]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518
519 if (frame_base == frame_addr)
520 return frame;
521 }
522
523 return NULL;
524 }
525
526 struct varobj *
527 varobj_create (char *objname,
528 char *expression, CORE_ADDR frame, enum varobj_type type)
529 {
530 struct varobj *var;
531 struct cleanup *old_chain;
532
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
535 old_chain = make_cleanup_free_variable (var);
536
537 if (expression != NULL)
538 {
539 struct frame_info *fi;
540 struct frame_id old_id = null_frame_id;
541 struct block *block;
542 char *p;
543 enum varobj_languages lang;
544 struct value *value = NULL;
545
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
548
549 if (has_stack_frames ())
550 {
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
554 else
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
561 function. */
562 fi = find_frame_addr_in_frame_chain (frame);
563 }
564 else
565 fi = NULL;
566
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
569 var->root->floating = 1;
570
571 block = NULL;
572 if (fi != NULL)
573 block = get_frame_block (fi, 0);
574
575 p = expression;
576 innermost_block = NULL;
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 {
581 return NULL;
582 }
583
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 {
587 do_cleanups (old_chain);
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
590 return NULL;
591 }
592
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
595 var->name = xstrdup (expression);
596 /* For a root var, the name and the expr are the same. */
597 var->path_expr = xstrdup (expression);
598
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
603 if (innermost_block)
604 {
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
609 if (fi == NULL)
610 error (_("Failed to find the specified frame"));
611
612 var->root->frame = get_frame_id (fi);
613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
614 old_id = get_frame_id (get_selected_frame (NULL));
615 select_frame (fi);
616 }
617
618 /* We definitely need to catch errors here.
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
621 if (!gdb_evaluate_expression (var->root->exp, &value))
622 {
623 /* Error getting the value. Try to at least get the
624 right type. */
625 struct value *type_only_value = evaluate_type (var->root->exp);
626
627 var->type = value_type (type_only_value);
628 }
629 else
630 var->type = value_type (value);
631
632 install_new_value (var, value, 1 /* Initial assignment */);
633
634 /* Set language info */
635 lang = variable_language (var);
636 var->root->lang = &languages[lang];
637
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
640
641 /* Reset the selected frame */
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
644 }
645
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
648
649 if ((var != NULL) && (objname != NULL))
650 {
651 var->obj_name = xstrdup (objname);
652
653 /* If a varobj name is duplicated, the install will fail so
654 we must clenup */
655 if (!install_variable (var))
656 {
657 do_cleanups (old_chain);
658 return NULL;
659 }
660 }
661
662 discard_cleanups (old_chain);
663 return var;
664 }
665
666 /* Generates an unique name that can be used for a varobj */
667
668 char *
669 varobj_gen_name (void)
670 {
671 static int id = 0;
672 char *obj_name;
673
674 /* generate a name for this object */
675 id++;
676 obj_name = xstrprintf ("var%d", id);
677
678 return obj_name;
679 }
680
681 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
683
684 struct varobj *
685 varobj_get_handle (char *objname)
686 {
687 struct vlist *cv;
688 const char *chp;
689 unsigned int index = 0;
690 unsigned int i = 1;
691
692 for (chp = objname; *chp; chp++)
693 {
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 }
696
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699 cv = cv->next;
700
701 if (cv == NULL)
702 error (_("Variable object not found"));
703
704 return cv->var;
705 }
706
707 /* Given the handle, return the name of the object */
708
709 char *
710 varobj_get_objname (struct varobj *var)
711 {
712 return var->obj_name;
713 }
714
715 /* Given the handle, return the expression represented by the object */
716
717 char *
718 varobj_get_expression (struct varobj *var)
719 {
720 return name_of_variable (var);
721 }
722
723 /* Deletes a varobj and all its children if only_children == 0,
724 otherwise deletes only the children; returns a malloc'ed list of
725 all the (malloc'ed) names of the variables that have been deleted
726 (NULL terminated) */
727
728 int
729 varobj_delete (struct varobj *var, char ***dellist, int only_children)
730 {
731 int delcount;
732 int mycount;
733 struct cpstack *result = NULL;
734 char **cp;
735
736 /* Initialize a stack for temporary results */
737 cppush (&result, NULL);
738
739 if (only_children)
740 /* Delete only the variable children */
741 delcount = delete_variable (&result, var, 1 /* only the children */ );
742 else
743 /* Delete the variable and all its children */
744 delcount = delete_variable (&result, var, 0 /* parent+children */ );
745
746 /* We may have been asked to return a list of what has been deleted */
747 if (dellist != NULL)
748 {
749 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
750
751 cp = *dellist;
752 mycount = delcount;
753 *cp = cppop (&result);
754 while ((*cp != NULL) && (mycount > 0))
755 {
756 mycount--;
757 cp++;
758 *cp = cppop (&result);
759 }
760
761 if (mycount || (*cp != NULL))
762 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
763 mycount);
764 }
765
766 return delcount;
767 }
768
769 #if HAVE_PYTHON
770
771 /* Convenience function for varobj_set_visualizer. Instantiate a
772 pretty-printer for a given value. */
773 static PyObject *
774 instantiate_pretty_printer (PyObject *constructor, struct value *value)
775 {
776 PyObject *val_obj = NULL;
777 PyObject *printer;
778
779 val_obj = value_to_value_object (value);
780 if (! val_obj)
781 return NULL;
782
783 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
784 Py_DECREF (val_obj);
785 return printer;
786 return NULL;
787 }
788
789 #endif
790
791 /* Set/Get variable object display format */
792
793 enum varobj_display_formats
794 varobj_set_display_format (struct varobj *var,
795 enum varobj_display_formats format)
796 {
797 switch (format)
798 {
799 case FORMAT_NATURAL:
800 case FORMAT_BINARY:
801 case FORMAT_DECIMAL:
802 case FORMAT_HEXADECIMAL:
803 case FORMAT_OCTAL:
804 var->format = format;
805 break;
806
807 default:
808 var->format = variable_default_display (var);
809 }
810
811 if (varobj_value_is_changeable_p (var)
812 && var->value && !value_lazy (var->value))
813 {
814 xfree (var->print_value);
815 var->print_value = value_get_print_value (var->value, var->format, var);
816 }
817
818 return var->format;
819 }
820
821 enum varobj_display_formats
822 varobj_get_display_format (struct varobj *var)
823 {
824 return var->format;
825 }
826
827 char *
828 varobj_get_display_hint (struct varobj *var)
829 {
830 char *result = NULL;
831
832 #if HAVE_PYTHON
833 struct cleanup *back_to = varobj_ensure_python_env (var);
834
835 if (var->pretty_printer)
836 result = gdbpy_get_display_hint (var->pretty_printer);
837
838 do_cleanups (back_to);
839 #endif
840
841 return result;
842 }
843
844 /* Return true if the varobj has items after TO, false otherwise. */
845
846 int
847 varobj_has_more (struct varobj *var, int to)
848 {
849 if (VEC_length (varobj_p, var->children) > to)
850 return 1;
851 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
852 && var->saved_item != NULL);
853 }
854
855 /* If the variable object is bound to a specific thread, that
856 is its evaluation can always be done in context of a frame
857 inside that thread, returns GDB id of the thread -- which
858 is always positive. Otherwise, returns -1. */
859 int
860 varobj_get_thread_id (struct varobj *var)
861 {
862 if (var->root->valid_block && var->root->thread_id > 0)
863 return var->root->thread_id;
864 else
865 return -1;
866 }
867
868 void
869 varobj_set_frozen (struct varobj *var, int frozen)
870 {
871 /* When a variable is unfrozen, we don't fetch its value.
872 The 'not_fetched' flag remains set, so next -var-update
873 won't complain.
