 *type = check_typedef (*type);
2803
2804 /* The type of value stored in varobj, that is passed
2805 to us, is already supposed to be
2806 reference-stripped. */
2807
2808 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2809
2810 /* Pointers to structures are treated just like
2811 structures when accessing children. Don't
2812 dererences pointers to other types. */
2813 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2814 {
2815 struct type *target_type = get_target_type (*type);
2816 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2817 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2818 {
2819 if (value && *value)
2820 {
2821 int success = gdb_value_ind (*value, value);
2822
2823 if (!success)
2824 *value = NULL;
2825 }
2826 *type = target_type;
2827 if (was_ptr)
2828 *was_ptr = 1;
2829 }
2830 }
2831
2832 /* The 'get_target_type' function calls check_typedef on
2833 result, so we can immediately check type code. No
2834 need to call check_typedef here. */
2835 }
2836
2837 /* C */
2838 static int
2839 c_number_of_children (struct varobj *var)
2840 {
2841 struct type *type = get_value_type (var);
2842 int children = 0;
2843 struct type *target;
2844
2845 adjust_value_for_child_access (NULL, &type, NULL);
2846 target = get_target_type (type);
2847
2848 switch (TYPE_CODE (type))
2849 {
2850 case TYPE_CODE_ARRAY:
2851 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2852 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2853 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2854 else
2855 /* If we don't know how many elements there are, don't display
2856 any. */
2857 children = 0;
2858 break;
2859
2860 case TYPE_CODE_STRUCT:
2861 case TYPE_CODE_UNION:
2862 children = TYPE_NFIELDS (type);
2863 break;
2864
2865 case TYPE_CODE_PTR:
2866 /* The type here is a pointer to non-struct. Typically, pointers
2867 have one child, except for function ptrs, which have no children,
2868 and except for void*, as we don't know what to show.
2869
2870 We can show char* so we allow it to be dereferenced. If you decide
2871 to test for it, please mind that a little magic is necessary to
2872 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2873 TYPE_NAME == "char". */
2874 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2875 || TYPE_CODE (target) == TYPE_CODE_VOID)
2876 children = 0;
2877 else
2878 children = 1;
2879 break;
2880
2881 default:
2882 /* Other types have no children. */
2883 break;
2884 }
2885
2886 return children;
2887 }
2888
2889 static char *
2890 c_name_of_variable (struct varobj *parent)
2891 {
2892 return xstrdup (parent->name);
2893 }
2894
2895 /* Return the value of element TYPE_INDEX of a structure
2896 value VALUE. VALUE's type should be a structure,
2897 or union, or a typedef to struct/union.
2898
2899 Returns NULL if getting the value fails. Never throws. */
2900 static struct value *
2901 value_struct_element_index (struct value *value, int type_index)
2902 {
2903 struct value *result = NULL;
2904 volatile struct gdb_exception e;
2905 struct type *type = value_type (value);
2906
2907 type = check_typedef (type);
2908
2909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2910 || TYPE_CODE (type) == TYPE_CODE_UNION);
2911
2912 TRY_CATCH (e, RETURN_MASK_ERROR)
2913 {
2914 if (field_is_static (&TYPE_FIELD (type, type_index)))
2915 result = value_static_field (type, type_index);
2916 else
2917 result = value_primitive_field (value, 0, type_index, type);
2918 }
2919 if (e.reason < 0)
2920 {
2921 return NULL;
2922 }
2923 else
2924 {
2925 return result;
2926 }
2927 }
2928
2929 /* Obtain the information about child INDEX of the variable
2930 object PARENT.
2931 If CNAME is not null, sets *CNAME to the name of the child relative
2932 to the parent.
