]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Refactor varobj_update interface.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36
37 /* Non-zero if we want to see trace of varobj level stuff. */
38
39 int varobjdebug = 0;
40 static void
41 show_varobjdebug (struct ui_file *file, int from_tty,
42 struct cmd_list_element *c, const char *value)
43 {
44 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
45 }
46
47 /* String representations of gdb's format codes */
48 char *varobj_format_string[] =
49 { "natural", "binary", "decimal", "hexadecimal", "octal" };
50
51 /* String representations of gdb's known languages */
52 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
53
54 /* Data structures */
55
56 /* Every root variable has one of these structures saved in its
57 varobj. Members which must be free'd are noted. */
58 struct varobj_root
59 {
60
61 /* Alloc'd expression for this parent. */
62 struct expression *exp;
63
64 /* Block for which this expression is valid */
65 struct block *valid_block;
66
67 /* The frame for this expression. This field is set iff valid_block is
68 not NULL. */
69 struct frame_id frame;
70
71 /* The thread ID that this varobj_root belong to. This field
72 is only valid if valid_block is not NULL.
73 When not 0, indicates which thread 'frame' belongs to.
74 When 0, indicates that the thread list was empty when the varobj_root
75 was created. */
76 int thread_id;
77
78 /* If 1, the -var-update always recomputes the value in the
79 current thread and frame. Otherwise, variable object is
80 always updated in the specific scope/thread/frame */
81 int floating;
82
83 /* Flag that indicates validity: set to 0 when this varobj_root refers
84 to symbols that do not exist anymore. */
85 int is_valid;
86
87 /* Language info for this variable and its children */
88 struct language_specific *lang;
89
90 /* The varobj for this root node. */
91 struct varobj *rootvar;
92
93 /* Next root variable */
94 struct varobj_root *next;
95 };
96
97 /* Every variable in the system has a structure of this type defined
98 for it. This structure holds all information necessary to manipulate
99 a particular object variable. Members which must be freed are noted. */
100 struct varobj
101 {
102
103 /* Alloc'd name of the variable for this object.. If this variable is a
104 child, then this name will be the child's source name.
105 (bar, not foo.bar) */
106 /* NOTE: This is the "expression" */
107 char *name;
108
109 /* Alloc'd expression for this child. Can be used to create a
110 root variable corresponding to this child. */
111 char *path_expr;
112
113 /* The alloc'd name for this variable's object. This is here for
114 convenience when constructing this object's children. */
115 char *obj_name;
116
117 /* Index of this variable in its parent or -1 */
118 int index;
119
120 /* The type of this variable. This can be NULL
121 for artifial variable objects -- currently, the "accessibility"
122 variable objects in C++. */
123 struct type *type;
124
125 /* The value of this expression or subexpression. A NULL value
126 indicates there was an error getting this value.
127 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
128 the value is either NULL, or not lazy. */
129 struct value *value;
130
131 /* The number of (immediate) children this variable has */
132 int num_children;
133
134 /* If this object is a child, this points to its immediate parent. */
135 struct varobj *parent;
136
137 /* Children of this object. */
138 VEC (varobj_p) *children;
139
140 /* Description of the root variable. Points to root variable for children. */
141 struct varobj_root *root;
142
143 /* The format of the output for this object */
144 enum varobj_display_formats format;
145
146 /* Was this variable updated via a varobj_set_value operation */
147 int updated;
148
149 /* Last print value. */
150 char *print_value;
151
152 /* Is this variable frozen. Frozen variables are never implicitly
153 updated by -var-update *
154 or -var-update <direct-or-indirect-parent>. */
155 int frozen;
156
157 /* Is the value of this variable intentionally not fetched? It is
158 not fetched if either the variable is frozen, or any parents is
159 frozen. */
160 int not_fetched;
161 };
162
163 struct cpstack
164 {
165 char *name;
166 struct cpstack *next;
167 };
168
169 /* A list of varobjs */
170
171 struct vlist
172 {
173 struct varobj *var;
174 struct vlist *next;
175 };
176
177 /* Private function prototypes */
178
179 /* Helper functions for the above subcommands. */
180
181 static int delete_variable (struct cpstack **, struct varobj *, int);
182
183 static void delete_variable_1 (struct cpstack **, int *,
184 struct varobj *, int, int);
185
186 static int install_variable (struct varobj *);
187
188 static void uninstall_variable (struct varobj *);
189
190 static struct varobj *create_child (struct varobj *, int, char *);
191
192 /* Utility routines */
193
194 static struct varobj *new_variable (void);
195
196 static struct varobj *new_root_variable (void);
197
198 static void free_variable (struct varobj *var);
199
200 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
201
202 static struct type *get_type (struct varobj *var);
203
204 static struct type *get_value_type (struct varobj *var);
205
206 static struct type *get_target_type (struct type *);
207
208 static enum varobj_display_formats variable_default_display (struct varobj *);
209
210 static void cppush (struct cpstack **pstack, char *name);
211
212 static char *cppop (struct cpstack **pstack);
213
214 static int install_new_value (struct varobj *var, struct value *value,
215 int initial);
216
217 /* Language-specific routines. */
218
219 static enum varobj_languages variable_language (struct varobj *var);
220
221 static int number_of_children (struct varobj *);
222
223 static char *name_of_variable (struct varobj *);
224
225 static char *name_of_child (struct varobj *, int);
226
227 static struct value *value_of_root (struct varobj **var_handle, int *);
228
229 static struct value *value_of_child (struct varobj *parent, int index);
230
231 static char *my_value_of_variable (struct varobj *var,
232 enum varobj_display_formats format);
233
234 static char *value_get_print_value (struct value *value,
235 enum varobj_display_formats format);
236
237 static int varobj_value_is_changeable_p (struct varobj *var);
238
239 static int is_root_p (struct varobj *var);
240
241 /* C implementation */
242
243 static int c_number_of_children (struct varobj *var);
244
245 static char *c_name_of_variable (struct varobj *parent);
246
247 static char *c_name_of_child (struct varobj *parent, int index);
248
249 static char *c_path_expr_of_child (struct varobj *child);
250
251 static struct value *c_value_of_root (struct varobj **var_handle);
252
253 static struct value *c_value_of_child (struct varobj *parent, int index);
254
255 static struct type *c_type_of_child (struct varobj *parent, int index);
256
257 static char *c_value_of_variable (struct varobj *var,
258 enum varobj_display_formats format);
259
260 /* C++ implementation */
261
262 static int cplus_number_of_children (struct varobj *var);
263
264 static void cplus_class_num_children (struct type *type, int children[3]);
265
266 static char *cplus_name_of_variable (struct varobj *parent);
267
268 static char *cplus_name_of_child (struct varobj *parent, int index);
269
270 static char *cplus_path_expr_of_child (struct varobj *child);
271
272 static struct value *cplus_value_of_root (struct varobj **var_handle);
273
274 static struct value *cplus_value_of_child (struct varobj *parent, int index);
275
276 static struct type *cplus_type_of_child (struct varobj *parent, int index);
277
278 static char *cplus_value_of_variable (struct varobj *var,
279 enum varobj_display_formats format);
280
281 /* Java implementation */
282
283 static int java_number_of_children (struct varobj *var);
284
285 static char *java_name_of_variable (struct varobj *parent);
286
287 static char *java_name_of_child (struct varobj *parent, int index);
288
289 static char *java_path_expr_of_child (struct varobj *child);
290
291 static struct value *java_value_of_root (struct varobj **var_handle);
292
293 static struct value *java_value_of_child (struct varobj *parent, int index);
294
295 static struct type *java_type_of_child (struct varobj *parent, int index);
296
297 static char *java_value_of_variable (struct varobj *var,
298 enum varobj_display_formats format);
299
300 /* The language specific vector */
301
302 struct language_specific
303 {
304
305 /* The language of this variable */
306 enum varobj_languages language;
307
308 /* The number of children of PARENT. */
309 int (*number_of_children) (struct varobj * parent);
310
311 /* The name (expression) of a root varobj. */
312 char *(*name_of_variable) (struct varobj * parent);
313
314 /* The name of the INDEX'th child of PARENT. */
315 char *(*name_of_child) (struct varobj * parent, int index);
316
317 /* Returns the rooted expression of CHILD, which is a variable
318 obtain that has some parent. */
319 char *(*path_expr_of_child) (struct varobj * child);
320
321 /* The ``struct value *'' of the root variable ROOT. */
322 struct value *(*value_of_root) (struct varobj ** root_handle);
323
324 /* The ``struct value *'' of the INDEX'th child of PARENT. */
325 struct value *(*value_of_child) (struct varobj * parent, int index);
326
327 /* The type of the INDEX'th child of PARENT. */
328 struct type *(*type_of_child) (struct varobj * parent, int index);
329
330 /* The current value of VAR. */
331 char *(*value_of_variable) (struct varobj * var,
332 enum varobj_display_formats format);
333 };
334
335 /* Array of known source language routines. */
336 static struct language_specific languages[vlang_end] = {
337 /* Unknown (try treating as C */
338 {
339 vlang_unknown,
340 c_number_of_children,
341 c_name_of_variable,
342 c_name_of_child,
343 c_path_expr_of_child,
344 c_value_of_root,
345 c_value_of_child,
346 c_type_of_child,
347 c_value_of_variable}
348 ,
349 /* C */
350 {
351 vlang_c,
352 c_number_of_children,
353 c_name_of_variable,