874
875 We don't fetch the value, because for structures the client
876 should do -var-update anyway. It would be bad to have different
877 client-size logic for structure and other types. */
878 var->frozen = frozen;
879 }
880
881 int
882 varobj_get_frozen (struct varobj *var)
883 {
884 return var->frozen;
885 }
886
887 /* A helper function that restricts a range to what is actually
888 available in a VEC. This follows the usual rules for the meaning
889 of FROM and TO -- if either is negative, the entire range is
890 used. */
891
892 static void
893 restrict_range (VEC (varobj_p) *children, int *from, int *to)
894 {
895 if (*from < 0 || *to < 0)
896 {
897 *from = 0;
898 *to = VEC_length (varobj_p, children);
899 }
900 else
901 {
902 if (*from > VEC_length (varobj_p, children))
903 *from = VEC_length (varobj_p, children);
904 if (*to > VEC_length (varobj_p, children))
905 *to = VEC_length (varobj_p, children);
906 if (*from > *to)
907 *from = *to;
908 }
909 }
910
911 #if HAVE_PYTHON
912
913 /* A helper for update_dynamic_varobj_children that installs a new
914 child when needed. */
915
916 static void
917 install_dynamic_child (struct varobj *var,
918 VEC (varobj_p) **changed,
919 VEC (varobj_p) **new,
920 VEC (varobj_p) **unchanged,
921 int *cchanged,
922 int index,
923 const char *name,
924 struct value *value)
925 {
926 if (VEC_length (varobj_p, var->children) < index + 1)
927 {
928 /* There's no child yet. */
929 struct varobj *child = varobj_add_child (var, name, value);
930
931 if (new)
932 {
933 VEC_safe_push (varobj_p, *new, child);
934 *cchanged = 1;
935 }
936 }
937 else
938 {
939 varobj_p existing = VEC_index (varobj_p, var->children, index);
940
941 if (install_new_value (existing, value, 0))
942 {
943 if (changed)
944 VEC_safe_push (varobj_p, *changed, existing);
945 }
946 else if (unchanged)
947 VEC_safe_push (varobj_p, *unchanged, existing);
948 }
949 }
950
951 static int
952 dynamic_varobj_has_child_method (struct varobj *var)
953 {
954 struct cleanup *back_to;
955 PyObject *printer = var->pretty_printer;
956 int result;
957
958 back_to = varobj_ensure_python_env (var);
959 result = PyObject_HasAttr (printer, gdbpy_children_cst);
960 do_cleanups (back_to);
961 return result;
962 }
963
964 #endif
965
966 static int
967 update_dynamic_varobj_children (struct varobj *var,
968 VEC (varobj_p) **changed,
969 VEC (varobj_p) **new,
970 VEC (varobj_p) **unchanged,
971 int *cchanged,
972 int update_children,
973 int from,
974 int to)
975 {
976 #if HAVE_PYTHON
977 struct cleanup *back_to;
978 PyObject *children;
979 int i;
980 PyObject *printer = var->pretty_printer;
981
982 back_to = varobj_ensure_python_env (var);
983
984 *cchanged = 0;
985 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
986 {
987 do_cleanups (back_to);
988 return 0;
989 }
990
991 if (update_children || !var->child_iter)
992 {
993 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
994 NULL);
995
996 if (!children)
997 {
998 gdbpy_print_stack ();
999 error (_("Null value returned for children"));
1000 }
1001
1002 make_cleanup_py_decref (children);
1003
1004 if (!PyIter_Check (children))
1005 error (_("Returned value is not iterable"));
1006
1007 Py_XDECREF (var->child_iter);
1008 var->child_iter = PyObject_GetIter (children);
1009 if (!var->child_iter)
1010 {
1011 gdbpy_print_stack ();
1012 error (_("Could not get children iterator"));
1013 }
1014
1015 Py_XDECREF (var->saved_item);
1016 var->saved_item = NULL;
1017
1018 i = 0;
1019 }
1020 else
1021 i = VEC_length (varobj_p, var->children);
1022
1023 /* We ask for one extra child, so that MI can report whether there
1024 are more children. */
1025 for (; to < 0 || i < to + 1; ++i)
1026 {
1027 PyObject *item;
1028
1029 /* See if there was a leftover from last time. */
1030 if (var->saved_item)
1031 {
1032 item = var->saved_item;
1033 var->saved_item = NULL;
1034 }
1035 else
1036 item = PyIter_Next (var->child_iter);
1037
1038 if (!item)
1039 break;
1040
1041 /* We don't want to push the extra child on any report list. */
1042 if (to < 0 || i < to)
1043 {
1044 PyObject *py_v;
1045 char *name;
1046 struct value *v;
1047 struct cleanup *inner;
1048 int can_mention = from < 0 || i >= from;
1049
1050 inner = make_cleanup_py_decref (item);
1051
1052 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1053 error (_("Invalid item from the child list"));
1054
1055 v = convert_value_from_python (py_v);
1056 if (v == NULL)
1057 gdbpy_print_stack ();
1058 install_dynamic_child (var, can_mention ? changed : NULL,
1059 can_mention ? new : NULL,
1060 can_mention ? unchanged : NULL,
1061 can_mention ? cchanged : NULL, i, name, v);
1062 do_cleanups (inner);
1063 }
1064 else
1065 {
1066 Py_XDECREF (var->saved_item);
1067 var->saved_item = item;
1068
1069 /* We want to truncate the child list just before this
1070 element. */
1071 break;
1072 }
1073 }
1074
1075 if (i < VEC_length (varobj_p, var->children))
1076 {
1077 int j;
1078
1079 *cchanged = 1;
1080 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1081 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1082 VEC_truncate (varobj_p, var->children, i);
1083 }
1084
1085 /* If there are fewer children than requested, note that the list of
1086 children changed. */
1087 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1088 *cchanged = 1;
1089
1090 var->num_children = VEC_length (varobj_p, var->children);
1091
1092 do_cleanups (back_to);
1093
1094 return 1;
1095 #else
1096 gdb_assert (0 && "should never be called if Python is not enabled");
1097 #endif
1098 }
1099
1100 int
1101 varobj_get_num_children (struct varobj *var)
1102 {
1103 if (var->num_children == -1)
1104 {
1105 if (var->pretty_printer)
1106 {
1107 int dummy;
1108
1109 /* If we have a dynamic varobj, don't report -1 children.
1110 So, try to fetch some children first. */
1111 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1112 0, 0, 0);
1113 }
1114 else
1115 var->num_children = number_of_children (var);
1116 }
1117
1118 return var->num_children >= 0 ? var->num_children : 0;
1119 }
1120
1121 /* Creates a list of the immediate children of a variable object;
1122 the return code is the number of such children or -1 on error */
1123
1124 VEC (varobj_p)*
1125 varobj_list_children (struct varobj *var, int *from, int *to)
1126 {
1127 char *name;
1128 int i, children_changed;
1129
1130 var->children_requested = 1;
1131
1132 if (var->pretty_printer)
1133 {
1134 /* This, in theory, can result in the number of children changing without
1135 frontend noticing. But well, calling -var-list-children on the same
1136 varobj twice is not something a sane frontend would do. */
1137 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1138 0, 0, *to);
1139 restrict_range (var->children, from, to);
1140 return var->children;
1141 }
1142
1143 if (var->num_children == -1)
1144 var->num_children = number_of_children (var);
1145
1146 /* If that failed, give up. */
1147 if (var->num_children == -1)
1148 return var->children;
1149
1150 /* If we're called when the list of children is not yet initialized,
1151 allocate enough elements in it. */
1152 while (VEC_length (varobj_p, var->children) < var->num_children)
1153 VEC_safe_push (varobj_p, var->children, NULL);
1154
1155 for (i = 0; i < var->num_children; i++)
1156 {
1157 varobj_p existing = VEC_index (varobj_p, var->children, i);
1158
1159 if (existing == NULL)
1160 {
1161 /* Either it's the first call to varobj_list_children for
1162 this variable object, and the child was never created,
1163 or it was explicitly deleted by the client. */
1164 name = name_of_child (var, i);
1165 existing = create_child (var, i, name);
1166 VEC_replace (varobj_p, var->children, i, existing);
1167 }
1168 }
1169
1170 restrict_range (var->children, from, to);
1171 return var->children;
1172 }
1173
1174 #if HAVE_PYTHON
1175
1176 static struct varobj *
1177 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1178 {
1179 varobj_p v = create_child_with_value (var,
1180 VEC_length (varobj_p, var->children),
1181 name, value);
1182
1183 VEC_safe_push (varobj_p, var->children, v);
1184 return v;
1185 }
1186
1187 #endif /* HAVE_PYTHON */
1188
1189 /* Obtain the type of an object Variable as a string similar to the one gdb
1190 prints on the console */
1191
1192 char *
1193 varobj_get_type (struct varobj *var)
1194 {
1195 /* For the "fake" variables, do not return a type. (It's type is
1196 NULL, too.)
1197 Do not return a type for invalid variables as well. */
1198 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1199 return NULL;
1200
1201 return type_to_string (var->type);
1202 }
1203
1204 /* Obtain the type of an object variable. */
1205
1206 struct type *
1207 varobj_get_gdb_type (struct varobj *var)
1208 {
1209 return var->type;
1210 }
1211
1212 /* Return a pointer to the full rooted expression of varobj VAR.
1213 If it has not been computed yet, compute it. */
1214 char *
1215 varobj_get_path_expr (struct varobj *var)
1216 {
1217 if (var->path_expr != NULL)
1218 return var->path_expr;
1219 else
1220 {
1221 /* For root varobjs, we initialize path_expr
1222 when creating varobj, so here it should be
1223 child varobj. */
1224 gdb_assert (!is_root_p (var));
1225 return (*var->root->lang->path_expr_of_child) (var);
1226 }
1227 }
1228
1229 enum varobj_languages
1230 varobj_get_language (struct varobj *var)
1231 {
1232 return variable_language (var);
1233 }
1234
1235 int
1236 varobj_get_attributes (struct varobj *var)
1237 {
1238 int attributes = 0;
1239
1240 if (varobj_editable_p (var))
1241 /* FIXME: define masks for attributes */
1242 attributes |= 0x00000001; /* Editable */
1243
1244 return attributes;
1245 }
1246
1247 int
1248 varobj_pretty_printed_p (struct varobj *var)
1249 {
1250 return var->pretty_printer != NULL;
1251 }
1252
1253 char *
1254 varobj_get_formatted_value (struct varobj *var,
1255 enum varobj_display_formats format)
1256 {
1257 return my_value_of_variable (var, format);
1258 }
1259
1260 char *
1261 varobj_get_value (struct varobj *var)
1262 {
1263 return my_value_of_variable (var, var->format);
1264 }
1265
1266 /* Set the value of an object variable (if it is editable) to the
1267 value of the given expression */
1268 /* Note: Invokes functions that can call error() */
1269
1270 int
1271 varobj_set_value (struct varobj *var, char *expression)
1272 {
1273 struct value *val;
1274
1275 /* The argument "expression" contains the variable's new value.
1276 We need to first construct a legal expression for this -- ugh! */
1277 /* Does this cover all the bases? */
1278 struct expression *exp;
1279 struct value *value;
1280 int saved_input_radix = input_radix;
1281 char *s = expression;
1282
1283 gdb_assert (varobj_editable_p (var));
1284
1285 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1286 exp = parse_exp_1 (&s, 0, 0);
1287 if (!gdb_evaluate_expression (exp, &value))
1288 {
1289 /* We cannot proceed without a valid expression. */
1290 xfree (exp);
1291 return 0;
1292 }
1293
1294 /* All types that are editable must also be changeable. */
1295 gdb_assert (varobj_value_is_changeable_p (var));
1296
1297 /* The value of a changeable variable object must not be lazy. */
1298 gdb_assert (!value_lazy (var->value));
1299
1300 /* Need to coerce the input. We want to check if the
1301 value of the variable object will be different
1302 after assignment, and the first thing value_assign
1303 does is coerce the input.
1304 For example, if we are assigning an array to a pointer variable we
1305 should compare the pointer with the the array's address, not with the
1306 array's content. */
1307 value = coerce_array (value);
1308
1309 /* The new value may be lazy. gdb_value_assign, or
1310 rather value_contents, will take care of this.
