]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
* breakpoint.h: No longer include python.h or python-internal.h.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518
519 if (frame_base == frame_addr)
520 return frame;
521 }
522
523 return NULL;
524 }
525
526 struct varobj *
527 varobj_create (char *objname,
528 char *expression, CORE_ADDR frame, enum varobj_type type)
529 {
530 struct varobj *var;
531 struct cleanup *old_chain;
532
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
535 old_chain = make_cleanup_free_variable (var);
536
537 if (expression != NULL)
538 {
539 struct frame_info *fi;
540 struct frame_id old_id = null_frame_id;
541 struct block *block;
542 char *p;
543 enum varobj_languages lang;
544 struct value *value = NULL;
545
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
548
549 if (has_stack_frames ())
550 {
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
554 else
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
561 function. */
562 fi = find_frame_addr_in_frame_chain (frame);
563 }
564 else
565 fi = NULL;
566
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
569 var->root->floating = 1;
570
571 block = NULL;
572 if (fi != NULL)
573 block = get_frame_block (fi, 0);
574
575 p = expression;
576 innermost_block = NULL;
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 {
581 return NULL;
582 }
583
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 {
587 do_cleanups (old_chain);
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
590 return NULL;
591 }
592
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
595 var->name = xstrdup (expression);
596 /* For a root var, the name and the expr are the same. */
597 var->path_expr = xstrdup (expression);
598
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
603 if (innermost_block)
604 {
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
609 if (fi == NULL)
610 error (_("Failed to find the specified frame"));
611
612 var->root->frame = get_frame_id (fi);
613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
614 old_id = get_frame_id (get_selected_frame (NULL));
615 select_frame (fi);
616 }
617
618 /* We definitely need to catch errors here.
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
621 if (!gdb_evaluate_expression (var->root->exp, &value))
622 {
623 /* Error getting the value. Try to at least get the
624 right type. */
625 struct value *type_only_value = evaluate_type (var->root->exp);
626
627 var->type = value_type (type_only_value);
628 }
629 else
630 var->type = value_type (value);
631
632 install_new_value (var, value, 1 /* Initial assignment */);
633
634 /* Set language info */
635 lang = variable_language (var);
636 var->root->lang = &languages[lang];
637
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
640
641 /* Reset the selected frame */
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
644 }
645
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
648
649 if ((var != NULL) && (objname != NULL))
650 {
651 var->obj_name = xstrdup (objname);
652
653 /* If a varobj name is duplicated, the install will fail so
654 we must clenup */
655 if (!install_variable (var))
656 {
657 do_cleanups (old_chain);
658 return NULL;
659 }
660 }
661
662 discard_cleanups (old_chain);
663 return var;
664 }
665
666 /* Generates an unique name that can be used for a varobj */
667
668 char *
669 varobj_gen_name (void)
670 {
671 static int id = 0;
672 char *obj_name;
673
674 /* generate a name for this object */
675 id++;
676 obj_name = xstrprintf ("var%d", id);
677
678 return obj_name;
679 }
680
681 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
683
684 struct varobj *
685 varobj_get_handle (char *objname)
686 {
687 struct vlist *cv;
688 const char *chp;
689 unsigned int index = 0;
690 unsigned int i = 1;
691
692 for (chp = objname; *chp; chp++)
693 {
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 }
696
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699 cv = cv->next;
700
701 if (cv == NULL)
702 error (_("Variable object not found"));
703
704 return cv->var;
705 }
706
707 /* Given the handle, return the name of the object */
708
709 char *
710 varobj_get_objname (struct varobj *var)
711 {
712 return var->obj_name;
713 }
714
715 /* Given the handle, return the expression represented by the object */
716
717 char *
718 varobj_get_expression (struct varobj *var)
719 {
720 return name_of_variable (var);
721 }
722
723 /* Deletes a varobj and all its children if only_children == 0,
724 otherwise deletes only the children; returns a malloc'ed list of all the
725 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726
727 int
728 varobj_delete (struct varobj *var, char ***dellist, int only_children)
729 {
730 int delcount;
731 int mycount;
732 struct cpstack *result = NULL;
733 char **cp;
734
735 /* Initialize a stack for temporary results */
736 cppush (&result, NULL);
737
738 if (only_children)
739 /* Delete only the variable children */
740 delcount = delete_variable (&result, var, 1 /* only the children */ );
741 else
742 /* Delete the variable and all its children */
743 delcount = delete_variable (&result, var, 0 /* parent+children */ );
744
745 /* We may have been asked to return a list of what has been deleted */
746 if (dellist != NULL)
747 {
748 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
749
750 cp = *dellist;
751 mycount = delcount;
752 *cp = cppop (&result);
753 while ((*cp != NULL) && (mycount > 0))
754 {
755 mycount--;
756 cp++;
757 *cp = cppop (&result);
758 }
759
760 if (mycount || (*cp != NULL))
761 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
762 mycount);
763 }
764
765 return delcount;
766 }
767
768 #if HAVE_PYTHON
769
770 /* Convenience function for varobj_set_visualizer. Instantiate a
771 pretty-printer for a given value. */
772 static PyObject *
773 instantiate_pretty_printer (PyObject *constructor, struct value *value)
774 {
775 PyObject *val_obj = NULL;
776 PyObject *printer;
777
778 val_obj = value_to_value_object (value);
779 if (! val_obj)
780 return NULL;
781
782 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
783 Py_DECREF (val_obj);
784 return printer;
785 return NULL;
786 }
787
788 #endif
789
790 /* Set/Get variable object display format */
791
792 enum varobj_display_formats
793 varobj_set_display_format (struct varobj *var,
794 enum varobj_display_formats format)
795 {
796 switch (format)
797 {
798 case FORMAT_NATURAL:
799 case FORMAT_BINARY:
800 case FORMAT_DECIMAL:
801 case FORMAT_HEXADECIMAL:
802 case FORMAT_OCTAL:
803 var->format = format;
804 break;
805
806 default:
807 var->format = variable_default_display (var);
808 }
809
810 if (varobj_value_is_changeable_p (var)
811 && var->value && !value_lazy (var->value))
812 {
813 xfree (var->print_value);
814 var->print_value = value_get_print_value (var->value, var->format, var);
815 }
816
817 return var->format;
818 }
819
820 enum varobj_display_formats
821 varobj_get_display_format (struct varobj *var)
822 {
823 return var->format;
824 }
825
826 char *
827 varobj_get_display_hint (struct varobj *var)
828 {
829 char *result = NULL;
830
831 #if HAVE_PYTHON
832 struct cleanup *back_to = varobj_ensure_python_env (var);
833
834 if (var->pretty_printer)
835 result = gdbpy_get_display_hint (var->pretty_printer);
836
837 do_cleanups (back_to);
838 #endif
839
840 return result;
841 }
842
843 /* Return true if the varobj has items after TO, false otherwise. */
844
845 int
846 varobj_has_more (struct varobj *var, int to)
847 {
848 if (VEC_length (varobj_p, var->children) > to)
849 return 1;
850 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
851 && var->saved_item != NULL);
852 }
853
854 /* If the variable object is bound to a specific thread, that
855 is its evaluation can always be done in context of a frame
856 inside that thread, returns GDB id of the thread -- which
857 is always positive. Otherwise, returns -1. */
858 int
859 varobj_get_thread_id (struct varobj *var)
860 {
861 if (var->root->valid_block && var->root->thread_id > 0)
862 return var->root->thread_id;
863 else
864 return -1;
865 }
866
867 void
868 varobj_set_frozen (struct varobj *var, int frozen)
869 {
870 /* When a variable is unfrozen, we don't fetch its value.
871 The 'not_fetched' flag remains set, so next -var-update
872 won't complain.
