]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Fix hang in floating varobjs.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61
62 /* Data structures */
63
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66 struct varobj_root
67 {
68
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
71
72 /* Block for which this expression is valid */
73 struct block *valid_block;
74
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
77 struct frame_id frame;
78
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
90
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
97
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
100
101 /* Next root variable */
102 struct varobj_root *next;
103 };
104
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108 struct varobj
109 {
110
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
116
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
124
125 /* Index of this variable in its parent or -1 */
126 int index;
127
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
131 struct type *type;
132
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
137 struct value *value;
138
139 /* The number of (immediate) children this variable has */
140 int num_children;
141
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
144
145 /* Children of this object. */
146 VEC (varobj_p) *children;
147
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
156
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
162
163 /* Last print value. */
164 char *print_value;
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
179 };
180
181 struct cpstack
182 {
183 char *name;
184 struct cpstack *next;
185 };
186
187 /* A list of varobjs */
188
189 struct vlist
190 {
191 struct varobj *var;
192 struct vlist *next;
193 };
194
195 /* Private function prototypes */
196
197 /* Helper functions for the above subcommands. */
198
199 static int delete_variable (struct cpstack **, struct varobj *, int);
200
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
203
204 static int install_variable (struct varobj *);
205
206 static void uninstall_variable (struct varobj *);
207
208 static struct varobj *create_child (struct varobj *, int, char *);
209
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
214 /* Utility routines */
215
216 static struct varobj *new_variable (void);
217
218 static struct varobj *new_root_variable (void);
219
220 static void free_variable (struct varobj *var);
221
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
224 static struct type *get_type (struct varobj *var);
225
226 static struct type *get_value_type (struct varobj *var);
227
228 static struct type *get_target_type (struct type *);
229
230 static enum varobj_display_formats variable_default_display (struct varobj *);
231
232 static void cppush (struct cpstack **pstack, char *name);
233
234 static char *cppop (struct cpstack **pstack);
235
236 static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
239 static void install_default_visualizer (struct varobj *var);
240
241 /* Language-specific routines. */
242
243 static enum varobj_languages variable_language (struct varobj *var);
244
245 static int number_of_children (struct varobj *);
246
247 static char *name_of_variable (struct varobj *);
248
249 static char *name_of_child (struct varobj *, int);
250
251 static struct value *value_of_root (struct varobj **var_handle, int *);
252
253 static struct value *value_of_child (struct varobj *parent, int index);
254
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
257
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 struct varobj *var);
261
262 static int varobj_value_is_changeable_p (struct varobj *var);
263
264 static int is_root_p (struct varobj *var);
265
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
269 /* C implementation */
270
271 static int c_number_of_children (struct varobj *var);
272
273 static char *c_name_of_variable (struct varobj *parent);
274
275 static char *c_name_of_child (struct varobj *parent, int index);
276
277 static char *c_path_expr_of_child (struct varobj *child);
278
279 static struct value *c_value_of_root (struct varobj **var_handle);
280
281 static struct value *c_value_of_child (struct varobj *parent, int index);
282
283 static struct type *c_type_of_child (struct varobj *parent, int index);
284
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 /* C++ implementation */
289
290 static int cplus_number_of_children (struct varobj *var);
291
292 static void cplus_class_num_children (struct type *type, int children[3]);
293
294 static char *cplus_name_of_variable (struct varobj *parent);
295
296 static char *cplus_name_of_child (struct varobj *parent, int index);
297
298 static char *cplus_path_expr_of_child (struct varobj *child);
299
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
301
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
303
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
305
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
308
309 /* Java implementation */
310
311 static int java_number_of_children (struct varobj *var);
312
313 static char *java_name_of_variable (struct varobj *parent);
314
315 static char *java_name_of_child (struct varobj *parent, int index);
316
317 static char *java_path_expr_of_child (struct varobj *child);
318
319 static struct value *java_value_of_root (struct varobj **var_handle);
320
321 static struct value *java_value_of_child (struct varobj *parent, int index);
322
323 static struct type *java_type_of_child (struct varobj *parent, int index);
324
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
327
328 /* The language specific vector */
329
330 struct language_specific
331 {
332
333 /* The language of this variable */
334 enum varobj_languages language;
335
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
338
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
341
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
344
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
351
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
354
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
357
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
361 };
362
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
366 {
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
371 c_path_expr_of_child,
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
375 c_value_of_variable}
376 ,
377 /* C */
378 {
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
383 c_path_expr_of_child,
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
387 c_value_of_variable}
388 ,
389 /* C++ */
390 {
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
395 cplus_path_expr_of_child,
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
399 cplus_value_of_variable}
400 ,
401 /* Java */
402 {
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
407 java_path_expr_of_child,
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
411 java_value_of_variable}
412 };
413
414 /* A little convenience enum for dealing with C++/Java */
415 enum vsections
416 {
417 v_public = 0, v_private, v_protected
418 };
419
420 /* Private data */
421
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
424
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427 static int rootcount = 0; /* number of root varobjs in the list */
428
429 /* Prime number indicating the number of buckets in the hash table */
430 /* A prime large enough to avoid too many colisions */
431 #define VAROBJ_TABLE_SIZE 227
432
433 /* Pointer to the varobj hash table (built at run time) */
434 static struct vlist **varobj_table;
435
436 /* Is the variable X one of our "fake" children? */
437 #define CPLUS_FAKE_CHILD(x) \
438 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
439 \f
440
441 /* API Implementation */
442 static int
443 is_root_p (struct varobj *var)
444 {
445 return (var->root->rootvar == var);
446 }
447
448 #ifdef HAVE_PYTHON
449 /* Helper function to install a Python environment suitable for
450 use during operations on VAR. */
451 struct cleanup *
452 varobj_ensure_python_env (struct varobj *var)
453 {
454 return ensure_python_env (var->root->exp->gdbarch,
455 var->root->exp->language_defn);
456 }
457 #endif
458
459 /* Creates a varobj (not its children) */
460
461 /* Return the full FRAME which corresponds to the given CORE_ADDR
462 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
463
464 static struct frame_info *
465 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
466 {
467 struct frame_info *frame = NULL;
468
469 if (frame_addr == (CORE_ADDR) 0)
470 return NULL;
471
472 for (frame = get_current_frame ();
473 frame != NULL;
474 frame = get_prev_frame (frame))
475 {
476 /* The CORE_ADDR we get as argument was parsed from a string GDB
477 output as $fp. This output got truncated to gdbarch_addr_bit.
478 Truncate the frame base address in the same manner before
479 comparing it against our argument. */
480 CORE_ADDR frame_base = get_frame_base_address (frame);
481 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
482 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
483 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
484
485 if (frame_base == frame_addr)
486 return frame;
487 }
488
489 return NULL;
490 }
491
492 struct varobj *
493 varobj_create (char *objname,
494 char *expression, CORE_ADDR frame, enum varobj_type type)
495 {
496 struct varobj *var;
497 struct frame_info *fi;
498 struct frame_info *old_fi = NULL;
499 struct block *block;
500 struct cleanup *old_chain;
501
502 /* Fill out a varobj structure for the (root) variable being constructed. */
503 var = new_root_variable ();
504 old_chain = make_cleanup_free_variable (var);
505
506 if (expression != NULL)
507 {
508 char *p;
509 enum varobj_languages lang;
510 struct value *value = NULL;
511
512 /* Parse and evaluate the expression, filling in as much of the
513 variable's data as possible. */
514
515 if (has_stack_frames ())
516 {
517 /* Allow creator to specify context of variable */
518 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
519 fi = get_selected_frame (NULL);
520 else
521 /* FIXME: cagney/2002-11-23: This code should be doing a
522 lookup using the frame ID and not just the frame's
523 ``address''. This, of course, means an interface
524 change. However, with out that interface change ISAs,
525 such as the ia64 with its two stacks, won't work.
526 Similar goes for the case where there is a frameless
527 function. */
528 fi = find_frame_addr_in_frame_chain (frame);
529 }
530 else
531 fi = NULL;
532
533 /* frame = -2 means always use selected frame */
534 if (type == USE_SELECTED_FRAME)
535 var->root->floating = 1;
536
537 block = NULL;
538 if (fi != NULL)
539 block = get_frame_block (fi, 0);
540
541 p = expression;
542 innermost_block = NULL;
543 /* Wrap the call to parse expression, so we can
544 return a sensible error. */
545 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
546 {
547 return NULL;
548 }
549
550 /* Don't allow variables to be created for types. */
551 if (var->root->exp->elts[0].opcode == OP_TYPE)
552 {
553 do_cleanups (old_chain);
554 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
555 " as an expression.\n");
556 return NULL;
557 }
558
559 var->format = variable_default_display (var);
560 var->root->valid_block = innermost_block;
561 var->name = xstrdup (expression);
562 /* For a root var, the name and the expr are the same. */
563 var->path_expr = xstrdup (expression);
564
565 /* When the frame is different from the current frame,
566 we must select the appropriate frame before parsing
567 the expression, otherwise the value will not be current.
568 Since select_frame is so benign, just call it for all cases. */
569 if (innermost_block && fi != NULL)
570 {
571 var->root->frame = get_frame_id (fi);
572 var->root->thread_id = pid_to_thread_id (inferior_ptid);
573 old_fi = get_selected_frame (NULL);
574 select_frame (fi);
575 }
576
577 /* We definitely need to catch errors here.