2933 If CVALUE is not null, sets *CVALUE to the value of the child.
2934 If CTYPE is not null, sets *CTYPE to the type of the child.
2935
2936 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2937 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2938 to NULL. */
2939 static void
2940 c_describe_child (struct varobj *parent, int index,
2941 char **cname, struct value **cvalue, struct type **ctype,
2942 char **cfull_expression)
2943 {
2944 struct value *value = parent->value;
2945 struct type *type = get_value_type (parent);
2946 char *parent_expression = NULL;
2947 int was_ptr;
2948
2949 if (cname)
2950 *cname = NULL;
2951 if (cvalue)
2952 *cvalue = NULL;
2953 if (ctype)
2954 *ctype = NULL;
2955 if (cfull_expression)
2956 {
2957 *cfull_expression = NULL;
2958 parent_expression = varobj_get_path_expr (parent);
2959 }
2960 adjust_value_for_child_access (&value, &type, &was_ptr);
2961
2962 switch (TYPE_CODE (type))
2963 {
2964 case TYPE_CODE_ARRAY:
2965 if (cname)
2966 *cname
2967 = xstrdup (int_string (index
2968 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2969 10, 1, 0, 0));
2970
2971 if (cvalue && value)
2972 {
2973 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2974
2975 gdb_value_subscript (value, real_index, cvalue);
2976 }
2977
2978 if (ctype)
2979 *ctype = get_target_type (type);
2980
2981 if (cfull_expression)
2982 *cfull_expression =
2983 xstrprintf ("(%s)[%s]", parent_expression,
2984 int_string (index
2985 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2986 10, 1, 0, 0));
2987
2988
2989 break;
2990
2991 case TYPE_CODE_STRUCT:
2992 case TYPE_CODE_UNION:
2993 if (cname)
2994 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2995
2996 if (cvalue && value)
2997 {
2998 /* For C, varobj index is the same as type index. */
2999 *cvalue = value_struct_element_index (value, index);
3000 }
3001
3002 if (ctype)
3003 *ctype = TYPE_FIELD_TYPE (type, index);
3004
3005 if (cfull_expression)
3006 {
3007 char *join = was_ptr ? "->" : ".";
3008
3009 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
3010 TYPE_FIELD_NAME (type, index));
3011 }
3012
3013 break;
3014
3015 case TYPE_CODE_PTR:
3016 if (cname)
3017 *cname = xstrprintf ("*%s", parent->name);
3018
3019 if (cvalue && value)
3020 {
3021 int success = gdb_value_ind (value, cvalue);
3022
3023 if (!success)
3024 *cvalue = NULL;
3025 }
3026
3027 /* Don't use get_target_type because it calls
3028 check_typedef and here, we want to show the true
3029 declared type of the variable. */
3030 if (ctype)
3031 *ctype = TYPE_TARGET_TYPE (type);
3032
3033 if (cfull_expression)
3034 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3035
3036 break;
3037
3038 default:
3039 /* This should not happen. */
3040 if (cname)
3041 *cname = xstrdup ("???");
3042 if (cfull_expression)
3043 *cfull_expression = xstrdup ("???");
3044 /* Don't set value and type, we don't know then. */
3045 }
3046 }
3047
3048 static char *
3049 c_name_of_child (struct varobj *parent, int index)
3050 {
3051 char *name;
3052
3053 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3054 return name;
3055 }
3056
3057 static char *
3058 c_path_expr_of_child (struct varobj *child)
3059 {
3060 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3061 &child->path_expr);
3062 return child->path_expr;
3063 }
3064
3065 /* If frame associated with VAR can be found, switch
3066 to it and return 1. Otherwise, return 0. */
3067 static int
3068 check_scope (struct varobj *var)
3069 {
3070 struct frame_info *fi;
3071 int scope;
3072
3073 fi = frame_find_by_id (var->root->frame);
3074 scope = fi != NULL;
3075
3076 if (fi)
3077 {
3078 CORE_ADDR pc = get_frame_pc (fi);
3079
3080 if (pc < BLOCK_START (var->root->valid_block) ||
3081 pc >= BLOCK_END (var->root->valid_block))
3082 scope = 0;
3083 else
3084 select_frame (fi);
3085 }
3086 return scope;
3087 }
3088
3089 static struct value *
3090 c_value_of_root (struct varobj **var_handle)
3091 {
3092 struct value *new_val = NULL;
3093 struct varobj *var = *var_handle;
3094 int within_scope = 0;
3095 struct cleanup *back_to;
3096
3097 /* Only root variables can be updated... */
3098 if (!is_root_p (var))
3099 /* Not a root var. */
3100 return NULL;
3101
3102 back_to = make_cleanup_restore_current_thread ();
3103
3104 /* Determine whether the variable is still around. */
3105 if (var->root->valid_block == NULL || var->root->floating)
3106 within_scope = 1;
3107 else if (var->root->thread_id == 0)