1311 If fetching of the new value will fail, gdb_value_assign
1312 with catch the exception. */
1313 if (!gdb_value_assign (var->value, value, &val))
1314 return 0;
1315
1316 /* If the value has changed, record it, so that next -var-update can
1317 report this change. If a variable had a value of '1', we've set it
1318 to '333' and then set again to '1', when -var-update will report this
1319 variable as changed -- because the first assignment has set the
1320 'updated' flag. There's no need to optimize that, because return value
1321 of -var-update should be considered an approximation. */
1322 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1323 input_radix = saved_input_radix;
1324 return 1;
1325 }
1326
1327 #if HAVE_PYTHON
1328
1329 /* A helper function to install a constructor function and visualizer
1330 in a varobj. */
1331
1332 static void
1333 install_visualizer (struct varobj *var, PyObject *constructor,
1334 PyObject *visualizer)
1335 {
1336 Py_XDECREF (var->constructor);
1337 var->constructor = constructor;
1338
1339 Py_XDECREF (var->pretty_printer);
1340 var->pretty_printer = visualizer;
1341
1342 Py_XDECREF (var->child_iter);
1343 var->child_iter = NULL;
1344 }
1345
1346 /* Install the default visualizer for VAR. */
1347
1348 static void
1349 install_default_visualizer (struct varobj *var)
1350 {
1351 if (pretty_printing)
1352 {
1353 PyObject *pretty_printer = NULL;
1354
1355 if (var->value)
1356 {
1357 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1358 if (! pretty_printer)
1359 {
1360 gdbpy_print_stack ();
1361 error (_("Cannot instantiate printer for default visualizer"));
1362 }
1363 }
1364
1365 if (pretty_printer == Py_None)
1366 {
1367 Py_DECREF (pretty_printer);
1368 pretty_printer = NULL;
1369 }
1370
1371 install_visualizer (var, NULL, pretty_printer);
1372 }
1373 }
1374
1375 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1376 make a new object. */
1377
1378 static void
1379 construct_visualizer (struct varobj *var, PyObject *constructor)
1380 {
1381 PyObject *pretty_printer;
1382
1383 Py_INCREF (constructor);
1384 if (constructor == Py_None)
1385 pretty_printer = NULL;
1386 else
1387 {
1388 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1389 if (! pretty_printer)
1390 {
1391 gdbpy_print_stack ();
1392 Py_DECREF (constructor);
1393 constructor = Py_None;
1394 Py_INCREF (constructor);
1395 }
1396
1397 if (pretty_printer == Py_None)
1398 {
1399 Py_DECREF (pretty_printer);
1400 pretty_printer = NULL;
1401 }
1402 }
1403
1404 install_visualizer (var, constructor, pretty_printer);
1405 }
1406
1407 #endif /* HAVE_PYTHON */
1408
1409 /* A helper function for install_new_value. This creates and installs
1410 a visualizer for VAR, if appropriate. */
1411
1412 static void
1413 install_new_value_visualizer (struct varobj *var)
1414 {
1415 #if HAVE_PYTHON
1416 /* If the constructor is None, then we want the raw value. If VAR
1417 does not have a value, just skip this. */
1418 if (var->constructor != Py_None && var->value)
1419 {
1420 struct cleanup *cleanup;
1421
1422 cleanup = varobj_ensure_python_env (var);
1423
1424 if (!var->constructor)
1425 install_default_visualizer (var);
1426 else
1427 construct_visualizer (var, var->constructor);
1428
1429 do_cleanups (cleanup);
1430 }
1431 #else
1432 /* Do nothing. */
1433 #endif
1434 }
1435
1436 /* Assign a new value to a variable object. If INITIAL is non-zero,
1437 this is the first assignement after the variable object was just
1438 created, or changed type. In that case, just assign the value
1439 and return 0.
1440 Otherwise, assign the new value, and return 1 if the value is different
1441 from the current one, 0 otherwise. The comparison is done on textual
1442 representation of value. Therefore, some types need not be compared. E.g.
1443 for structures the reported value is always "{...}", so no comparison is
1444 necessary here. If the old value was NULL and new one is not, or vice versa,
1445 we always return 1.
1446
1447 The VALUE parameter should not be released -- the function will
1448 take care of releasing it when needed. */
1449 static int
1450 install_new_value (struct varobj *var, struct value *value, int initial)
1451 {
1452 int changeable;
1453 int need_to_fetch;
1454 int changed = 0;
1455 int intentionally_not_fetched = 0;
1456 char *print_value = NULL;
1457
1458 /* We need to know the varobj's type to decide if the value should
1459 be fetched or not. C++ fake children (public/protected/private)
1460 don't have a type. */
1461 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1462 changeable = varobj_value_is_changeable_p (var);
1463
1464 /* If the type has custom visualizer, we consider it to be always
1465 changeable. FIXME: need to make sure this behaviour will not
1466 mess up read-sensitive values. */
1467 if (var->pretty_printer)
1468 changeable = 1;
1469
1470 need_to_fetch = changeable;
1471
1472 /* We are not interested in the address of references, and given
1473 that in C++ a reference is not rebindable, it cannot
1474 meaningfully change. So, get hold of the real value. */
1475 if (value)
1476 value = coerce_ref (value);
1477
1478 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1479 /* For unions, we need to fetch the value implicitly because
1480 of implementation of union member fetch. When gdb
1481 creates a value for a field and the value of the enclosing
1482 structure is not lazy, it immediately copies the necessary
1483 bytes from the enclosing values. If the enclosing value is
1484 lazy, the call to value_fetch_lazy on the field will read
1485 the data from memory. For unions, that means we'll read the
1486 same memory more than once, which is not desirable. So
1487 fetch now. */
1488 need_to_fetch = 1;
1489
1490 /* The new value might be lazy. If the type is changeable,
1491 that is we'll be comparing values of this type, fetch the
1492 value now. Otherwise, on the next update the old value
1493 will be lazy, which means we've lost that old value. */
1494 if (need_to_fetch && value && value_lazy (value))
1495 {
1496 struct varobj *parent = var->parent;
1497 int frozen = var->frozen;
1498
1499 for (; !frozen && parent; parent = parent->parent)
1500 frozen |= parent->frozen;
1501
1502 if (frozen && initial)
1503 {
1504 /* For variables that are frozen, or are children of frozen
1505 variables, we don't do fetch on initial assignment.
1506 For non-initial assignemnt we do the fetch, since it means we're
1507 explicitly asked to compare the new value with the old one. */
1508 intentionally_not_fetched = 1;
1509 }
1510 else if (!gdb_value_fetch_lazy (value))
1511 {
1512 /* Set the value to NULL, so that for the next -var-update,
1513 we don't try to compare the new value with this value,
1514 that we couldn't even read. */
1515 value = NULL;
1516 }
1517 }
1518
1519
1520 /* Below, we'll be comparing string rendering of old and new
1521 values. Don't get string rendering if the value is
1522 lazy -- if it is, the code above has decided that the value
1523 should not be fetched. */
1524 if (value && !value_lazy (value) && !var->pretty_printer)
1525 print_value = value_get_print_value (value, var->format, var);
1526
1527 /* If the type is changeable, compare the old and the new values.
1528 If this is the initial assignment, we don't have any old value
1529 to compare with. */
1530 if (!initial && changeable)
1531 {
1532 /* If the value of the varobj was changed by -var-set-value,
1533 then the value in the varobj and in the target is the same.
1534 However, that value is different from the value that the
1535 varobj had after the previous -var-update. So need to the
1536 varobj as changed. */
1537 if (var->updated)
1538 {
1539 changed = 1;
1540 }
1541 else if (! var->pretty_printer)
1542 {
1543 /* Try to compare the values. That requires that both
1544 values are non-lazy. */
1545 if (var->not_fetched && value_lazy (var->value))
1546 {
1547 /* This is a frozen varobj and the value was never read.
1548 Presumably, UI shows some "never read" indicator.
1549 Now that we've fetched the real value, we need to report
1550 this varobj as changed so that UI can show the real
1551 value. */
1552 changed = 1;
1553 }
1554 else if (var->value == NULL && value == NULL)
1555 /* Equal. */
1556 ;
1557 else if (var->value == NULL || value == NULL)
1558 {
1559 changed = 1;
1560 }
1561 else
1562 {
1563 gdb_assert (!value_lazy (var->value));
1564 gdb_assert (!value_lazy (value));
1565
1566 gdb_assert (var->print_value != NULL && print_value != NULL);
1567 if (strcmp (var->print_value, print_value) != 0)
1568 changed = 1;
1569 }
1570 }
1571 }
1572
1573 if (!initial && !changeable)
1574 {
1575 /* For values that are not changeable, we don't compare the values.
1576 However, we want to notice if a value was not NULL and now is NULL,
1577 or vise versa, so that we report when top-level varobjs come in scope
1578 and leave the scope. */
1579 changed = (var->value != NULL) != (value != NULL);
1580 }
1581
1582 /* We must always keep the new value, since children depend on it. */
1583 if (var->value != NULL && var->value != value)
1584 value_free (var->value);
1585 var->value = value;
1586 if (value != NULL)
1587 value_incref (value);
1588 if (value && value_lazy (value) && intentionally_not_fetched)
1589 var->not_fetched = 1;
1590 else
1591 var->not_fetched = 0;
1592 var->updated = 0;
1593
1594 install_new_value_visualizer (var);
1595
1596 /* If we installed a pretty-printer, re-compare the printed version
1597 to see if the variable changed. */
1598 if (var->pretty_printer)
1599 {
1600 xfree (print_value);
1601 print_value = value_get_print_value (var->value, var->format, var);
1602 if ((var->print_value == NULL && print_value != NULL)
1603 || (var->print_value != NULL && print_value == NULL)
1604 || (var->print_value != NULL && print_value != NULL
1605 && strcmp (var->print_value, print_value) != 0))
1606 changed = 1;
1607 }
1608 if (var->print_value)
1609 xfree (var->print_value);
1610 var->print_value = print_value;
1611
1612 gdb_assert (!var->value || value_type (var->value));
1613
1614 return changed;
1615 }
1616
1617 /* Return the requested range for a varobj. VAR is the varobj. FROM
1618 and TO are out parameters; *FROM and *TO will be set to the
1619 selected sub-range of VAR. If no range was selected using
1620 -var-set-update-range, then both will be -1. */
1621 void
1622 varobj_get_child_range (struct varobj *var, int *from, int *to)
1623 {
1624 *from = var->from;
1625 *to = var->to;
1626 }
1627
1628 /* Set the selected sub-range of children of VAR to start at index
1629 FROM and end at index TO. If either FROM or TO is less than zero,
1630 this is interpreted as a request for all children. */
1631 void
1632 varobj_set_child_range (struct varobj *var, int from, int to)
1633 {
1634 var->from = from;
1635 var->to = to;
1636 }
1637
1638 void
1639 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1640 {
1641 #if HAVE_PYTHON
1642 PyObject *mainmod, *globals, *constructor;
1643 struct cleanup *back_to;
1644
1645 back_to = varobj_ensure_python_env (var);
1646
1647 mainmod = PyImport_AddModule ("__main__");
1648 globals = PyModule_GetDict (mainmod);
1649 Py_INCREF (globals);
1650 make_cleanup_py_decref (globals);
1651
1652 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1653
1654 if (! constructor)
1655 {
1656 gdbpy_print_stack ();
1657 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1658 }
1659
1660 construct_visualizer (var, constructor);
1661 Py_XDECREF (constructor);
1662
1663 /* If there are any children now, wipe them. */
1664 varobj_delete (var, NULL, 1 /* children only */);
1665 var->num_children = -1;
1666
1667 do_cleanups (back_to);
1668 #else
1669 error (_("Python support required"));
1670 #endif
1671 }
1672
1673 /* Update the values for a variable and its children. This is a
1674 two-pronged attack. First, re-parse the value for the root's
1675 expression to see if it's changed. Then go all the way
1676 through its children, reconstructing them and noting if they've
1677 changed.