873
874 We don't fetch the value, because for structures the client
875 should do -var-update anyway. It would be bad to have different
876 client-size logic for structure and other types. */
877 var->frozen = frozen;
878 }
879
880 int
881 varobj_get_frozen (struct varobj *var)
882 {
883 return var->frozen;
884 }
885
886 /* A helper function that restricts a range to what is actually
887 available in a VEC. This follows the usual rules for the meaning
888 of FROM and TO -- if either is negative, the entire range is
889 used. */
890
891 static void
892 restrict_range (VEC (varobj_p) *children, int *from, int *to)
893 {
894 if (*from < 0 || *to < 0)
895 {
896 *from = 0;
897 *to = VEC_length (varobj_p, children);
898 }
899 else
900 {
901 if (*from > VEC_length (varobj_p, children))
902 *from = VEC_length (varobj_p, children);
903 if (*to > VEC_length (varobj_p, children))
904 *to = VEC_length (varobj_p, children);
905 if (*from > *to)
906 *from = *to;
907 }
908 }
909
910 #if HAVE_PYTHON
911
912 /* A helper for update_dynamic_varobj_children that installs a new
913 child when needed. */
914
915 static void
916 install_dynamic_child (struct varobj *var,
917 VEC (varobj_p) **changed,
918 VEC (varobj_p) **new,
919 VEC (varobj_p) **unchanged,
920 int *cchanged,
921 int index,
922 const char *name,
923 struct value *value)
924 {
925 if (VEC_length (varobj_p, var->children) < index + 1)
926 {
927 /* There's no child yet. */
928 struct varobj *child = varobj_add_child (var, name, value);
929
930 if (new)
931 {
932 VEC_safe_push (varobj_p, *new, child);
933 *cchanged = 1;
934 }
935 }
936 else
937 {
938 varobj_p existing = VEC_index (varobj_p, var->children, index);
939
940 if (install_new_value (existing, value, 0))
941 {
942 if (changed)
943 VEC_safe_push (varobj_p, *changed, existing);
944 }
945 else if (unchanged)
946 VEC_safe_push (varobj_p, *unchanged, existing);
947 }
948 }
949
950 static int
951 dynamic_varobj_has_child_method (struct varobj *var)
952 {
953 struct cleanup *back_to;
954 PyObject *printer = var->pretty_printer;
955 int result;
956
957 back_to = varobj_ensure_python_env (var);
958 result = PyObject_HasAttr (printer, gdbpy_children_cst);
959 do_cleanups (back_to);
960 return result;
961 }
962
963 #endif
964
965 static int
966 update_dynamic_varobj_children (struct varobj *var,
967 VEC (varobj_p) **changed,
968 VEC (varobj_p) **new,
969 VEC (varobj_p) **unchanged,
970 int *cchanged,
971 int update_children,
972 int from,
973 int to)
974 {
975 #if HAVE_PYTHON
976 struct cleanup *back_to;
977 PyObject *children;
978 int i;
979 PyObject *printer = var->pretty_printer;
980
981 back_to = varobj_ensure_python_env (var);
982
983 *cchanged = 0;
984 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
985 {
986 do_cleanups (back_to);
987 return 0;
988 }
989
990 if (update_children || !var->child_iter)
991 {
992 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
993 NULL);
994
995 if (!children)
996 {
997 gdbpy_print_stack ();
998 error (_("Null value returned for children"));
999 }
1000
1001 make_cleanup_py_decref (children);
1002
1003 if (!PyIter_Check (children))
1004 error (_("Returned value is not iterable"));
1005
1006 Py_XDECREF (var->child_iter);
1007 var->child_iter = PyObject_GetIter (children);
1008 if (!var->child_iter)
1009 {
1010 gdbpy_print_stack ();
1011 error (_("Could not get children iterator"));
1012 }
1013
1014 Py_XDECREF (var->saved_item);
1015 var->saved_item = NULL;
1016
1017 i = 0;
1018 }
1019 else
1020 i = VEC_length (varobj_p, var->children);
1021
1022 /* We ask for one extra child, so that MI can report whether there
1023 are more children. */
1024 for (; to < 0 || i < to + 1; ++i)
1025 {
1026 PyObject *item;
1027
1028 /* See if there was a leftover from last time. */
1029 if (var->saved_item)
1030 {
1031 item = var->saved_item;
1032 var->saved_item = NULL;
1033 }
1034 else
1035 item = PyIter_Next (var->child_iter);
1036
1037 if (!item)
1038 break;
1039
1040 /* We don't want to push the extra child on any report list. */
1041 if (to < 0 || i < to)
1042 {
1043 PyObject *py_v;
1044 char *name;
1045 struct value *v;
1046 struct cleanup *inner;
1047 int can_mention = from < 0 || i >= from;
1048
1049 inner = make_cleanup_py_decref (item);
1050
1051 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1052 error (_("Invalid item from the child list"));
1053
1054 v = convert_value_from_python (py_v);
1055 if (v == NULL)
1056 gdbpy_print_stack ();
1057 install_dynamic_child (var, can_mention ? changed : NULL,
1058 can_mention ? new : NULL,
1059 can_mention ? unchanged : NULL,
1060 can_mention ? cchanged : NULL, i, name, v);
1061 do_cleanups (inner);
1062 }
1063 else
1064 {
1065 Py_XDECREF (var->saved_item);
1066 var->saved_item = item;
1067
1068 /* We want to truncate the child list just before this
1069 element. */
1070 break;
1071 }
1072 }
1073
1074 if (i < VEC_length (varobj_p, var->children))
1075 {
1076 int j;
1077
1078 *cchanged = 1;
1079 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1080 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1081 VEC_truncate (varobj_p, var->children, i);
1082 }
1083
1084 /* If there are fewer children than requested, note that the list of
1085 children changed. */
1086 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1087 *cchanged = 1;
1088
1089 var->num_children = VEC_length (varobj_p, var->children);
1090
1091 do_cleanups (back_to);
1092
1093 return 1;
1094 #else
1095 gdb_assert (0 && "should never be called if Python is not enabled");
1096 #endif
1097 }
1098
1099 int
1100 varobj_get_num_children (struct varobj *var)
1101 {
1102 if (var->num_children == -1)
1103 {
1104 if (var->pretty_printer)
1105 {
1106 int dummy;
1107
1108 /* If we have a dynamic varobj, don't report -1 children.
1109 So, try to fetch some children first. */
1110 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1111 0, 0, 0);
1112 }
1113 else
1114 var->num_children = number_of_children (var);
1115 }
1116
1117 return var->num_children >= 0 ? var->num_children : 0;
1118 }
1119
1120 /* Creates a list of the immediate children of a variable object;
1121 the return code is the number of such children or -1 on error */
1122
1123 VEC (varobj_p)*
1124 varobj_list_children (struct varobj *var, int *from, int *to)
1125 {
1126 char *name;
1127 int i, children_changed;
1128
1129 var->children_requested = 1;
1130
1131 if (var->pretty_printer)
1132 {
1133 /* This, in theory, can result in the number of children changing without
1134 frontend noticing. But well, calling -var-list-children on the same
1135 varobj twice is not something a sane frontend would do. */
1136 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1137 0, 0, *to);
1138 restrict_range (var->children, from, to);
1139 return var->children;
1140 }
1141
1142 if (var->num_children == -1)
1143 var->num_children = number_of_children (var);
1144
1145 /* If that failed, give up. */
1146 if (var->num_children == -1)
1147 return var->children;
1148
1149 /* If we're called when the list of children is not yet initialized,
1150 allocate enough elements in it. */
1151 while (VEC_length (varobj_p, var->children) < var->num_children)
1152 VEC_safe_push (varobj_p, var->children, NULL);
1153
1154 for (i = 0; i < var->num_children; i++)
1155 {
1156 varobj_p existing = VEC_index (varobj_p, var->children, i);
1157
1158 if (existing == NULL)
1159 {
1160 /* Either it's the first call to varobj_list_children for
1161 this variable object, and the child was never created,
1162 or it was explicitly deleted by the client. */
1163 name = name_of_child (var, i);
1164 existing = create_child (var, i, name);
1165 VEC_replace (varobj_p, var->children, i, existing);
1166 }
1167 }
1168
1169 restrict_range (var->children, from, to);
1170 return var->children;
1171 }
1172
1173 #if HAVE_PYTHON
1174
1175 static struct varobj *
1176 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1177 {
1178 varobj_p v = create_child_with_value (var,
1179 VEC_length (varobj_p, var->children),
1180 name, value);
1181
1182 VEC_safe_push (varobj_p, var->children, v);
1183 return v;
1184 }
1185
1186 #endif /* HAVE_PYTHON */
1187
1188 /* Obtain the type of an object Variable as a string similar to the one gdb
1189 prints on the console */
1190
1191 char *
1192 varobj_get_type (struct varobj *var)
1193 {
1194 /* For the "fake" variables, do not return a type. (It's type is
1195 NULL, too.)
1196 Do not return a type for invalid variables as well. */
1197 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1198 return NULL;
1199
1200 return type_to_string (var->type);
1201 }
1202
1203 /* Obtain the type of an object variable. */
1204
1205 struct type *
1206 varobj_get_gdb_type (struct varobj *var)
1207 {
1208 return var->type;
1209 }
1210
1211 /* Return a pointer to the full rooted expression of varobj VAR.
1212 If it has not been computed yet, compute it. */
1213 char *
1214 varobj_get_path_expr (struct varobj *var)
1215 {
1216 if (var->path_expr != NULL)
1217 return var->path_expr;
1218 else
1219 {
1220 /* For root varobjs, we initialize path_expr
1221 when creating varobj, so here it should be
1222 child varobj. */
1223 gdb_assert (!is_root_p (var));
1224 return (*var->root->lang->path_expr_of_child) (var);
1225 }
1226 }
1227
1228 enum varobj_languages
1229 varobj_get_language (struct varobj *var)
1230 {
1231 return variable_language (var);
1232 }
1233
1234 int
1235 varobj_get_attributes (struct varobj *var)
1236 {
1237 int attributes = 0;
1238
1239 if (varobj_editable_p (var))
1240 /* FIXME: define masks for attributes */
1241 attributes |= 0x00000001; /* Editable */
1242
1243 return attributes;
1244 }
1245
1246 int
1247 varobj_pretty_printed_p (struct varobj *var)
1248 {
1249 return var->pretty_printer != NULL;
1250 }
1251
1252 char *
1253 varobj_get_formatted_value (struct varobj *var,
1254 enum varobj_display_formats format)
1255 {
1256 return my_value_of_variable (var, format);
1257 }
1258
1259 char *
1260 varobj_get_value (struct varobj *var)
1261 {
1262 return my_value_of_variable (var, var->format);
1263 }
1264
1265 /* Set the value of an object variable (if it is editable) to the
1266 value of the given expression */
1267 /* Note: Invokes functions that can call error() */
1268
1269 int
1270 varobj_set_value (struct varobj *var, char *expression)
1271 {
1272 struct value *val;
1273
1274 /* The argument "expression" contains the variable's new value.
1275 We need to first construct a legal expression for this -- ugh! */
1276 /* Does this cover all the bases? */
1277 struct expression *exp;
1278 struct value *value;
1279 int saved_input_radix = input_radix;
1280 char *s = expression;
1281
1282 gdb_assert (varobj_editable_p (var));
1283
1284 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1285 exp = parse_exp_1 (&s, 0, 0);
1286 if (!gdb_evaluate_expression (exp, &value))
1287 {
1288 /* We cannot proceed without a valid expression. */
1289 xfree (exp);
1290 return 0;
1291 }
1292
1293 /* All types that are editable must also be changeable. */
1294 gdb_assert (varobj_value_is_changeable_p (var));
1295
1296 /* The value of a changeable variable object must not be lazy. */
1297 gdb_assert (!value_lazy (var->value));
1298
1299 /* Need to coerce the input. We want to check if the
1300 value of the variable object will be different
1301 after assignment, and the first thing value_assign
1302 does is coerce the input.
1303 For example, if we are assigning an array to a pointer variable we
1304 should compare the pointer with the the array's address, not with the
1305 array's content. */
1306 value = coerce_array (value);
1307
1308 /* The new value may be lazy. gdb_value_assign, or
1309 rather value_contents, will take care of this.