578 If evaluate_expression succeeds we got the value we wanted.
579 But if it fails, we still go on with a call to evaluate_type() */
580 if (!gdb_evaluate_expression (var->root->exp, &value))
581 {
582 /* Error getting the value. Try to at least get the
583 right type. */
584 struct value *type_only_value = evaluate_type (var->root->exp);
585 var->type = value_type (type_only_value);
586 }
587 else
588 var->type = value_type (value);
589
590 install_new_value (var, value, 1 /* Initial assignment */);
591
592 /* Set language info */
593 lang = variable_language (var);
594 var->root->lang = &languages[lang];
595
596 /* Set ourselves as our root */
597 var->root->rootvar = var;
598
599 /* Reset the selected frame */
600 if (old_fi != NULL)
601 select_frame (old_fi);
602 }
603
604 /* If the variable object name is null, that means this
605 is a temporary variable, so don't install it. */
606
607 if ((var != NULL) && (objname != NULL))
608 {
609 var->obj_name = xstrdup (objname);
610
611 /* If a varobj name is duplicated, the install will fail so
612 we must clenup */
613 if (!install_variable (var))
614 {
615 do_cleanups (old_chain);
616 return NULL;
617 }
618 }
619
620 install_default_visualizer (var);
621 discard_cleanups (old_chain);
622 return var;
623 }
624
625 /* Generates an unique name that can be used for a varobj */
626
627 char *
628 varobj_gen_name (void)
629 {
630 static int id = 0;
631 char *obj_name;
632
633 /* generate a name for this object */
634 id++;
635 obj_name = xstrprintf ("var%d", id);
636
637 return obj_name;
638 }
639
640 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
641 error if OBJNAME cannot be found. */
642
643 struct varobj *
644 varobj_get_handle (char *objname)
645 {
646 struct vlist *cv;
647 const char *chp;
648 unsigned int index = 0;
649 unsigned int i = 1;
650
651 for (chp = objname; *chp; chp++)
652 {
653 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
654 }
655
656 cv = *(varobj_table + index);
657 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
658 cv = cv->next;
659
660 if (cv == NULL)
661 error (_("Variable object not found"));
662
663 return cv->var;
664 }
665
666 /* Given the handle, return the name of the object */
667
668 char *
669 varobj_get_objname (struct varobj *var)
670 {
671 return var->obj_name;
672 }
673
674 /* Given the handle, return the expression represented by the object */
675
676 char *
677 varobj_get_expression (struct varobj *var)
678 {
679 return name_of_variable (var);
680 }
681
682 /* Deletes a varobj and all its children if only_children == 0,
683 otherwise deletes only the children; returns a malloc'ed list of all the
684 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
685
686 int
687 varobj_delete (struct varobj *var, char ***dellist, int only_children)
688 {
689 int delcount;
690 int mycount;
691 struct cpstack *result = NULL;
692 char **cp;
693
694 /* Initialize a stack for temporary results */
695 cppush (&result, NULL);
696
697 if (only_children)
698 /* Delete only the variable children */
699 delcount = delete_variable (&result, var, 1 /* only the children */ );
700 else
701 /* Delete the variable and all its children */
702 delcount = delete_variable (&result, var, 0 /* parent+children */ );
703
704 /* We may have been asked to return a list of what has been deleted */
705 if (dellist != NULL)
706 {
707 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
708
709 cp = *dellist;
710 mycount = delcount;
711 *cp = cppop (&result);
712 while ((*cp != NULL) && (mycount > 0))
713 {
714 mycount--;
715 cp++;
716 *cp = cppop (&result);
717 }
718
719 if (mycount || (*cp != NULL))
720 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
721 mycount);
722 }
723
724 return delcount;
725 }
726
727 /* Convenience function for varobj_set_visualizer. Instantiate a
728 pretty-printer for a given value. */
729 static PyObject *
730 instantiate_pretty_printer (PyObject *constructor, struct value *value)
731 {
732 #if HAVE_PYTHON
733 PyObject *val_obj = NULL;
734 PyObject *printer;
735 volatile struct gdb_exception except;
736
737 TRY_CATCH (except, RETURN_MASK_ALL)
738 {
739 value = value_copy (value);
740 }
741 GDB_PY_HANDLE_EXCEPTION (except);
742 val_obj = value_to_value_object (value);
743
744 if (! val_obj)
745 return NULL;
746
747 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
748 Py_DECREF (val_obj);
749 return printer;
750 #endif
751 return NULL;
752 }
753
754 /* Set/Get variable object display format */
755
756 enum varobj_display_formats
757 varobj_set_display_format (struct varobj *var,
758 enum varobj_display_formats format)
759 {
760 switch (format)
761 {
762 case FORMAT_NATURAL:
763 case FORMAT_BINARY:
764 case FORMAT_DECIMAL:
765 case FORMAT_HEXADECIMAL:
766 case FORMAT_OCTAL:
767 var->format = format;
768 break;
769
770 default:
771 var->format = variable_default_display (var);
772 }
773
774 if (varobj_value_is_changeable_p (var)
775 && var->value && !value_lazy (var->value))
776 {
777 xfree (var->print_value);
778 var->print_value = value_get_print_value (var->value, var->format, var);
779 }
780
781 return var->format;
782 }
783
784 enum varobj_display_formats
785 varobj_get_display_format (struct varobj *var)
786 {
787 return var->format;
788 }
789
790 char *
791 varobj_get_display_hint (struct varobj *var)
792 {
793 char *result = NULL;
794
795 #if HAVE_PYTHON
796 struct cleanup *back_to = varobj_ensure_python_env (var);
797
798 if (var->pretty_printer)
799 result = gdbpy_get_display_hint (var->pretty_printer);
800
801 do_cleanups (back_to);
802 #endif
803
804 return result;
805 }
806
807 /* If the variable object is bound to a specific thread, that
808 is its evaluation can always be done in context of a frame
809 inside that thread, returns GDB id of the thread -- which
810 is always positive. Otherwise, returns -1. */
811 int
812 varobj_get_thread_id (struct varobj *var)
813 {
814 if (var->root->valid_block && var->root->thread_id > 0)
815 return var->root->thread_id;
816 else
817 return -1;
818 }
819
820 void
821 varobj_set_frozen (struct varobj *var, int frozen)
822 {
823 /* When a variable is unfrozen, we don't fetch its value.
824 The 'not_fetched' flag remains set, so next -var-update
825 won't complain.
826
827 We don't fetch the value, because for structures the client
828 should do -var-update anyway. It would be bad to have different
829 client-size logic for structure and other types. */
830 var->frozen = frozen;
831 }
832
833 int
834 varobj_get_frozen (struct varobj *var)
835 {
836 return var->frozen;
837 }
838
839 static int
840 update_dynamic_varobj_children (struct varobj *var,
841 VEC (varobj_p) **changed,
842 VEC (varobj_p) **new_and_unchanged,
843 int *cchanged)
844
845 {
846 #if HAVE_PYTHON
847 /* FIXME: we *might* want to provide this functionality as
848 a standalone function, so that other interested parties
849 than varobj code can benefit for this. */
850 struct cleanup *back_to;
851 PyObject *children;
852 PyObject *iterator;
853 int i;
854 int children_changed = 0;
855 PyObject *printer = var->pretty_printer;
856
857 back_to = varobj_ensure_python_env (var);
858
859 *cchanged = 0;
860 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
861 {
862 do_cleanups (back_to);
863 return 0;
864 }
865
866 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
867 NULL);
868
869 if (!children)
870 {
871 gdbpy_print_stack ();
872 error (_("Null value returned for children"));
873 }
874
875 make_cleanup_py_decref (children);
876
877 if (!PyIter_Check (children))
878 error (_("Returned value is not iterable"));
879
880 iterator = PyObject_GetIter (children);
881 if (!iterator)
882 {
883 gdbpy_print_stack ();
884 error (_("Could not get children iterator"));
885 }
886 make_cleanup_py_decref (iterator);
887
888 for (i = 0; ; ++i)
889 {
890 PyObject *item = PyIter_Next (iterator);
891 PyObject *py_v;
892 struct value *v;
893 char *name;
894 struct cleanup *inner;
895
896 if (!item)
897 break;
898 inner = make_cleanup_py_decref (item);
899
900 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
901 error (_("Invalid item from the child list"));
902
903 if (PyObject_TypeCheck (py_v, &value_object_type))
904 {
905 /* If we just call convert_value_from_python for this type,
906 we won't know who owns the result. For this one case we
907 need to copy the resulting value. */
908 v = value_object_to_value (py_v);
909 v = value_copy (v);
910 }
911 else
912 v = convert_value_from_python (py_v);
913
914 /* TODO: This assume the name of the i-th child never changes. */
915
916 /* Now see what to do here. */
917 if (VEC_length (varobj_p, var->children) < i + 1)
918 {
919 /* There's no child yet. */
920 struct varobj *child = varobj_add_child (var, name, v);
921 if (new_and_unchanged)
922 VEC_safe_push (varobj_p, *new_and_unchanged, child);
923 children_changed = 1;
924 }
925 else
926 {
927 varobj_p existing = VEC_index (varobj_p, var->children, i);
928 if (install_new_value (existing, v, 0) && changed)
929 {
930 if (changed)
931 VEC_safe_push (varobj_p, *changed, existing);
932 }
933 else
934 {
935 if (new_and_unchanged)
936 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
937 }
938 }
939
940 do_cleanups (inner);
941 }
942
943 if (i < VEC_length (varobj_p, var->children))
944 {
945 int i;
946 children_changed = 1;
947 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
948 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
949 }
950 VEC_truncate (varobj_p, var->children, i);
951 var->num_children = VEC_length (varobj_p, var->children);
952
953 do_cleanups (back_to);
954
955 *cchanged = children_changed;
956 return 1;
957 #else
958 gdb_assert (0 && "should never be called if Python is not enabled");
959 #endif
960 }
961
962 int
963 varobj_get_num_children (struct varobj *var)
964 {
965 if (var->num_children == -1)
966 {
967 int changed;
968 if (!var->pretty_printer
969 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
970 var->num_children = number_of_children (var);
971 }
972
973 return var->num_children;
974 }
975
976 /* Creates a list of the immediate children of a variable object;
977 the return code is the number of such children or -1 on error */
978
979 VEC (varobj_p)*
980 varobj_list_children (struct varobj *var)
981 {
982 struct varobj *child;
983 char *name;
984 int i, children_changed;
985
986 var->children_requested = 1;
987
988 if (var->pretty_printer
989 /* This, in theory, can result in the number of children changing without
990 frontend noticing. But well, calling -var-list-children on the same
991 varobj twice is not something a sane frontend would do. */
992 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
993 return var->children;
994
995 if (var->num_children == -1)
996 var->num_children = number_of_children (var);
997
998 /* If that failed, give up. */
999 if (var->num_children == -1)
1000 return var->children;
1001
1002 /* If we're called when the list of children is not yet initialized,
1003 allocate enough elements in it. */
1004 while (VEC_length (varobj_p, var->children) < var->num_children)
1005 VEC_safe_push (varobj_p, var->children, NULL);
1006
1007 for (i = 0; i < var->num_children; i++)
1008 {
1009 varobj_p existing = VEC_index (varobj_p, var->children, i);
1010
1011 if (existing == NULL)
1012 {
1013 /* Either it's the first call to varobj_list_children for
1014 this variable object, and the child was never created,
1015 or it was explicitly deleted by the client. */
1016 name = name_of_child (var, i);
1017 existing = create_child (var, i, name);
1018 VEC_replace (varobj_p, var->children, i, existing);
1019 install_default_visualizer (existing);
1020 }
1021 }
1022
1023 return var->children;
1024 }
1025
1026 static struct varobj *
1027 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1028 {
1029 varobj_p v = create_child_with_value (var,
1030 VEC_length (varobj_p, var->children),
1031 name, value);
1032 VEC_safe_push (varobj_p, var->children, v);
1033 install_default_visualizer (v);
1034 return v;
1035 }
1036
1037 /* Obtain the type of an object Variable as a string similar to the one gdb
1038 prints on the console */
1039
1040 char *
1041 varobj_get_type (struct varobj *var)
1042 {
1043 /* For the "fake" variables, do not return a type. (It's type is
1044 NULL, too.)
1045 Do not return a type for invalid variables as well. */
1046 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1047 return NULL;
1048
1049 return type_to_string (var->type);
1050 }
1051
1052 /* Obtain the type of an object variable. */
1053
1054 struct type *
1055 varobj_get_gdb_type (struct varobj *var)
1056 {
1057 return var->type;
1058 }
1059
1060 /* Return a pointer to the full rooted expression of varobj VAR.