354 c_name_of_child,
355 c_path_expr_of_child,
356 c_value_of_root,
357 c_value_of_child,
358 c_type_of_child,
359 c_value_of_variable}
360 ,
361 /* C++ */
362 {
363 vlang_cplus,
364 cplus_number_of_children,
365 cplus_name_of_variable,
366 cplus_name_of_child,
367 cplus_path_expr_of_child,
368 cplus_value_of_root,
369 cplus_value_of_child,
370 cplus_type_of_child,
371 cplus_value_of_variable}
372 ,
373 /* Java */
374 {
375 vlang_java,
376 java_number_of_children,
377 java_name_of_variable,
378 java_name_of_child,
379 java_path_expr_of_child,
380 java_value_of_root,
381 java_value_of_child,
382 java_type_of_child,
383 java_value_of_variable}
384 };
385
386 /* A little convenience enum for dealing with C++/Java */
387 enum vsections
388 {
389 v_public = 0, v_private, v_protected
390 };
391
392 /* Private data */
393
394 /* Mappings of varobj_display_formats enums to gdb's format codes */
395 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
396
397 /* Header of the list of root variable objects */
398 static struct varobj_root *rootlist;
399 static int rootcount = 0; /* number of root varobjs in the list */
400
401 /* Prime number indicating the number of buckets in the hash table */
402 /* A prime large enough to avoid too many colisions */
403 #define VAROBJ_TABLE_SIZE 227
404
405 /* Pointer to the varobj hash table (built at run time) */
406 static struct vlist **varobj_table;
407
408 /* Is the variable X one of our "fake" children? */
409 #define CPLUS_FAKE_CHILD(x) \
410 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
411 \f
412
413 /* API Implementation */
414 static int
415 is_root_p (struct varobj *var)
416 {
417 return (var->root->rootvar == var);
418 }
419
420 /* Creates a varobj (not its children) */
421
422 /* Return the full FRAME which corresponds to the given CORE_ADDR
423 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
424
425 static struct frame_info *
426 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
427 {
428 struct frame_info *frame = NULL;
429
430 if (frame_addr == (CORE_ADDR) 0)
431 return NULL;
432
433 while (1)
434 {
435 frame = get_prev_frame (frame);
436 if (frame == NULL)
437 return NULL;
438 if (get_frame_base_address (frame) == frame_addr)
439 return frame;
440 }
441 }
442
443 struct varobj *
444 varobj_create (char *objname,
445 char *expression, CORE_ADDR frame, enum varobj_type type)
446 {
447 struct varobj *var;
448 struct frame_info *fi;
449 struct frame_info *old_fi = NULL;
450 struct block *block;
451 struct cleanup *old_chain;
452
453 /* Fill out a varobj structure for the (root) variable being constructed. */
454 var = new_root_variable ();
455 old_chain = make_cleanup_free_variable (var);
456
457 if (expression != NULL)
458 {
459 char *p;
460 enum varobj_languages lang;
461 struct value *value = NULL;
462 int expr_len;
463
464 /* Parse and evaluate the expression, filling in as much
465 of the variable's data as possible */
466
467 /* Allow creator to specify context of variable */
468 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
469 fi = deprecated_safe_get_selected_frame ();
470 else
471 /* FIXME: cagney/2002-11-23: This code should be doing a
472 lookup using the frame ID and not just the frame's
473 ``address''. This, of course, means an interface change.
474 However, with out that interface change ISAs, such as the
475 ia64 with its two stacks, won't work. Similar goes for the
476 case where there is a frameless function. */
477 fi = find_frame_addr_in_frame_chain (frame);
478
479 /* frame = -2 means always use selected frame */
480 if (type == USE_SELECTED_FRAME)
481 var->root->floating = 1;
482
483 block = NULL;
484 if (fi != NULL)
485 block = get_frame_block (fi, 0);
486
487 p = expression;
488 innermost_block = NULL;
489 /* Wrap the call to parse expression, so we can
490 return a sensible error. */
491 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
492 {
493 return NULL;
494 }
495
496 /* Don't allow variables to be created for types. */
497 if (var->root->exp->elts[0].opcode == OP_TYPE)
498 {
499 do_cleanups (old_chain);
500 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
501 " as an expression.\n");
502 return NULL;
503 }
504
505 var->format = variable_default_display (var);
506 var->root->valid_block = innermost_block;
507 expr_len = strlen (expression);
508 var->name = savestring (expression, expr_len);
509 /* For a root var, the name and the expr are the same. */
510 var->path_expr = savestring (expression, expr_len);
511
512 /* When the frame is different from the current frame,
513 we must select the appropriate frame before parsing
514 the expression, otherwise the value will not be current.
515 Since select_frame is so benign, just call it for all cases. */
516 if (innermost_block && fi != NULL)
517 {
518 var->root->frame = get_frame_id (fi);
519 var->root->thread_id = pid_to_thread_id (inferior_ptid);
520 old_fi = get_selected_frame (NULL);
521 select_frame (fi);
522 }
523
524 /* We definitely need to catch errors here.
525 If evaluate_expression succeeds we got the value we wanted.
526 But if it fails, we still go on with a call to evaluate_type() */
527 if (!gdb_evaluate_expression (var->root->exp, &value))
528 {
529 /* Error getting the value. Try to at least get the
530 right type. */
531 struct value *type_only_value = evaluate_type (var->root->exp);
532 var->type = value_type (type_only_value);
533 }
534 else
535 var->type = value_type (value);
536
537 install_new_value (var, value, 1 /* Initial assignment */);
538
539 /* Set language info */
540 lang = variable_language (var);
541 var->root->lang = &languages[lang];
542
543 /* Set ourselves as our root */
544 var->root->rootvar = var;
545
546 /* Reset the selected frame */
547 if (fi != NULL)
548 select_frame (old_fi);
549 }
550
551 /* If the variable object name is null, that means this
552 is a temporary variable, so don't install it. */
553
554 if ((var != NULL) && (objname != NULL))
555 {
556 var->obj_name = savestring (objname, strlen (objname));
557
558 /* If a varobj name is duplicated, the install will fail so
559 we must clenup */
560 if (!install_variable (var))
561 {
562 do_cleanups (old_chain);
563 return NULL;
564 }
565 }
566
567 discard_cleanups (old_chain);
568 return var;
569 }
570
571 /* Generates an unique name that can be used for a varobj */
572
573 char *
574 varobj_gen_name (void)
575 {
576 static int id = 0;
577 char *obj_name;
578
579 /* generate a name for this object */
580 id++;
581 obj_name = xstrprintf ("var%d", id);
582
583 return obj_name;
584 }
585
586 /* Given an "objname", returns the pointer to the corresponding varobj
587 or NULL if not found */
588
589 struct varobj *
590 varobj_get_handle (char *objname)
591 {
592 struct vlist *cv;
593 const char *chp;
594 unsigned int index = 0;
595 unsigned int i = 1;
596
597 for (chp = objname; *chp; chp++)
598 {
599 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
600 }
601
602 cv = *(varobj_table + index);
603 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
604 cv = cv->next;
605
606 if (cv == NULL)
607 error (_("Variable object not found"));
608
609 return cv->var;
610 }
611
612 /* Given the handle, return the name of the object */
613
614 char *
615 varobj_get_objname (struct varobj *var)
616 {
617 return var->obj_name;
618 }
619
620 /* Given the handle, return the expression represented by the object */
621
622 char *
623 varobj_get_expression (struct varobj *var)
624 {
625 return name_of_variable (var);
626 }
627
628 /* Deletes a varobj and all its children if only_children == 0,
629 otherwise deletes only the children; returns a malloc'ed list of all the
630 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
631
632 int
633 varobj_delete (struct varobj *var, char ***dellist, int only_children)
634 {
635 int delcount;
636 int mycount;
637 struct cpstack *result = NULL;
638 char **cp;
639
640 /* Initialize a stack for temporary results */
641 cppush (&result, NULL);
642
643 if (only_children)
644 /* Delete only the variable children */
645 delcount = delete_variable (&result, var, 1 /* only the children */ );
646 else
647 /* Delete the variable and all its children */
648 delcount = delete_variable (&result, var, 0 /* parent+children */ );
649
650 /* We may have been asked to return a list of what has been deleted */
651 if (dellist != NULL)
652 {
653 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
654
655 cp = *dellist;
656 mycount = delcount;
657 *cp = cppop (&result);
658 while ((*cp != NULL) && (mycount > 0))
659 {
660 mycount--;
661 cp++;
662 *cp = cppop (&result);
663 }
664
665 if (mycount || (*cp != NULL))
666 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
667 mycount);
668 }
669
670 return delcount;
671 }
672
673 /* Set/Get variable object display format */
674
675 enum varobj_display_formats
676 varobj_set_display_format (struct varobj *var,
677 enum varobj_display_formats format)
678 {
679 switch (format)
680 {
681 case FORMAT_NATURAL:
682 case FORMAT_BINARY:
683 case FORMAT_DECIMAL:
684 case FORMAT_HEXADECIMAL:
685 case FORMAT_OCTAL:
686 var->format = format;
687 break;
688
689 default:
690 var->format = variable_default_display (var);
691 }
692
693 if (varobj_value_is_changeable_p (var)
694 && var->value && !value_lazy (var->value))
695 {
696 free (var->print_value);
697 var->print_value = value_get_print_value (var->value, var->format);
698 }
699
700 return var->format;
701 }
702
703 enum varobj_display_formats
704 varobj_get_display_format (struct varobj *var)
705 {
706 return var->format;
707 }
708
709 /* If the variable object is bound to a specific thread, that
710 is its evaluation can always be done in context of a frame
711 inside that thread, returns GDB id of the thread -- which
712 is always positive. Otherwise, returns -1. */
713 int
714 varobj_get_thread_id (struct varobj *var)
715 {
716 if (var->root->valid_block && var->root->thread_id > 0)
717 return var->root->thread_id;
718 else
719 return -1;
720 }
721
722 void
723 varobj_set_frozen (struct varobj *var, int frozen)
724 {
725 /* When a variable is unfrozen, we don't fetch its value.