3108 {
3109 /* The program was single-threaded when the variable object was
3110 created. Technically, it's possible that the program became
3111 multi-threaded since then, but we don't support such
3112 scenario yet. */
3113 within_scope = check_scope (var);
3114 }
3115 else
3116 {
3117 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3118 if (in_thread_list (ptid))
3119 {
3120 switch_to_thread (ptid);
3121 within_scope = check_scope (var);
3122 }
3123 }
3124
3125 if (within_scope)
3126 {
3127 /* We need to catch errors here, because if evaluate
3128 expression fails we want to just return NULL. */
3129 gdb_evaluate_expression (var->root->exp, &new_val);
3130 return new_val;
3131 }
3132
3133 do_cleanups (back_to);
3134
3135 return NULL;
3136 }
3137
3138 static struct value *
3139 c_value_of_child (struct varobj *parent, int index)
3140 {
3141 struct value *value = NULL;
3142
3143 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3144 return value;
3145 }
3146
3147 static struct type *
3148 c_type_of_child (struct varobj *parent, int index)
3149 {
3150 struct type *type = NULL;
3151
3152 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3153 return type;
3154 }
3155
3156 static char *
3157 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3158 {
3159 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3160 it will print out its children instead of "{...}". So we need to
3161 catch that case explicitly. */
3162 struct type *type = get_type (var);
3163
3164 /* If we have a custom formatter, return whatever string it has
3165 produced. */
3166 if (var->pretty_printer && var->print_value)
3167 return xstrdup (var->print_value);
3168
3169 /* Strip top-level references. */
3170 while (TYPE_CODE (type) == TYPE_CODE_REF)
3171 type = check_typedef (TYPE_TARGET_TYPE (type));
3172
3173 switch (TYPE_CODE (type))
3174 {
3175 case TYPE_CODE_STRUCT:
3176 case TYPE_CODE_UNION:
3177 return xstrdup ("{...}");
3178 /* break; */
3179
3180 case TYPE_CODE_ARRAY:
3181 {
3182 char *number;
3183
3184 number = xstrprintf ("[%d]", var->num_children);
3185 return (number);
3186 }
3187 /* break; */
3188
3189 default:
3190 {
3191 if (var->value == NULL)
3192 {
3193 /* This can happen if we attempt to get the value of a struct
3194 member when the parent is an invalid pointer. This is an
3195 error condition, so we should tell the caller. */
3196 return NULL;
3197 }
3198 else
3199 {
3200 if (var->not_fetched && value_lazy (var->value))
3201 /* Frozen variable and no value yet. We don't
3202 implicitly fetch the value. MI response will
3203 use empty string for the value, which is OK. */
3204 return NULL;
3205
3206 gdb_assert (varobj_value_is_changeable_p (var));
3207 gdb_assert (!value_lazy (var->value));
3208
3209 /* If the specified format is the current one,
3210 we can reuse print_value. */
3211 if (format == var->format)
3212 return xstrdup (var->print_value);
3213 else
3214 return value_get_print_value (var->value, format, var);
3215 }
3216 }
3217 }
3218 }
3219 \f
3220
3221 /* C++ */
3222
3223 static int
3224 cplus_number_of_children (struct varobj *var)
3225 {
3226 struct type *type;
3227 int children, dont_know;
3228
3229 dont_know = 1;
3230 children = 0;
3231
3232 if (!CPLUS_FAKE_CHILD (var))
3233 {
3234 type = get_value_type (var);
3235 adjust_value_for_child_access (NULL, &type, NULL);
3236
3237 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3238 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3239 {
3240 int kids[3];
3241
3242 cplus_class_num_children (type, kids);
3243 if (kids[v_public] != 0)
3244 children++;
3245 if (kids[v_private] != 0)
3246 children++;
3247 if (kids[v_protected] != 0)
3248 children++;
3249
3250 /* Add any baseclasses. */
3251 children += TYPE_N_BASECLASSES (type);
3252 dont_know = 0;
3253
3254 /* FIXME: save children in var. */
3255 }
3256 }
3257 else
3258 {
3259 int kids[3];
3260
3261 type = get_value_type (var->parent);
3262 adjust_value_for_child_access (NULL, &type, NULL);
3263
3264 cplus_class_num_children (type, kids);
3265 if (strcmp (var->name, "public") == 0)
3266 children = kids[v_public];
3267 else if (strcmp (var->name, "private") == 0)
3268 children = kids[v_private];
3269 else
3270 children = kids[v_protected];
3271 dont_know = 0;
3272 }
3273
3274 if (dont_know)
3275 children = c_number_of_children (var);
3276
3277 return children;
3278 }
3279
3280 /* Compute # of public, private, and protected variables in this class.