1310 If fetching of the new value will fail, gdb_value_assign
1311 with catch the exception. */
1312 if (!gdb_value_assign (var->value, value, &val))
1313 return 0;
1314
1315 /* If the value has changed, record it, so that next -var-update can
1316 report this change. If a variable had a value of '1', we've set it
1317 to '333' and then set again to '1', when -var-update will report this
1318 variable as changed -- because the first assignment has set the
1319 'updated' flag. There's no need to optimize that, because return value
1320 of -var-update should be considered an approximation. */
1321 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1322 input_radix = saved_input_radix;
1323 return 1;
1324 }
1325
1326 #if HAVE_PYTHON
1327
1328 /* A helper function to install a constructor function and visualizer
1329 in a varobj. */
1330
1331 static void
1332 install_visualizer (struct varobj *var, PyObject *constructor,
1333 PyObject *visualizer)
1334 {
1335 Py_XDECREF (var->constructor);
1336 var->constructor = constructor;
1337
1338 Py_XDECREF (var->pretty_printer);
1339 var->pretty_printer = visualizer;
1340
1341 Py_XDECREF (var->child_iter);
1342 var->child_iter = NULL;
1343 }
1344
1345 /* Install the default visualizer for VAR. */
1346
1347 static void
1348 install_default_visualizer (struct varobj *var)
1349 {
1350 if (pretty_printing)
1351 {
1352 PyObject *pretty_printer = NULL;
1353
1354 if (var->value)
1355 {
1356 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1357 if (! pretty_printer)
1358 {
1359 gdbpy_print_stack ();
1360 error (_("Cannot instantiate printer for default visualizer"));
1361 }
1362 }
1363
1364 if (pretty_printer == Py_None)
1365 {
1366 Py_DECREF (pretty_printer);
1367 pretty_printer = NULL;
1368 }
1369
1370 install_visualizer (var, NULL, pretty_printer);
1371 }
1372 }
1373
1374 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1375 make a new object. */
1376
1377 static void
1378 construct_visualizer (struct varobj *var, PyObject *constructor)
1379 {
1380 PyObject *pretty_printer;
1381
1382 Py_INCREF (constructor);
1383 if (constructor == Py_None)
1384 pretty_printer = NULL;
1385 else
1386 {
1387 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1388 if (! pretty_printer)
1389 {
1390 gdbpy_print_stack ();
1391 Py_DECREF (constructor);
1392 constructor = Py_None;
1393 Py_INCREF (constructor);
1394 }
1395
1396 if (pretty_printer == Py_None)
1397 {
1398 Py_DECREF (pretty_printer);
1399 pretty_printer = NULL;
1400 }
1401 }
1402
1403 install_visualizer (var, constructor, pretty_printer);
1404 }
1405
1406 #endif /* HAVE_PYTHON */
1407
1408 /* A helper function for install_new_value. This creates and installs
1409 a visualizer for VAR, if appropriate. */
1410
1411 static void
1412 install_new_value_visualizer (struct varobj *var)
1413 {
1414 #if HAVE_PYTHON
1415 /* If the constructor is None, then we want the raw value. If VAR
1416 does not have a value, just skip this. */
1417 if (var->constructor != Py_None && var->value)
1418 {
1419 struct cleanup *cleanup;
1420
1421 cleanup = varobj_ensure_python_env (var);
1422
1423 if (!var->constructor)
1424 install_default_visualizer (var);
1425 else
1426 construct_visualizer (var, var->constructor);
1427
1428 do_cleanups (cleanup);
1429 }
1430 #else
1431 /* Do nothing. */
1432 #endif
1433 }
1434
1435 /* Assign a new value to a variable object. If INITIAL is non-zero,
1436 this is the first assignement after the variable object was just
1437 created, or changed type. In that case, just assign the value
1438 and return 0.
1439 Otherwise, assign the new value, and return 1 if the value is different
1440 from the current one, 0 otherwise. The comparison is done on textual
1441 representation of value. Therefore, some types need not be compared. E.g.
1442 for structures the reported value is always "{...}", so no comparison is
1443 necessary here. If the old value was NULL and new one is not, or vice versa,
1444 we always return 1.
1445
1446 The VALUE parameter should not be released -- the function will
1447 take care of releasing it when needed. */
1448 static int
1449 install_new_value (struct varobj *var, struct value *value, int initial)
1450 {
1451 int changeable;
1452 int need_to_fetch;
1453 int changed = 0;
1454 int intentionally_not_fetched = 0;
1455 char *print_value = NULL;
1456
1457 /* We need to know the varobj's type to decide if the value should
1458 be fetched or not. C++ fake children (public/protected/private) don't have
1459 a type. */
1460 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1461 changeable = varobj_value_is_changeable_p (var);
1462
1463 /* If the type has custom visualizer, we consider it to be always
1464 changeable. FIXME: need to make sure this behaviour will not
1465 mess up read-sensitive values. */
1466 if (var->pretty_printer)
1467 changeable = 1;
1468
1469 need_to_fetch = changeable;
1470
1471 /* We are not interested in the address of references, and given
1472 that in C++ a reference is not rebindable, it cannot
1473 meaningfully change. So, get hold of the real value. */
1474 if (value)
1475 value = coerce_ref (value);
1476
1477 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1478 /* For unions, we need to fetch the value implicitly because
1479 of implementation of union member fetch. When gdb
1480 creates a value for a field and the value of the enclosing
1481 structure is not lazy, it immediately copies the necessary
1482 bytes from the enclosing values. If the enclosing value is
1483 lazy, the call to value_fetch_lazy on the field will read
1484 the data from memory. For unions, that means we'll read the
1485 same memory more than once, which is not desirable. So
1486 fetch now. */
1487 need_to_fetch = 1;
1488
1489 /* The new value might be lazy. If the type is changeable,
1490 that is we'll be comparing values of this type, fetch the
1491 value now. Otherwise, on the next update the old value
1492 will be lazy, which means we've lost that old value. */
1493 if (need_to_fetch && value && value_lazy (value))
1494 {
1495 struct varobj *parent = var->parent;
1496 int frozen = var->frozen;
1497
1498 for (; !frozen && parent; parent = parent->parent)
1499 frozen |= parent->frozen;
1500
1501 if (frozen && initial)
1502 {
1503 /* For variables that are frozen, or are children of frozen
1504 variables, we don't do fetch on initial assignment.
1505 For non-initial assignemnt we do the fetch, since it means we're
1506 explicitly asked to compare the new value with the old one. */
1507 intentionally_not_fetched = 1;
1508 }
1509 else if (!gdb_value_fetch_lazy (value))
1510 {
1511 /* Set the value to NULL, so that for the next -var-update,
1512 we don't try to compare the new value with this value,
1513 that we couldn't even read. */
1514 value = NULL;
1515 }
1516 }
1517
1518
1519 /* Below, we'll be comparing string rendering of old and new
1520 values. Don't get string rendering if the value is
1521 lazy -- if it is, the code above has decided that the value
1522 should not be fetched. */
1523 if (value && !value_lazy (value) && !var->pretty_printer)
1524 print_value = value_get_print_value (value, var->format, var);
1525
1526 /* If the type is changeable, compare the old and the new values.
1527 If this is the initial assignment, we don't have any old value
1528 to compare with. */
1529 if (!initial && changeable)
1530 {
1531 /* If the value of the varobj was changed by -var-set-value, then the
1532 value in the varobj and in the target is the same. However, that value
1533 is different from the value that the varobj had after the previous
1534 -var-update. So need to the varobj as changed. */
1535 if (var->updated)
1536 {
1537 changed = 1;
1538 }
1539 else if (! var->pretty_printer)
1540 {
1541 /* Try to compare the values. That requires that both
1542 values are non-lazy. */
1543 if (var->not_fetched && value_lazy (var->value))
1544 {
1545 /* This is a frozen varobj and the value was never read.
1546 Presumably, UI shows some "never read" indicator.
1547 Now that we've fetched the real value, we need to report
1548 this varobj as changed so that UI can show the real
1549 value. */
1550 changed = 1;
1551 }
1552 else if (var->value == NULL && value == NULL)
1553 /* Equal. */
1554 ;
1555 else if (var->value == NULL || value == NULL)
1556 {
1557 changed = 1;
1558 }
1559 else
1560 {
1561 gdb_assert (!value_lazy (var->value));
1562 gdb_assert (!value_lazy (value));
1563
1564 gdb_assert (var->print_value != NULL && print_value != NULL);
1565 if (strcmp (var->print_value, print_value) != 0)
1566 changed = 1;
1567 }
1568 }
1569 }
1570
1571 if (!initial && !changeable)
1572 {
1573 /* For values that are not changeable, we don't compare the values.
1574 However, we want to notice if a value was not NULL and now is NULL,
1575 or vise versa, so that we report when top-level varobjs come in scope
1576 and leave the scope. */
1577 changed = (var->value != NULL) != (value != NULL);
1578 }
1579
1580 /* We must always keep the new value, since children depend on it. */
1581 if (var->value != NULL && var->value != value)
1582 value_free (var->value);
1583 var->value = value;
1584 if (value != NULL)
1585 value_incref (value);
1586 if (value && value_lazy (value) && intentionally_not_fetched)
1587 var->not_fetched = 1;
1588 else
1589 var->not_fetched = 0;
1590 var->updated = 0;
1591
1592 install_new_value_visualizer (var);
1593
1594 /* If we installed a pretty-printer, re-compare the printed version
1595 to see if the variable changed. */
1596 if (var->pretty_printer)
1597 {
1598 xfree (print_value);
1599 print_value = value_get_print_value (var->value, var->format, var);
1600 if ((var->print_value == NULL && print_value != NULL)
1601 || (var->print_value != NULL && print_value == NULL)
1602 || (var->print_value != NULL && print_value != NULL
1603 && strcmp (var->print_value, print_value) != 0))
1604 changed = 1;
1605 }
1606 if (var->print_value)
1607 xfree (var->print_value);
1608 var->print_value = print_value;
1609
1610 gdb_assert (!var->value || value_type (var->value));
1611
1612 return changed;
1613 }
1614
1615 /* Return the requested range for a varobj. VAR is the varobj. FROM
1616 and TO are out parameters; *FROM and *TO will be set to the
1617 selected sub-range of VAR. If no range was selected using
1618 -var-set-update-range, then both will be -1. */
1619 void
1620 varobj_get_child_range (struct varobj *var, int *from, int *to)
1621 {
1622 *from = var->from;
1623 *to = var->to;
1624 }
1625
1626 /* Set the selected sub-range of children of VAR to start at index
1627 FROM and end at index TO. If either FROM or TO is less than zero,
1628 this is interpreted as a request for all children. */
1629 void
1630 varobj_set_child_range (struct varobj *var, int from, int to)
1631 {
1632 var->from = from;
1633 var->to = to;
1634 }
1635
1636 void
1637 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1638 {
1639 #if HAVE_PYTHON
1640 PyObject *mainmod, *globals, *constructor;
1641 struct cleanup *back_to;
1642
1643 back_to = varobj_ensure_python_env (var);
1644
1645 mainmod = PyImport_AddModule ("__main__");
1646 globals = PyModule_GetDict (mainmod);
1647 Py_INCREF (globals);
1648 make_cleanup_py_decref (globals);
1649
1650 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1651
1652 if (! constructor)
1653 {
1654 gdbpy_print_stack ();
1655 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1656 }
1657
1658 construct_visualizer (var, constructor);
1659 Py_XDECREF (constructor);
1660
1661 /* If there are any children now, wipe them. */
1662 varobj_delete (var, NULL, 1 /* children only */);
1663 var->num_children = -1;
1664
1665 do_cleanups (back_to);
1666 #else
1667 error (_("Python support required"));
1668 #endif
1669 }
1670
1671 /* Update the values for a variable and its children. This is a
1672 two-pronged attack. First, re-parse the value for the root's
1673 expression to see if it's changed. Then go all the way
1674 through its children, reconstructing them and noting if they've
1675 changed.