1678
1679 The EXPLICIT parameter specifies if this call is result
1680 of MI request to update this specific variable, or
1681 result of implicit -var-update *. For implicit request, we don't
1682 update frozen variables.
1683
1684 NOTE: This function may delete the caller's varobj. If it
1685 returns TYPE_CHANGED, then it has done this and VARP will be modified
1686 to point to the new varobj. */
1687
1688 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1689 {
1690 int changed = 0;
1691 int type_changed = 0;
1692 int i;
1693 struct value *new;
1694 VEC (varobj_update_result) *stack = NULL;
1695 VEC (varobj_update_result) *result = NULL;
1696
1697 /* Frozen means frozen -- we don't check for any change in
1698 this varobj, including its going out of scope, or
1699 changing type. One use case for frozen varobjs is
1700 retaining previously evaluated expressions, and we don't
1701 want them to be reevaluated at all. */
1702 if (!explicit && (*varp)->frozen)
1703 return result;
1704
1705 if (!(*varp)->root->is_valid)
1706 {
1707 varobj_update_result r = {0};
1708
1709 r.varobj = *varp;
1710 r.status = VAROBJ_INVALID;
1711 VEC_safe_push (varobj_update_result, result, &r);
1712 return result;
1713 }
1714
1715 if ((*varp)->root->rootvar == *varp)
1716 {
1717 varobj_update_result r = {0};
1718
1719 r.varobj = *varp;
1720 r.status = VAROBJ_IN_SCOPE;
1721
1722 /* Update the root variable. value_of_root can return NULL
1723 if the variable is no longer around, i.e. we stepped out of
1724 the frame in which a local existed. We are letting the
1725 value_of_root variable dispose of the varobj if the type
1726 has changed. */
1727 new = value_of_root (varp, &type_changed);
1728 r.varobj = *varp;
1729
1730 r.type_changed = type_changed;
1731 if (install_new_value ((*varp), new, type_changed))
1732 r.changed = 1;
1733
1734 if (new == NULL)
1735 r.status = VAROBJ_NOT_IN_SCOPE;
1736 r.value_installed = 1;
1737
1738 if (r.status == VAROBJ_NOT_IN_SCOPE)
1739 {
1740 if (r.type_changed || r.changed)
1741 VEC_safe_push (varobj_update_result, result, &r);
1742 return result;
1743 }
1744
1745 VEC_safe_push (varobj_update_result, stack, &r);
1746 }
1747 else
1748 {
1749 varobj_update_result r = {0};
1750
1751 r.varobj = *varp;
1752 VEC_safe_push (varobj_update_result, stack, &r);
1753 }
1754
1755 /* Walk through the children, reconstructing them all. */
1756 while (!VEC_empty (varobj_update_result, stack))
1757 {
1758 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1759 struct varobj *v = r.varobj;
1760
1761 VEC_pop (varobj_update_result, stack);
1762
1763 /* Update this variable, unless it's a root, which is already
1764 updated. */
1765 if (!r.value_installed)
1766 {
1767 new = value_of_child (v->parent, v->index);
1768 if (install_new_value (v, new, 0 /* type not changed */))
1769 {
1770 r.changed = 1;
1771 v->updated = 0;
1772 }
1773 }
1774
1775 /* We probably should not get children of a varobj that has a
1776 pretty-printer, but for which -var-list-children was never
1777 invoked. */
1778 if (v->pretty_printer)
1779 {
1780 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1781 int i, children_changed = 0;
1782
1783 if (v->frozen)
1784 continue;
1785
1786 if (!v->children_requested)
1787 {
1788 int dummy;
1789
1790 /* If we initially did not have potential children, but
1791 now we do, consider the varobj as changed.
1792 Otherwise, if children were never requested, consider
1793 it as unchanged -- presumably, such varobj is not yet
1794 expanded in the UI, so we need not bother getting
1795 it. */
1796 if (!varobj_has_more (v, 0))
1797 {
1798 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1799 &dummy, 0, 0, 0);
1800 if (varobj_has_more (v, 0))
1801 r.changed = 1;
1802 }
1803
1804 if (r.changed)
1805 VEC_safe_push (varobj_update_result, result, &r);
1806
1807 continue;
1808 }
1809
1810 /* If update_dynamic_varobj_children returns 0, then we have
1811 a non-conforming pretty-printer, so we skip it. */
1812 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1813 &children_changed, 1,
1814 v->from, v->to))
1815 {
1816 if (children_changed || new)
1817 {
1818 r.children_changed = 1;
1819 r.new = new;
1820 }
1821 /* Push in reverse order so that the first child is
1822 popped from the work stack first, and so will be
1823 added to result first. This does not affect
1824 correctness, just "nicer". */
1825 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1826 {
1827 varobj_p tmp = VEC_index (varobj_p, changed, i);
1828 varobj_update_result r = {0};
1829
1830 r.varobj = tmp;
1831 r.changed = 1;
1832 r.value_installed = 1;
1833 VEC_safe_push (varobj_update_result, stack, &r);
1834 }
1835 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1836 {
1837 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1838
1839 if (!tmp->frozen)
1840 {
1841 varobj_update_result r = {0};
1842
1843 r.varobj = tmp;
1844 r.value_installed = 1;
1845 VEC_safe_push (varobj_update_result, stack, &r);
1846 }
1847 }
1848 if (r.changed || r.children_changed)
1849 VEC_safe_push (varobj_update_result, result, &r);
1850
1851 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1852 has been put into the result vector. */
1853 VEC_free (varobj_p, changed);
1854 VEC_free (varobj_p, unchanged);
1855
1856 continue;
1857 }
1858 }
1859
1860 /* Push any children. Use reverse order so that the first
1861 child is popped from the work stack first, and so
1862 will be added to result first. This does not
1863 affect correctness, just "nicer". */
1864 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1865 {
1866 varobj_p c = VEC_index (varobj_p, v->children, i);
1867
1868 /* Child may be NULL if explicitly deleted by -var-delete. */
1869 if (c != NULL && !c->frozen)
1870 {
1871 varobj_update_result r = {0};
1872
1873 r.varobj = c;
1874 VEC_safe_push (varobj_update_result, stack, &r);
1875 }
1876 }
1877
1878 if (r.changed || r.type_changed)
1879 VEC_safe_push (varobj_update_result, result, &r);
1880 }
1881
1882 VEC_free (varobj_update_result, stack);
1883
1884 return result;
1885 }
1886 \f
1887
1888 /* Helper functions */
1889
1890 /*
1891 * Variable object construction/destruction
1892 */
1893
1894 static int
1895 delete_variable (struct cpstack **resultp, struct varobj *var,
1896 int only_children_p)
1897 {
1898 int delcount = 0;
1899
1900 delete_variable_1 (resultp, &delcount, var,
1901 only_children_p, 1 /* remove_from_parent_p */ );
1902
1903 return delcount;
1904 }
1905
1906 /* Delete the variable object VAR and its children */
1907 /* IMPORTANT NOTE: If we delete a variable which is a child
1908 and the parent is not removed we dump core. It must be always
1909 initially called with remove_from_parent_p set */
1910 static void
1911 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1912 struct varobj *var, int only_children_p,
1913 int remove_from_parent_p)
1914 {
1915 int i;
1916
1917 /* Delete any children of this variable, too. */
1918 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1919 {
1920 varobj_p child = VEC_index (varobj_p, var->children, i);
1921
1922 if (!child)
1923 continue;
1924 if (!remove_from_parent_p)
1925 child->parent = NULL;
1926 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1927 }
1928 VEC_free (varobj_p, var->children);
1929
1930 /* if we were called to delete only the children we are done here */
1931 if (only_children_p)
1932 return;
1933
1934 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1935 /* If the name is null, this is a temporary variable, that has not
1936 yet been installed, don't report it, it belongs to the caller... */
1937 if (var->obj_name != NULL)
1938 {
1939 cppush (resultp, xstrdup (var->obj_name));
1940 *delcountp = *delcountp + 1;
1941 }
1942
1943 /* If this variable has a parent, remove it from its parent's list */
1944 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1945 (as indicated by remove_from_parent_p) we don't bother doing an
1946 expensive list search to find the element to remove when we are
1947 discarding the list afterwards */
1948 if ((remove_from_parent_p) && (var->parent != NULL))
1949 {
1950 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1951 }
1952
1953 if (var->obj_name != NULL)
1954 uninstall_variable (var);
1955
1956 /* Free memory associated with this variable */
1957 free_variable (var);
1958 }
1959
1960 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1961 static int
1962 install_variable (struct varobj *var)
1963 {
1964 struct vlist *cv;
1965 struct vlist *newvl;
1966 const char *chp;
1967 unsigned int index = 0;
1968 unsigned int i = 1;
1969
1970 for (chp = var->obj_name; *chp; chp++)
1971 {
1972 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1973 }
1974
1975 cv = *(varobj_table + index);
1976 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1977 cv = cv->next;
1978
1979 if (cv != NULL)
1980 error (_("Duplicate variable object name"));
1981
1982 /* Add varobj to hash table */
1983 newvl = xmalloc (sizeof (struct vlist));
1984 newvl->next = *(varobj_table + index);
1985 newvl->var = var;
1986 *(varobj_table + index) = newvl;
1987
1988 /* If root, add varobj to root list */
1989 if (is_root_p (var))
1990 {
1991 /* Add to list of root variables */
1992 if (rootlist == NULL)
1993 var->root->next = NULL;
1994 else
1995 var->root->next = rootlist;
1996 rootlist = var->root;
1997 }
1998
1999 return 1; /* OK */
2000 }
2001
2002 /* Unistall the object VAR. */
2003 static void
2004 uninstall_variable (struct varobj *var)
2005 {
2006 struct vlist *cv;
2007 struct vlist *prev;
2008 struct varobj_root *cr;
2009 struct varobj_root *prer;
2010 const char *chp;
2011 unsigned int index = 0;
2012 unsigned int i = 1;
2013
2014 /* Remove varobj from hash table */
2015 for (chp = var->obj_name; *chp; chp++)
2016 {
2017 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2018 }
2019
2020 cv = *(varobj_table + index);
2021 prev = NULL;
2022 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2023 {
2024 prev = cv;
2025 cv = cv->next;
2026 }
2027
2028 if (varobjdebug)
2029 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2030
2031 if (cv == NULL)
2032 {
2033 warning
2034 ("Assertion failed: Could not find variable object \"%s\" to delete",
2035 var->obj_name);
2036 return;
2037 }
2038
2039 if (prev == NULL)
2040 *(varobj_table + index) = cv->next;
2041 else
2042 prev->next = cv->next;
2043
2044 xfree (cv);
2045
2046 /* If root, remove varobj from root list */
2047 if (is_root_p (var))
2048 {
2049 /* Remove from list of root variables */
2050 if (rootlist == var->root)
2051 rootlist = var->root->next;
2052 else
2053 {
2054 prer = NULL;
2055 cr = rootlist;
2056 while ((cr != NULL) && (cr->rootvar != var))
2057 {
2058 prer = cr;
2059 cr = cr->next;
2060 }
2061 if (cr == NULL)
2062 {
2063 warning ("Assertion failed: Could not find "
2064 "varobj \"%s\" in root list",
2065 var->obj_name);
2066 return;
2067 }
2068 if (prer == NULL)
2069 rootlist = NULL;
2070 else
2071 prer->next = cr->next;
2072 }
2073 }
2074
2075 }
2076
2077 /* Create and install a child of the parent of the given name */
2078 static struct varobj *
2079 create_child (struct varobj *parent, int index, char *name)
2080 {
2081 return create_child_with_value (parent, index, name,
2082 value_of_child (parent, index));
2083 }
2084
2085 static struct varobj *
2086 create_child_with_value (struct varobj *parent, int index, const char *name,
2087 struct value *value)
2088 {
2089 struct varobj *child;
2090 char *childs_name;
2091
2092 child = new_variable ();
2093
2094 /* name is allocated by name_of_child */
2095 /* FIXME: xstrdup should not be here. */
2096 child->name = xstrdup (name);
2097 child->index = index;
2098 child->parent = parent;
2099 child->root = parent->root;
2100 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2101 child->obj_name = childs_name;
2102 install_variable (child);
2103
2104 /* Compute the type of the child. Must do this before
2105 calling install_new_value. */
2106 if (value != NULL)
2107 /* If the child had no evaluation errors, var->value
2108 will be non-NULL and contain a valid type. */
2109 child->type = value_type (value);
2110 else
2111 /* Otherwise, we must compute the type. */
2112 child->type = (*child->root->lang->type_of_child) (child->parent,
2113 child->index);
2114 install_new_value (child, value, 1);
2115
2116 return child;
2117 }
2118 \f
2119
2120 /*
2121 * Miscellaneous utility functions.