726 The 'not_fetched' flag remains set, so next -var-update
727 won't complain.
728
729 We don't fetch the value, because for structures the client
730 should do -var-update anyway. It would be bad to have different
731 client-size logic for structure and other types. */
732 var->frozen = frozen;
733 }
734
735 int
736 varobj_get_frozen (struct varobj *var)
737 {
738 return var->frozen;
739 }
740
741
742 int
743 varobj_get_num_children (struct varobj *var)
744 {
745 if (var->num_children == -1)
746 var->num_children = number_of_children (var);
747
748 return var->num_children;
749 }
750
751 /* Creates a list of the immediate children of a variable object;
752 the return code is the number of such children or -1 on error */
753
754 VEC (varobj_p)*
755 varobj_list_children (struct varobj *var)
756 {
757 struct varobj *child;
758 char *name;
759 int i;
760
761 if (var->num_children == -1)
762 var->num_children = number_of_children (var);
763
764 /* If that failed, give up. */
765 if (var->num_children == -1)
766 return var->children;
767
768 /* If we're called when the list of children is not yet initialized,
769 allocate enough elements in it. */
770 while (VEC_length (varobj_p, var->children) < var->num_children)
771 VEC_safe_push (varobj_p, var->children, NULL);
772
773 for (i = 0; i < var->num_children; i++)
774 {
775 varobj_p existing = VEC_index (varobj_p, var->children, i);
776
777 if (existing == NULL)
778 {
779 /* Either it's the first call to varobj_list_children for
780 this variable object, and the child was never created,
781 or it was explicitly deleted by the client. */
782 name = name_of_child (var, i);
783 existing = create_child (var, i, name);
784 VEC_replace (varobj_p, var->children, i, existing);
785 }
786 }
787
788 return var->children;
789 }
790
791 /* Obtain the type of an object Variable as a string similar to the one gdb
792 prints on the console */
793
794 char *
795 varobj_get_type (struct varobj *var)
796 {
797 struct value *val;
798 struct cleanup *old_chain;
799 struct ui_file *stb;
800 char *thetype;
801 long length;
802
803 /* For the "fake" variables, do not return a type. (It's type is
804 NULL, too.)
805 Do not return a type for invalid variables as well. */
806 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
807 return NULL;
808
809 stb = mem_fileopen ();
810 old_chain = make_cleanup_ui_file_delete (stb);
811
812 /* To print the type, we simply create a zero ``struct value *'' and
813 cast it to our type. We then typeprint this variable. */
814 val = value_zero (var->type, not_lval);
815 type_print (value_type (val), "", stb, -1);
816
817 thetype = ui_file_xstrdup (stb, &length);
818 do_cleanups (old_chain);
819 return thetype;
820 }
821
822 /* Obtain the type of an object variable. */
823
824 struct type *
825 varobj_get_gdb_type (struct varobj *var)
826 {
827 return var->type;
828 }
829
830 /* Return a pointer to the full rooted expression of varobj VAR.
831 If it has not been computed yet, compute it. */
832 char *
833 varobj_get_path_expr (struct varobj *var)
834 {
835 if (var->path_expr != NULL)
836 return var->path_expr;
837 else
838 {
839 /* For root varobjs, we initialize path_expr
840 when creating varobj, so here it should be
841 child varobj. */
842 gdb_assert (!is_root_p (var));
843 return (*var->root->lang->path_expr_of_child) (var);
844 }
845 }
846
847 enum varobj_languages
848 varobj_get_language (struct varobj *var)
849 {
850 return variable_language (var);
851 }
852
853 int
854 varobj_get_attributes (struct varobj *var)
855 {
856 int attributes = 0;
857
858 if (varobj_editable_p (var))
859 /* FIXME: define masks for attributes */
860 attributes |= 0x00000001; /* Editable */
861
862 return attributes;
863 }
864
865 char *
866 varobj_get_formatted_value (struct varobj *var,
867 enum varobj_display_formats format)
868 {
869 return my_value_of_variable (var, format);
870 }
871
872 char *
873 varobj_get_value (struct varobj *var)
874 {
875 return my_value_of_variable (var, var->format);
876 }
877
878 /* Set the value of an object variable (if it is editable) to the
879 value of the given expression */
880 /* Note: Invokes functions that can call error() */
881
882 int
883 varobj_set_value (struct varobj *var, char *expression)
884 {
885 struct value *val;
886 int offset = 0;
887 int error = 0;
888
889 /* The argument "expression" contains the variable's new value.
890 We need to first construct a legal expression for this -- ugh! */
891 /* Does this cover all the bases? */
892 struct expression *exp;
893 struct value *value;
894 int saved_input_radix = input_radix;
895 char *s = expression;
896 int i;
897
898 gdb_assert (varobj_editable_p (var));
899
900 input_radix = 10; /* ALWAYS reset to decimal temporarily */
901 exp = parse_exp_1 (&s, 0, 0);
902 if (!gdb_evaluate_expression (exp, &value))
903 {
904 /* We cannot proceed without a valid expression. */
905 xfree (exp);
906 return 0;
907 }
908
909 /* All types that are editable must also be changeable. */
910 gdb_assert (varobj_value_is_changeable_p (var));
911
912 /* The value of a changeable variable object must not be lazy. */
913 gdb_assert (!value_lazy (var->value));
914
915 /* Need to coerce the input. We want to check if the
916 value of the variable object will be different
917 after assignment, and the first thing value_assign
918 does is coerce the input.
919 For example, if we are assigning an array to a pointer variable we
920 should compare the pointer with the the array's address, not with the
921 array's content. */
922 value = coerce_array (value);
923
924 /* The new value may be lazy. gdb_value_assign, or
925 rather value_contents, will take care of this.
926 If fetching of the new value will fail, gdb_value_assign
927 with catch the exception. */
928 if (!gdb_value_assign (var->value, value, &val))
929 return 0;
930
931 /* If the value has changed, record it, so that next -var-update can
932 report this change. If a variable had a value of '1', we've set it
933 to '333' and then set again to '1', when -var-update will report this
934 variable as changed -- because the first assignment has set the
935 'updated' flag. There's no need to optimize that, because return value
936 of -var-update should be considered an approximation. */
937 var->updated = install_new_value (var, val, 0 /* Compare values. */);
938 input_radix = saved_input_radix;
939 return 1;
940 }
941
942 /* Returns a malloc'ed list with all root variable objects */
943 int
944 varobj_list (struct varobj ***varlist)
945 {
946 struct varobj **cv;
947 struct varobj_root *croot;
948 int mycount = rootcount;
949
950 /* Alloc (rootcount + 1) entries for the result */
951 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
952
953 cv = *varlist;
954 croot = rootlist;
955 while ((croot != NULL) && (mycount > 0))
956 {
957 *cv = croot->rootvar;
958 mycount--;
959 cv++;
960 croot = croot->next;
961 }
962 /* Mark the end of the list */
963 *cv = NULL;
964
965 if (mycount || (croot != NULL))
966 warning
967 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
968 rootcount, mycount);
969
970 return rootcount;
971 }
972
973 /* Assign a new value to a variable object. If INITIAL is non-zero,
974 this is the first assignement after the variable object was just
975 created, or changed type. In that case, just assign the value
976 and return 0.
977 Otherwise, assign the value and if type_changeable returns non-zero,
978 find if the new value is different from the current value.