1676
1677 The EXPLICIT parameter specifies if this call is result
1678 of MI request to update this specific variable, or
1679 result of implicit -var-update *. For implicit request, we don't
1680 update frozen variables.
1681
1682 NOTE: This function may delete the caller's varobj. If it
1683 returns TYPE_CHANGED, then it has done this and VARP will be modified
1684 to point to the new varobj. */
1685
1686 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1687 {
1688 int changed = 0;
1689 int type_changed = 0;
1690 int i;
1691 struct value *new;
1692 VEC (varobj_update_result) *stack = NULL;
1693 VEC (varobj_update_result) *result = NULL;
1694
1695 /* Frozen means frozen -- we don't check for any change in
1696 this varobj, including its going out of scope, or
1697 changing type. One use case for frozen varobjs is
1698 retaining previously evaluated expressions, and we don't
1699 want them to be reevaluated at all. */
1700 if (!explicit && (*varp)->frozen)
1701 return result;
1702
1703 if (!(*varp)->root->is_valid)
1704 {
1705 varobj_update_result r = {0};
1706
1707 r.varobj = *varp;
1708 r.status = VAROBJ_INVALID;
1709 VEC_safe_push (varobj_update_result, result, &r);
1710 return result;
1711 }
1712
1713 if ((*varp)->root->rootvar == *varp)
1714 {
1715 varobj_update_result r = {0};
1716
1717 r.varobj = *varp;
1718 r.status = VAROBJ_IN_SCOPE;
1719
1720 /* Update the root variable. value_of_root can return NULL
1721 if the variable is no longer around, i.e. we stepped out of
1722 the frame in which a local existed. We are letting the
1723 value_of_root variable dispose of the varobj if the type
1724 has changed. */
1725 new = value_of_root (varp, &type_changed);
1726 r.varobj = *varp;
1727
1728 r.type_changed = type_changed;
1729 if (install_new_value ((*varp), new, type_changed))
1730 r.changed = 1;
1731
1732 if (new == NULL)
1733 r.status = VAROBJ_NOT_IN_SCOPE;
1734 r.value_installed = 1;
1735
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
1737 {
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
1740 return result;
1741 }
1742
1743 VEC_safe_push (varobj_update_result, stack, &r);
1744 }
1745 else
1746 {
1747 varobj_update_result r = {0};
1748
1749 r.varobj = *varp;
1750 VEC_safe_push (varobj_update_result, stack, &r);
1751 }
1752
1753 /* Walk through the children, reconstructing them all. */
1754 while (!VEC_empty (varobj_update_result, stack))
1755 {
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1758
1759 VEC_pop (varobj_update_result, stack);
1760
1761 /* Update this variable, unless it's a root, which is already
1762 updated. */
1763 if (!r.value_installed)
1764 {
1765 new = value_of_child (v->parent, v->index);
1766 if (install_new_value (v, new, 0 /* type not changed */))
1767 {
1768 r.changed = 1;
1769 v->updated = 0;
1770 }
1771 }
1772
1773 /* We probably should not get children of a varobj that has a
1774 pretty-printer, but for which -var-list-children was never
1775 invoked. */
1776 if (v->pretty_printer)
1777 {
1778 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1779 int i, children_changed = 0;
1780
1781 if (v->frozen)
1782 continue;
1783
1784 if (!v->children_requested)
1785 {
1786 int dummy;
1787
1788 /* If we initially did not have potential children, but
1789 now we do, consider the varobj as changed.
1790 Otherwise, if children were never requested, consider
1791 it as unchanged -- presumably, such varobj is not yet
1792 expanded in the UI, so we need not bother getting
1793 it. */
1794 if (!varobj_has_more (v, 0))
1795 {
1796 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1797 &dummy, 0, 0, 0);
1798 if (varobj_has_more (v, 0))
1799 r.changed = 1;
1800 }
1801
1802 if (r.changed)
1803 VEC_safe_push (varobj_update_result, result, &r);
1804
1805 continue;
1806 }
1807
1808 /* If update_dynamic_varobj_children returns 0, then we have
1809 a non-conforming pretty-printer, so we skip it. */
1810 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1811 &children_changed, 1,
1812 v->from, v->to))
1813 {
1814 if (children_changed || new)
1815 {
1816 r.children_changed = 1;
1817 r.new = new;
1818 }
1819 /* Push in reverse order so that the first child is
1820 popped from the work stack first, and so will be
1821 added to result first. This does not affect
1822 correctness, just "nicer". */
1823 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1824 {
1825 varobj_p tmp = VEC_index (varobj_p, changed, i);
1826 varobj_update_result r = {0};
1827
1828 r.varobj = tmp;
1829 r.changed = 1;
1830 r.value_installed = 1;
1831 VEC_safe_push (varobj_update_result, stack, &r);
1832 }
1833 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1834 {
1835 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1836
1837 if (!tmp->frozen)
1838 {
1839 varobj_update_result r = {0};
1840
1841 r.varobj = tmp;
1842 r.value_installed = 1;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1844 }
1845 }
1846 if (r.changed || r.children_changed)
1847 VEC_safe_push (varobj_update_result, result, &r);
1848
1849 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1850 has been put into the result vector. */
1851 VEC_free (varobj_p, changed);
1852 VEC_free (varobj_p, unchanged);
1853
1854 continue;
1855 }
1856 }
1857
1858 /* Push any children. Use reverse order so that the first
1859 child is popped from the work stack first, and so
1860 will be added to result first. This does not
1861 affect correctness, just "nicer". */
1862 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1863 {
1864 varobj_p c = VEC_index (varobj_p, v->children, i);
1865
1866 /* Child may be NULL if explicitly deleted by -var-delete. */
1867 if (c != NULL && !c->frozen)
1868 {
1869 varobj_update_result r = {0};
1870
1871 r.varobj = c;
1872 VEC_safe_push (varobj_update_result, stack, &r);
1873 }
1874 }
1875
1876 if (r.changed || r.type_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
1878 }
1879
1880 VEC_free (varobj_update_result, stack);
1881
1882 return result;
1883 }
1884 \f
1885
1886 /* Helper functions */
1887
1888 /*
1889 * Variable object construction/destruction
1890 */
1891
1892 static int
1893 delete_variable (struct cpstack **resultp, struct varobj *var,
1894 int only_children_p)
1895 {
1896 int delcount = 0;
1897
1898 delete_variable_1 (resultp, &delcount, var,
1899 only_children_p, 1 /* remove_from_parent_p */ );
1900
1901 return delcount;
1902 }
1903
1904 /* Delete the variable object VAR and its children */
1905 /* IMPORTANT NOTE: If we delete a variable which is a child
1906 and the parent is not removed we dump core. It must be always
1907 initially called with remove_from_parent_p set */
1908 static void
1909 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1910 struct varobj *var, int only_children_p,
1911 int remove_from_parent_p)
1912 {
1913 int i;
1914
1915 /* Delete any children of this variable, too. */
1916 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1917 {
1918 varobj_p child = VEC_index (varobj_p, var->children, i);
1919
1920 if (!child)
1921 continue;
1922 if (!remove_from_parent_p)
1923 child->parent = NULL;
1924 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1925 }
1926 VEC_free (varobj_p, var->children);
1927
1928 /* if we were called to delete only the children we are done here */
1929 if (only_children_p)
1930 return;
1931
1932 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1933 /* If the name is null, this is a temporary variable, that has not
1934 yet been installed, don't report it, it belongs to the caller... */
1935 if (var->obj_name != NULL)
1936 {
1937 cppush (resultp, xstrdup (var->obj_name));
1938 *delcountp = *delcountp + 1;
1939 }
1940
1941 /* If this variable has a parent, remove it from its parent's list */
1942 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1943 (as indicated by remove_from_parent_p) we don't bother doing an
1944 expensive list search to find the element to remove when we are
1945 discarding the list afterwards */
1946 if ((remove_from_parent_p) && (var->parent != NULL))
1947 {
1948 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1949 }
1950
1951 if (var->obj_name != NULL)
1952 uninstall_variable (var);
1953
1954 /* Free memory associated with this variable */
1955 free_variable (var);
1956 }
1957
1958 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1959 static int
1960 install_variable (struct varobj *var)
1961 {
1962 struct vlist *cv;
1963 struct vlist *newvl;
1964 const char *chp;
1965 unsigned int index = 0;
1966 unsigned int i = 1;
1967
1968 for (chp = var->obj_name; *chp; chp++)
1969 {
1970 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1971 }
1972
1973 cv = *(varobj_table + index);
1974 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1975 cv = cv->next;
1976
1977 if (cv != NULL)
1978 error (_("Duplicate variable object name"));
1979
1980 /* Add varobj to hash table */
1981 newvl = xmalloc (sizeof (struct vlist));
1982 newvl->next = *(varobj_table + index);
1983 newvl->var = var;
1984 *(varobj_table + index) = newvl;
1985
1986 /* If root, add varobj to root list */
1987 if (is_root_p (var))
1988 {
1989 /* Add to list of root variables */
1990 if (rootlist == NULL)
1991 var->root->next = NULL;
1992 else
1993 var->root->next = rootlist;
1994 rootlist = var->root;
1995 }
1996
1997 return 1; /* OK */
1998 }
1999
2000 /* Unistall the object VAR. */
2001 static void
2002 uninstall_variable (struct varobj *var)
2003 {
2004 struct vlist *cv;
2005 struct vlist *prev;
2006 struct varobj_root *cr;
2007 struct varobj_root *prer;
2008 const char *chp;
2009 unsigned int index = 0;
2010 unsigned int i = 1;
2011
2012 /* Remove varobj from hash table */
2013 for (chp = var->obj_name; *chp; chp++)
2014 {
2015 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2016 }
2017
2018 cv = *(varobj_table + index);
2019 prev = NULL;
2020 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2021 {
2022 prev = cv;
2023 cv = cv->next;
2024 }
2025
2026 if (varobjdebug)
2027 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2028
2029 if (cv == NULL)
2030 {
2031 warning
2032 ("Assertion failed: Could not find variable object \"%s\" to delete",
2033 var->obj_name);
2034 return;
2035 }
2036
2037 if (prev == NULL)
2038 *(varobj_table + index) = cv->next;
2039 else
2040 prev->next = cv->next;
2041
2042 xfree (cv);
2043
2044 /* If root, remove varobj from root list */
2045 if (is_root_p (var))
2046 {
2047 /* Remove from list of root variables */
2048 if (rootlist == var->root)
2049 rootlist = var->root->next;
2050 else
2051 {
2052 prer = NULL;
2053 cr = rootlist;
2054 while ((cr != NULL) && (cr->rootvar != var))
2055 {
2056 prer = cr;
2057 cr = cr->next;
2058 }
2059 if (cr == NULL)
2060 {
2061 warning
2062 ("Assertion failed: Could not find varobj \"%s\" in root list",
2063 var->obj_name);
2064 return;
2065 }
2066 if (prer == NULL)
2067 rootlist = NULL;
2068 else
2069 prer->next = cr->next;
2070 }
2071 }
2072
2073 }
2074
2075 /* Create and install a child of the parent of the given name */
2076 static struct varobj *
2077 create_child (struct varobj *parent, int index, char *name)
2078 {
2079 return create_child_with_value (parent, index, name,
2080 value_of_child (parent, index));
2081 }
2082
2083 static struct varobj *
2084 create_child_with_value (struct varobj *parent, int index, const char *name,
2085 struct value *value)
2086 {
2087 struct varobj *child;
2088 char *childs_name;
2089
2090 child = new_variable ();
2091
2092 /* name is allocated by name_of_child */
2093 /* FIXME: xstrdup should not be here. */
2094 child->name = xstrdup (name);
2095 child->index = index;
2096 child->parent = parent;
2097 child->root = parent->root;
2098 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2099 child->obj_name = childs_name;
2100 install_variable (child);
2101
2102 /* Compute the type of the child. Must do this before
2103 calling install_new_value. */
2104 if (value != NULL)
2105 /* If the child had no evaluation errors, var->value
2106 will be non-NULL and contain a valid type. */
2107 child->type = value_type (value);
2108 else
2109 /* Otherwise, we must compute the type. */
2110 child->type = (*child->root->lang->type_of_child) (child->parent,
2111 child->index);
2112 install_new_value (child, value, 1);
2113
2114 return child;
2115 }
2116 \f
2117
2118 /*
2119 * Miscellaneous utility functions.