1061 If it has not been computed yet, compute it. */
1062 char *
1063 varobj_get_path_expr (struct varobj *var)
1064 {
1065 if (var->path_expr != NULL)
1066 return var->path_expr;
1067 else
1068 {
1069 /* For root varobjs, we initialize path_expr
1070 when creating varobj, so here it should be
1071 child varobj. */
1072 gdb_assert (!is_root_p (var));
1073 return (*var->root->lang->path_expr_of_child) (var);
1074 }
1075 }
1076
1077 enum varobj_languages
1078 varobj_get_language (struct varobj *var)
1079 {
1080 return variable_language (var);
1081 }
1082
1083 int
1084 varobj_get_attributes (struct varobj *var)
1085 {
1086 int attributes = 0;
1087
1088 if (varobj_editable_p (var))
1089 /* FIXME: define masks for attributes */
1090 attributes |= 0x00000001; /* Editable */
1091
1092 return attributes;
1093 }
1094
1095 char *
1096 varobj_get_formatted_value (struct varobj *var,
1097 enum varobj_display_formats format)
1098 {
1099 return my_value_of_variable (var, format);
1100 }
1101
1102 char *
1103 varobj_get_value (struct varobj *var)
1104 {
1105 return my_value_of_variable (var, var->format);
1106 }
1107
1108 /* Set the value of an object variable (if it is editable) to the
1109 value of the given expression */
1110 /* Note: Invokes functions that can call error() */
1111
1112 int
1113 varobj_set_value (struct varobj *var, char *expression)
1114 {
1115 struct value *val;
1116 int offset = 0;
1117 int error = 0;
1118
1119 /* The argument "expression" contains the variable's new value.
1120 We need to first construct a legal expression for this -- ugh! */
1121 /* Does this cover all the bases? */
1122 struct expression *exp;
1123 struct value *value;
1124 int saved_input_radix = input_radix;
1125 char *s = expression;
1126 int i;
1127
1128 gdb_assert (varobj_editable_p (var));
1129
1130 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1131 exp = parse_exp_1 (&s, 0, 0);
1132 if (!gdb_evaluate_expression (exp, &value))
1133 {
1134 /* We cannot proceed without a valid expression. */
1135 xfree (exp);
1136 return 0;
1137 }
1138
1139 /* All types that are editable must also be changeable. */
1140 gdb_assert (varobj_value_is_changeable_p (var));
1141
1142 /* The value of a changeable variable object must not be lazy. */
1143 gdb_assert (!value_lazy (var->value));
1144
1145 /* Need to coerce the input. We want to check if the
1146 value of the variable object will be different
1147 after assignment, and the first thing value_assign
1148 does is coerce the input.
1149 For example, if we are assigning an array to a pointer variable we
1150 should compare the pointer with the the array's address, not with the
1151 array's content. */
1152 value = coerce_array (value);
1153
1154 /* The new value may be lazy. gdb_value_assign, or
1155 rather value_contents, will take care of this.
1156 If fetching of the new value will fail, gdb_value_assign
1157 with catch the exception. */
1158 if (!gdb_value_assign (var->value, value, &val))
1159 return 0;
1160
1161 /* If the value has changed, record it, so that next -var-update can
1162 report this change. If a variable had a value of '1', we've set it
1163 to '333' and then set again to '1', when -var-update will report this
1164 variable as changed -- because the first assignment has set the
1165 'updated' flag. There's no need to optimize that, because return value
1166 of -var-update should be considered an approximation. */
1167 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1168 input_radix = saved_input_radix;
1169 return 1;
1170 }
1171
1172 /* Returns a malloc'ed list with all root variable objects */
1173 int
1174 varobj_list (struct varobj ***varlist)
1175 {
1176 struct varobj **cv;
1177 struct varobj_root *croot;
1178 int mycount = rootcount;
1179
1180 /* Alloc (rootcount + 1) entries for the result */
1181 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
1182
1183 cv = *varlist;
1184 croot = rootlist;
1185 while ((croot != NULL) && (mycount > 0))
1186 {
1187 *cv = croot->rootvar;
1188 mycount--;
1189 cv++;
1190 croot = croot->next;
1191 }
1192 /* Mark the end of the list */
1193 *cv = NULL;
1194
1195 if (mycount || (croot != NULL))
1196 warning
1197 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
1198 rootcount, mycount);
1199
1200 return rootcount;
1201 }
1202
1203 /* Assign a new value to a variable object. If INITIAL is non-zero,
1204 this is the first assignement after the variable object was just
1205 created, or changed type. In that case, just assign the value
1206 and return 0.
1207 Otherwise, assign the new value, and return 1 if the value is different
1208 from the current one, 0 otherwise. The comparison is done on textual
1209 representation of value. Therefore, some types need not be compared. E.g.
1210 for structures the reported value is always "{...}", so no comparison is
1211 necessary here. If the old value was NULL and new one is not, or vice versa,
1212 we always return 1.
1213
1214 The VALUE parameter should not be released -- the function will
1215 take care of releasing it when needed. */
1216 static int
1217 install_new_value (struct varobj *var, struct value *value, int initial)
1218 {
1219 int changeable;
1220 int need_to_fetch;
1221 int changed = 0;
1222 int intentionally_not_fetched = 0;
1223 char *print_value = NULL;
1224
1225 /* We need to know the varobj's type to decide if the value should
1226 be fetched or not. C++ fake children (public/protected/private) don't have
1227 a type. */
1228 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1229 changeable = varobj_value_is_changeable_p (var);
1230
1231 /* If the type has custom visualizer, we consider it to be always
1232 changeable. FIXME: need to make sure this behaviour will not
1233 mess up read-sensitive values. */
1234 if (var->pretty_printer)
1235 changeable = 1;
1236
1237 need_to_fetch = changeable;
1238
1239 /* We are not interested in the address of references, and given
1240 that in C++ a reference is not rebindable, it cannot
1241 meaningfully change. So, get hold of the real value. */
1242 if (value)
1243 {
1244 value = coerce_ref (value);
1245 release_value (value);
1246 }
1247
1248 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1249 /* For unions, we need to fetch the value implicitly because
1250 of implementation of union member fetch. When gdb
1251 creates a value for a field and the value of the enclosing
1252 structure is not lazy, it immediately copies the necessary
1253 bytes from the enclosing values. If the enclosing value is
1254 lazy, the call to value_fetch_lazy on the field will read
1255 the data from memory. For unions, that means we'll read the
1256 same memory more than once, which is not desirable. So
1257 fetch now. */
1258 need_to_fetch = 1;
1259
1260 /* The new value might be lazy. If the type is changeable,
1261 that is we'll be comparing values of this type, fetch the
1262 value now. Otherwise, on the next update the old value
1263 will be lazy, which means we've lost that old value. */
1264 if (need_to_fetch && value && value_lazy (value))
1265 {
1266 struct varobj *parent = var->parent;
1267 int frozen = var->frozen;
1268 for (; !frozen && parent; parent = parent->parent)
1269 frozen |= parent->frozen;
1270
1271 if (frozen && initial)
1272 {
1273 /* For variables that are frozen, or are children of frozen
1274 variables, we don't do fetch on initial assignment.
1275 For non-initial assignemnt we do the fetch, since it means we're
1276 explicitly asked to compare the new value with the old one. */
1277 intentionally_not_fetched = 1;
1278 }
1279 else if (!gdb_value_fetch_lazy (value))
1280 {
1281 /* Set the value to NULL, so that for the next -var-update,
1282 we don't try to compare the new value with this value,
1283 that we couldn't even read. */
1284 value = NULL;
1285 }
1286 }
1287
1288
1289 /* Below, we'll be comparing string rendering of old and new
1290 values. Don't get string rendering if the value is
1291 lazy -- if it is, the code above has decided that the value
1292 should not be fetched. */
1293 if (value && !value_lazy (value))
1294 print_value = value_get_print_value (value, var->format, var);
1295
1296 /* If the type is changeable, compare the old and the new values.
1297 If this is the initial assignment, we don't have any old value
1298 to compare with. */
1299 if (!initial && changeable)
1300 {
1301 /* If the value of the varobj was changed by -var-set-value, then the
1302 value in the varobj and in the target is the same. However, that value
1303 is different from the value that the varobj had after the previous
1304 -var-update. So need to the varobj as changed. */
1305 if (var->updated)
1306 {
1307 changed = 1;
1308 }
1309 else
1310 {
1311 /* Try to compare the values. That requires that both
1312 values are non-lazy. */
1313 if (var->not_fetched && value_lazy (var->value))
1314 {
1315 /* This is a frozen varobj and the value was never read.
1316 Presumably, UI shows some "never read" indicator.
1317 Now that we've fetched the real value, we need to report
1318 this varobj as changed so that UI can show the real
1319 value. */
1320 changed = 1;
1321 }
1322 else if (var->value == NULL && value == NULL)
1323 /* Equal. */
1324 ;
1325 else if (var->value == NULL || value == NULL)
1326 {
1327 changed = 1;
1328 }
1329 else
1330 {
1331 gdb_assert (!value_lazy (var->value));
1332 gdb_assert (!value_lazy (value));
1333
1334 gdb_assert (var->print_value != NULL && print_value != NULL);
1335 if (strcmp (var->print_value, print_value) != 0)
1336 changed = 1;
1337 }
1338 }
1339 }
1340
1341 if (!initial && !changeable)
1342 {
1343 /* For values that are not changeable, we don't compare the values.