979 Return 1 if so, and 0 if the values are equal.
980
981 The VALUE parameter should not be released -- the function will
982 take care of releasing it when needed. */
983 static int
984 install_new_value (struct varobj *var, struct value *value, int initial)
985 {
986 int changeable;
987 int need_to_fetch;
988 int changed = 0;
989 int intentionally_not_fetched = 0;
990 char *print_value = NULL;
991
992 /* We need to know the varobj's type to decide if the value should
993 be fetched or not. C++ fake children (public/protected/private) don't have
994 a type. */
995 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
996 changeable = varobj_value_is_changeable_p (var);
997 need_to_fetch = changeable;
998
999 /* We are not interested in the address of references, and given
1000 that in C++ a reference is not rebindable, it cannot
1001 meaningfully change. So, get hold of the real value. */
1002 if (value)
1003 {
1004 value = coerce_ref (value);
1005 release_value (value);
1006 }
1007
1008 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1009 /* For unions, we need to fetch the value implicitly because
1010 of implementation of union member fetch. When gdb
1011 creates a value for a field and the value of the enclosing
1012 structure is not lazy, it immediately copies the necessary
1013 bytes from the enclosing values. If the enclosing value is
1014 lazy, the call to value_fetch_lazy on the field will read
1015 the data from memory. For unions, that means we'll read the
1016 same memory more than once, which is not desirable. So
1017 fetch now. */
1018 need_to_fetch = 1;
1019
1020 /* The new value might be lazy. If the type is changeable,
1021 that is we'll be comparing values of this type, fetch the
1022 value now. Otherwise, on the next update the old value
1023 will be lazy, which means we've lost that old value. */
1024 if (need_to_fetch && value && value_lazy (value))
1025 {
1026 struct varobj *parent = var->parent;
1027 int frozen = var->frozen;
1028 for (; !frozen && parent; parent = parent->parent)
1029 frozen |= parent->frozen;
1030
1031 if (frozen && initial)
1032 {
1033 /* For variables that are frozen, or are children of frozen
1034 variables, we don't do fetch on initial assignment.
1035 For non-initial assignemnt we do the fetch, since it means we're
1036 explicitly asked to compare the new value with the old one. */
1037 intentionally_not_fetched = 1;
1038 }
1039 else if (!gdb_value_fetch_lazy (value))
1040 {
1041 /* Set the value to NULL, so that for the next -var-update,
1042 we don't try to compare the new value with this value,
1043 that we couldn't even read. */
1044 value = NULL;
1045 }
1046 }
1047
1048 /* Below, we'll be comparing string rendering of old and new
1049 values. Don't get string rendering if the value is
1050 lazy -- if it is, the code above has decided that the value
1051 should not be fetched. */
1052 if (value && !value_lazy (value))
1053 print_value = value_get_print_value (value, var->format);
1054
1055 /* If the type is changeable, compare the old and the new values.
1056 If this is the initial assignment, we don't have any old value
1057 to compare with. */
1058 if (!initial && changeable)
1059 {
1060 /* If the value of the varobj was changed by -var-set-value, then the
1061 value in the varobj and in the target is the same. However, that value
1062 is different from the value that the varobj had after the previous
1063 -var-update. So need to the varobj as changed. */
1064 if (var->updated)
1065 {
1066 changed = 1;
1067 }
1068 else
1069 {
1070 /* Try to compare the values. That requires that both
1071 values are non-lazy. */
1072 if (var->not_fetched && value_lazy (var->value))
1073 {
1074 /* This is a frozen varobj and the value was never read.
1075 Presumably, UI shows some "never read" indicator.
1076 Now that we've fetched the real value, we need to report
1077 this varobj as changed so that UI can show the real
1078 value. */
1079 changed = 1;
1080 }
1081 else if (var->value == NULL && value == NULL)
1082 /* Equal. */
1083 ;
1084 else if (var->value == NULL || value == NULL)
1085 {
1086 changed = 1;
1087 }
1088 else
1089 {
1090 gdb_assert (!value_lazy (var->value));
1091 gdb_assert (!value_lazy (value));
1092
1093 gdb_assert (var->print_value != NULL && print_value != NULL);
1094 if (strcmp (var->print_value, print_value) != 0)
1095 changed = 1;
1096 }
1097 }
1098 }
1099
1100 /* We must always keep the new value, since children depend on it. */
1101 if (var->value != NULL && var->value != value)
1102 value_free (var->value);
1103 var->value = value;
1104 if (var->print_value)
1105 xfree (var->print_value);
1106 var->print_value = print_value;
1107 if (value && value_lazy (value) && intentionally_not_fetched)
1108 var->not_fetched = 1;
1109 else
1110 var->not_fetched = 0;
1111 var->updated = 0;
1112
1113 gdb_assert (!var->value || value_type (var->value));
1114
1115 return changed;
1116 }
1117
1118 /* Update the values for a variable and its children. This is a
1119 two-pronged attack. First, re-parse the value for the root's
1120 expression to see if it's changed. Then go all the way
1121 through its children, reconstructing them and noting if they've
1122 changed.
1123
1124 The EXPLICIT parameter specifies if this call is result
1125 of MI request to update this specific variable, or
1126 result of implicit -var-update *. For implicit request, we don't
1127 update frozen variables.
1128
1129 NOTE: This function may delete the caller's varobj. If it
1130 returns TYPE_CHANGED, then it has done this and VARP will be modified
1131 to point to the new varobj. */
1132
1133 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1134 {
1135 int changed = 0;
1136 int type_changed = 0;
1137 int i;
1138 int vleft;
1139 struct varobj *v;
1140 struct varobj **cv;
1141 struct varobj **templist = NULL;
1142 struct value *new;
1143 VEC (varobj_p) *stack = NULL;
1144 VEC (varobj_update_result) *result = NULL;
1145 struct frame_info *fi;
1146
1147 /* Frozen means frozen -- we don't check for any change in
1148 this varobj, including its going out of scope, or
1149 changing type. One use case for frozen varobjs is
1150 retaining previously evaluated expressions, and we don't
1151 want them to be reevaluated at all. */
1152 if (!explicit && (*varp)->frozen)
1153 return result;
1154
1155 if (!(*varp)->root->is_valid)
1156 {
1157 varobj_update_result r = {*varp};
1158 r.status = VAROBJ_INVALID;
1159 VEC_safe_push (varobj_update_result, result, &r);
1160 return result;
1161 }
1162
1163 if ((*varp)->root->rootvar == *varp)
1164 {
1165 varobj_update_result r = {*varp};
1166 r.status = VAROBJ_IN_SCOPE;
1167
1168 /* Update the root variable. value_of_root can return NULL
1169 if the variable is no longer around, i.e. we stepped out of
1170 the frame in which a local existed. We are letting the
1171 value_of_root variable dispose of the varobj if the type
1172 has changed. */
1173 new = value_of_root (varp, &type_changed);
1174 r.varobj = *varp;
1175
1176 r.type_changed = type_changed;
1177 if (install_new_value ((*varp), new, type_changed))
1178 r.changed = 1;
1179
1180 if (new == NULL)
1181 r.status = VAROBJ_NOT_IN_SCOPE;
1182
1183 if (r.type_changed || r.changed)
1184 VEC_safe_push (varobj_update_result, result, &r);
1185
1186 if (r.status == VAROBJ_NOT_IN_SCOPE)
1187 return result;
1188 }
1189
1190 VEC_safe_push (varobj_p, stack, *varp);
1191
1192 /* Walk through the children, reconstructing them all. */
1193 while (!VEC_empty (varobj_p, stack))
1194 {
1195 v = VEC_pop (varobj_p, stack);
1196
1197 /* Push any children. Use reverse order so that the first
1198 child is popped from the work stack first, and so
1199 will be added to result first. This does not
1200 affect correctness, just "nicer". */
1201 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1202 {
1203 varobj_p c = VEC_index (varobj_p, v->children, i);
1204 /* Child may be NULL if explicitly deleted by -var-delete. */
1205 if (c != NULL && !c->frozen)
1206 VEC_safe_push (varobj_p, stack, c);
1207 }
1208
1209 /* Update this variable, unless it's a root, which is already
1210 updated. */
1211 if (v->root->rootvar != v)
1212 {
1213 new = value_of_child (v->parent, v->index);
1214 if (install_new_value (v, new, 0 /* type not changed */))
1215 {
1216 /* Note that it's changed */
1217 varobj_update_result r = {v};
1218 r.changed = 1;
1219 VEC_safe_push (varobj_update_result, result, &r);
1220 v->updated = 0;
1221 }
1222 }
1223 }
1224
1225 VEC_free (varobj_p, stack);
1226 return result;
1227 }
1228 \f
1229
1230 /* Helper functions */
1231
1232 /*
1233 * Variable object construction/destruction
1234 */
1235
1236 static int
1237 delete_variable (struct cpstack **resultp, struct varobj *var,
1238 int only_children_p)
1239 {
1240 int delcount = 0;
1241
1242 delete_variable_1 (resultp, &delcount, var,
1243 only_children_p, 1 /* remove_from_parent_p */ );
1244
1245 return delcount;
1246 }
1247
1248 /* Delete the variable object VAR and its children */