2122 */
2123
2124 /* Allocate memory and initialize a new variable */
2125 static struct varobj *
2126 new_variable (void)
2127 {
2128 struct varobj *var;
2129
2130 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2131 var->name = NULL;
2132 var->path_expr = NULL;
2133 var->obj_name = NULL;
2134 var->index = -1;
2135 var->type = NULL;
2136 var->value = NULL;
2137 var->num_children = -1;
2138 var->parent = NULL;
2139 var->children = NULL;
2140 var->format = 0;
2141 var->root = NULL;
2142 var->updated = 0;
2143 var->print_value = NULL;
2144 var->frozen = 0;
2145 var->not_fetched = 0;
2146 var->children_requested = 0;
2147 var->from = -1;
2148 var->to = -1;
2149 var->constructor = 0;
2150 var->pretty_printer = 0;
2151 var->child_iter = 0;
2152 var->saved_item = 0;
2153
2154 return var;
2155 }
2156
2157 /* Allocate memory and initialize a new root variable */
2158 static struct varobj *
2159 new_root_variable (void)
2160 {
2161 struct varobj *var = new_variable ();
2162
2163 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2164 var->root->lang = NULL;
2165 var->root->exp = NULL;
2166 var->root->valid_block = NULL;
2167 var->root->frame = null_frame_id;
2168 var->root->floating = 0;
2169 var->root->rootvar = NULL;
2170 var->root->is_valid = 1;
2171
2172 return var;
2173 }
2174
2175 /* Free any allocated memory associated with VAR. */
2176 static void
2177 free_variable (struct varobj *var)
2178 {
2179 #if HAVE_PYTHON
2180 if (var->pretty_printer)
2181 {
2182 struct cleanup *cleanup = varobj_ensure_python_env (var);
2183 Py_XDECREF (var->constructor);
2184 Py_XDECREF (var->pretty_printer);
2185 Py_XDECREF (var->child_iter);
2186 Py_XDECREF (var->saved_item);
2187 do_cleanups (cleanup);
2188 }
2189 #endif
2190
2191 value_free (var->value);
2192
2193 /* Free the expression if this is a root variable. */
2194 if (is_root_p (var))
2195 {
2196 xfree (var->root->exp);
2197 xfree (var->root);
2198 }
2199
2200 xfree (var->name);
2201 xfree (var->obj_name);
2202 xfree (var->print_value);
2203 xfree (var->path_expr);
2204 xfree (var);
2205 }
2206
2207 static void
2208 do_free_variable_cleanup (void *var)
2209 {
2210 free_variable (var);
2211 }
2212
2213 static struct cleanup *
2214 make_cleanup_free_variable (struct varobj *var)
2215 {
2216 return make_cleanup (do_free_variable_cleanup, var);
2217 }
2218
2219 /* This returns the type of the variable. It also skips past typedefs
2220 to return the real type of the variable.
2221
2222 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2223 except within get_target_type and get_type. */
2224 static struct type *
2225 get_type (struct varobj *var)
2226 {
2227 struct type *type;
2228
2229 type = var->type;
2230 if (type != NULL)
2231 type = check_typedef (type);
2232
2233 return type;
2234 }
2235
2236 /* Return the type of the value that's stored in VAR,
2237 or that would have being stored there if the
2238 value were accessible.
2239
2240 This differs from VAR->type in that VAR->type is always
2241 the true type of the expession in the source language.
2242 The return value of this function is the type we're
2243 actually storing in varobj, and using for displaying
2244 the values and for comparing previous and new values.
2245
2246 For example, top-level references are always stripped. */
2247 static struct type *
2248 get_value_type (struct varobj *var)
2249 {
2250 struct type *type;
2251
2252 if (var->value)
2253 type = value_type (var->value);
2254 else
2255 type = var->type;
2256
2257 type = check_typedef (type);
2258
2259 if (TYPE_CODE (type) == TYPE_CODE_REF)
2260 type = get_target_type (type);
2261
2262 type = check_typedef (type);
2263
2264 return type;
2265 }
2266
2267 /* This returns the target type (or NULL) of TYPE, also skipping
2268 past typedefs, just like get_type ().
2269
2270 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2271 except within get_target_type and get_type. */
2272 static struct type *
2273 get_target_type (struct type *type)
2274 {
2275 if (type != NULL)
2276 {
2277 type = TYPE_TARGET_TYPE (type);
2278 if (type != NULL)
2279 type = check_typedef (type);
2280 }
2281
2282 return type;
2283 }
2284
2285 /* What is the default display for this variable? We assume that
2286 everything is "natural". Any exceptions? */
2287 static enum varobj_display_formats
2288 variable_default_display (struct varobj *var)
2289 {
2290 return FORMAT_NATURAL;
2291 }
2292
2293 /* FIXME: The following should be generic for any pointer */
2294 static void
2295 cppush (struct cpstack **pstack, char *name)
2296 {
2297 struct cpstack *s;
2298
2299 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2300 s->name = name;
2301 s->next = *pstack;
2302 *pstack = s;
2303 }
2304
2305 /* FIXME: The following should be generic for any pointer */
2306 static char *
2307 cppop (struct cpstack **pstack)
2308 {
2309 struct cpstack *s;
2310 char *v;
2311
2312 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2313 return NULL;
2314
2315 s = *pstack;
2316 v = s->name;
2317 *pstack = (*pstack)->next;
2318 xfree (s);
2319
2320 return v;
2321 }
2322 \f
2323 /*
2324 * Language-dependencies
2325 */
2326
2327 /* Common entry points */
2328
2329 /* Get the language of variable VAR. */
2330 static enum varobj_languages
2331 variable_language (struct varobj *var)
2332 {
2333 enum varobj_languages lang;
2334
2335 switch (var->root->exp->language_defn->la_language)
2336 {
2337 default:
2338 case language_c:
2339 lang = vlang_c;
2340 break;
2341 case language_cplus:
2342 lang = vlang_cplus;
2343 break;
2344 case language_java:
2345 lang = vlang_java;
2346 break;
2347 }
2348
2349 return lang;
2350 }
2351
2352 /* Return the number of children for a given variable.
2353 The result of this function is defined by the language
2354 implementation. The number of children returned by this function
2355 is the number of children that the user will see in the variable
2356 display. */
2357 static int
2358 number_of_children (struct varobj *var)
2359 {
2360 return (*var->root->lang->number_of_children) (var);;
2361 }
2362
2363 /* What is the expression for the root varobj VAR? Returns a malloc'd
2364 string. */
2365 static char *
2366 name_of_variable (struct varobj *var)
2367 {
2368 return (*var->root->lang->name_of_variable) (var);
2369 }
2370
2371 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2372 string. */
2373 static char *
2374 name_of_child (struct varobj *var, int index)
2375 {
2376 return (*var->root->lang->name_of_child) (var, index);
2377 }
2378
2379 /* What is the ``struct value *'' of the root variable VAR?
2380 For floating variable object, evaluation can get us a value
2381 of different type from what is stored in varobj already. In
2382 that case:
2383 - *type_changed will be set to 1
2384 - old varobj will be freed, and new one will be
2385 created, with the same name.