1344 However, we want to notice if a value was not NULL and now is NULL,
1345 or vise versa, so that we report when top-level varobjs come in scope
1346 and leave the scope. */
1347 changed = (var->value != NULL) != (value != NULL);
1348 }
1349
1350 /* We must always keep the new value, since children depend on it. */
1351 if (var->value != NULL && var->value != value)
1352 value_free (var->value);
1353 var->value = value;
1354 if (var->print_value)
1355 xfree (var->print_value);
1356 var->print_value = print_value;
1357 if (value && value_lazy (value) && intentionally_not_fetched)
1358 var->not_fetched = 1;
1359 else
1360 var->not_fetched = 0;
1361 var->updated = 0;
1362
1363 gdb_assert (!var->value || value_type (var->value));
1364
1365 return changed;
1366 }
1367
1368 static void
1369 install_visualizer (struct varobj *var, PyObject *visualizer)
1370 {
1371 #if HAVE_PYTHON
1372 /* If there are any children now, wipe them. */
1373 varobj_delete (var, NULL, 1 /* children only */);
1374 var->num_children = -1;
1375
1376 Py_XDECREF (var->pretty_printer);
1377 var->pretty_printer = visualizer;
1378
1379 install_new_value (var, var->value, 1);
1380
1381 /* If we removed the visualizer, and the user ever requested the
1382 object's children, then we must compute the list of children.
1383 Note that we needn't do this when installing a visualizer,
1384 because updating will recompute dynamic children. */
1385 if (!visualizer && var->children_requested)
1386 varobj_list_children (var);
1387 #else
1388 error (_("Python support required"));
1389 #endif
1390 }
1391
1392 static void
1393 install_default_visualizer (struct varobj *var)
1394 {
1395 #if HAVE_PYTHON
1396 struct cleanup *cleanup;
1397 PyObject *pretty_printer = NULL;
1398
1399 cleanup = varobj_ensure_python_env (var);
1400
1401 if (var->value)
1402 {
1403 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1404 if (! pretty_printer)
1405 {
1406 gdbpy_print_stack ();
1407 error (_("Cannot instantiate printer for default visualizer"));
1408 }
1409 }
1410
1411 if (pretty_printer == Py_None)
1412 {
1413 Py_DECREF (pretty_printer);
1414 pretty_printer = NULL;
1415 }
1416
1417 install_visualizer (var, pretty_printer);
1418 do_cleanups (cleanup);
1419 #else
1420 /* No error is right as this function is inserted just as a hook. */
1421 #endif
1422 }
1423
1424 void
1425 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1426 {
1427 #if HAVE_PYTHON
1428 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1429 struct cleanup *back_to, *value;
1430
1431 back_to = varobj_ensure_python_env (var);
1432
1433 mainmod = PyImport_AddModule ("__main__");
1434 globals = PyModule_GetDict (mainmod);
1435 Py_INCREF (globals);
1436 make_cleanup_py_decref (globals);
1437
1438 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1439
1440 /* Do not instantiate NoneType. */
1441 if (constructor == Py_None)
1442 {
1443 pretty_printer = Py_None;
1444 Py_INCREF (pretty_printer);
1445 }
1446 else
1447 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1448
1449 Py_XDECREF (constructor);
1450
1451 if (! pretty_printer)
1452 {
1453 gdbpy_print_stack ();
1454 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1455 }
1456
1457 if (pretty_printer == Py_None)
1458 {
1459 Py_DECREF (pretty_printer);
1460 pretty_printer = NULL;
1461 }
1462
1463 install_visualizer (var, pretty_printer);
1464
1465 do_cleanups (back_to);
1466 #else
1467 error (_("Python support required"));
1468 #endif
1469 }
1470
1471 /* Update the values for a variable and its children. This is a
1472 two-pronged attack. First, re-parse the value for the root's
1473 expression to see if it's changed. Then go all the way
1474 through its children, reconstructing them and noting if they've
1475 changed.
1476
1477 The EXPLICIT parameter specifies if this call is result
1478 of MI request to update this specific variable, or
1479 result of implicit -var-update *. For implicit request, we don't
1480 update frozen variables.
1481
1482 NOTE: This function may delete the caller's varobj. If it
1483 returns TYPE_CHANGED, then it has done this and VARP will be modified
1484 to point to the new varobj. */
1485
1486 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1487 {
1488 int changed = 0;
1489 int type_changed = 0;
1490 int i;
1491 int vleft;
1492 struct varobj *v;
1493 struct varobj **cv;
1494 struct varobj **templist = NULL;
1495 struct value *new;
1496 VEC (varobj_update_result) *stack = NULL;
1497 VEC (varobj_update_result) *result = NULL;
1498 struct frame_info *fi;
1499
1500 /* Frozen means frozen -- we don't check for any change in
1501 this varobj, including its going out of scope, or
1502 changing type. One use case for frozen varobjs is
1503 retaining previously evaluated expressions, and we don't
1504 want them to be reevaluated at all. */
1505 if (!explicit && (*varp)->frozen)
1506 return result;
1507
1508 if (!(*varp)->root->is_valid)
1509 {
1510 varobj_update_result r = {*varp};
1511 r.status = VAROBJ_INVALID;
1512 VEC_safe_push (varobj_update_result, result, &r);
1513 return result;
1514 }
1515
1516 if ((*varp)->root->rootvar == *varp)
1517 {
1518 varobj_update_result r = {*varp};
1519 r.status = VAROBJ_IN_SCOPE;
1520
1521 /* Update the root variable. value_of_root can return NULL
1522 if the variable is no longer around, i.e. we stepped out of
1523 the frame in which a local existed. We are letting the
1524 value_of_root variable dispose of the varobj if the type
1525 has changed. */
1526 new = value_of_root (varp, &type_changed);
1527 r.varobj = *varp;
1528
1529 r.type_changed = type_changed;
1530 if (install_new_value ((*varp), new, type_changed))
1531 r.changed = 1;
1532
1533 if (new == NULL)
1534 r.status = VAROBJ_NOT_IN_SCOPE;
1535 r.value_installed = 1;
1536
1537 if (r.status == VAROBJ_NOT_IN_SCOPE)
1538 {
1539 if (r.type_changed || r.changed)
1540 VEC_safe_push (varobj_update_result, result, &r);
1541 return result;
1542 }
1543
1544 VEC_safe_push (varobj_update_result, stack, &r);
1545 }
1546 else
1547 {
1548 varobj_update_result r = {*varp};
1549 VEC_safe_push (varobj_update_result, stack, &r);
1550 }
1551
1552 /* Walk through the children, reconstructing them all. */
1553 while (!VEC_empty (varobj_update_result, stack))
1554 {
1555 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1556 struct varobj *v = r.varobj;
1557
1558 VEC_pop (varobj_update_result, stack);
1559
1560 /* Update this variable, unless it's a root, which is already
1561 updated. */
1562 if (!r.value_installed)
1563 {
1564 new = value_of_child (v->parent, v->index);
1565 if (install_new_value (v, new, 0 /* type not changed */))
1566 {
1567 r.changed = 1;
1568 v->updated = 0;
1569 }
1570 }
1571
1572 /* We probably should not get children of a varobj that has a
1573 pretty-printer, but for which -var-list-children was never
1574 invoked. Presumably, such varobj is not yet expanded in the
1575 UI, so we need not bother getting it. */
1576 if (v->pretty_printer)
1577 {
1578 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1579 int i, children_changed;
1580 varobj_p tmp;
1581
1582 if (!v->children_requested)
1583 continue;
1584
1585 if (v->frozen)
1586 continue;
1587
1588 /* If update_dynamic_varobj_children returns 0, then we have
1589 a non-conforming pretty-printer, so we skip it. */
1590 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1591 &children_changed))
1592 {
1593 if (children_changed)
1594 r.children_changed = 1;
1595 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1596 {
1597 varobj_update_result r = {tmp};
1598 r.changed = 1;
1599 r.value_installed = 1;
1600 VEC_safe_push (varobj_update_result, stack, &r);
1601 }
1602 for (i = 0;
1603 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1604 ++i)
1605 {
1606 varobj_update_result r = {tmp};
1607 r.value_installed = 1;
1608 VEC_safe_push (varobj_update_result, stack, &r);
1609 }
1610 if (r.changed || r.children_changed)
1611 VEC_safe_push (varobj_update_result, result, &r);
1612 continue;
1613 }
1614 }
1615
1616 /* Push any children. Use reverse order so that the first
1617 child is popped from the work stack first, and so
1618 will be added to result first. This does not
1619 affect correctness, just "nicer". */
1620 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1621 {
1622 varobj_p c = VEC_index (varobj_p, v->children, i);
1623 /* Child may be NULL if explicitly deleted by -var-delete. */
1624 if (c != NULL && !c->frozen)
1625 {
1626 varobj_update_result r = {c};
1627 VEC_safe_push (varobj_update_result, stack, &r);
1628 }
1629 }
1630
1631 if (r.changed || r.type_changed)
1632 VEC_safe_push (varobj_update_result, result, &r);
1633 }
1634
1635 VEC_free (varobj_update_result, stack);
1636
1637 return result;
1638 }
1639 \f
1640
1641 /* Helper functions */
1642
1643 /*
1644 * Variable object construction/destruction
1645 */
1646
1647 static int
1648 delete_variable (struct cpstack **resultp, struct varobj *var,
1649 int only_children_p)
1650 {
1651 int delcount = 0;
1652
1653 delete_variable_1 (resultp, &delcount, var,
1654 only_children_p, 1 /* remove_from_parent_p */ );
1655
1656 return delcount;
1657 }
1658
1659 /* Delete the variable object VAR and its children */
1660 /* IMPORTANT NOTE: If we delete a variable which is a child
1661 and the parent is not removed we dump core. It must be always
1662 initially called with remove_from_parent_p set */
1663 static void
1664 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1665 struct varobj *var, int only_children_p,
1666 int remove_from_parent_p)
1667 {
1668 int i;
1669
1670 /* Delete any children of this variable, too. */
1671 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1672 {
1673 varobj_p child = VEC_index (varobj_p, var->children, i);
1674 if (!child)
1675 continue;
1676 if (!remove_from_parent_p)
1677 child->parent = NULL;
1678 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1679 }
1680 VEC_free (varobj_p, var->children);
1681
1682 /* if we were called to delete only the children we are done here */
1683 if (only_children_p)
1684 return;
1685
1686 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1687 /* If the name is null, this is a temporary variable, that has not
1688 yet been installed, don't report it, it belongs to the caller... */
1689 if (var->obj_name != NULL)