1249 /* IMPORTANT NOTE: If we delete a variable which is a child
1250 and the parent is not removed we dump core. It must be always
1251 initially called with remove_from_parent_p set */
1252 static void
1253 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1254 struct varobj *var, int only_children_p,
1255 int remove_from_parent_p)
1256 {
1257 int i;
1258
1259 /* Delete any children of this variable, too. */
1260 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1261 {
1262 varobj_p child = VEC_index (varobj_p, var->children, i);
1263 if (!child)
1264 continue;
1265 if (!remove_from_parent_p)
1266 child->parent = NULL;
1267 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1268 }
1269 VEC_free (varobj_p, var->children);
1270
1271 /* if we were called to delete only the children we are done here */
1272 if (only_children_p)
1273 return;
1274
1275 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1276 /* If the name is null, this is a temporary variable, that has not
1277 yet been installed, don't report it, it belongs to the caller... */
1278 if (var->obj_name != NULL)
1279 {
1280 cppush (resultp, xstrdup (var->obj_name));
1281 *delcountp = *delcountp + 1;
1282 }
1283
1284 /* If this variable has a parent, remove it from its parent's list */
1285 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1286 (as indicated by remove_from_parent_p) we don't bother doing an
1287 expensive list search to find the element to remove when we are
1288 discarding the list afterwards */
1289 if ((remove_from_parent_p) && (var->parent != NULL))
1290 {
1291 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1292 }
1293
1294 if (var->obj_name != NULL)
1295 uninstall_variable (var);
1296
1297 /* Free memory associated with this variable */
1298 free_variable (var);
1299 }
1300
1301 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1302 static int
1303 install_variable (struct varobj *var)
1304 {
1305 struct vlist *cv;
1306 struct vlist *newvl;
1307 const char *chp;
1308 unsigned int index = 0;
1309 unsigned int i = 1;
1310
1311 for (chp = var->obj_name; *chp; chp++)
1312 {
1313 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1314 }
1315
1316 cv = *(varobj_table + index);
1317 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1318 cv = cv->next;
1319
1320 if (cv != NULL)
1321 error (_("Duplicate variable object name"));
1322
1323 /* Add varobj to hash table */
1324 newvl = xmalloc (sizeof (struct vlist));
1325 newvl->next = *(varobj_table + index);
1326 newvl->var = var;
1327 *(varobj_table + index) = newvl;
1328
1329 /* If root, add varobj to root list */
1330 if (is_root_p (var))
1331 {
1332 /* Add to list of root variables */
1333 if (rootlist == NULL)
1334 var->root->next = NULL;
1335 else
1336 var->root->next = rootlist;
1337 rootlist = var->root;
1338 rootcount++;
1339 }
1340
1341 return 1; /* OK */
1342 }
1343
1344 /* Unistall the object VAR. */
1345 static void
1346 uninstall_variable (struct varobj *var)
1347 {
1348 struct vlist *cv;
1349 struct vlist *prev;
1350 struct varobj_root *cr;
1351 struct varobj_root *prer;
1352 const char *chp;
1353 unsigned int index = 0;
1354 unsigned int i = 1;
1355
1356 /* Remove varobj from hash table */
1357 for (chp = var->obj_name; *chp; chp++)
1358 {
1359 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1360 }
1361
1362 cv = *(varobj_table + index);
1363 prev = NULL;
1364 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1365 {
1366 prev = cv;
1367 cv = cv->next;
1368 }
1369
1370 if (varobjdebug)
1371 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1372
1373 if (cv == NULL)
1374 {
1375 warning
1376 ("Assertion failed: Could not find variable object \"%s\" to delete",
1377 var->obj_name);
1378 return;
1379 }
1380
1381 if (prev == NULL)
1382 *(varobj_table + index) = cv->next;
1383 else
1384 prev->next = cv->next;
1385
1386 xfree (cv);
1387
1388 /* If root, remove varobj from root list */
1389 if (is_root_p (var))
1390 {
1391 /* Remove from list of root variables */
1392 if (rootlist == var->root)
1393 rootlist = var->root->next;
1394 else
1395 {
1396 prer = NULL;
1397 cr = rootlist;
1398 while ((cr != NULL) && (cr->rootvar != var))
1399 {
1400 prer = cr;
1401 cr = cr->next;
1402 }
1403 if (cr == NULL)
1404 {
1405 warning
1406 ("Assertion failed: Could not find varobj \"%s\" in root list",
1407 var->obj_name);
1408 return;
1409 }
1410 if (prer == NULL)
1411 rootlist = NULL;
1412 else
1413 prer->next = cr->next;
1414 }
1415 rootcount--;
1416 }
1417
1418 }
1419
1420 /* Create and install a child of the parent of the given name */
1421 static struct varobj *
1422 create_child (struct varobj *parent, int index, char *name)
1423 {
1424 struct varobj *child;
1425 char *childs_name;
1426 struct value *value;
1427
1428 child = new_variable ();
1429
1430 /* name is allocated by name_of_child */
1431 child->name = name;
1432 child->index = index;
1433 value = value_of_child (parent, index);
1434 child->parent = parent;
1435 child->root = parent->root;
1436 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1437 child->obj_name = childs_name;
1438 install_variable (child);
1439
1440 /* Compute the type of the child. Must do this before
1441 calling install_new_value. */
1442 if (value != NULL)
1443 /* If the child had no evaluation errors, var->value
1444 will be non-NULL and contain a valid type. */
1445 child->type = value_type (value);
1446 else
1447 /* Otherwise, we must compute the type. */
1448 child->type = (*child->root->lang->type_of_child) (child->parent,
1449 child->index);
1450 install_new_value (child, value, 1);
1451
1452 return child;
1453 }
1454 \f
1455
1456 /*
1457 * Miscellaneous utility functions.
1458 */
1459
1460 /* Allocate memory and initialize a new variable */
1461 static struct varobj *
1462 new_variable (void)
1463 {
1464 struct varobj *var;
1465
1466 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1467 var->name = NULL;
1468 var->path_expr = NULL;
1469 var->obj_name = NULL;
1470 var->index = -1;
1471 var->type = NULL;
1472 var->value = NULL;
1473 var->num_children = -1;
1474 var->parent = NULL;
1475 var->children = NULL;
1476 var->format = 0;
1477 var->root = NULL;
1478 var->updated = 0;
1479 var->print_value = NULL;
1480 var->frozen = 0;
1481 var->not_fetched = 0;
1482
1483 return var;
1484 }
1485
1486 /* Allocate memory and initialize a new root variable */
1487 static struct varobj *
1488 new_root_variable (void)
1489 {
1490 struct varobj *var = new_variable ();
1491 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1492 var->root->lang = NULL;
1493 var->root->exp = NULL;
1494 var->root->valid_block = NULL;
1495 var->root->frame = null_frame_id;
1496 var->root->floating = 0;
1497 var->root->rootvar = NULL;
1498 var->root->is_valid = 1;
1499
1500 return var;
1501 }
1502
1503 /* Free any allocated memory associated with VAR. */
1504 static void
1505 free_variable (struct varobj *var)
1506 {
1507 /* Free the expression if this is a root variable. */
1508 if (is_root_p (var))
1509 {
1510 free_current_contents (&var->root->exp);
1511 xfree (var->root);
1512 }
1513
1514 xfree (var->name);
1515 xfree (var->obj_name);
1516 xfree (var->print_value);
1517 xfree (var->path_expr);
1518 xfree (var);
1519 }
1520
1521 static void
1522 do_free_variable_cleanup (void *var)
1523 {
1524 free_variable (var);
1525 }
1526
1527 static struct cleanup *
1528 make_cleanup_free_variable (struct varobj *var)
1529 {
1530 return make_cleanup (do_free_variable_cleanup, var);
1531 }
1532
1533 /* This returns the type of the variable. It also skips past typedefs
1534 to return the real type of the variable.
1535
1536 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1537 except within get_target_type and get_type. */
1538 static struct type *
1539 get_type (struct varobj *var)
1540 {
1541 struct type *type;
1542 type = var->type;
1543
1544 if (type != NULL)
1545 type = check_typedef (type);
1546
1547 return type;
1548 }
1549
1550 /* Return the type of the value that's stored in VAR,
1551 or that would have being stored there if the
1552 value were accessible.
1553
1554 This differs from VAR->type in that VAR->type is always
1555 the true type of the expession in the source language.
1556 The return value of this function is the type we're
1557 actually storing in varobj, and using for displaying
1558 the values and for comparing previous and new values.
1559
1560 For example, top-level references are always stripped. */
1561 static struct type *
1562 get_value_type (struct varobj *var)
1563 {
1564 struct type *type;
1565
1566 if (var->value)
1567 type = value_type (var->value);
1568 else
1569 type = var->type;
1570
1571 type = check_typedef (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_REF)
1574 type = get_target_type (type);
1575
1576 type = check_typedef (type);
1577
1578 return type;
1579 }
1580
1581 /* This returns the target type (or NULL) of TYPE, also skipping
1582 past typedefs, just like get_type ().