2386 - *var_handle will be set to the new varobj
2387 Otherwise, *type_changed will be set to 0. */
2388 static struct value *
2389 value_of_root (struct varobj **var_handle, int *type_changed)
2390 {
2391 struct varobj *var;
2392
2393 if (var_handle == NULL)
2394 return NULL;
2395
2396 var = *var_handle;
2397
2398 /* This should really be an exception, since this should
2399 only get called with a root variable. */
2400
2401 if (!is_root_p (var))
2402 return NULL;
2403
2404 if (var->root->floating)
2405 {
2406 struct varobj *tmp_var;
2407 char *old_type, *new_type;
2408
2409 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2410 USE_SELECTED_FRAME);
2411 if (tmp_var == NULL)
2412 {
2413 return NULL;
2414 }
2415 old_type = varobj_get_type (var);
2416 new_type = varobj_get_type (tmp_var);
2417 if (strcmp (old_type, new_type) == 0)
2418 {
2419 /* The expression presently stored inside var->root->exp
2420 remembers the locations of local variables relatively to
2421 the frame where the expression was created (in DWARF location
2422 button, for example). Naturally, those locations are not
2423 correct in other frames, so update the expression. */
2424
2425 struct expression *tmp_exp = var->root->exp;
2426
2427 var->root->exp = tmp_var->root->exp;
2428 tmp_var->root->exp = tmp_exp;
2429
2430 varobj_delete (tmp_var, NULL, 0);
2431 *type_changed = 0;
2432 }
2433 else
2434 {
2435 tmp_var->obj_name = xstrdup (var->obj_name);
2436 tmp_var->from = var->from;
2437 tmp_var->to = var->to;
2438 varobj_delete (var, NULL, 0);
2439
2440 install_variable (tmp_var);
2441 *var_handle = tmp_var;
2442 var = *var_handle;
2443 *type_changed = 1;
2444 }
2445 xfree (old_type);
2446 xfree (new_type);
2447 }
2448 else
2449 {
2450 *type_changed = 0;
2451 }
2452
2453 return (*var->root->lang->value_of_root) (var_handle);
2454 }
2455
2456 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2457 static struct value *
2458 value_of_child (struct varobj *parent, int index)
2459 {
2460 struct value *value;
2461
2462 value = (*parent->root->lang->value_of_child) (parent, index);
2463
2464 return value;
2465 }
2466
2467 /* GDB already has a command called "value_of_variable". Sigh. */
2468 static char *
2469 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2470 {
2471 if (var->root->is_valid)
2472 {
2473 if (var->pretty_printer)
2474 return value_get_print_value (var->value, var->format, var);
2475 return (*var->root->lang->value_of_variable) (var, format);
2476 }
2477 else
2478 return NULL;
2479 }
2480
2481 static char *
2482 value_get_print_value (struct value *value, enum varobj_display_formats format,
2483 struct varobj *var)
2484 {
2485 struct ui_file *stb;
2486 struct cleanup *old_chain;
2487 gdb_byte *thevalue = NULL;
2488 struct value_print_options opts;
2489 struct type *type = NULL;
2490 long len = 0;
2491 char *encoding = NULL;
2492 struct gdbarch *gdbarch = NULL;
2493 /* Initialize it just to avoid a GCC false warning. */
2494 CORE_ADDR str_addr = 0;
2495 int string_print = 0;
2496
2497 if (value == NULL)
2498 return NULL;
2499
2500 stb = mem_fileopen ();
2501 old_chain = make_cleanup_ui_file_delete (stb);
2502
2503 gdbarch = get_type_arch (value_type (value));
2504 #if HAVE_PYTHON
2505 {
2506 PyObject *value_formatter = var->pretty_printer;
2507
2508 varobj_ensure_python_env (var);
2509
2510 if (value_formatter)
2511 {
2512 /* First check to see if we have any children at all. If so,
2513 we simply return {...}. */
2514 if (dynamic_varobj_has_child_method (var))
2515 {
2516 do_cleanups (old_chain);
2517 return xstrdup ("{...}");
2518 }
2519
2520 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2521 {
2522 char *hint;
2523 struct value *replacement;
2524 PyObject *output = NULL;
2525
2526 hint = gdbpy_get_display_hint (value_formatter);
2527 if (hint)
2528 {
2529 if (!strcmp (hint, "string"))
2530 string_print = 1;
2531 xfree (hint);
2532 }
2533
2534 output = apply_varobj_pretty_printer (value_formatter,
2535 &replacement,
2536 stb);
2537 if (output)
2538 {
2539 make_cleanup_py_decref (output);
2540
2541 if (gdbpy_is_lazy_string (output))
2542 {
2543 gdbpy_extract_lazy_string (output, &str_addr, &type,
2544 &len, &encoding);
2545 make_cleanup (free_current_contents, &encoding);
2546 string_print = 1;
2547 }
2548 else
2549 {
2550 PyObject *py_str
2551 = python_string_to_target_python_string (output);
2552
2553 if (py_str)
2554 {
2555 char *s = PyString_AsString (py_str);
2556
2557 len = PyString_Size (py_str);
2558 thevalue = xmemdup (s, len + 1, len + 1);
2559 type = builtin_type (gdbarch)->builtin_char;
2560 Py_DECREF (py_str);
2561
2562 if (!string_print)
2563 {
2564 do_cleanups (old_chain);
2565 return thevalue;
2566 }
2567
2568 make_cleanup (xfree, thevalue);
2569 }
2570 else
2571 gdbpy_print_stack ();
2572 }
2573 }
2574 if (replacement)
2575 value = replacement;
2576 }
2577 }
2578 }
2579 #endif
2580
2581 get_formatted_print_options (&opts, format_code[(int) format]);
2582 opts.deref_ref = 0;
2583 opts.raw = 1;
2584 if (thevalue)
2585 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2586 else if (string_print)
2587 val_print_string (type, encoding, str_addr, len, stb, &opts);
2588 else
2589 common_val_print (value, stb, 0, &opts, current_language);
2590 thevalue = ui_file_xstrdup (stb, NULL);
2591
2592 do_cleanups (old_chain);
2593 return thevalue;
2594 }
2595
2596 int
2597 varobj_editable_p (struct varobj *var)
2598 {
2599 struct type *type;
2600
2601 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2602 return 0;
2603
2604 type = get_value_type (var);
2605
2606 switch (TYPE_CODE (type))
2607 {
2608 case TYPE_CODE_STRUCT:
2609 case TYPE_CODE_UNION:
2610 case TYPE_CODE_ARRAY:
2611 case TYPE_CODE_FUNC:
2612 case TYPE_CODE_METHOD:
2613 return 0;
2614 break;
2615
2616 default:
2617 return 1;
2618 break;
2619 }
2620 }
2621
2622 /* Return non-zero if changes in value of VAR
2623 must be detected and reported by -var-update.
2624 Return zero is -var-update should never report
2625 changes of such values. This makes sense for structures
2626 (since the changes in children values will be reported separately),
2627 or for artifical objects (like 'public' pseudo-field in C++).
2628
2629 Return value of 0 means that gdb need not call value_fetch_lazy
2630 for the value of this variable object. */
2631 static int
2632 varobj_value_is_changeable_p (struct varobj *var)
2633 {
2634 int r;
2635 struct type *type;
2636
2637 if (CPLUS_FAKE_CHILD (var))
2638 return 0;
2639
2640 type = get_value_type (var);
2641
2642 switch (TYPE_CODE (type))
2643 {
2644 case TYPE_CODE_STRUCT:
2645 case TYPE_CODE_UNION:
2646 case TYPE_CODE_ARRAY:
2647 r = 0;
2648 break;
2649
2650 default:
2651 r = 1;
2652 }
2653
2654 return r;
2655 }
2656
2657 /* Return 1 if that varobj is floating, that is is always evaluated in the
2658 selected frame, and not bound to thread/frame. Such variable objects
2659 are created using '@' as frame specifier to -var-create. */
2660 int
2661 varobj_floating_p (struct varobj *var)
2662 {
2663 return var->root->floating;
2664 }
2665
2666 /* Given the value and the type of a variable object,
2667 adjust the value and type to those necessary
2668 for getting children of the variable object.
2669 This includes dereferencing top-level references
2670 to all types and dereferencing pointers to
2671 structures.
2672
2673 Both TYPE and *TYPE should be non-null. VALUE
2674 can be null if we want to only translate type.
2675 *VALUE can be null as well -- if the parent
2676 value is not known.
2677
2678 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2679 depending on whether pointer was dereferenced
2680 in this function. */
2681 static void
2682 adjust_value_for_child_access (struct value **value,
2683 struct type **type,
2684 int *was_ptr)
2685 {
2686 gdb_assert (type && *type);
2687
2688 if (was_ptr)
2689 *was_ptr = 0;
2690
2691 *type = check_typedef (*type);
2692
2693 /* The type of value stored in varobj, that is passed
2694 to us, is already supposed to be
2695 reference-stripped. */
2696
2697 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2698
2699 /* Pointers to structures are treated just like
2700 structures when accessing children. Don't
2701 dererences pointers to other types. */
2702 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2703 {
2704 struct type *target_type = get_target_type (*type);
2705 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2706 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2707 {
2708 if (value && *value)
2709 {
2710 int success = gdb_value_ind (*value, value);
2711
2712 if (!success)
2713 *value = NULL;
2714 }
2715 *type = target_type;
2716 if (was_ptr)
2717 *was_ptr = 1;
2718 }
2719 }
2720
2721 /* The 'get_target_type' function calls check_typedef on
2722 result, so we can immediately check type code. No
2723 need to call check_typedef here. */
2724 }
2725
2726 /* C */
2727 static int
2728 c_number_of_children (struct varobj *var)
2729 {
2730 struct type *type = get_value_type (var);
2731 int children = 0;
2732 struct type *target;
2733
2734 adjust_value_for_child_access (NULL, &type, NULL);
2735 target = get_target_type (type);
2736
2737 switch (TYPE_CODE (type))
2738 {
2739 case TYPE_CODE_ARRAY:
2740 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2741 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2742 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2743 else
2744 /* If we don't know how many elements there are, don't display
2745 any. */
2746 children = 0;
2747 break;
2748
2749 case TYPE_CODE_STRUCT:
2750 case TYPE_CODE_UNION:
2751 children = TYPE_NFIELDS (type);
2752 break;
2753
2754 case TYPE_CODE_PTR:
2755 /* The type here is a pointer to non-struct. Typically, pointers
2756 have one child, except for function ptrs, which have no children,
2757 and except for void*, as we don't know what to show.
2758
2759 We can show char* so we allow it to be dereferenced. If you decide
2760 to test for it, please mind that a little magic is necessary to
2761 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2762 TYPE_NAME == "char" */
2763 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2764 || TYPE_CODE (target) == TYPE_CODE_VOID)
2765 children = 0;
2766 else
2767 children = 1;
2768 break;
2769
2770 default:
2771 /* Other types have no children */
2772 break;
2773 }
2774
2775 return children;
2776 }
2777
2778 static char *
2779 c_name_of_variable (struct varobj *parent)
2780 {
2781 return xstrdup (parent->name);
2782 }
2783
2784 /* Return the value of element TYPE_INDEX of a structure
2785 value VALUE. VALUE's type should be a structure,
2786 or union, or a typedef to struct/union.
2787
2788 Returns NULL if getting the value fails. Never throws. */
2789 static struct value *
2790 value_struct_element_index (struct value *value, int type_index)
2791 {
2792 struct value *result = NULL;
2793 volatile struct gdb_exception e;
2794 struct type *type = value_type (value);
2795
2796 type = check_typedef (type);
2797
2798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2799 || TYPE_CODE (type) == TYPE_CODE_UNION);
2800
2801 TRY_CATCH (e, RETURN_MASK_ERROR)
2802 {
2803 if (field_is_static (&TYPE_FIELD (type, type_index)))
2804 result = value_static_field (type, type_index);
2805 else
2806 result = value_primitive_field (value, 0, type_index, type);
2807 }
2808 if (e.reason < 0)
2809 {
2810 return NULL;
2811 }
2812 else
2813 {
2814 return result;
2815 }
2816 }
2817
2818 /* Obtain the information about child INDEX of the variable
2819 object PARENT.