1690 {
1691 cppush (resultp, xstrdup (var->obj_name));
1692 *delcountp = *delcountp + 1;
1693 }
1694
1695 /* If this variable has a parent, remove it from its parent's list */
1696 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1697 (as indicated by remove_from_parent_p) we don't bother doing an
1698 expensive list search to find the element to remove when we are
1699 discarding the list afterwards */
1700 if ((remove_from_parent_p) && (var->parent != NULL))
1701 {
1702 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1703 }
1704
1705 if (var->obj_name != NULL)
1706 uninstall_variable (var);
1707
1708 /* Free memory associated with this variable */
1709 free_variable (var);
1710 }
1711
1712 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1713 static int
1714 install_variable (struct varobj *var)
1715 {
1716 struct vlist *cv;
1717 struct vlist *newvl;
1718 const char *chp;
1719 unsigned int index = 0;
1720 unsigned int i = 1;
1721
1722 for (chp = var->obj_name; *chp; chp++)
1723 {
1724 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1725 }
1726
1727 cv = *(varobj_table + index);
1728 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1729 cv = cv->next;
1730
1731 if (cv != NULL)
1732 error (_("Duplicate variable object name"));
1733
1734 /* Add varobj to hash table */
1735 newvl = xmalloc (sizeof (struct vlist));
1736 newvl->next = *(varobj_table + index);
1737 newvl->var = var;
1738 *(varobj_table + index) = newvl;
1739
1740 /* If root, add varobj to root list */
1741 if (is_root_p (var))
1742 {
1743 /* Add to list of root variables */
1744 if (rootlist == NULL)
1745 var->root->next = NULL;
1746 else
1747 var->root->next = rootlist;
1748 rootlist = var->root;
1749 rootcount++;
1750 }
1751
1752 return 1; /* OK */
1753 }
1754
1755 /* Unistall the object VAR. */
1756 static void
1757 uninstall_variable (struct varobj *var)
1758 {
1759 struct vlist *cv;
1760 struct vlist *prev;
1761 struct varobj_root *cr;
1762 struct varobj_root *prer;
1763 const char *chp;
1764 unsigned int index = 0;
1765 unsigned int i = 1;
1766
1767 /* Remove varobj from hash table */
1768 for (chp = var->obj_name; *chp; chp++)
1769 {
1770 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1771 }
1772
1773 cv = *(varobj_table + index);
1774 prev = NULL;
1775 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1776 {
1777 prev = cv;
1778 cv = cv->next;
1779 }
1780
1781 if (varobjdebug)
1782 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1783
1784 if (cv == NULL)
1785 {
1786 warning
1787 ("Assertion failed: Could not find variable object \"%s\" to delete",
1788 var->obj_name);
1789 return;
1790 }
1791
1792 if (prev == NULL)
1793 *(varobj_table + index) = cv->next;
1794 else
1795 prev->next = cv->next;
1796
1797 xfree (cv);
1798
1799 /* If root, remove varobj from root list */
1800 if (is_root_p (var))
1801 {
1802 /* Remove from list of root variables */
1803 if (rootlist == var->root)
1804 rootlist = var->root->next;
1805 else
1806 {
1807 prer = NULL;
1808 cr = rootlist;
1809 while ((cr != NULL) && (cr->rootvar != var))
1810 {
1811 prer = cr;
1812 cr = cr->next;
1813 }
1814 if (cr == NULL)
1815 {
1816 warning
1817 ("Assertion failed: Could not find varobj \"%s\" in root list",
1818 var->obj_name);
1819 return;
1820 }
1821 if (prer == NULL)
1822 rootlist = NULL;
1823 else
1824 prer->next = cr->next;
1825 }
1826 rootcount--;
1827 }
1828
1829 }
1830
1831 /* Create and install a child of the parent of the given name */
1832 static struct varobj *
1833 create_child (struct varobj *parent, int index, char *name)
1834 {
1835 return create_child_with_value (parent, index, name,
1836 value_of_child (parent, index));
1837 }
1838
1839 static struct varobj *
1840 create_child_with_value (struct varobj *parent, int index, const char *name,
1841 struct value *value)
1842 {
1843 struct varobj *child;
1844 char *childs_name;
1845
1846 child = new_variable ();
1847
1848 /* name is allocated by name_of_child */
1849 /* FIXME: xstrdup should not be here. */
1850 child->name = xstrdup (name);
1851 child->index = index;
1852 child->parent = parent;
1853 child->root = parent->root;
1854 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1855 child->obj_name = childs_name;
1856 install_variable (child);
1857
1858 /* Compute the type of the child. Must do this before
1859 calling install_new_value. */
1860 if (value != NULL)
1861 /* If the child had no evaluation errors, var->value
1862 will be non-NULL and contain a valid type. */
1863 child->type = value_type (value);
1864 else
1865 /* Otherwise, we must compute the type. */
1866 child->type = (*child->root->lang->type_of_child) (child->parent,
1867 child->index);
1868 install_new_value (child, value, 1);
1869
1870 return child;
1871 }
1872 \f
1873
1874 /*
1875 * Miscellaneous utility functions.
1876 */
1877
1878 /* Allocate memory and initialize a new variable */
1879 static struct varobj *
1880 new_variable (void)
1881 {
1882 struct varobj *var;
1883
1884 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1885 var->name = NULL;
1886 var->path_expr = NULL;
1887 var->obj_name = NULL;
1888 var->index = -1;
1889 var->type = NULL;
1890 var->value = NULL;
1891 var->num_children = -1;
1892 var->parent = NULL;
1893 var->children = NULL;
1894 var->format = 0;
1895 var->root = NULL;
1896 var->updated = 0;
1897 var->print_value = NULL;
1898 var->frozen = 0;
1899 var->not_fetched = 0;
1900 var->children_requested = 0;
1901 var->pretty_printer = 0;
1902
1903 return var;
1904 }
1905
1906 /* Allocate memory and initialize a new root variable */
1907 static struct varobj *
1908 new_root_variable (void)
1909 {
1910 struct varobj *var = new_variable ();
1911 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1912 var->root->lang = NULL;
1913 var->root->exp = NULL;
1914 var->root->valid_block = NULL;
1915 var->root->frame = null_frame_id;
1916 var->root->floating = 0;
1917 var->root->rootvar = NULL;
1918 var->root->is_valid = 1;
1919
1920 return var;
1921 }
1922
1923 /* Free any allocated memory associated with VAR. */
1924 static void
1925 free_variable (struct varobj *var)
1926 {
1927 #if HAVE_PYTHON
1928 if (var->pretty_printer)
1929 {
1930 struct cleanup *cleanup = varobj_ensure_python_env (var);
1931 Py_DECREF (var->pretty_printer);
1932 do_cleanups (cleanup);
1933 }
1934 #endif
1935
1936 value_free (var->value);
1937
1938 /* Free the expression if this is a root variable. */
1939 if (is_root_p (var))
1940 {
1941 xfree (var->root->exp);
1942 xfree (var->root);
1943 }
1944
1945 xfree (var->name);
1946 xfree (var->obj_name);
1947 xfree (var->print_value);
1948 xfree (var->path_expr);
1949 xfree (var);
1950 }
1951
1952 static void
1953 do_free_variable_cleanup (void *var)
1954 {
1955 free_variable (var);
1956 }
1957
1958 static struct cleanup *
1959 make_cleanup_free_variable (struct varobj *var)
1960 {
1961 return make_cleanup (do_free_variable_cleanup, var);
1962 }
1963
1964 /* This returns the type of the variable. It also skips past typedefs
1965 to return the real type of the variable.
1966
1967 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1968 except within get_target_type and get_type. */
1969 static struct type *
1970 get_type (struct varobj *var)
1971 {
1972 struct type *type;
1973 type = var->type;
1974
1975 if (type != NULL)
1976 type = check_typedef (type);
1977
1978 return type;
1979 }
1980
1981 /* Return the type of the value that's stored in VAR,
1982 or that would have being stored there if the
1983 value were accessible.
1984
1985 This differs from VAR->type in that VAR->type is always
1986 the true type of the expession in the source language.
1987 The return value of this function is the type we're
1988 actually storing in varobj, and using for displaying
1989 the values and for comparing previous and new values.
1990
1991 For example, top-level references are always stripped. */
1992 static struct type *
1993 get_value_type (struct varobj *var)
1994 {
1995 struct type *type;
1996
1997 if (var->value)
1998 type = value_type (var->value);
1999 else
2000 type = var->type;
2001
2002 type = check_typedef (type);
2003
2004 if (TYPE_CODE (type) == TYPE_CODE_REF)
2005 type = get_target_type (type);
2006
2007 type = check_typedef (type);
2008
2009 return type;
2010 }
2011
2012 /* This returns the target type (or NULL) of TYPE, also skipping
2013 past typedefs, just like get_type ().
2014
2015 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2016 except within get_target_type and get_type. */
2017 static struct type *
2018 get_target_type (struct type *type)
2019 {
2020 if (type != NULL)
2021 {
2022 type = TYPE_TARGET_TYPE (type);
2023 if (type != NULL)
2024 type = check_typedef (type);
2025 }
2026
2027 return type;
2028 }
2029
2030 /* What is the default display for this variable? We assume that
2031 everything is "natural". Any exceptions? */
2032 static enum varobj_display_formats
2033 variable_default_display (struct varobj *var)
2034 {
2035 return FORMAT_NATURAL;
2036 }
2037
2038 /* FIXME: The following should be generic for any pointer */
2039 static void
2040 cppush (struct cpstack **pstack, char *name)
2041 {
2042 struct cpstack *s;
2043
2044 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2045 s->name = name;
2046 s->next = *pstack;
2047 *pstack = s;
2048 }
2049
2050 /* FIXME: The following should be generic for any pointer */
2051 static char *
2052 cppop (struct cpstack **pstack)
2053 {
2054 struct cpstack *s;
2055 char *v;
2056
2057 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2058 return NULL;
2059
2060 s = *pstack;
2061 v = s->name;
2062 *pstack = (*pstack)->next;
2063 xfree (s);
2064
2065 return v;
2066 }
2067 \f
2068 /*
2069 * Language-dependencies
2070 */
2071
2072 /* Common entry points */
2073
2074 /* Get the language of variable VAR. */
2075 static enum varobj_languages
2076 variable_language (struct varobj *var)
2077 {
2078 enum varobj_languages lang;
2079
2080 switch (var->root->exp->language_defn->la_language)
2081 {
2082 default:
2083 case language_c:
2084 lang = vlang_c;
2085 break;
2086 case language_cplus:
2087 lang = vlang_cplus;
2088 break;
2089 case language_java:
2090 lang = vlang_java;
2091 break;
2092 }
2093
2094 return lang;
2095 }
2096
2097 /* Return the number of children for a given variable.