1583
1584 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1585 except within get_target_type and get_type. */
1586 static struct type *
1587 get_target_type (struct type *type)
1588 {
1589 if (type != NULL)
1590 {
1591 type = TYPE_TARGET_TYPE (type);
1592 if (type != NULL)
1593 type = check_typedef (type);
1594 }
1595
1596 return type;
1597 }
1598
1599 /* What is the default display for this variable? We assume that
1600 everything is "natural". Any exceptions? */
1601 static enum varobj_display_formats
1602 variable_default_display (struct varobj *var)
1603 {
1604 return FORMAT_NATURAL;
1605 }
1606
1607 /* FIXME: The following should be generic for any pointer */
1608 static void
1609 cppush (struct cpstack **pstack, char *name)
1610 {
1611 struct cpstack *s;
1612
1613 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1614 s->name = name;
1615 s->next = *pstack;
1616 *pstack = s;
1617 }
1618
1619 /* FIXME: The following should be generic for any pointer */
1620 static char *
1621 cppop (struct cpstack **pstack)
1622 {
1623 struct cpstack *s;
1624 char *v;
1625
1626 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1627 return NULL;
1628
1629 s = *pstack;
1630 v = s->name;
1631 *pstack = (*pstack)->next;
1632 xfree (s);
1633
1634 return v;
1635 }
1636 \f
1637 /*
1638 * Language-dependencies
1639 */
1640
1641 /* Common entry points */
1642
1643 /* Get the language of variable VAR. */
1644 static enum varobj_languages
1645 variable_language (struct varobj *var)
1646 {
1647 enum varobj_languages lang;
1648
1649 switch (var->root->exp->language_defn->la_language)
1650 {
1651 default:
1652 case language_c:
1653 lang = vlang_c;
1654 break;
1655 case language_cplus:
1656 lang = vlang_cplus;
1657 break;
1658 case language_java:
1659 lang = vlang_java;
1660 break;
1661 }
1662
1663 return lang;
1664 }
1665
1666 /* Return the number of children for a given variable.
1667 The result of this function is defined by the language
1668 implementation. The number of children returned by this function
1669 is the number of children that the user will see in the variable
1670 display. */
1671 static int
1672 number_of_children (struct varobj *var)
1673 {
1674 return (*var->root->lang->number_of_children) (var);;
1675 }
1676
1677 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1678 static char *
1679 name_of_variable (struct varobj *var)
1680 {
1681 return (*var->root->lang->name_of_variable) (var);
1682 }
1683
1684 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1685 static char *
1686 name_of_child (struct varobj *var, int index)
1687 {
1688 return (*var->root->lang->name_of_child) (var, index);
1689 }
1690
1691 /* What is the ``struct value *'' of the root variable VAR?
1692 For floating variable object, evaluation can get us a value
1693 of different type from what is stored in varobj already. In
1694 that case:
1695 - *type_changed will be set to 1
1696 - old varobj will be freed, and new one will be
1697 created, with the same name.
1698 - *var_handle will be set to the new varobj
1699 Otherwise, *type_changed will be set to 0. */
1700 static struct value *
1701 value_of_root (struct varobj **var_handle, int *type_changed)
1702 {
1703 struct varobj *var;
1704
1705 if (var_handle == NULL)
1706 return NULL;
1707
1708 var = *var_handle;
1709
1710 /* This should really be an exception, since this should
1711 only get called with a root variable. */
1712
1713 if (!is_root_p (var))
1714 return NULL;
1715
1716 if (var->root->floating)
1717 {
1718 struct varobj *tmp_var;
1719 char *old_type, *new_type;
1720
1721 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1722 USE_SELECTED_FRAME);
1723 if (tmp_var == NULL)
1724 {
1725 return NULL;
1726 }
1727 old_type = varobj_get_type (var);
1728 new_type = varobj_get_type (tmp_var);
1729 if (strcmp (old_type, new_type) == 0)
1730 {
1731 /* The expression presently stored inside var->root->exp
1732 remembers the locations of local variables relatively to
1733 the frame where the expression was created (in DWARF location
1734 button, for example). Naturally, those locations are not
1735 correct in other frames, so update the expression. */
1736
1737 struct expression *tmp_exp = var->root->exp;
1738 var->root->exp = tmp_var->root->exp;
1739 tmp_var->root->exp = tmp_exp;
1740
1741 varobj_delete (tmp_var, NULL, 0);
1742 *type_changed = 0;
1743 }
1744 else
1745 {
1746 tmp_var->obj_name =
1747 savestring (var->obj_name, strlen (var->obj_name));
1748 varobj_delete (var, NULL, 0);
1749
1750 install_variable (tmp_var);
1751 *var_handle = tmp_var;
1752 var = *var_handle;
1753 *type_changed = 1;
1754 }
1755 xfree (old_type);
1756 xfree (new_type);
1757 }
1758 else
1759 {
1760 *type_changed = 0;
1761 }
1762
1763 return (*var->root->lang->value_of_root) (var_handle);
1764 }
1765
1766 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1767 static struct value *
1768 value_of_child (struct varobj *parent, int index)
1769 {
1770 struct value *value;
1771
1772 value = (*parent->root->lang->value_of_child) (parent, index);
1773
1774 return value;
1775 }
1776
1777 /* GDB already has a command called "value_of_variable". Sigh. */
1778 static char *
1779 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
1780 {
1781 if (var->root->is_valid)
1782 return (*var->root->lang->value_of_variable) (var, format);
1783 else
1784 return NULL;
1785 }
1786
1787 static char *
1788 value_get_print_value (struct value *value, enum varobj_display_formats format)
1789 {
1790 long dummy;
1791 struct ui_file *stb;
1792 struct cleanup *old_chain;
1793 char *thevalue;
1794
1795 if (value == NULL)
1796 return NULL;
1797
1798 stb = mem_fileopen ();
1799 old_chain = make_cleanup_ui_file_delete (stb);
1800
1801 common_val_print (value, stb, format_code[(int) format], 1, 0, 0,
1802 current_language);
1803 thevalue = ui_file_xstrdup (stb, &dummy);
1804
1805 do_cleanups (old_chain);
1806 return thevalue;
1807 }
1808
1809 int
1810 varobj_editable_p (struct varobj *var)
1811 {
1812 struct type *type;
1813 struct value *value;
1814
1815 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
1816 return 0;
1817
1818 type = get_value_type (var);
1819
1820 switch (TYPE_CODE (type))
1821 {
1822 case TYPE_CODE_STRUCT:
1823 case TYPE_CODE_UNION:
1824 case TYPE_CODE_ARRAY:
1825 case TYPE_CODE_FUNC:
1826 case TYPE_CODE_METHOD:
1827 return 0;
1828 break;
1829
1830 default:
1831 return 1;
1832 break;
1833 }
1834 }
1835
1836 /* Return non-zero if changes in value of VAR
1837 must be detected and reported by -var-update.
1838 Return zero is -var-update should never report
1839 changes of such values. This makes sense for structures
1840 (since the changes in children values will be reported separately),
1841 or for artifical objects (like 'public' pseudo-field in C++).
1842
1843 Return value of 0 means that gdb need not call value_fetch_lazy
1844 for the value of this variable object. */
1845 static int
1846 varobj_value_is_changeable_p (struct varobj *var)
1847 {
1848 int r;
1849 struct type *type;
1850
1851 if (CPLUS_FAKE_CHILD (var))
1852 return 0;
1853
1854 type = get_value_type (var);
1855
1856 switch (TYPE_CODE (type))
1857 {
1858 case TYPE_CODE_STRUCT:
1859 case TYPE_CODE_UNION:
1860 case TYPE_CODE_ARRAY:
1861 r = 0;
1862 break;
1863
1864 default:
1865 r = 1;
1866 }
1867
1868 return r;
1869 }
1870
1871 /* Return 1 if that varobj is floating, that is is always evaluated in the
1872 selected frame, and not bound to thread/frame. Such variable objects
1873 are created using '@' as frame specifier to -var-create. */
1874 int
1875 varobj_floating_p (struct varobj *var)
1876 {
1877 return var->root->floating;
1878 }
1879
1880 /* Given the value and the type of a variable object,
1881 adjust the value and type to those necessary
1882 for getting children of the variable object.
1883 This includes dereferencing top-level references
1884 to all types and dereferencing pointers to
1885 structures.
1886
1887 Both TYPE and *TYPE should be non-null. VALUE
1888 can be null if we want to only translate type.
1889 *VALUE can be null as well -- if the parent
1890 value is not known.
1891
1892 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
1893 depending on whether pointer was deferenced
1894 in this function. */
1895 static void
1896 adjust_value_for_child_access (struct value **value,
1897 struct type **type,
1898 int *was_ptr)
1899 {
1900 gdb_assert (type && *type);
1901
1902 if (was_ptr)
1903 *was_ptr = 0;
1904
1905 *type = check_typedef (*type);
1906
1907 /* The type of value stored in varobj, that is passed
1908 to us, is already supposed to be
1909 reference-stripped. */
1910
1911 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
1912
1913 /* Pointers to structures are treated just like
1914 structures when accessing children. Don't
1915 dererences pointers to other types. */
1916 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
1917 {
1918 struct type *target_type = get_target_type (*type);
1919 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
1920 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
1921 {
1922 if (value && *value)
1923 {
1924 int success = gdb_value_ind (*value, value);
1925 if (!success)
1926 *value = NULL;
1927 }
1928 *type = target_type;
1929 if (was_ptr)
1930 *was_ptr = 1;
1931 }
1932 }
1933
1934 /* The 'get_target_type' function calls check_typedef on
1935 result, so we can immediately check type code. No
1936 need to call check_typedef here. */
1937 }
1938
1939 /* C */
1940 static int
1941 c_number_of_children (struct varobj *var)
1942 {
1943 struct type *type = get_value_type (var);
1944 int children = 0;
1945 struct type *target;
1946
1947 adjust_value_for_child_access (NULL, &type, NULL);
1948 target = get_target_type (type);
1949
1950 switch (TYPE_CODE (type))
1951 {
1952 case TYPE_CODE_ARRAY:
1953 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1954 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1955 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1956 else
1957 /* If we don't know how many elements there are, don't display
1958 any. */
1959 children = 0;
1960 break;
1961
1962 case TYPE_CODE_STRUCT:
1963 case TYPE_CODE_UNION:
1964 children = TYPE_NFIELDS (type);
1965 break;
1966
1967 case TYPE_CODE_PTR:
1968 /* The type here is a pointer to non-struct. Typically, pointers
1969 have one child, except for function ptrs, which have no children,
1970 and except for void*, as we don't know what to show.