2820 If CNAME is not null, sets *CNAME to the name of the child relative
2821 to the parent.
2822 If CVALUE is not null, sets *CVALUE to the value of the child.
2823 If CTYPE is not null, sets *CTYPE to the type of the child.
2824
2825 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2826 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2827 to NULL. */
2828 static void
2829 c_describe_child (struct varobj *parent, int index,
2830 char **cname, struct value **cvalue, struct type **ctype,
2831 char **cfull_expression)
2832 {
2833 struct value *value = parent->value;
2834 struct type *type = get_value_type (parent);
2835 char *parent_expression = NULL;
2836 int was_ptr;
2837
2838 if (cname)
2839 *cname = NULL;
2840 if (cvalue)
2841 *cvalue = NULL;
2842 if (ctype)
2843 *ctype = NULL;
2844 if (cfull_expression)
2845 {
2846 *cfull_expression = NULL;
2847 parent_expression = varobj_get_path_expr (parent);
2848 }
2849 adjust_value_for_child_access (&value, &type, &was_ptr);
2850
2851 switch (TYPE_CODE (type))
2852 {
2853 case TYPE_CODE_ARRAY:
2854 if (cname)
2855 *cname
2856 = xstrdup (int_string (index
2857 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2858 10, 1, 0, 0));
2859
2860 if (cvalue && value)
2861 {
2862 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2863
2864 gdb_value_subscript (value, real_index, cvalue);
2865 }
2866
2867 if (ctype)
2868 *ctype = get_target_type (type);
2869
2870 if (cfull_expression)
2871 *cfull_expression =
2872 xstrprintf ("(%s)[%s]", parent_expression,
2873 int_string (index
2874 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2875 10, 1, 0, 0));
2876
2877
2878 break;
2879
2880 case TYPE_CODE_STRUCT:
2881 case TYPE_CODE_UNION:
2882 if (cname)
2883 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2884
2885 if (cvalue && value)
2886 {
2887 /* For C, varobj index is the same as type index. */
2888 *cvalue = value_struct_element_index (value, index);
2889 }
2890
2891 if (ctype)
2892 *ctype = TYPE_FIELD_TYPE (type, index);
2893
2894 if (cfull_expression)
2895 {
2896 char *join = was_ptr ? "->" : ".";
2897
2898 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2899 TYPE_FIELD_NAME (type, index));
2900 }
2901
2902 break;
2903
2904 case TYPE_CODE_PTR:
2905 if (cname)
2906 *cname = xstrprintf ("*%s", parent->name);
2907
2908 if (cvalue && value)
2909 {
2910 int success = gdb_value_ind (value, cvalue);
2911
2912 if (!success)
2913 *cvalue = NULL;
2914 }
2915
2916 /* Don't use get_target_type because it calls
2917 check_typedef and here, we want to show the true
2918 declared type of the variable. */
2919 if (ctype)
2920 *ctype = TYPE_TARGET_TYPE (type);
2921
2922 if (cfull_expression)
2923 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2924
2925 break;
2926
2927 default:
2928 /* This should not happen */
2929 if (cname)
2930 *cname = xstrdup ("???");
2931 if (cfull_expression)
2932 *cfull_expression = xstrdup ("???");
2933 /* Don't set value and type, we don't know then. */
2934 }
2935 }
2936
2937 static char *
2938 c_name_of_child (struct varobj *parent, int index)
2939 {
2940 char *name;
2941
2942 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2943 return name;
2944 }
2945
2946 static char *
2947 c_path_expr_of_child (struct varobj *child)
2948 {
2949 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2950 &child->path_expr);
2951 return child->path_expr;
2952 }
2953
2954 /* If frame associated with VAR can be found, switch
2955 to it and return 1. Otherwise, return 0. */
2956 static int
2957 check_scope (struct varobj *var)
2958 {
2959 struct frame_info *fi;
2960 int scope;
2961
2962 fi = frame_find_by_id (var->root->frame);
2963 scope = fi != NULL;
2964
2965 if (fi)
2966 {
2967 CORE_ADDR pc = get_frame_pc (fi);
2968
2969 if (pc < BLOCK_START (var->root->valid_block) ||
2970 pc >= BLOCK_END (var->root->valid_block))
2971 scope = 0;
2972 else
2973 select_frame (fi);
2974 }
2975 return scope;
2976 }
2977
2978 static struct value *
2979 c_value_of_root (struct varobj **var_handle)
2980 {
2981 struct value *new_val = NULL;
2982 struct varobj *var = *var_handle;
2983 int within_scope = 0;
2984 struct cleanup *back_to;
2985
2986 /* Only root variables can be updated... */
2987 if (!is_root_p (var))
2988 /* Not a root var */
2989 return NULL;
2990
2991 back_to = make_cleanup_restore_current_thread ();
2992
2993 /* Determine whether the variable is still around. */
2994 if (var->root->valid_block == NULL || var->root->floating)
2995 within_scope = 1;
2996 else if (var->root->thread_id == 0)
2997 {
2998 /* The program was single-threaded when the variable object was
2999 created. Technically, it's possible that the program became
3000 multi-threaded since then, but we don't support such
3001 scenario yet. */
3002 within_scope = check_scope (var);
3003 }
3004 else
3005 {
3006 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3007 if (in_thread_list (ptid))
3008 {
3009 switch_to_thread (ptid);
3010 within_scope = check_scope (var);
3011 }
3012 }
3013
3014 if (within_scope)
3015 {
3016 /* We need to catch errors here, because if evaluate
3017 expression fails we want to just return NULL. */
3018 gdb_evaluate_expression (var->root->exp, &new_val);
3019 return new_val;
3020 }
3021
3022 do_cleanups (back_to);
3023
3024 return NULL;
3025 }
3026
3027 static struct value *
3028 c_value_of_child (struct varobj *parent, int index)
3029 {
3030 struct value *value = NULL;
3031
3032 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3033 return value;
3034 }
3035
3036 static struct type *
3037 c_type_of_child (struct varobj *parent, int index)
3038 {
3039 struct type *type = NULL;
3040
3041 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3042 return type;
3043 }
3044
3045 static char *
3046 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3047 {
3048 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3049 it will print out its children instead of "{...}". So we need to
3050 catch that case explicitly. */
3051 struct type *type = get_type (var);
3052
3053 /* If we have a custom formatter, return whatever string it has
3054 produced. */
3055 if (var->pretty_printer && var->print_value)
3056 return xstrdup (var->print_value);
3057
3058 /* Strip top-level references. */
3059 while (TYPE_CODE (type) == TYPE_CODE_REF)
3060 type = check_typedef (TYPE_TARGET_TYPE (type));
3061
3062 switch (TYPE_CODE (type))
3063 {
3064 case TYPE_CODE_STRUCT:
3065 case TYPE_CODE_UNION:
3066 return xstrdup ("{...}");
3067 /* break; */
3068
3069 case TYPE_CODE_ARRAY:
3070 {
3071 char *number;
3072
3073 number = xstrprintf ("[%d]", var->num_children);
3074 return (number);
3075 }
3076 /* break; */
3077
3078 default:
3079 {
3080 if (var->value == NULL)
3081 {
3082 /* This can happen if we attempt to get the value of a struct
3083 member when the parent is an invalid pointer. This is an
3084 error condition, so we should tell the caller. */
3085 return NULL;
3086 }
3087 else
3088 {
3089 if (var->not_fetched && value_lazy (var->value))
3090 /* Frozen variable and no value yet. We don't
3091 implicitly fetch the value. MI response will
3092 use empty string for the value, which is OK. */
3093 return NULL;
3094
3095 gdb_assert (varobj_value_is_changeable_p (var));
3096 gdb_assert (!value_lazy (var->value));
3097
3098 /* If the specified format is the current one,
3099 we can reuse print_value */
3100 if (format == var->format)
3101 return xstrdup (var->print_value);
3102 else
3103 return value_get_print_value (var->value, format, var);
3104 }
3105 }
3106 }
3107 }
3108 \f
3109
3110 /* C++ */
3111
3112 static int
3113 cplus_number_of_children (struct varobj *var)
3114 {
3115 struct type *type;
3116 int children, dont_know;
3117
3118 dont_know = 1;
3119 children = 0;
3120
3121 if (!CPLUS_FAKE_CHILD (var))
3122 {
3123 type = get_value_type (var);
3124 adjust_value_for_child_access (NULL, &type, NULL);
3125
3126 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3127 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3128 {
3129 int kids[3];
3130
3131 cplus_class_num_children (type, kids);
3132 if (kids[v_public] != 0)
3133 children++;
3134 if (kids[v_private] != 0)
3135 children++;
3136 if (kids[v_protected] != 0)
3137 children++;
3138
3139 /* Add any baseclasses */
3140 children += TYPE_N_BASECLASSES (type);
3141 dont_know = 0;
3142
3143 /* FIXME: save children in var */
3144 }
3145 }
3146 else
3147 {
3148 int kids[3];
3149
3150 type = get_value_type (var->parent);
3151 adjust_value_for_child_access (NULL, &type, NULL);
3152
3153 cplus_class_num_children (type, kids);
3154 if (strcmp (var->name, "public") == 0)
3155 children = kids[v_public];
3156 else if (strcmp (var->name, "private") == 0)
3157 children = kids[v_private];
3158 else
3159 children = kids[v_protected];
3160 dont_know = 0;
3161 }
3162
3163 if (dont_know)
3164 children = c_number_of_children (var);
3165
3166 return children;
3167 }
3168
3169 /* Compute # of public, private, and protected variables in this class.
3170 That means we need to descend into all baseclasses and find out
3171 how many are there, too. */
3172 static void
3173 cplus_class_num_children (struct type *type, int children[3])
3174 {
3175 int i, vptr_fieldno;
3176 struct type *basetype = NULL;
3177
3178 children[v_public] = 0;
3179 children[v_private] = 0;
3180 children[v_protected] = 0;
3181
3182 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3183 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3184 {
3185 /* If we have a virtual table pointer, omit it. Even if virtual
3186 table pointers are not specifically marked in the debug info,
3187 they should be artificial. */
3188 if ((type == basetype && i == vptr_fieldno)
3189 || TYPE_FIELD_ARTIFICIAL (type, i))
3190 continue;
3191
3192 if (TYPE_FIELD_PROTECTED (type, i))
3193 children[v_protected]++;
3194 else if (TYPE_FIELD_PRIVATE (type, i))
3195 children[v_private]++;
3196 else
3197 children[v_public]++;
3198 }
3199 }
3200
3201 static char *
3202 cplus_name_of_variable (struct varobj *parent)
3203 {
3204 return c_name_of_variable (parent);
3205 }
3206
3207 enum accessibility { private_field, protected_field, public_field };
3208
3209 /* Check if field INDEX of TYPE has the specified accessibility.