2120 */
2121
2122 /* Allocate memory and initialize a new variable */
2123 static struct varobj *
2124 new_variable (void)
2125 {
2126 struct varobj *var;
2127
2128 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2129 var->name = NULL;
2130 var->path_expr = NULL;
2131 var->obj_name = NULL;
2132 var->index = -1;
2133 var->type = NULL;
2134 var->value = NULL;
2135 var->num_children = -1;
2136 var->parent = NULL;
2137 var->children = NULL;
2138 var->format = 0;
2139 var->root = NULL;
2140 var->updated = 0;
2141 var->print_value = NULL;
2142 var->frozen = 0;
2143 var->not_fetched = 0;
2144 var->children_requested = 0;
2145 var->from = -1;
2146 var->to = -1;
2147 var->constructor = 0;
2148 var->pretty_printer = 0;
2149 var->child_iter = 0;
2150 var->saved_item = 0;
2151
2152 return var;
2153 }
2154
2155 /* Allocate memory and initialize a new root variable */
2156 static struct varobj *
2157 new_root_variable (void)
2158 {
2159 struct varobj *var = new_variable ();
2160
2161 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2162 var->root->lang = NULL;
2163 var->root->exp = NULL;
2164 var->root->valid_block = NULL;
2165 var->root->frame = null_frame_id;
2166 var->root->floating = 0;
2167 var->root->rootvar = NULL;
2168 var->root->is_valid = 1;
2169
2170 return var;
2171 }
2172
2173 /* Free any allocated memory associated with VAR. */
2174 static void
2175 free_variable (struct varobj *var)
2176 {
2177 #if HAVE_PYTHON
2178 if (var->pretty_printer)
2179 {
2180 struct cleanup *cleanup = varobj_ensure_python_env (var);
2181 Py_XDECREF (var->constructor);
2182 Py_XDECREF (var->pretty_printer);
2183 Py_XDECREF (var->child_iter);
2184 Py_XDECREF (var->saved_item);
2185 do_cleanups (cleanup);
2186 }
2187 #endif
2188
2189 value_free (var->value);
2190
2191 /* Free the expression if this is a root variable. */
2192 if (is_root_p (var))
2193 {
2194 xfree (var->root->exp);
2195 xfree (var->root);
2196 }
2197
2198 xfree (var->name);
2199 xfree (var->obj_name);
2200 xfree (var->print_value);
2201 xfree (var->path_expr);
2202 xfree (var);
2203 }
2204
2205 static void
2206 do_free_variable_cleanup (void *var)
2207 {
2208 free_variable (var);
2209 }
2210
2211 static struct cleanup *
2212 make_cleanup_free_variable (struct varobj *var)
2213 {
2214 return make_cleanup (do_free_variable_cleanup, var);
2215 }
2216
2217 /* This returns the type of the variable. It also skips past typedefs
2218 to return the real type of the variable.
2219
2220 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2221 except within get_target_type and get_type. */
2222 static struct type *
2223 get_type (struct varobj *var)
2224 {
2225 struct type *type;
2226
2227 type = var->type;
2228 if (type != NULL)
2229 type = check_typedef (type);
2230
2231 return type;
2232 }
2233
2234 /* Return the type of the value that's stored in VAR,
2235 or that would have being stored there if the
2236 value were accessible.
2237
2238 This differs from VAR->type in that VAR->type is always
2239 the true type of the expession in the source language.
2240 The return value of this function is the type we're
2241 actually storing in varobj, and using for displaying
2242 the values and for comparing previous and new values.
2243
2244 For example, top-level references are always stripped. */
2245 static struct type *
2246 get_value_type (struct varobj *var)
2247 {
2248 struct type *type;
2249
2250 if (var->value)
2251 type = value_type (var->value);
2252 else
2253 type = var->type;
2254
2255 type = check_typedef (type);
2256
2257 if (TYPE_CODE (type) == TYPE_CODE_REF)
2258 type = get_target_type (type);
2259
2260 type = check_typedef (type);
2261
2262 return type;
2263 }
2264
2265 /* This returns the target type (or NULL) of TYPE, also skipping
2266 past typedefs, just like get_type ().
2267
2268 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2269 except within get_target_type and get_type. */
2270 static struct type *
2271 get_target_type (struct type *type)
2272 {
2273 if (type != NULL)
2274 {
2275 type = TYPE_TARGET_TYPE (type);
2276 if (type != NULL)
2277 type = check_typedef (type);
2278 }
2279
2280 return type;
2281 }
2282
2283 /* What is the default display for this variable? We assume that
2284 everything is "natural". Any exceptions? */
2285 static enum varobj_display_formats
2286 variable_default_display (struct varobj *var)
2287 {
2288 return FORMAT_NATURAL;
2289 }
2290
2291 /* FIXME: The following should be generic for any pointer */
2292 static void
2293 cppush (struct cpstack **pstack, char *name)
2294 {
2295 struct cpstack *s;
2296
2297 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2298 s->name = name;
2299 s->next = *pstack;
2300 *pstack = s;
2301 }
2302
2303 /* FIXME: The following should be generic for any pointer */
2304 static char *
2305 cppop (struct cpstack **pstack)
2306 {
2307 struct cpstack *s;
2308 char *v;
2309
2310 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2311 return NULL;
2312
2313 s = *pstack;
2314 v = s->name;
2315 *pstack = (*pstack)->next;
2316 xfree (s);
2317
2318 return v;
2319 }
2320 \f
2321 /*
2322 * Language-dependencies
2323 */
2324
2325 /* Common entry points */
2326
2327 /* Get the language of variable VAR. */
2328 static enum varobj_languages
2329 variable_language (struct varobj *var)
2330 {
2331 enum varobj_languages lang;
2332
2333 switch (var->root->exp->language_defn->la_language)
2334 {
2335 default:
2336 case language_c:
2337 lang = vlang_c;
2338 break;
2339 case language_cplus:
2340 lang = vlang_cplus;
2341 break;
2342 case language_java:
2343 lang = vlang_java;
2344 break;
2345 }
2346
2347 return lang;
2348 }
2349
2350 /* Return the number of children for a given variable.