2098 The result of this function is defined by the language
2099 implementation. The number of children returned by this function
2100 is the number of children that the user will see in the variable
2101 display. */
2102 static int
2103 number_of_children (struct varobj *var)
2104 {
2105 return (*var->root->lang->number_of_children) (var);;
2106 }
2107
2108 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2109 static char *
2110 name_of_variable (struct varobj *var)
2111 {
2112 return (*var->root->lang->name_of_variable) (var);
2113 }
2114
2115 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2116 static char *
2117 name_of_child (struct varobj *var, int index)
2118 {
2119 return (*var->root->lang->name_of_child) (var, index);
2120 }
2121
2122 /* What is the ``struct value *'' of the root variable VAR?
2123 For floating variable object, evaluation can get us a value
2124 of different type from what is stored in varobj already. In
2125 that case:
2126 - *type_changed will be set to 1
2127 - old varobj will be freed, and new one will be
2128 created, with the same name.
2129 - *var_handle will be set to the new varobj
2130 Otherwise, *type_changed will be set to 0. */
2131 static struct value *
2132 value_of_root (struct varobj **var_handle, int *type_changed)
2133 {
2134 struct varobj *var;
2135
2136 if (var_handle == NULL)
2137 return NULL;
2138
2139 var = *var_handle;
2140
2141 /* This should really be an exception, since this should
2142 only get called with a root variable. */
2143
2144 if (!is_root_p (var))
2145 return NULL;
2146
2147 if (var->root->floating)
2148 {
2149 struct varobj *tmp_var;
2150 char *old_type, *new_type;
2151
2152 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2153 USE_SELECTED_FRAME);
2154 if (tmp_var == NULL)
2155 {
2156 return NULL;
2157 }
2158 old_type = varobj_get_type (var);
2159 new_type = varobj_get_type (tmp_var);
2160 if (strcmp (old_type, new_type) == 0)
2161 {
2162 /* The expression presently stored inside var->root->exp
2163 remembers the locations of local variables relatively to
2164 the frame where the expression was created (in DWARF location
2165 button, for example). Naturally, those locations are not
2166 correct in other frames, so update the expression. */
2167
2168 struct expression *tmp_exp = var->root->exp;
2169 var->root->exp = tmp_var->root->exp;
2170 tmp_var->root->exp = tmp_exp;
2171
2172 varobj_delete (tmp_var, NULL, 0);
2173 *type_changed = 0;
2174 }
2175 else
2176 {
2177 tmp_var->obj_name = xstrdup (var->obj_name);
2178 varobj_delete (var, NULL, 0);
2179
2180 install_variable (tmp_var);
2181 *var_handle = tmp_var;
2182 var = *var_handle;
2183 *type_changed = 1;
2184 }
2185 xfree (old_type);
2186 xfree (new_type);
2187 }
2188 else
2189 {
2190 *type_changed = 0;
2191 }
2192
2193 return (*var->root->lang->value_of_root) (var_handle);
2194 }
2195
2196 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2197 static struct value *
2198 value_of_child (struct varobj *parent, int index)
2199 {
2200 struct value *value;
2201
2202 value = (*parent->root->lang->value_of_child) (parent, index);
2203
2204 return value;
2205 }
2206
2207 /* GDB already has a command called "value_of_variable". Sigh. */
2208 static char *
2209 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2210 {
2211 if (var->root->is_valid)
2212 return (*var->root->lang->value_of_variable) (var, format);
2213 else
2214 return NULL;
2215 }
2216
2217 static char *
2218 value_get_print_value (struct value *value, enum varobj_display_formats format,
2219 struct varobj *var)
2220 {
2221 long dummy;
2222 struct ui_file *stb;
2223 struct cleanup *old_chain;
2224 char *thevalue = NULL;
2225 struct value_print_options opts;
2226
2227 if (value == NULL)
2228 return NULL;
2229
2230 #if HAVE_PYTHON
2231 {
2232 struct cleanup *back_to = varobj_ensure_python_env (var);
2233 PyObject *value_formatter = var->pretty_printer;
2234
2235 if (value_formatter && PyObject_HasAttr (value_formatter,
2236 gdbpy_to_string_cst))
2237 {
2238 char *hint;
2239 struct value *replacement;
2240 int string_print = 0;
2241
2242 hint = gdbpy_get_display_hint (value_formatter);
2243 if (hint)
2244 {
2245 if (!strcmp (hint, "string"))
2246 string_print = 1;
2247 xfree (hint);
2248 }
2249
2250 thevalue = apply_varobj_pretty_printer (value_formatter,
2251 &replacement);
2252 if (thevalue && !string_print)
2253 {
2254 do_cleanups (back_to);
2255 return thevalue;
2256 }
2257 if (replacement)
2258 value = replacement;
2259 }
2260 do_cleanups (back_to);
2261 }
2262 #endif
2263
2264 stb = mem_fileopen ();
2265 old_chain = make_cleanup_ui_file_delete (stb);
2266
2267 get_formatted_print_options (&opts, format_code[(int) format]);
2268 opts.deref_ref = 0;
2269 opts.raw = 1;
2270 if (thevalue)
2271 {
2272 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2273 make_cleanup (xfree, thevalue);
2274 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2275 (gdb_byte *) thevalue, strlen (thevalue),
2276 0, &opts);
2277 }
2278 else
2279 common_val_print (value, stb, 0, &opts, current_language);
2280 thevalue = ui_file_xstrdup (stb, &dummy);
2281
2282 do_cleanups (old_chain);
2283 return thevalue;
2284 }
2285
2286 int
2287 varobj_editable_p (struct varobj *var)
2288 {
2289 struct type *type;
2290 struct value *value;
2291
2292 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2293 return 0;
2294
2295 type = get_value_type (var);
2296
2297 switch (TYPE_CODE (type))
2298 {
2299 case TYPE_CODE_STRUCT:
2300 case TYPE_CODE_UNION:
2301 case TYPE_CODE_ARRAY:
2302 case TYPE_CODE_FUNC:
2303 case TYPE_CODE_METHOD:
2304 return 0;
2305 break;
2306
2307 default:
2308 return 1;
2309 break;
2310 }
2311 }
2312
2313 /* Return non-zero if changes in value of VAR
2314 must be detected and reported by -var-update.
2315 Return zero is -var-update should never report
2316 changes of such values. This makes sense for structures
2317 (since the changes in children values will be reported separately),
2318 or for artifical objects (like 'public' pseudo-field in C++).
2319
2320 Return value of 0 means that gdb need not call value_fetch_lazy
2321 for the value of this variable object. */
2322 static int
2323 varobj_value_is_changeable_p (struct varobj *var)
2324 {
2325 int r;
2326 struct type *type;
2327
2328 if (CPLUS_FAKE_CHILD (var))
2329 return 0;
2330
2331 type = get_value_type (var);
2332
2333 switch (TYPE_CODE (type))
2334 {
2335 case TYPE_CODE_STRUCT:
2336 case TYPE_CODE_UNION:
2337 case TYPE_CODE_ARRAY:
2338 r = 0;
2339 break;
2340
2341 default:
2342 r = 1;
2343 }
2344
2345 return r;
2346 }
2347
2348 /* Return 1 if that varobj is floating, that is is always evaluated in the
2349 selected frame, and not bound to thread/frame. Such variable objects
2350 are created using '@' as frame specifier to -var-create. */
2351 int
2352 varobj_floating_p (struct varobj *var)
2353 {
2354 return var->root->floating;
2355 }
2356
2357 /* Given the value and the type of a variable object,
2358 adjust the value and type to those necessary
2359 for getting children of the variable object.
2360 This includes dereferencing top-level references
2361 to all types and dereferencing pointers to
2362 structures.
2363
2364 Both TYPE and *TYPE should be non-null. VALUE
2365 can be null if we want to only translate type.
2366 *VALUE can be null as well -- if the parent
2367 value is not known.
2368
2369 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2370 depending on whether pointer was dereferenced
2371 in this function. */
2372 static void
2373 adjust_value_for_child_access (struct value **value,
2374 struct type **type,
2375 int *was_ptr)
2376 {
2377 gdb_assert (type && *type);
2378
2379 if (was_ptr)
2380 *was_ptr = 0;
2381
2382 *type = check_typedef (*type);
2383
2384 /* The type of value stored in varobj, that is passed
2385 to us, is already supposed to be
2386 reference-stripped. */
2387
2388 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2389
2390 /* Pointers to structures are treated just like
2391 structures when accessing children. Don't
2392 dererences pointers to other types. */
2393 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2394 {
2395 struct type *target_type = get_target_type (*type);
2396 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2397 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2398 {
2399 if (value && *value)
2400 {
2401 int success = gdb_value_ind (*value, value);
2402 if (!success)
2403 *value = NULL;
2404 }
2405 *type = target_type;
2406 if (was_ptr)
2407 *was_ptr = 1;
2408 }
2409 }
2410
2411 /* The 'get_target_type' function calls check_typedef on
2412 result, so we can immediately check type code. No
2413 need to call check_typedef here. */
2414 }
2415
2416 /* C */
2417 static int
2418 c_number_of_children (struct varobj *var)
2419 {
2420 struct type *type = get_value_type (var);
2421 int children = 0;
2422 struct type *target;
2423
2424 adjust_value_for_child_access (NULL, &type, NULL);
2425 target = get_target_type (type);
2426
2427 switch (TYPE_CODE (type))
2428 {
2429 case TYPE_CODE_ARRAY:
2430 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2431 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2432 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2433 else
2434 /* If we don't know how many elements there are, don't display
2435 any. */
2436 children = 0;
2437 break;
2438
2439 case TYPE_CODE_STRUCT:
2440 case TYPE_CODE_UNION:
2441 children = TYPE_NFIELDS (type);
2442 break;
2443
2444 case TYPE_CODE_PTR:
2445 /* The type here is a pointer to non-struct. Typically, pointers
2446 have one child, except for function ptrs, which have no children,
2447 and except for void*, as we don't know what to show.
2448
2449 We can show char* so we allow it to be dereferenced. If you decide
2450 to test for it, please mind that a little magic is necessary to
2451 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2452 TYPE_NAME == "char" */
2453 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2454 || TYPE_CODE (target) == TYPE_CODE_VOID)
2455 children = 0;
2456 else
2457 children = 1;
2458 break;
2459
2460 default:
2461 /* Other types have no children */
2462 break;
2463 }
2464
2465 return children;
2466 }
2467
2468 static char *
2469 c_name_of_variable (struct varobj *parent)
2470 {
2471 return xstrdup (parent->name);
2472 }
2473
2474 /* Return the value of element TYPE_INDEX of a structure
2475 value VALUE. VALUE's type should be a structure,
2476 or union, or a typedef to struct/union.