3210 Return 0 if so and 1 otherwise. */
3211 static int
3212 match_accessibility (struct type *type, int index, enum accessibility acc)
3213 {
3214 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3215 return 1;
3216 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3217 return 1;
3218 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3219 && !TYPE_FIELD_PROTECTED (type, index))
3220 return 1;
3221 else
3222 return 0;
3223 }
3224
3225 static void
3226 cplus_describe_child (struct varobj *parent, int index,
3227 char **cname, struct value **cvalue, struct type **ctype,
3228 char **cfull_expression)
3229 {
3230 struct value *value;
3231 struct type *type;
3232 int was_ptr;
3233 char *parent_expression = NULL;
3234
3235 if (cname)
3236 *cname = NULL;
3237 if (cvalue)
3238 *cvalue = NULL;
3239 if (ctype)
3240 *ctype = NULL;
3241 if (cfull_expression)
3242 *cfull_expression = NULL;
3243
3244 if (CPLUS_FAKE_CHILD (parent))
3245 {
3246 value = parent->parent->value;
3247 type = get_value_type (parent->parent);
3248 if (cfull_expression)
3249 parent_expression = varobj_get_path_expr (parent->parent);
3250 }
3251 else
3252 {
3253 value = parent->value;
3254 type = get_value_type (parent);
3255 if (cfull_expression)
3256 parent_expression = varobj_get_path_expr (parent);
3257 }
3258
3259 adjust_value_for_child_access (&value, &type, &was_ptr);
3260
3261 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3262 || TYPE_CODE (type) == TYPE_CODE_UNION)
3263 {
3264 char *join = was_ptr ? "->" : ".";
3265
3266 if (CPLUS_FAKE_CHILD (parent))
3267 {
3268 /* The fields of the class type are ordered as they
3269 appear in the class. We are given an index for a
3270 particular access control type ("public","protected",
3271 or "private"). We must skip over fields that don't
3272 have the access control we are looking for to properly
3273 find the indexed field. */
3274 int type_index = TYPE_N_BASECLASSES (type);
3275 enum accessibility acc = public_field;
3276 int vptr_fieldno;
3277 struct type *basetype = NULL;
3278
3279 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3280 if (strcmp (parent->name, "private") == 0)
3281 acc = private_field;
3282 else if (strcmp (parent->name, "protected") == 0)
3283 acc = protected_field;
3284
3285 while (index >= 0)
3286 {
3287 if ((type == basetype && type_index == vptr_fieldno)
3288 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3289 ; /* ignore vptr */
3290 else if (match_accessibility (type, type_index, acc))
3291 --index;
3292 ++type_index;
3293 }
3294 --type_index;
3295
3296 if (cname)
3297 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3298
3299 if (cvalue && value)
3300 *cvalue = value_struct_element_index (value, type_index);
3301
3302 if (ctype)
3303 *ctype = TYPE_FIELD_TYPE (type, type_index);
3304
3305 if (cfull_expression)
3306 *cfull_expression
3307 = xstrprintf ("((%s)%s%s)", parent_expression,
3308 join,
3309 TYPE_FIELD_NAME (type, type_index));
3310 }
3311 else if (index < TYPE_N_BASECLASSES (type))
3312 {
3313 /* This is a baseclass. */
3314 if (cname)
3315 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3316
3317 if (cvalue && value)
3318 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3319
3320 if (ctype)
3321 {
3322 *ctype = TYPE_FIELD_TYPE (type, index);
3323 }
3324
3325 if (cfull_expression)
3326 {
3327 char *ptr = was_ptr ? "*" : "";
3328
3329 /* Cast the parent to the base' type. Note that in gdb,
3330 expression like
3331 (Base1)d
3332 will create an lvalue, for all appearences, so we don't
3333 need to use more fancy:
3334 *(Base1*)(&d)
3335 construct. */
3336 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3337 ptr,
3338 TYPE_FIELD_NAME (type, index),
3339 ptr,
3340 parent_expression);
3341 }
3342 }
3343 else
3344 {
3345 char *access = NULL;
3346 int children[3];
3347
3348 cplus_class_num_children (type, children);
3349
3350 /* Everything beyond the baseclasses can
3351 only be "public", "private", or "protected"
3352
3353 The special "fake" children are always output by varobj in
3354 this order. So if INDEX == 2, it MUST be "protected". */
3355 index -= TYPE_N_BASECLASSES (type);
3356 switch (index)
3357 {
3358 case 0:
3359 if (children[v_public] > 0)
3360 access = "public";
3361 else if (children[v_private] > 0)
3362 access = "private";
3363 else
3364 access = "protected";
3365 break;
3366 case 1:
3367 if (children[v_public] > 0)
3368 {
3369 if (children[v_private] > 0)
3370 access = "private";
3371 else
3372 access = "protected";
3373 }
3374 else if (children[v_private] > 0)
3375 access = "protected";
3376 break;
3377 case 2:
3378 /* Must be protected */
3379 access = "protected";
3380 break;
3381 default:
3382 /* error! */
3383 break;
3384 }
3385
3386 gdb_assert (access);
3387 if (cname)
3388 *cname = xstrdup (access);
3389
3390 /* Value and type and full expression are null here. */
3391 }
3392 }
3393 else
3394 {
3395 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3396 }
3397 }
3398
3399 static char *
3400 cplus_name_of_child (struct varobj *parent, int index)
3401 {
3402 char *name = NULL;
3403
3404 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3405 return name;
3406 }
3407
3408 static char *
3409 cplus_path_expr_of_child (struct varobj *child)
3410 {
3411 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3412 &child->path_expr);
3413 return child->path_expr;
3414 }
3415
3416 static struct value *
3417 cplus_value_of_root (struct varobj **var_handle)
3418 {
3419 return c_value_of_root (var_handle);
3420 }
3421
3422 static struct value *
3423 cplus_value_of_child (struct varobj *parent, int index)
3424 {
3425 struct value *value = NULL;
3426
3427 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3428 return value;
3429 }
3430
3431 static struct type *
3432 cplus_type_of_child (struct varobj *parent, int index)
3433 {
3434 struct type *type = NULL;
3435
3436 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3437 return type;
3438 }
3439
3440 static char *
3441 cplus_value_of_variable (struct varobj *var,
3442 enum varobj_display_formats format)
3443 {
3444
3445 /* If we have one of our special types, don't print out
3446 any value. */
3447 if (CPLUS_FAKE_CHILD (var))
3448 return xstrdup ("");
3449
3450 return c_value_of_variable (var, format);
3451 }
3452 \f
3453 /* Java */
3454
3455 static int
3456 java_number_of_children (struct varobj *var)
3457 {
3458 return cplus_number_of_children (var);
3459 }
3460
3461 static char *
3462 java_name_of_variable (struct varobj *parent)
3463 {
3464 char *p, *name;
3465
3466 name = cplus_name_of_variable (parent);
3467 /* If the name has "-" in it, it is because we
3468 needed to escape periods in the name... */
3469 p = name;
3470
3471 while (*p != '\000')
3472 {
3473 if (*p == '-')
3474 *p = '.';
3475 p++;
3476 }
3477
3478 return name;
3479 }
3480
3481 static char *
3482 java_name_of_child (struct varobj *parent, int index)
3483 {
3484 char *name, *p;
3485
3486 name = cplus_name_of_child (parent, index);
3487 /* Escape any periods in the name... */
3488 p = name;
3489
3490 while (*p != '\000')
3491 {
3492 if (*p == '.')
3493 *p = '-';
3494 p++;
3495 }
3496
3497 return name;
3498 }
3499
3500 static char *
3501 java_path_expr_of_child (struct varobj *child)
3502 {
3503 return NULL;
3504 }
3505
3506 static struct value *
3507 java_value_of_root (struct varobj **var_handle)
3508 {
3509 return cplus_value_of_root (var_handle);
3510 }
3511
3512 static struct value *
3513 java_value_of_child (struct varobj *parent, int index)
3514 {
3515 return cplus_value_of_child (parent, index);
3516 }
3517
3518 static struct type *
3519 java_type_of_child (struct varobj *parent, int index)
3520 {
3521 return cplus_type_of_child (parent, index);
3522 }
3523
3524 static char *
3525 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3526 {
3527 return cplus_value_of_variable (var, format);
3528 }
3529
3530 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3531 with an arbitrary caller supplied DATA pointer. */
3532
3533 void
3534 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3535 {
3536 struct varobj_root *var_root, *var_root_next;
3537
3538 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3539
3540 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3541 {
3542 var_root_next = var_root->next;
3543
3544 (*func) (var_root->rootvar, data);
3545 }
3546 }
3547 \f
3548 extern void _initialize_varobj (void);
3549 void
3550 _initialize_varobj (void)
3551 {
3552 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3553
3554 varobj_table = xmalloc (sizeof_table);
3555 memset (varobj_table, 0, sizeof_table);
3556
3557 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3558 &varobjdebug,
3559 _("Set varobj debugging."),
3560 _("Show varobj debugging."),
3561 _("When non-zero, varobj debugging is enabled."),
3562 NULL, show_varobjdebug,
3563 &setlist, &showlist);
3564 }
3565
3566 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3567 defined on globals. It is a helper for varobj_invalidate. */
3568
3569 static void
3570 varobj_invalidate_iter (struct varobj *var, void *unused)
3571 {
3572 /* Floating varobjs are reparsed on each stop, so we don't care if the
3573 presently parsed expression refers to something that's gone. */
3574 if (var->root->floating)
3575 return;
3576
3577 /* global var must be re-evaluated. */
3578 if (var->root->valid_block == NULL)
3579 {
3580 struct varobj *tmp_var;
3581
3582 /* Try to create a varobj with same expression. If we succeed
3583 replace the old varobj, otherwise invalidate it. */
3584 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3585 USE_CURRENT_FRAME);
3586 if (tmp_var != NULL)
3587 {
3588 tmp_var->obj_name = xstrdup (var->obj_name);
3589 varobj_delete (var, NULL, 0);
3590 install_variable (tmp_var);
3591 }
3592 else
3593 var->root->is_valid = 0;
3594 }
3595 else /* locals must be invalidated. */
3596 var->root->is_valid = 0;
3597 }
3598
3599 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3600 are defined on globals.
3601 Invalidated varobjs will be always printed in_scope="invalid". */
3602
3603 void
3604 varobj_invalidate (void)
3605 {
3606 all_root_varobjs (varobj_invalidate_iter, NULL);
3607 }