1971
1972 We can show char* so we allow it to be dereferenced. If you decide
1973 to test for it, please mind that a little magic is necessary to
1974 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1975 TYPE_NAME == "char" */
1976 if (TYPE_CODE (target) == TYPE_CODE_FUNC
1977 || TYPE_CODE (target) == TYPE_CODE_VOID)
1978 children = 0;
1979 else
1980 children = 1;
1981 break;
1982
1983 default:
1984 /* Other types have no children */
1985 break;
1986 }
1987
1988 return children;
1989 }
1990
1991 static char *
1992 c_name_of_variable (struct varobj *parent)
1993 {
1994 return savestring (parent->name, strlen (parent->name));
1995 }
1996
1997 /* Return the value of element TYPE_INDEX of a structure
1998 value VALUE. VALUE's type should be a structure,
1999 or union, or a typedef to struct/union.
2000
2001 Returns NULL if getting the value fails. Never throws. */
2002 static struct value *
2003 value_struct_element_index (struct value *value, int type_index)
2004 {
2005 struct value *result = NULL;
2006 volatile struct gdb_exception e;
2007
2008 struct type *type = value_type (value);
2009 type = check_typedef (type);
2010
2011 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2012 || TYPE_CODE (type) == TYPE_CODE_UNION);
2013
2014 TRY_CATCH (e, RETURN_MASK_ERROR)
2015 {
2016 if (TYPE_FIELD_STATIC (type, type_index))
2017 result = value_static_field (type, type_index);
2018 else
2019 result = value_primitive_field (value, 0, type_index, type);
2020 }
2021 if (e.reason < 0)
2022 {
2023 return NULL;
2024 }
2025 else
2026 {
2027 return result;
2028 }
2029 }
2030
2031 /* Obtain the information about child INDEX of the variable
2032 object PARENT.
2033 If CNAME is not null, sets *CNAME to the name of the child relative
2034 to the parent.
2035 If CVALUE is not null, sets *CVALUE to the value of the child.
2036 If CTYPE is not null, sets *CTYPE to the type of the child.
2037
2038 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2039 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2040 to NULL. */
2041 static void
2042 c_describe_child (struct varobj *parent, int index,
2043 char **cname, struct value **cvalue, struct type **ctype,
2044 char **cfull_expression)
2045 {
2046 struct value *value = parent->value;
2047 struct type *type = get_value_type (parent);
2048 char *parent_expression = NULL;
2049 int was_ptr;
2050
2051 if (cname)
2052 *cname = NULL;
2053 if (cvalue)
2054 *cvalue = NULL;
2055 if (ctype)
2056 *ctype = NULL;
2057 if (cfull_expression)
2058 {
2059 *cfull_expression = NULL;
2060 parent_expression = varobj_get_path_expr (parent);
2061 }
2062 adjust_value_for_child_access (&value, &type, &was_ptr);
2063
2064 switch (TYPE_CODE (type))
2065 {
2066 case TYPE_CODE_ARRAY:
2067 if (cname)
2068 *cname = xstrprintf ("%d", index
2069 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2070
2071 if (cvalue && value)
2072 {
2073 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2074 struct value *indval =
2075 value_from_longest (builtin_type_int, (LONGEST) real_index);
2076 gdb_value_subscript (value, indval, cvalue);
2077 }
2078
2079 if (ctype)
2080 *ctype = get_target_type (type);
2081
2082 if (cfull_expression)
2083 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2084 index
2085 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2086
2087
2088 break;
2089
2090 case TYPE_CODE_STRUCT:
2091 case TYPE_CODE_UNION:
2092 if (cname)
2093 {
2094 char *string = TYPE_FIELD_NAME (type, index);
2095 *cname = savestring (string, strlen (string));
2096 }
2097
2098 if (cvalue && value)
2099 {
2100 /* For C, varobj index is the same as type index. */
2101 *cvalue = value_struct_element_index (value, index);
2102 }
2103
2104 if (ctype)
2105 *ctype = TYPE_FIELD_TYPE (type, index);
2106
2107 if (cfull_expression)
2108 {
2109 char *join = was_ptr ? "->" : ".";
2110 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2111 TYPE_FIELD_NAME (type, index));
2112 }
2113
2114 break;
2115
2116 case TYPE_CODE_PTR:
2117 if (cname)
2118 *cname = xstrprintf ("*%s", parent->name);
2119
2120 if (cvalue && value)
2121 {
2122 int success = gdb_value_ind (value, cvalue);
2123 if (!success)
2124 *cvalue = NULL;
2125 }
2126
2127 /* Don't use get_target_type because it calls
2128 check_typedef and here, we want to show the true
2129 declared type of the variable. */
2130 if (ctype)
2131 *ctype = TYPE_TARGET_TYPE (type);
2132
2133 if (cfull_expression)
2134 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2135
2136 break;
2137
2138 default:
2139 /* This should not happen */
2140 if (cname)
2141 *cname = xstrdup ("???");
2142 if (cfull_expression)
2143 *cfull_expression = xstrdup ("???");
2144 /* Don't set value and type, we don't know then. */
2145 }
2146 }
2147
2148 static char *
2149 c_name_of_child (struct varobj *parent, int index)
2150 {
2151 char *name;
2152 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2153 return name;
2154 }
2155
2156 static char *
2157 c_path_expr_of_child (struct varobj *child)
2158 {
2159 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2160 &child->path_expr);
2161 return child->path_expr;
2162 }
2163
2164 /* If frame associated with VAR can be found, switch
2165 to it and return 1. Otherwise, return 0. */
2166 static int
2167 check_scope (struct varobj *var)
2168 {
2169 struct frame_info *fi;
2170 int scope;
2171
2172 fi = frame_find_by_id (var->root->frame);
2173 scope = fi != NULL;
2174
2175 if (fi)
2176 {
2177 CORE_ADDR pc = get_frame_pc (fi);
2178 if (pc < BLOCK_START (var->root->valid_block) ||
2179 pc >= BLOCK_END (var->root->valid_block))
2180 scope = 0;
2181 else
2182 select_frame (fi);
2183 }
2184 return scope;
2185 }
2186
2187 static struct value *
2188 c_value_of_root (struct varobj **var_handle)
2189 {
2190 struct value *new_val = NULL;
2191 struct varobj *var = *var_handle;
2192 struct frame_info *fi;
2193 int within_scope = 0;
2194 struct cleanup *back_to;
2195
2196 /* Only root variables can be updated... */
2197 if (!is_root_p (var))
2198 /* Not a root var */
2199 return NULL;
2200
2201 back_to = make_cleanup_restore_current_thread (
2202 inferior_ptid, get_frame_id (deprecated_safe_get_selected_frame ()));
2203
2204 /* Determine whether the variable is still around. */
2205 if (var->root->valid_block == NULL || var->root->floating)
2206 within_scope = 1;
2207 else if (var->root->thread_id == 0)
2208 {
2209 /* The program was single-threaded when the variable object was
2210 created. Technically, it's possible that the program became
2211 multi-threaded since then, but we don't support such
2212 scenario yet. */
2213 within_scope = check_scope (var);
2214 }
2215 else
2216 {
2217 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2218 if (in_thread_list (ptid))
2219 {
2220 switch_to_thread (ptid);
2221 within_scope = check_scope (var);
2222 }
2223 }
2224
2225 if (within_scope)
2226 {
2227 /* We need to catch errors here, because if evaluate
2228 expression fails we want to just return NULL. */
2229 gdb_evaluate_expression (var->root->exp, &new_val);
2230 return new_val;
2231 }
2232
2233 do_cleanups (back_to);
2234
2235 return NULL;
2236 }
2237
2238 static struct value *
2239 c_value_of_child (struct varobj *parent, int index)
2240 {
2241 struct value *value = NULL;
2242 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2243
2244 return value;
2245 }
2246
2247 static struct type *
2248 c_type_of_child (struct varobj *parent, int index)
2249 {
2250 struct type *type = NULL;
2251 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2252 return type;
2253 }
2254
2255 static char *
2256 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2257 {
2258 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2259 it will print out its children instead of "{...}". So we need to
2260 catch that case explicitly. */
2261 struct type *type = get_type (var);
2262
2263 /* Strip top-level references. */
2264 while (TYPE_CODE (type) == TYPE_CODE_REF)
2265 type = check_typedef (TYPE_TARGET_TYPE (type));
2266
2267 switch (TYPE_CODE (type))
2268 {
2269 case TYPE_CODE_STRUCT:
2270 case TYPE_CODE_UNION:
2271 return xstrdup ("{...}");
2272 /* break; */
2273
2274 case TYPE_CODE_ARRAY:
2275 {
2276 char *number;
2277 number = xstrprintf ("[%d]", var->num_children);
2278 return (number);
2279 }
2280 /* break; */
2281
2282 default:
2283 {
2284 if (var->value == NULL)
2285 {
2286 /* This can happen if we attempt to get the value of a struct
2287 member when the parent is an invalid pointer. This is an
2288 error condition, so we should tell the caller. */
2289 return NULL;
2290 }
2291 else
2292 {
2293 if (var->not_fetched && value_lazy (var->value))
2294 /* Frozen variable and no value yet. We don't
2295 implicitly fetch the value. MI response will
2296 use empty string for the value, which is OK. */
2297 return NULL;
2298
2299 gdb_assert (varobj_value_is_changeable_p (var));
2300 gdb_assert (!value_lazy (var->value));
2301
2302 /* If the specified format is the current one,
2303 we can reuse print_value */
2304 if (format == var->format)
2305 return xstrdup (var->print_value);
2306 else
2307 return value_get_print_value (var->value, format);
2308 }
2309 }
2310 }
2311 }
2312 \f
2313
2314 /* C++ */
2315
2316 static int
2317 cplus_number_of_children (struct varobj *var)
2318 {
2319 struct type *type;
2320 int children, dont_know;
2321
2322 dont_know = 1;
2323 children = 0;
2324
2325 if (!CPLUS_FAKE_CHILD (var))
2326 {
2327 type = get_value_type (var);
2328 adjust_value_for_child_access (NULL, &type, NULL);
2329
2330 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2331 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2332 {
2333 int kids[3];
2334
2335 cplus_class_num_children (type, kids);
2336 if (kids[v_public] != 0)
2337 children++;
2338 if (kids[v_private] != 0)
2339 children++;
2340 if (kids[v_protected] != 0)
2341 children++;
2342
2343 /* Add any baseclasses */
2344 children += TYPE_N_BASECLASSES (type);
2345 dont_know = 0;
2346
2347 /* FIXME: save children in var */
2348 }
2349 }
2350 else
2351 {
2352 int kids[3];
2353
2354 type = get_value_type (var->parent);
2355 adjust_value_for_child_access (NULL, &type, NULL);
2356
2357 cplus_class_num_children (type, kids);
2358 if (strcmp (var->name, "public") == 0)
2359 children = kids[v_public];
2360 else if (strcmp (var->name, "private") == 0)
2361 children = kids[v_private];
2362 else
2363 children = kids[v_protected];
2364 dont_know = 0;
2365 }
2366
2367 if (dont_know)
2368 children = c_number_of_children (var);
2369
2370 return children;
2371 }
2372
2373 /* Compute # of public, private, and protected variables in this class.