2477
2478 Returns NULL if getting the value fails. Never throws. */
2479 static struct value *
2480 value_struct_element_index (struct value *value, int type_index)
2481 {
2482 struct value *result = NULL;
2483 volatile struct gdb_exception e;
2484
2485 struct type *type = value_type (value);
2486 type = check_typedef (type);
2487
2488 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2489 || TYPE_CODE (type) == TYPE_CODE_UNION);
2490
2491 TRY_CATCH (e, RETURN_MASK_ERROR)
2492 {
2493 if (field_is_static (&TYPE_FIELD (type, type_index)))
2494 result = value_static_field (type, type_index);
2495 else
2496 result = value_primitive_field (value, 0, type_index, type);
2497 }
2498 if (e.reason < 0)
2499 {
2500 return NULL;
2501 }
2502 else
2503 {
2504 return result;
2505 }
2506 }
2507
2508 /* Obtain the information about child INDEX of the variable
2509 object PARENT.
2510 If CNAME is not null, sets *CNAME to the name of the child relative
2511 to the parent.
2512 If CVALUE is not null, sets *CVALUE to the value of the child.
2513 If CTYPE is not null, sets *CTYPE to the type of the child.
2514
2515 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2516 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2517 to NULL. */
2518 static void
2519 c_describe_child (struct varobj *parent, int index,
2520 char **cname, struct value **cvalue, struct type **ctype,
2521 char **cfull_expression)
2522 {
2523 struct value *value = parent->value;
2524 struct type *type = get_value_type (parent);
2525 char *parent_expression = NULL;
2526 int was_ptr;
2527
2528 if (cname)
2529 *cname = NULL;
2530 if (cvalue)
2531 *cvalue = NULL;
2532 if (ctype)
2533 *ctype = NULL;
2534 if (cfull_expression)
2535 {
2536 *cfull_expression = NULL;
2537 parent_expression = varobj_get_path_expr (parent);
2538 }
2539 adjust_value_for_child_access (&value, &type, &was_ptr);
2540
2541 switch (TYPE_CODE (type))
2542 {
2543 case TYPE_CODE_ARRAY:
2544 if (cname)
2545 *cname = xstrprintf ("%d", index
2546 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2547
2548 if (cvalue && value)
2549 {
2550 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2551 gdb_value_subscript (value, real_index, cvalue);
2552 }
2553
2554 if (ctype)
2555 *ctype = get_target_type (type);
2556
2557 if (cfull_expression)
2558 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2559 index
2560 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2561
2562
2563 break;
2564
2565 case TYPE_CODE_STRUCT:
2566 case TYPE_CODE_UNION:
2567 if (cname)
2568 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2569
2570 if (cvalue && value)
2571 {
2572 /* For C, varobj index is the same as type index. */
2573 *cvalue = value_struct_element_index (value, index);
2574 }
2575
2576 if (ctype)
2577 *ctype = TYPE_FIELD_TYPE (type, index);
2578
2579 if (cfull_expression)
2580 {
2581 char *join = was_ptr ? "->" : ".";
2582 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2583 TYPE_FIELD_NAME (type, index));
2584 }
2585
2586 break;
2587
2588 case TYPE_CODE_PTR:
2589 if (cname)
2590 *cname = xstrprintf ("*%s", parent->name);
2591
2592 if (cvalue && value)
2593 {
2594 int success = gdb_value_ind (value, cvalue);
2595 if (!success)
2596 *cvalue = NULL;
2597 }
2598
2599 /* Don't use get_target_type because it calls
2600 check_typedef and here, we want to show the true
2601 declared type of the variable. */
2602 if (ctype)
2603 *ctype = TYPE_TARGET_TYPE (type);
2604
2605 if (cfull_expression)
2606 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2607
2608 break;
2609
2610 default:
2611 /* This should not happen */
2612 if (cname)
2613 *cname = xstrdup ("???");
2614 if (cfull_expression)
2615 *cfull_expression = xstrdup ("???");
2616 /* Don't set value and type, we don't know then. */
2617 }
2618 }
2619
2620 static char *
2621 c_name_of_child (struct varobj *parent, int index)
2622 {
2623 char *name;
2624 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2625 return name;
2626 }
2627
2628 static char *
2629 c_path_expr_of_child (struct varobj *child)
2630 {
2631 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2632 &child->path_expr);
2633 return child->path_expr;
2634 }
2635
2636 /* If frame associated with VAR can be found, switch
2637 to it and return 1. Otherwise, return 0. */
2638 static int
2639 check_scope (struct varobj *var)
2640 {
2641 struct frame_info *fi;
2642 int scope;
2643
2644 fi = frame_find_by_id (var->root->frame);
2645 scope = fi != NULL;
2646
2647 if (fi)
2648 {
2649 CORE_ADDR pc = get_frame_pc (fi);
2650 if (pc < BLOCK_START (var->root->valid_block) ||
2651 pc >= BLOCK_END (var->root->valid_block))
2652 scope = 0;
2653 else
2654 select_frame (fi);
2655 }
2656 return scope;
2657 }
2658
2659 static struct value *
2660 c_value_of_root (struct varobj **var_handle)
2661 {
2662 struct value *new_val = NULL;
2663 struct varobj *var = *var_handle;
2664 struct frame_info *fi;
2665 int within_scope = 0;
2666 struct cleanup *back_to;
2667
2668 /* Only root variables can be updated... */
2669 if (!is_root_p (var))
2670 /* Not a root var */
2671 return NULL;
2672
2673 back_to = make_cleanup_restore_current_thread ();
2674
2675 /* Determine whether the variable is still around. */
2676 if (var->root->valid_block == NULL || var->root->floating)
2677 within_scope = 1;
2678 else if (var->root->thread_id == 0)
2679 {
2680 /* The program was single-threaded when the variable object was
2681 created. Technically, it's possible that the program became
2682 multi-threaded since then, but we don't support such
2683 scenario yet. */
2684 within_scope = check_scope (var);
2685 }
2686 else
2687 {
2688 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2689 if (in_thread_list (ptid))
2690 {
2691 switch_to_thread (ptid);
2692 within_scope = check_scope (var);
2693 }
2694 }
2695
2696 if (within_scope)
2697 {
2698 /* We need to catch errors here, because if evaluate
2699 expression fails we want to just return NULL. */
2700 gdb_evaluate_expression (var->root->exp, &new_val);
2701 return new_val;
2702 }
2703
2704 do_cleanups (back_to);
2705
2706 return NULL;
2707 }
2708
2709 static struct value *
2710 c_value_of_child (struct varobj *parent, int index)
2711 {
2712 struct value *value = NULL;
2713 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2714
2715 return value;
2716 }
2717
2718 static struct type *
2719 c_type_of_child (struct varobj *parent, int index)
2720 {
2721 struct type *type = NULL;
2722 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2723 return type;
2724 }
2725
2726 static char *
2727 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2728 {
2729 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2730 it will print out its children instead of "{...}". So we need to
2731 catch that case explicitly. */
2732 struct type *type = get_type (var);
2733
2734 /* If we have a custom formatter, return whatever string it has
2735 produced. */
2736 if (var->pretty_printer && var->print_value)
2737 return xstrdup (var->print_value);
2738
2739 /* Strip top-level references. */
2740 while (TYPE_CODE (type) == TYPE_CODE_REF)
2741 type = check_typedef (TYPE_TARGET_TYPE (type));
2742
2743 switch (TYPE_CODE (type))
2744 {
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 return xstrdup ("{...}");
2748 /* break; */
2749
2750 case TYPE_CODE_ARRAY:
2751 {
2752 char *number;
2753 number = xstrprintf ("[%d]", var->num_children);
2754 return (number);
2755 }
2756 /* break; */
2757
2758 default:
2759 {
2760 if (var->value == NULL)
2761 {
2762 /* This can happen if we attempt to get the value of a struct
2763 member when the parent is an invalid pointer. This is an
2764 error condition, so we should tell the caller. */
2765 return NULL;
2766 }
2767 else
2768 {
2769 if (var->not_fetched && value_lazy (var->value))
2770 /* Frozen variable and no value yet. We don't
2771 implicitly fetch the value. MI response will
2772 use empty string for the value, which is OK. */
2773 return NULL;
2774
2775 gdb_assert (varobj_value_is_changeable_p (var));
2776 gdb_assert (!value_lazy (var->value));
2777
2778 /* If the specified format is the current one,
2779 we can reuse print_value */
2780 if (format == var->format)
2781 return xstrdup (var->print_value);
2782 else
2783 return value_get_print_value (var->value, format, var);
2784 }
2785 }
2786 }
2787 }
2788 \f
2789
2790 /* C++ */
2791
2792 static int
2793 cplus_number_of_children (struct varobj *var)
2794 {
2795 struct type *type;
2796 int children, dont_know;
2797
2798 dont_know = 1;
2799 children = 0;
2800
2801 if (!CPLUS_FAKE_CHILD (var))
2802 {
2803 type = get_value_type (var);
2804 adjust_value_for_child_access (NULL, &type, NULL);
2805
2806 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2807 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2808 {
2809 int kids[3];
2810
2811 cplus_class_num_children (type, kids);
2812 if (kids[v_public] != 0)
2813 children++;
2814 if (kids[v_private] != 0)
2815 children++;
2816 if (kids[v_protected] != 0)
2817 children++;
2818
2819 /* Add any baseclasses */
2820 children += TYPE_N_BASECLASSES (type);
2821 dont_know = 0;
2822
2823 /* FIXME: save children in var */
2824 }
2825 }
2826 else
2827 {
2828 int kids[3];
2829
2830 type = get_value_type (var->parent);
2831 adjust_value_for_child_access (NULL, &type, NULL);
2832
2833 cplus_class_num_children (type, kids);
2834 if (strcmp (var->name, "public") == 0)
2835 children = kids[v_public];
2836 else if (strcmp (var->name, "private") == 0)
2837 children = kids[v_private];
2838 else
2839 children = kids[v_protected];
2840 dont_know = 0;
2841 }
2842
2843 if (dont_know)
2844 children = c_number_of_children (var);
2845
2846 return children;
2847 }
2848
2849 /* Compute # of public, private, and protected variables in this class.