3281 That means we need to descend into all baseclasses and find out
3282 how many are there, too. */
3283 static void
3284 cplus_class_num_children (struct type *type, int children[3])
3285 {
3286 int i, vptr_fieldno;
3287 struct type *basetype = NULL;
3288
3289 children[v_public] = 0;
3290 children[v_private] = 0;
3291 children[v_protected] = 0;
3292
3293 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3294 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3295 {
3296 /* If we have a virtual table pointer, omit it. Even if virtual
3297 table pointers are not specifically marked in the debug info,
3298 they should be artificial. */
3299 if ((type == basetype && i == vptr_fieldno)
3300 || TYPE_FIELD_ARTIFICIAL (type, i))
3301 continue;
3302
3303 if (TYPE_FIELD_PROTECTED (type, i))
3304 children[v_protected]++;
3305 else if (TYPE_FIELD_PRIVATE (type, i))
3306 children[v_private]++;
3307 else
3308 children[v_public]++;
3309 }
3310 }
3311
3312 static char *
3313 cplus_name_of_variable (struct varobj *parent)
3314 {
3315 return c_name_of_variable (parent);
3316 }
3317
3318 enum accessibility { private_field, protected_field, public_field };
3319
3320 /* Check if field INDEX of TYPE has the specified accessibility.
3321 Return 0 if so and 1 otherwise. */
3322 static int
3323 match_accessibility (struct type *type, int index, enum accessibility acc)
3324 {
3325 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3326 return 1;
3327 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3328 return 1;
3329 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3330 && !TYPE_FIELD_PROTECTED (type, index))
3331 return 1;
3332 else
3333 return 0;
3334 }
3335
3336 static void
3337 cplus_describe_child (struct varobj *parent, int index,
3338 char **cname, struct value **cvalue, struct type **ctype,
3339 char **cfull_expression)
3340 {
3341 struct value *value;
3342 struct type *type;
3343 int was_ptr;
3344 char *parent_expression = NULL;
3345
3346 if (cname)
3347 *cname = NULL;
3348 if (cvalue)
3349 *cvalue = NULL;
3350 if (ctype)
3351 *ctype = NULL;
3352 if (cfull_expression)
3353 *cfull_expression = NULL;
3354
3355 if (CPLUS_FAKE_CHILD (parent))
3356 {
3357 value = parent->parent->value;
3358 type = get_value_type (parent->parent);
3359 if (cfull_expression)
3360 parent_expression = varobj_get_path_expr (parent->parent);
3361 }
3362 else
3363 {
3364 value = parent->value;
3365 type = get_value_type (parent);
3366 if (cfull_expression)
3367 parent_expression = varobj_get_path_expr (parent);
3368 }
3369
3370 adjust_value_for_child_access (&value, &type, &was_ptr);
3371
3372 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3373 || TYPE_CODE (type) == TYPE_CODE_UNION)
3374 {
3375 char *join = was_ptr ? "->" : ".";
3376
3377 if (CPLUS_FAKE_CHILD (parent))
3378 {
3379 /* The fields of the class type are ordered as they
3380 appear in the class. We are given an index for a
3381 particular access control type ("public","protected",
3382 or "private"). We must skip over fields that don't
3383 have the access control we are looking for to properly
3384 find the indexed field. */
3385 int type_index = TYPE_N_BASECLASSES (type);
3386 enum accessibility acc = public_field;
3387 int vptr_fieldno;
3388 struct type *basetype = NULL;
3389
3390 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3391 if (strcmp (parent->name, "private") == 0)
3392 acc = private_field;
3393 else if (strcmp (parent->name, "protected") == 0)
3394 acc = protected_field;
3395
3396 while (index >= 0)
3397 {
3398 if ((type == basetype && type_index == vptr_fieldno)
3399 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3400 ; /* ignore vptr */
3401 else if (match_accessibility (type, type_index, acc))
3402 --index;
3403 ++type_index;
3404 }
3405 --type_index;
3406
3407 if (cname)
3408 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3409
3410 if (cvalue && value)
3411 *cvalue = value_struct_element_index (value, type_index);
3412
3413 if (ctype)
3414 *ctype = TYPE_FIELD_TYPE (type, type_index);
3415
3416 if (cfull_expression)
3417 *cfull_expression
3418 = xstrprintf ("((%s)%s%s)", parent_expression,
3419 join,