2351 The result of this function is defined by the language
2352 implementation. The number of children returned by this function
2353 is the number of children that the user will see in the variable
2354 display. */
2355 static int
2356 number_of_children (struct varobj *var)
2357 {
2358 return (*var->root->lang->number_of_children) (var);;
2359 }
2360
2361 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2362 static char *
2363 name_of_variable (struct varobj *var)
2364 {
2365 return (*var->root->lang->name_of_variable) (var);
2366 }
2367
2368 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2369 static char *
2370 name_of_child (struct varobj *var, int index)
2371 {
2372 return (*var->root->lang->name_of_child) (var, index);
2373 }
2374
2375 /* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2378 that case:
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
2384 static struct value *
2385 value_of_root (struct varobj **var_handle, int *type_changed)
2386 {
2387 struct varobj *var;
2388
2389 if (var_handle == NULL)
2390 return NULL;
2391
2392 var = *var_handle;
2393
2394 /* This should really be an exception, since this should
2395 only get called with a root variable. */
2396
2397 if (!is_root_p (var))
2398 return NULL;
2399
2400 if (var->root->floating)
2401 {
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
2404
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2408 {
2409 return NULL;
2410 }
2411 old_type = varobj_get_type (var);
2412 new_type = varobj_get_type (tmp_var);
2413 if (strcmp (old_type, new_type) == 0)
2414 {
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2420
2421 struct expression *tmp_exp = var->root->exp;
2422
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2425
2426 varobj_delete (tmp_var, NULL, 0);
2427 *type_changed = 0;
2428 }
2429 else
2430 {
2431 tmp_var->obj_name = xstrdup (var->obj_name);
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
2434 varobj_delete (var, NULL, 0);
2435
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
2438 var = *var_handle;
2439 *type_changed = 1;
2440 }
2441 xfree (old_type);
2442 xfree (new_type);
2443 }
2444 else
2445 {
2446 *type_changed = 0;
2447 }
2448
2449 return (*var->root->lang->value_of_root) (var_handle);
2450 }
2451
2452 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2453 static struct value *
2454 value_of_child (struct varobj *parent, int index)
2455 {
2456 struct value *value;
2457
2458 value = (*parent->root->lang->value_of_child) (parent, index);
2459
2460 return value;
2461 }
2462
2463 /* GDB already has a command called "value_of_variable". Sigh. */
2464 static char *
2465 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2466 {
2467 if (var->root->is_valid)
2468 {
2469 if (var->pretty_printer)
2470 return value_get_print_value (var->value, var->format, var);
2471 return (*var->root->lang->value_of_variable) (var, format);
2472 }
2473 else
2474 return NULL;
2475 }
2476
2477 static char *
2478 value_get_print_value (struct value *value, enum varobj_display_formats format,
2479 struct varobj *var)
2480 {
2481 struct ui_file *stb;
2482 struct cleanup *old_chain;
2483 gdb_byte *thevalue = NULL;
2484 struct value_print_options opts;
2485 struct type *type = NULL;
2486 long len = 0;
2487 char *encoding = NULL;
2488 struct gdbarch *gdbarch = NULL;
2489 /* Initialize it just to avoid a GCC false warning. */
2490 CORE_ADDR str_addr = 0;
2491 int string_print = 0;
2492
2493 if (value == NULL)
2494 return NULL;
2495
2496 stb = mem_fileopen ();
2497 old_chain = make_cleanup_ui_file_delete (stb);
2498
2499 gdbarch = get_type_arch (value_type (value));
2500 #if HAVE_PYTHON
2501 {
2502 PyObject *value_formatter = var->pretty_printer;
2503
2504 varobj_ensure_python_env (var);
2505
2506 if (value_formatter)
2507 {
2508 /* First check to see if we have any children at all. If so,
2509 we simply return {...}. */
2510 if (dynamic_varobj_has_child_method (var))
2511 {
2512 do_cleanups (old_chain);
2513 return xstrdup ("{...}");
2514 }
2515
2516 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2517 {
2518 char *hint;
2519 struct value *replacement;
2520 PyObject *output = NULL;
2521
2522 hint = gdbpy_get_display_hint (value_formatter);
2523 if (hint)
2524 {
2525 if (!strcmp (hint, "string"))
2526 string_print = 1;
2527 xfree (hint);
2528 }
2529
2530 output = apply_varobj_pretty_printer (value_formatter,
2531 &replacement,
2532 stb);
2533 if (output)
2534 {
2535 make_cleanup_py_decref (output);
2536
2537 if (gdbpy_is_lazy_string (output))
2538 {
2539 gdbpy_extract_lazy_string (output, &str_addr, &type,
2540 &len, &encoding);
2541 make_cleanup (free_current_contents, &encoding);
2542 string_print = 1;
2543 }
2544 else
2545 {
2546 PyObject *py_str
2547 = python_string_to_target_python_string (output);
2548
2549 if (py_str)
2550 {
2551 char *s = PyString_AsString (py_str);
2552
2553 len = PyString_Size (py_str);
2554 thevalue = xmemdup (s, len + 1, len + 1);
2555 type = builtin_type (gdbarch)->builtin_char;
2556 Py_DECREF (py_str);
2557
2558 if (!string_print)
2559 {
2560 do_cleanups (old_chain);
2561 return thevalue;
2562 }
2563
2564 make_cleanup (xfree, thevalue);
2565 }
2566 else
2567 gdbpy_print_stack ();
2568 }
2569 }
2570 if (replacement)
2571 value = replacement;
2572 }
2573 }
2574 }
2575 #endif
2576
2577 get_formatted_print_options (&opts, format_code[(int) format]);
2578 opts.deref_ref = 0;
2579 opts.raw = 1;
2580 if (thevalue)
2581 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2582 else if (string_print)
2583 val_print_string (type, encoding, str_addr, len, stb, &opts);
2584 else
2585 common_val_print (value, stb, 0, &opts, current_language);
2586 thevalue = ui_file_xstrdup (stb, NULL);
2587
2588 do_cleanups (old_chain);
2589 return thevalue;
2590 }
2591
2592 int
2593 varobj_editable_p (struct varobj *var)
2594 {
2595 struct type *type;
2596
2597 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2598 return 0;
2599
2600 type = get_value_type (var);
2601
2602 switch (TYPE_CODE (type))
2603 {
2604 case TYPE_CODE_STRUCT:
2605 case TYPE_CODE_UNION:
2606 case TYPE_CODE_ARRAY:
2607 case TYPE_CODE_FUNC:
2608 case TYPE_CODE_METHOD:
2609 return 0;
2610 break;
2611
2612 default:
2613 return 1;
2614 break;
2615 }
2616 }
2617
2618 /* Return non-zero if changes in value of VAR
2619 must be detected and reported by -var-update.
2620 Return zero is -var-update should never report
2621 changes of such values. This makes sense for structures
2622 (since the changes in children values will be reported separately),
2623 or for artifical objects (like 'public' pseudo-field in C++).
2624
2625 Return value of 0 means that gdb need not call value_fetch_lazy
2626 for the value of this variable object. */
2627 static int
2628 varobj_value_is_changeable_p (struct varobj *var)
2629 {
2630 int r;
2631 struct type *type;
2632
2633 if (CPLUS_FAKE_CHILD (var))
2634 return 0;
2635
2636 type = get_value_type (var);
2637
2638 switch (TYPE_CODE (type))
2639 {
2640 case TYPE_CODE_STRUCT:
2641 case TYPE_CODE_UNION:
2642 case TYPE_CODE_ARRAY:
2643 r = 0;
2644 break;
2645
2646 default:
2647 r = 1;
2648 }
2649
2650 return r;
2651 }
2652
2653 /* Return 1 if that varobj is floating, that is is always evaluated in the
2654 selected frame, and not bound to thread/frame. Such variable objects
2655 are created using '@' as frame specifier to -var-create. */
2656 int
2657 varobj_floating_p (struct varobj *var)
2658 {
2659 return var->root->floating;
2660 }
2661
2662 /* Given the value and the type of a variable object,
2663 adjust the value and type to those necessary
2664 for getting children of the variable object.
2665 This includes dereferencing top-level references
2666 to all types and dereferencing pointers to
2667 structures.
2668
2669 Both TYPE and *TYPE should be non-null. VALUE
2670 can be null if we want to only translate type.
2671 *VALUE can be null as well -- if the parent
2672 value is not known.
2673
2674 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2675 depending on whether pointer was dereferenced
2676 in this function. */
2677 static void
2678 adjust_value_for_child_access (struct value **value,
2679 struct type **type,
2680 int *was_ptr)
2681 {
2682 gdb_assert (type && *type);
2683
2684 if (was_ptr)
2685 *was_ptr = 0;
2686
2687 *type = check_typedef (*type);
2688
2689 /* The type of value stored in varobj, that is passed
2690 to us, is already supposed to be
2691 reference-stripped. */
2692
2693 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2694
2695 /* Pointers to structures are treated just like
2696 structures when accessing children. Don't
2697 dererences pointers to other types. */
2698 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2699 {
2700 struct type *target_type = get_target_type (*type);
2701 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2702 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2703 {
2704 if (value && *value)
2705 {
2706 int success = gdb_value_ind (*value, value);
2707
2708 if (!success)
2709 *value = NULL;
2710 }
2711 *type = target_type;
2712 if (was_ptr)
2713 *was_ptr = 1;
2714 }
2715 }
2716
2717 /* The 'get_target_type' function calls check_typedef on
2718 result, so we can immediately check type code. No
2719 need to call check_typedef here. */
2720 }
2721
2722 /* C */
2723 static int
2724 c_number_of_children (struct varobj *var)
2725 {
2726 struct type *type = get_value_type (var);
2727 int children = 0;
2728 struct type *target;
2729
2730 adjust_value_for_child_access (NULL, &type, NULL);
2731 target = get_target_type (type);
2732
2733 switch (TYPE_CODE (type))
2734 {
2735 case TYPE_CODE_ARRAY:
2736 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2737 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2738 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2739 else
2740 /* If we don't know how many elements there are, don't display
2741 any. */
2742 children = 0;
2743 break;
2744
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 children = TYPE_NFIELDS (type);
2748 break;
2749
2750 case TYPE_CODE_PTR:
2751 /* The type here is a pointer to non-struct. Typically, pointers
2752 have one child, except for function ptrs, which have no children,
2753 and except for void*, as we don't know what to show.
2754
2755 We can show char* so we allow it to be dereferenced. If you decide
2756 to test for it, please mind that a little magic is necessary to
2757 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2758 TYPE_NAME == "char" */
2759 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2760 || TYPE_CODE (target) == TYPE_CODE_VOID)
2761 children = 0;
2762 else
2763 children = 1;
2764 break;
2765
2766 default:
2767 /* Other types have no children */
2768 break;
2769 }
2770
2771 return children;
2772 }
2773
2774 static char *
2775 c_name_of_variable (struct varobj *parent)
2776 {
2777 return xstrdup (parent->name);
2778 }
2779
2780 /* Return the value of element TYPE_INDEX of a structure
2781 value VALUE. VALUE's type should be a structure,
2782 or union, or a typedef to struct/union.
2783
2784 Returns NULL if getting the value fails. Never throws. */
2785 static struct value *
2786 value_struct_element_index (struct value *value, int type_index)
2787 {
2788 struct value *result = NULL;
2789 volatile struct gdb_exception e;
2790 struct type *type = value_type (value);
2791
2792 type = check_typedef (type);
2793
2794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2795 || TYPE_CODE (type) == TYPE_CODE_UNION);
2796
2797 TRY_CATCH (e, RETURN_MASK_ERROR)
2798 {
2799 if (field_is_static (&TYPE_FIELD (type, type_index)))
2800 result = value_static_field (type, type_index);
2801 else
2802 result = value_primitive_field (value, 0, type_index, type);
2803 }
2804 if (e.reason < 0)
2805 {
2806 return NULL;
2807 }
2808 else
2809 {
2810 return result;
2811 }
2812 }
2813
2814 /* Obtain the information about child INDEX of the variable
2815 object PARENT.
2816 If CNAME is not null, sets *CNAME to the name of the child relative
2817 to the parent.