2850 That means we need to descend into all baseclasses and find out
2851 how many are there, too. */
2852 static void
2853 cplus_class_num_children (struct type *type, int children[3])
2854 {
2855 int i;
2856
2857 children[v_public] = 0;
2858 children[v_private] = 0;
2859 children[v_protected] = 0;
2860
2861 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2862 {
2863 /* If we have a virtual table pointer, omit it. */
2864 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2865 continue;
2866
2867 if (TYPE_FIELD_PROTECTED (type, i))
2868 children[v_protected]++;
2869 else if (TYPE_FIELD_PRIVATE (type, i))
2870 children[v_private]++;
2871 else
2872 children[v_public]++;
2873 }
2874 }
2875
2876 static char *
2877 cplus_name_of_variable (struct varobj *parent)
2878 {
2879 return c_name_of_variable (parent);
2880 }
2881
2882 enum accessibility { private_field, protected_field, public_field };
2883
2884 /* Check if field INDEX of TYPE has the specified accessibility.
2885 Return 0 if so and 1 otherwise. */
2886 static int
2887 match_accessibility (struct type *type, int index, enum accessibility acc)
2888 {
2889 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2890 return 1;
2891 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2892 return 1;
2893 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2894 && !TYPE_FIELD_PROTECTED (type, index))
2895 return 1;
2896 else
2897 return 0;
2898 }
2899
2900 static void
2901 cplus_describe_child (struct varobj *parent, int index,
2902 char **cname, struct value **cvalue, struct type **ctype,
2903 char **cfull_expression)
2904 {
2905 char *name = NULL;
2906 struct value *value;
2907 struct type *type;
2908 int was_ptr;
2909 char *parent_expression = NULL;
2910
2911 if (cname)
2912 *cname = NULL;
2913 if (cvalue)
2914 *cvalue = NULL;
2915 if (ctype)
2916 *ctype = NULL;
2917 if (cfull_expression)
2918 *cfull_expression = NULL;
2919
2920 if (CPLUS_FAKE_CHILD (parent))
2921 {
2922 value = parent->parent->value;
2923 type = get_value_type (parent->parent);
2924 if (cfull_expression)
2925 parent_expression = varobj_get_path_expr (parent->parent);
2926 }
2927 else
2928 {
2929 value = parent->value;
2930 type = get_value_type (parent);
2931 if (cfull_expression)
2932 parent_expression = varobj_get_path_expr (parent);
2933 }
2934
2935 adjust_value_for_child_access (&value, &type, &was_ptr);
2936
2937 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2938 || TYPE_CODE (type) == TYPE_CODE_UNION)
2939 {
2940 char *join = was_ptr ? "->" : ".";
2941 if (CPLUS_FAKE_CHILD (parent))
2942 {
2943 /* The fields of the class type are ordered as they
2944 appear in the class. We are given an index for a
2945 particular access control type ("public","protected",
2946 or "private"). We must skip over fields that don't
2947 have the access control we are looking for to properly
2948 find the indexed field. */
2949 int type_index = TYPE_N_BASECLASSES (type);
2950 enum accessibility acc = public_field;
2951 if (strcmp (parent->name, "private") == 0)
2952 acc = private_field;
2953 else if (strcmp (parent->name, "protected") == 0)
2954 acc = protected_field;
2955
2956 while (index >= 0)
2957 {
2958 if (TYPE_VPTR_BASETYPE (type) == type
2959 && type_index == TYPE_VPTR_FIELDNO (type))
2960 ; /* ignore vptr */
2961 else if (match_accessibility (type, type_index, acc))
2962 --index;
2963 ++type_index;
2964 }
2965 --type_index;
2966
2967 if (cname)
2968 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2969
2970 if (cvalue && value)
2971 *cvalue = value_struct_element_index (value, type_index);
2972
2973 if (ctype)
2974 *ctype = TYPE_FIELD_TYPE (type, type_index);
2975
2976 if (cfull_expression)
2977 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2978 join,
2979 TYPE_FIELD_NAME (type, type_index));
2980 }
2981 else if (index < TYPE_N_BASECLASSES (type))
2982 {
2983 /* This is a baseclass. */
2984 if (cname)
2985 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2986
2987 if (cvalue && value)
2988 {
2989 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2990 release_value (*cvalue);
2991 }
2992
2993 if (ctype)
2994 {
2995 *ctype = TYPE_FIELD_TYPE (type, index);
2996 }
2997
2998 if (cfull_expression)
2999 {
3000 char *ptr = was_ptr ? "*" : "";
3001 /* Cast the parent to the base' type. Note that in gdb,
3002 expression like
3003 (Base1)d
3004 will create an lvalue, for all appearences, so we don't
3005 need to use more fancy:
3006 *(Base1*)(&d)
3007 construct. */
3008 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3009 ptr,
3010 TYPE_FIELD_NAME (type, index),
3011 ptr,
3012 parent_expression);
3013 }
3014 }
3015 else
3016 {
3017 char *access = NULL;
3018 int children[3];
3019 cplus_class_num_children (type, children);
3020
3021 /* Everything beyond the baseclasses can
3022 only be "public", "private", or "protected"
3023
3024 The special "fake" children are always output by varobj in
3025 this order. So if INDEX == 2, it MUST be "protected". */
3026 index -= TYPE_N_BASECLASSES (type);
3027 switch (index)
3028 {
3029 case 0:
3030 if (children[v_public] > 0)
3031 access = "public";
3032 else if (children[v_private] > 0)
3033 access = "private";
3034 else
3035 access = "protected";
3036 break;
3037 case 1:
3038 if (children[v_public] > 0)
3039 {
3040 if (children[v_private] > 0)
3041 access = "private";
3042 else
3043 access = "protected";
3044 }
3045 else if (children[v_private] > 0)
3046 access = "protected";
3047 break;
3048 case 2:
3049 /* Must be protected */
3050 access = "protected";
3051 break;
3052 default:
3053 /* error! */
3054 break;
3055 }
3056
3057 gdb_assert (access);
3058 if (cname)
3059 *cname = xstrdup (access);
3060
3061 /* Value and type and full expression are null here. */
3062 }
3063 }
3064 else
3065 {
3066 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3067 }
3068 }
3069
3070 static char *
3071 cplus_name_of_child (struct varobj *parent, int index)
3072 {
3073 char *name = NULL;
3074 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3075 return name;
3076 }
3077
3078 static char *
3079 cplus_path_expr_of_child (struct varobj *child)
3080 {
3081 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3082 &child->path_expr);
3083 return child->path_expr;
3084 }
3085
3086 static struct value *
3087 cplus_value_of_root (struct varobj **var_handle)
3088 {
3089 return c_value_of_root (var_handle);
3090 }
3091
3092 static struct value *
3093 cplus_value_of_child (struct varobj *parent, int index)
3094 {
3095 struct value *value = NULL;
3096 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3097 return value;
3098 }
3099
3100 static struct type *
3101 cplus_type_of_child (struct varobj *parent, int index)
3102 {
3103 struct type *type = NULL;
3104 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3105 return type;
3106 }
3107
3108 static char *
3109 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3110 {
3111
3112 /* If we have one of our special types, don't print out
3113 any value. */
3114 if (CPLUS_FAKE_CHILD (var))
3115 return xstrdup ("");
3116
3117 return c_value_of_variable (var, format);
3118 }
3119 \f
3120 /* Java */
3121
3122 static int
3123 java_number_of_children (struct varobj *var)
3124 {
3125 return cplus_number_of_children (var);
3126 }
3127
3128 static char *
3129 java_name_of_variable (struct varobj *parent)
3130 {
3131 char *p, *name;
3132
3133 name = cplus_name_of_variable (parent);
3134 /* If the name has "-" in it, it is because we
3135 needed to escape periods in the name... */
3136 p = name;
3137
3138 while (*p != '\000')
3139 {
3140 if (*p == '-')
3141 *p = '.';
3142 p++;
3143 }
3144
3145 return name;
3146 }
3147
3148 static char *
3149 java_name_of_child (struct varobj *parent, int index)
3150 {
3151 char *name, *p;
3152
3153 name = cplus_name_of_child (parent, index);
3154 /* Escape any periods in the name... */
3155 p = name;
3156
3157 while (*p != '\000')
3158 {
3159 if (*p == '.')
3160 *p = '-';
3161 p++;
3162 }
3163
3164 return name;
3165 }
3166
3167 static char *
3168 java_path_expr_of_child (struct varobj *child)
3169 {
3170 return NULL;
3171 }
3172
3173 static struct value *
3174 java_value_of_root (struct varobj **var_handle)
3175 {
3176 return cplus_value_of_root (var_handle);
3177 }
3178
3179 static struct value *
3180 java_value_of_child (struct varobj *parent, int index)
3181 {
3182 return cplus_value_of_child (parent, index);
3183 }
3184
3185 static struct type *
3186 java_type_of_child (struct varobj *parent, int index)
3187 {
3188 return cplus_type_of_child (parent, index);
3189 }
3190
3191 static char *
3192 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3193 {
3194 return cplus_value_of_variable (var, format);
3195 }
3196 \f
3197 extern void _initialize_varobj (void);
3198 void
3199 _initialize_varobj (void)
3200 {
3201 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3202
3203 varobj_table = xmalloc (sizeof_table);
3204 memset (varobj_table, 0, sizeof_table);
3205
3206 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3207 &varobjdebug, _("\
3208 Set varobj debugging."), _("\
3209 Show varobj debugging."), _("\
3210 When non-zero, varobj debugging is enabled."),
3211 NULL,
3212 show_varobjdebug,
3213 &setlist, &showlist);
3214 }
3215
3216 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3217 are defined on globals.
3218 Invalidated varobjs will be always printed in_scope="invalid". */
3219
3220 void
3221 varobj_invalidate (void)
3222 {
3223 struct varobj **all_rootvarobj;
3224 struct varobj **varp;
3225
3226 if (varobj_list (&all_rootvarobj) > 0)
3227 {
3228 varp = all_rootvarobj;
3229 while (*varp != NULL)
3230 {
3231 /* Floating varobjs are reparsed on each stop, so we don't care if
3232 the presently parsed expression refers to something that's gone.
3233 */
3234 if ((*varp)->root->floating) {
3235 varp++;
3236 continue;
3237 }
3238
3239 /* global var must be re-evaluated. */
3240 if ((*varp)->root->valid_block == NULL)
3241 {
3242 struct varobj *tmp_var;
3243
3244 /* Try to create a varobj with same expression. If we succeed
3245 replace the old varobj, otherwise invalidate it. */
3246 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
3247 USE_CURRENT_FRAME);
3248 if (tmp_var != NULL)
3249 {
3250 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
3251 varobj_delete (*varp, NULL, 0);
3252 install_variable (tmp_var);
3253 }
3254 else
3255 (*varp)->root->is_valid = 0;
3256 }
3257 else /* locals must be invalidated. */
3258 (*varp)->root->is_valid = 0;
3259
3260 varp++;
3261 }
3262 }
3263 xfree (all_rootvarobj);
3264 return;
3265 }