3420 TYPE_FIELD_NAME (type, type_index));
3421 }
3422 else if (index < TYPE_N_BASECLASSES (type))
3423 {
3424 /* This is a baseclass. */
3425 if (cname)
3426 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3427
3428 if (cvalue && value)
3429 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3430
3431 if (ctype)
3432 {
3433 *ctype = TYPE_FIELD_TYPE (type, index);
3434 }
3435
3436 if (cfull_expression)
3437 {
3438 char *ptr = was_ptr ? "*" : "";
3439
3440 /* Cast the parent to the base' type. Note that in gdb,
3441 expression like
3442 (Base1)d
3443 will create an lvalue, for all appearences, so we don't
3444 need to use more fancy:
3445 *(Base1*)(&d)
3446 construct. */
3447 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3448 ptr,
3449 TYPE_FIELD_NAME (type, index),
3450 ptr,
3451 parent_expression);
3452 }
3453 }
3454 else
3455 {
3456 char *access = NULL;
3457 int children[3];
3458
3459 cplus_class_num_children (type, children);
3460
3461 /* Everything beyond the baseclasses can
3462 only be "public", "private", or "protected"
3463
3464 The special "fake" children are always output by varobj in
3465 this order. So if INDEX == 2, it MUST be "protected". */
3466 index -= TYPE_N_BASECLASSES (type);
3467 switch (index)
3468 {
3469 case 0:
3470 if (children[v_public] > 0)
3471 access = "public";
3472 else if (children[v_private] > 0)
3473 access = "private";
3474 else
3475 access = "protected";
3476 break;
3477 case 1:
3478 if (children[v_public] > 0)
3479 {
3480 if (children[v_private] > 0)
3481 access = "private";
3482 else
3483 access = "protected";
3484 }
3485 else if (children[v_private] > 0)
3486 access = "protected";
3487 break;
3488 case 2:
3489 /* Must be protected. */
3490 access = "protected";
3491 break;
3492 default:
3493 /* error! */
3494 break;
3495 }
3496
3497 gdb_assert (access);
3498 if (cname)
3499 *cname = xstrdup (access);
3500
3501 /* Value and type and full expression are null here. */
3502 }
3503 }
3504 else
3505 {
3506 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3507 }
3508 }
3509
3510 static char *
3511 cplus_name_of_child (struct varobj *parent, int index)
3512 {
3513 char *name = NULL;
3514
3515 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3516 return name;
3517 }
3518
3519 static char *
3520 cplus_path_expr_of_child (struct varobj *child)
3521 {
3522 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3523 &child->path_expr);
3524 return child->path_expr;
3525 }
3526
3527 static struct value *
3528 cplus_value_of_root (struct varobj **var_handle)
3529 {
3530 return c_value_of_root (var_handle);
3531 }
3532
3533 static struct value *
3534 cplus_value_of_child (struct varobj *parent, int index)
3535 {
3536 struct value *value = NULL;
3537
3538 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3539 return value;
3540 }
3541
3542 static struct type *
3543 cplus_type_of_child (struct varobj *parent, int index)
3544 {
3545 struct type *type = NULL;
3546
3547 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3548 return type;
3549 }
3550
3551 static char *
3552 cplus_value_of_variable (struct varobj *var,
3553 enum varobj_display_formats format)
3554 {
3555
3556 /* If we have one of our special types, don't print out
3557 any value. */
3558 if (CPLUS_FAKE_CHILD (var))
3559 return xstrdup ("");
3560
3561 return c_value_of_variable (var, format);
3562 }
3563 \f
3564 /* Java */
3565
3566 static int
3567 java_number_of_children (struct varobj *var)
3568 {
3569 return cplus_number_of_children (var);
3570 }
3571
3572 static char *
3573 java_name_of_variable (struct varobj *parent)
3574 {
3575 char *p, *name;
3576
3577 name = cplus_name_of_variable (parent);
3578 /* If the name has "-" in it, it is because we
3579 needed to escape periods in the name... */
3580 p = name;
3581
3582 while (*p != '\000')
3583 {
3584 if (*p == '-')
3585 *p = '.';
3586 p++;
3587 }
3588
3589 return name;
3590 }
3591
3592 static char *
3593 java_name_of_child (struct varobj *parent, int index)
3594 {
3595 char *name, *p;
3596
3597 name = cplus_name_of_child (parent, index);
3598 /* Escape any periods in the name... */
3599 p = name;
3600
3601 while (*p != '\000')
3602 {
3603 if (*p == '.')