2818 If CVALUE is not null, sets *CVALUE to the value of the child.
2819 If CTYPE is not null, sets *CTYPE to the type of the child.
2820
2821 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2822 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2823 to NULL. */
2824 static void
2825 c_describe_child (struct varobj *parent, int index,
2826 char **cname, struct value **cvalue, struct type **ctype,
2827 char **cfull_expression)
2828 {
2829 struct value *value = parent->value;
2830 struct type *type = get_value_type (parent);
2831 char *parent_expression = NULL;
2832 int was_ptr;
2833
2834 if (cname)
2835 *cname = NULL;
2836 if (cvalue)
2837 *cvalue = NULL;
2838 if (ctype)
2839 *ctype = NULL;
2840 if (cfull_expression)
2841 {
2842 *cfull_expression = NULL;
2843 parent_expression = varobj_get_path_expr (parent);
2844 }
2845 adjust_value_for_child_access (&value, &type, &was_ptr);
2846
2847 switch (TYPE_CODE (type))
2848 {
2849 case TYPE_CODE_ARRAY:
2850 if (cname)
2851 *cname = xstrdup (int_string (index
2852 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2853 10, 1, 0, 0));
2854
2855 if (cvalue && value)
2856 {
2857 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2858
2859 gdb_value_subscript (value, real_index, cvalue);
2860 }
2861
2862 if (ctype)
2863 *ctype = get_target_type (type);
2864
2865 if (cfull_expression)
2866 *cfull_expression =
2867 xstrprintf ("(%s)[%s]", parent_expression,
2868 int_string (index
2869 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2870 10, 1, 0, 0));
2871
2872
2873 break;
2874
2875 case TYPE_CODE_STRUCT:
2876 case TYPE_CODE_UNION:
2877 if (cname)
2878 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2879
2880 if (cvalue && value)
2881 {
2882 /* For C, varobj index is the same as type index. */
2883 *cvalue = value_struct_element_index (value, index);
2884 }
2885
2886 if (ctype)
2887 *ctype = TYPE_FIELD_TYPE (type, index);
2888
2889 if (cfull_expression)
2890 {
2891 char *join = was_ptr ? "->" : ".";
2892
2893 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2894 TYPE_FIELD_NAME (type, index));
2895 }
2896
2897 break;
2898
2899 case TYPE_CODE_PTR:
2900 if (cname)
2901 *cname = xstrprintf ("*%s", parent->name);
2902
2903 if (cvalue && value)
2904 {
2905 int success = gdb_value_ind (value, cvalue);
2906
2907 if (!success)
2908 *cvalue = NULL;
2909 }
2910
2911 /* Don't use get_target_type because it calls
2912 check_typedef and here, we want to show the true
2913 declared type of the variable. */
2914 if (ctype)
2915 *ctype = TYPE_TARGET_TYPE (type);
2916
2917 if (cfull_expression)
2918 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2919
2920 break;
2921
2922 default:
2923 /* This should not happen */
2924 if (cname)
2925 *cname = xstrdup ("???");
2926 if (cfull_expression)
2927 *cfull_expression = xstrdup ("???");
2928 /* Don't set value and type, we don't know then. */
2929 }
2930 }
2931
2932 static char *
2933 c_name_of_child (struct varobj *parent, int index)
2934 {
2935 char *name;
2936
2937 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2938 return name;
2939 }
2940
2941 static char *
2942 c_path_expr_of_child (struct varobj *child)
2943 {
2944 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2945 &child->path_expr);
2946 return child->path_expr;
2947 }
2948
2949 /* If frame associated with VAR can be found, switch
2950 to it and return 1. Otherwise, return 0. */
2951 static int
2952 check_scope (struct varobj *var)
2953 {
2954 struct frame_info *fi;
2955 int scope;
2956
2957 fi = frame_find_by_id (var->root->frame);
2958 scope = fi != NULL;
2959
2960 if (fi)
2961 {
2962 CORE_ADDR pc = get_frame_pc (fi);
2963
2964 if (pc < BLOCK_START (var->root->valid_block) ||
2965 pc >= BLOCK_END (var->root->valid_block))
2966 scope = 0;
2967 else
2968 select_frame (fi);
2969 }
2970 return scope;
2971 }
2972
2973 static struct value *
2974 c_value_of_root (struct varobj **var_handle)
2975 {
2976 struct value *new_val = NULL;
2977 struct varobj *var = *var_handle;
2978 int within_scope = 0;
2979 struct cleanup *back_to;
2980
2981 /* Only root variables can be updated... */
2982 if (!is_root_p (var))
2983 /* Not a root var */
2984 return NULL;
2985
2986 back_to = make_cleanup_restore_current_thread ();
2987
2988 /* Determine whether the variable is still around. */
2989 if (var->root->valid_block == NULL || var->root->floating)
2990 within_scope = 1;
2991 else if (var->root->thread_id == 0)
2992 {
2993 /* The program was single-threaded when the variable object was
2994 created. Technically, it's possible that the program became
2995 multi-threaded since then, but we don't support such
2996 scenario yet. */
2997 within_scope = check_scope (var);
2998 }
2999 else
3000 {
3001 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3002 if (in_thread_list (ptid))
3003 {
3004 switch_to_thread (ptid);
3005 within_scope = check_scope (var);
3006 }
3007 }
3008
3009 if (within_scope)
3010 {
3011 /* We need to catch errors here, because if evaluate
3012 expression fails we want to just return NULL. */
3013 gdb_evaluate_expression (var->root->exp, &new_val);
3014 return new_val;
3015 }
3016
3017 do_cleanups (back_to);
3018
3019 return NULL;
3020 }
3021
3022 static struct value *
3023 c_value_of_child (struct varobj *parent, int index)
3024 {
3025 struct value *value = NULL;
3026
3027 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3028 return value;
3029 }
3030
3031 static struct type *
3032 c_type_of_child (struct varobj *parent, int index)
3033 {
3034 struct type *type = NULL;
3035
3036 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3037 return type;
3038 }
3039
3040 static char *
3041 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3042 {
3043 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3044 it will print out its children instead of "{...}". So we need to
3045 catch that case explicitly. */
3046 struct type *type = get_type (var);
3047
3048 /* If we have a custom formatter, return whatever string it has
3049 produced. */
3050 if (var->pretty_printer && var->print_value)
3051 return xstrdup (var->print_value);
3052
3053 /* Strip top-level references. */
3054 while (TYPE_CODE (type) == TYPE_CODE_REF)
3055 type = check_typedef (TYPE_TARGET_TYPE (type));
3056
3057 switch (TYPE_CODE (type))
3058 {
3059 case TYPE_CODE_STRUCT:
3060 case TYPE_CODE_UNION:
3061 return xstrdup ("{...}");
3062 /* break; */
3063
3064 case TYPE_CODE_ARRAY:
3065 {
3066 char *number;
3067
3068 number = xstrprintf ("[%d]", var->num_children);
3069 return (number);
3070 }
3071 /* break; */
3072
3073 default:
3074 {
3075 if (var->value == NULL)
3076 {
3077 /* This can happen if we attempt to get the value of a struct
3078 member when the parent is an invalid pointer. This is an
3079 error condition, so we should tell the caller. */
3080 return NULL;
3081 }
3082 else
3083 {
3084 if (var->not_fetched && value_lazy (var->value))
3085 /* Frozen variable and no value yet. We don't
3086 implicitly fetch the value. MI response will
3087 use empty string for the value, which is OK. */
3088 return NULL;
3089
3090 gdb_assert (varobj_value_is_changeable_p (var));
3091 gdb_assert (!value_lazy (var->value));
3092
3093 /* If the specified format is the current one,
3094 we can reuse print_value */
3095 if (format == var->format)
3096 return xstrdup (var->print_value);
3097 else
3098 return value_get_print_value (var->value, format, var);
3099 }
3100 }
3101 }
3102 }
3103 \f
3104
3105 /* C++ */
3106
3107 static int
3108 cplus_number_of_children (struct varobj *var)
3109 {
3110 struct type *type;
3111 int children, dont_know;
3112
3113 dont_know = 1;
3114 children = 0;
3115
3116 if (!CPLUS_FAKE_CHILD (var))
3117 {
3118 type = get_value_type (var);
3119 adjust_value_for_child_access (NULL, &type, NULL);
3120
3121 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3122 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3123 {
3124 int kids[3];
3125
3126 cplus_class_num_children (type, kids);
3127 if (kids[v_public] != 0)
3128 children++;
3129 if (kids[v_private] != 0)
3130 children++;
3131 if (kids[v_protected] != 0)
3132 children++;
3133
3134 /* Add any baseclasses */
3135 children += TYPE_N_BASECLASSES (type);
3136 dont_know = 0;
3137
3138 /* FIXME: save children in var */
3139 }
3140 }
3141 else
3142 {
3143 int kids[3];
3144
3145 type = get_value_type (var->parent);
3146 adjust_value_for_child_access (NULL, &type, NULL);
3147
3148 cplus_class_num_children (type, kids);
3149 if (strcmp (var->name, "public") == 0)
3150 children = kids[v_public];
3151 else if (strcmp (var->name, "private") == 0)
3152 children = kids[v_private];
3153 else
3154 children = kids[v_protected];
3155 dont_know = 0;
3156 }
3157
3158 if (dont_know)
3159 children = c_number_of_children (var);
3160
3161 return children;
3162 }
3163
3164 /* Compute # of public, private, and protected variables in this class.
3165 That means we need to descend into all baseclasses and find out
3166 how many are there, too. */
3167 static void
3168 cplus_class_num_children (struct type *type, int children[3])
3169 {
3170 int i, vptr_fieldno;
3171 struct type *basetype = NULL;
3172
3173 children[v_public] = 0;
3174 children[v_private] = 0;
3175 children[v_protected] = 0;
3176
3177 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3178 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3179 {
3180 /* If we have a virtual table pointer, omit it. Even if virtual
3181 table pointers are not specifically marked in the debug info,
3182 they should be artificial. */
3183 if ((type == basetype && i == vptr_fieldno)
3184 || TYPE_FIELD_ARTIFICIAL (type, i))
3185 continue;
3186
3187 if (TYPE_FIELD_PROTECTED (type, i))
3188 children[v_protected]++;
3189 else if (TYPE_FIELD_PRIVATE (type, i))
3190 children[v_private]++;
3191 else
3192 children[v_public]++;
3193 }
3194 }
3195
3196 static char *
3197 cplus_name_of_variable (struct varobj *parent)
3198 {
3199 return c_name_of_variable (parent);
3200 }
3201
3202 enum accessibility { private_field, protected_field, public_field };
3203
3204 /* Check if field INDEX of TYPE has the specified accessibility.
3205 Return 0 if so and 1 otherwise. */
3206 static int
3207 match_accessibility (struct type *type, int index, enum accessibility acc)
3208 {
3209 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3210 return 1;
3211 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3212 return 1;
3213 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3214 && !TYPE_FIELD_PROTECTED (type, index))
3215 return 1;
3216 else
3217 return 0;
3218 }
3219
3220 static void
3221 cplus_describe_child (struct varobj *parent, int index,
3222 char **cname, struct value **cvalue, struct type **ctype,
3223 char **cfull_expression)
3224 {
3225 struct value *value;
3226 struct type *type;
3227 int was_ptr;
3228 char *parent_expression = NULL;
3229
3230 if (cname)
3231 *cname = NULL;
3232 if (cvalue)
3233 *cvalue = NULL;
3234 if (ctype)
3235 *ctype = NULL;
3236 if (cfull_expression)
3237 *cfull_expression = NULL;
3238
3239 if (CPLUS_FAKE_CHILD (parent))
3240 {
3241 value = parent->parent->value;
3242 type = get_value_type (parent->parent);
3243 if (cfull_expression)
3244 parent_expression = varobj_get_path_expr (parent->parent);
3245 }
3246 else
3247 {
3248 value = parent->value;
3249 type = get_value_type (parent);
3250 if (cfull_expression)
3251 parent_expression = varobj_get_path_expr (parent);
3252 }
3253
3254 adjust_value_for_child_access (&value, &type, &was_ptr);
3255
3256 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3257 || TYPE_CODE (type) == TYPE_CODE_UNION)
3258 {
3259 char *join = was_ptr ? "->" : ".";
3260
3261 if (CPLUS_FAKE_CHILD (parent))
3262 {
3263 /* The fields of the class type are ordered as they
3264 appear in the class. We are given an index for a
3265 particular access control type ("public","protected",
3266 or "private"). We must skip over fields that don't
3267 have the access control we are looking for to properly
3268 find the indexed field. */
3269 int type_index = TYPE_N_BASECLASSES (type);
3270 enum accessibility acc = public_field;
3271 int vptr_fieldno;
3272 struct type *basetype = NULL;
3273
3274 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3275 if (strcmp (parent->name, "private") == 0)
3276 acc = private_field;
3277 else if (strcmp (parent->name, "protected") == 0)
3278 acc = protected_field;
3279
3280 while (index >= 0)
3281 {
3282 if ((type == basetype && type_index == vptr_fieldno)
3283 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3284 ; /* ignore vptr */
3285 else if (match_accessibility (type, type_index, acc))
3286 --index;
3287 ++type_index;
3288 }
3289 --type_index;
3290
3291 if (cname)
3292 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3293
3294 if (cvalue && value)
3295 *cvalue = value_struct_element_index (value, type_index);
3296
3297 if (ctype)
3298 *ctype = TYPE_FIELD_TYPE (type, type_index);
3299
3300 if (cfull_expression)
3301 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3302 join,
3303 TYPE_FIELD_NAME (type, type_index));
3304 }
3305 else if (index < TYPE_N_BASECLASSES (type))
3306 {
3307 /* This is a baseclass. */
3308 if (cname)
3309 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3310
3311 if (cvalue && value)
3312 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3313
3314 if (ctype)
3315 {
3316 *ctype = TYPE_FIELD_TYPE (type, index);
3317 }
3318
3319 if (cfull_expression)
3320 {
3321 char *ptr = was_ptr ? "*" : "";
3322
3323 /* Cast the parent to the base' type. Note that in gdb,
3324 expression like
3325 (Base1)d
3326 will create an lvalue, for all appearences, so we don't
3327 need to use more fancy:
3328 *(Base1*)(&d)
3329 construct. */
3330 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3331 ptr,
3332 TYPE_FIELD_NAME (type, index),
3333 ptr,
3334 parent_expression);
3335 }
3336 }
3337 else
3338 {
3339 char *access = NULL;
3340 int children[3];
3341
3342 cplus_class_num_children (type, children);
3343
3344 /* Everything beyond the baseclasses can
3345 only be "public", "private", or "protected"
3346
3347 The special "fake" children are always output by varobj in
3348 this order. So if INDEX == 2, it MUST be "protected". */
3349 index -= TYPE_N_BASECLASSES (type);
3350 switch (index)
3351 {
3352 case 0:
3353 if (children[v_public] > 0)
3354 access = "public";
3355 else if (children[v_private] > 0)
3356 access = "private";
3357 else
3358 access = "protected";
3359 break;
3360 case 1:
3361 if (children[v_public] > 0)
3362 {
3363 if (children[v_private] > 0)
3364 access = "private";
3365 else
3366 access = "protected";
3367 }
3368 else if (children[v_private] > 0)
3369 access = "protected";
3370 break;
3371 case 2:
3372 /* Must be protected */
3373 access = "protected";
3374 break;
3375 default:
3376 /* error! */
3377 break;
3378 }
3379
3380 gdb_assert (access);
3381 if (cname)
3382 *cname = xstrdup (access);
3383
3384 /* Value and type and full expression are null here. */
3385 }
3386 }
3387 else
3388 {
3389 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3390 }
3391 }
3392
3393 static char *
3394 cplus_name_of_child (struct varobj *parent, int index)
3395 {
3396 char *name = NULL;
3397
3398 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3399 return name;
3400 }
3401
3402 static char *
3403 cplus_path_expr_of_child (struct varobj *child)
3404 {
3405 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3406 &child->path_expr);
3407 return child->path_expr;
3408 }
3409
3410 static struct value *
3411 cplus_value_of_root (struct varobj **var_handle)
3412 {
3413 return c_value_of_root (var_handle);
3414 }
3415
3416 static struct value *
3417 cplus_value_of_child (struct varobj *parent, int index)
3418 {
3419 struct value *value = NULL;
3420
3421 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3422 return value;
3423 }
3424
3425 static struct type *
3426 cplus_type_of_child (struct varobj *parent, int index)
3427 {
3428 struct type *type = NULL;
3429
3430 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3431 return type;
3432 }
3433
3434 static char *
3435 cplus_value_of_variable (struct varobj *var,
3436 enum varobj_display_formats format)
3437 {
3438
3439 /* If we have one of our special types, don't print out
3440 any value. */
3441 if (CPLUS_FAKE_CHILD (var))
3442 return xstrdup ("");
3443
3444 return c_value_of_variable (var, format);
3445 }
3446 \f
3447 /* Java */
3448
3449 static int
3450 java_number_of_children (struct varobj *var)
3451 {
3452 return cplus_number_of_children (var);
3453 }
3454
3455 static char *
3456 java_name_of_variable (struct varobj *parent)
3457 {
3458 char *p, *name;
3459
3460 name = cplus_name_of_variable (parent);
3461 /* If the name has "-" in it, it is because we
3462 needed to escape periods in the name... */
3463 p = name;
3464
3465 while (*p != '\000')
3466 {
3467 if (*p == '-')
3468 *p = '.';
3469 p++;
3470 }
3471
3472 return name;
3473 }
3474
3475 static char *
3476 java_name_of_child (struct varobj *parent, int index)
3477 {
3478 char *name, *p;
3479
3480 name = cplus_name_of_child (parent, index);
3481 /* Escape any periods in the name... */
3482 p = name;
3483
3484 while (*p != '\000')
3485 {
3486 if (*p == '.')
3487 *p = '-';
3488 p++;
3489 }
3490
3491 return name;
3492 }
3493
3494 static char *
3495 java_path_expr_of_child (struct varobj *child)
3496 {
3497 return NULL;
3498 }
3499
3500 static struct value *
3501 java_value_of_root (struct varobj **var_handle)
3502 {
3503 return cplus_value_of_root (var_handle);
3504 }
3505
3506 static struct value *
3507 java_value_of_child (struct varobj *parent, int index)
3508 {
3509 return cplus_value_of_child (parent, index);
3510 }
3511
3512 static struct type *
3513 java_type_of_child (struct varobj *parent, int index)
3514 {
3515 return cplus_type_of_child (parent, index);
3516 }
3517
3518 static char *
3519 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3520 {
3521 return cplus_value_of_variable (var, format);
3522 }
3523
3524 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3525 with an arbitrary caller supplied DATA pointer. */
3526
3527 void
3528 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3529 {
3530 struct varobj_root *var_root, *var_root_next;
3531
3532 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3533
3534 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3535 {
3536 var_root_next = var_root->next;
3537
3538 (*func) (var_root->rootvar, data);
3539 }
3540 }
3541 \f
3542 extern void _initialize_varobj (void);
3543 void
3544 _initialize_varobj (void)
3545 {
3546 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3547
3548 varobj_table = xmalloc (sizeof_table);
3549 memset (varobj_table, 0, sizeof_table);
3550
3551 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3552 &varobjdebug, _("\
3553 Set varobj debugging."), _("\
3554 Show varobj debugging."), _("\
3555 When non-zero, varobj debugging is enabled."),
3556 NULL,
3557 show_varobjdebug,
3558 &setlist, &showlist);
3559 }
3560
3561 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3562 defined on globals. It is a helper for varobj_invalidate. */
3563
3564 static void
3565 varobj_invalidate_iter (struct varobj *var, void *unused)
3566 {
3567 /* Floating varobjs are reparsed on each stop, so we don't care if the
3568 presently parsed expression refers to something that's gone. */
3569 if (var->root->floating)
3570 return;
3571
3572 /* global var must be re-evaluated. */
3573 if (var->root->valid_block == NULL)
3574 {
3575 struct varobj *tmp_var;
3576
3577 /* Try to create a varobj with same expression. If we succeed
3578 replace the old varobj, otherwise invalidate it. */
3579 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3580 USE_CURRENT_FRAME);
3581 if (tmp_var != NULL)
3582 {
3583 tmp_var->obj_name = xstrdup (var->obj_name);
3584 varobj_delete (var, NULL, 0);
3585 install_variable (tmp_var);
3586 }
3587 else
3588 var->root->is_valid = 0;
3589 }
3590 else /* locals must be invalidated. */
3591 var->root->is_valid = 0;
3592 }
3593
3594 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3595 are defined on globals.
3596 Invalidated varobjs will be always printed in_scope="invalid". */
3597
3598 void
3599 varobj_invalidate (void)
3600 {
3601 all_root_varobjs (varobj_invalidate_iter, NULL);
3602 }