3604 *p = '-';
3605 p++;
3606 }
3607
3608 return name;
3609 }
3610
3611 static char *
3612 java_path_expr_of_child (struct varobj *child)
3613 {
3614 return NULL;
3615 }
3616
3617 static struct value *
3618 java_value_of_root (struct varobj **var_handle)
3619 {
3620 return cplus_value_of_root (var_handle);
3621 }
3622
3623 static struct value *
3624 java_value_of_child (struct varobj *parent, int index)
3625 {
3626 return cplus_value_of_child (parent, index);
3627 }
3628
3629 static struct type *
3630 java_type_of_child (struct varobj *parent, int index)
3631 {
3632 return cplus_type_of_child (parent, index);
3633 }
3634
3635 static char *
3636 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3637 {
3638 return cplus_value_of_variable (var, format);
3639 }
3640
3641 /* Ada specific callbacks for VAROBJs. */
3642
3643 static int
3644 ada_number_of_children (struct varobj *var)
3645 {
3646 return c_number_of_children (var);
3647 }
3648
3649 static char *
3650 ada_name_of_variable (struct varobj *parent)
3651 {
3652 return c_name_of_variable (parent);
3653 }
3654
3655 static char *
3656 ada_name_of_child (struct varobj *parent, int index)
3657 {
3658 return c_name_of_child (parent, index);
3659 }
3660
3661 static char*
3662 ada_path_expr_of_child (struct varobj *child)
3663 {
3664 return c_path_expr_of_child (child);
3665 }
3666
3667 static struct value *
3668 ada_value_of_root (struct varobj **var_handle)
3669 {
3670 return c_value_of_root (var_handle);
3671 }
3672
3673 static struct value *
3674 ada_value_of_child (struct varobj *parent, int index)
3675 {
3676 return c_value_of_child (parent, index);
3677 }
3678
3679 static struct type *
3680 ada_type_of_child (struct varobj *parent, int index)
3681 {
3682 return c_type_of_child (parent, index);
3683 }
3684
3685 static char *
3686 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3687 {
3688 return c_value_of_variable (var, format);
3689 }
3690
3691 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3692 with an arbitrary caller supplied DATA pointer. */
3693
3694 void
3695 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3696 {
3697 struct varobj_root *var_root, *var_root_next;
3698
3699 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3700
3701 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3702 {
3703 var_root_next = var_root->next;
3704
3705 (*func) (var_root->rootvar, data);
3706 }
3707 }
3708 \f
3709 extern void _initialize_varobj (void);
3710 void
3711 _initialize_varobj (void)
3712 {
3713 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3714
3715 varobj_table = xmalloc (sizeof_table);
3716 memset (varobj_table, 0, sizeof_table);
3717
3718 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3719 &varobjdebug,
3720 _("Set varobj debugging."),
3721 _("Show varobj debugging."),
3722 _("When non-zero, varobj debugging is enabled."),
3723 NULL, show_varobjdebug,
3724 &setlist, &showlist);
3725 }
3726
3727 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3728 defined on globals. It is a helper for varobj_invalidate. */
3729
3730 static void
3731 varobj_invalidate_iter (struct varobj *var, void *unused)
3732 {
3733 /* Floating varobjs are reparsed on each stop, so we don't care if the
3734 presently parsed expression refers to something that's gone. */
3735 if (var->root->floating)
3736 return;
3737
3738 /* global var must be re-evaluated. */
3739 if (var->root->valid_block == NULL)
3740 {
3741 struct varobj *tmp_var;
3742
3743 /* Try to create a varobj with same expression. If we succeed
3744 replace the old varobj, otherwise invalidate it. */
3745 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3746 USE_CURRENT_FRAME);
3747 if (tmp_var != NULL)
3748 {
3749 tmp_var->obj_name = xstrdup (var->obj_name);
3750 varobj_delete (var, NULL, 0);
3751 install_variable (tmp_var);
3752 }
3753 else
3754 var->root->is_valid = 0;
3755 }
3756 else /* locals must be invalidated. */
3757 var->root->is_valid = 0;
3758 }
3759
3760 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3761 are defined on globals.
3762 Invalidated varobjs will be always printed in_scope="invalid". */
3763
3764 void
3765 varobj_invalidate (void)
3766 {
3767 all_root_varobjs (varobj_invalidate_iter, NULL);
3768 }