2374 That means we need to descend into all baseclasses and find out
2375 how many are there, too. */
2376 static void
2377 cplus_class_num_children (struct type *type, int children[3])
2378 {
2379 int i;
2380
2381 children[v_public] = 0;
2382 children[v_private] = 0;
2383 children[v_protected] = 0;
2384
2385 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2386 {
2387 /* If we have a virtual table pointer, omit it. */
2388 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2389 continue;
2390
2391 if (TYPE_FIELD_PROTECTED (type, i))
2392 children[v_protected]++;
2393 else if (TYPE_FIELD_PRIVATE (type, i))
2394 children[v_private]++;
2395 else
2396 children[v_public]++;
2397 }
2398 }
2399
2400 static char *
2401 cplus_name_of_variable (struct varobj *parent)
2402 {
2403 return c_name_of_variable (parent);
2404 }
2405
2406 enum accessibility { private_field, protected_field, public_field };
2407
2408 /* Check if field INDEX of TYPE has the specified accessibility.
2409 Return 0 if so and 1 otherwise. */
2410 static int
2411 match_accessibility (struct type *type, int index, enum accessibility acc)
2412 {
2413 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2414 return 1;
2415 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2416 return 1;
2417 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2418 && !TYPE_FIELD_PROTECTED (type, index))
2419 return 1;
2420 else
2421 return 0;
2422 }
2423
2424 static void
2425 cplus_describe_child (struct varobj *parent, int index,
2426 char **cname, struct value **cvalue, struct type **ctype,
2427 char **cfull_expression)
2428 {
2429 char *name = NULL;
2430 struct value *value;
2431 struct type *type;
2432 int was_ptr;
2433 char *parent_expression = NULL;
2434
2435 if (cname)
2436 *cname = NULL;
2437 if (cvalue)
2438 *cvalue = NULL;
2439 if (ctype)
2440 *ctype = NULL;
2441 if (cfull_expression)
2442 *cfull_expression = NULL;
2443
2444 if (CPLUS_FAKE_CHILD (parent))
2445 {
2446 value = parent->parent->value;
2447 type = get_value_type (parent->parent);
2448 if (cfull_expression)
2449 parent_expression = varobj_get_path_expr (parent->parent);
2450 }
2451 else
2452 {
2453 value = parent->value;
2454 type = get_value_type (parent);
2455 if (cfull_expression)
2456 parent_expression = varobj_get_path_expr (parent);
2457 }
2458
2459 adjust_value_for_child_access (&value, &type, &was_ptr);
2460
2461 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2462 || TYPE_CODE (type) == TYPE_CODE_UNION)
2463 {
2464 char *join = was_ptr ? "->" : ".";
2465 if (CPLUS_FAKE_CHILD (parent))
2466 {
2467 /* The fields of the class type are ordered as they
2468 appear in the class. We are given an index for a
2469 particular access control type ("public","protected",
2470 or "private"). We must skip over fields that don't
2471 have the access control we are looking for to properly
2472 find the indexed field. */
2473 int type_index = TYPE_N_BASECLASSES (type);
2474 enum accessibility acc = public_field;
2475 if (strcmp (parent->name, "private") == 0)
2476 acc = private_field;
2477 else if (strcmp (parent->name, "protected") == 0)
2478 acc = protected_field;
2479
2480 while (index >= 0)
2481 {
2482 if (TYPE_VPTR_BASETYPE (type) == type
2483 && type_index == TYPE_VPTR_FIELDNO (type))
2484 ; /* ignore vptr */
2485 else if (match_accessibility (type, type_index, acc))
2486 --index;
2487 ++type_index;
2488 }
2489 --type_index;
2490
2491 if (cname)
2492 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2493
2494 if (cvalue && value)
2495 *cvalue = value_struct_element_index (value, type_index);
2496
2497 if (ctype)
2498 *ctype = TYPE_FIELD_TYPE (type, type_index);
2499
2500 if (cfull_expression)
2501 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2502 join,
2503 TYPE_FIELD_NAME (type, type_index));
2504 }
2505 else if (index < TYPE_N_BASECLASSES (type))
2506 {
2507 /* This is a baseclass. */
2508 if (cname)
2509 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2510
2511 if (cvalue && value)
2512 {
2513 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2514 release_value (*cvalue);
2515 }
2516
2517 if (ctype)
2518 {
2519 *ctype = TYPE_FIELD_TYPE (type, index);
2520 }
2521
2522 if (cfull_expression)
2523 {
2524 char *ptr = was_ptr ? "*" : "";
2525 /* Cast the parent to the base' type. Note that in gdb,
2526 expression like
2527 (Base1)d
2528 will create an lvalue, for all appearences, so we don't
2529 need to use more fancy:
2530 *(Base1*)(&d)
2531 construct. */
2532 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2533 ptr,
2534 TYPE_FIELD_NAME (type, index),
2535 ptr,
2536 parent_expression);
2537 }
2538 }
2539 else
2540 {
2541 char *access = NULL;
2542 int children[3];
2543 cplus_class_num_children (type, children);
2544
2545 /* Everything beyond the baseclasses can
2546 only be "public", "private", or "protected"
2547
2548 The special "fake" children are always output by varobj in
2549 this order. So if INDEX == 2, it MUST be "protected". */
2550 index -= TYPE_N_BASECLASSES (type);
2551 switch (index)
2552 {
2553 case 0:
2554 if (children[v_public] > 0)
2555 access = "public";
2556 else if (children[v_private] > 0)
2557 access = "private";
2558 else
2559 access = "protected";
2560 break;
2561 case 1:
2562 if (children[v_public] > 0)
2563 {
2564 if (children[v_private] > 0)
2565 access = "private";
2566 else
2567 access = "protected";
2568 }
2569 else if (children[v_private] > 0)
2570 access = "protected";
2571 break;
2572 case 2:
2573 /* Must be protected */
2574 access = "protected";
2575 break;
2576 default:
2577 /* error! */
2578 break;
2579 }
2580
2581 gdb_assert (access);
2582 if (cname)
2583 *cname = xstrdup (access);
2584
2585 /* Value and type and full expression are null here. */
2586 }
2587 }
2588 else
2589 {
2590 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2591 }
2592 }
2593
2594 static char *
2595 cplus_name_of_child (struct varobj *parent, int index)
2596 {
2597 char *name = NULL;
2598 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
2599 return name;
2600 }
2601
2602 static char *
2603 cplus_path_expr_of_child (struct varobj *child)
2604 {
2605 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
2606 &child->path_expr);
2607 return child->path_expr;
2608 }
2609
2610 static struct value *
2611 cplus_value_of_root (struct varobj **var_handle)
2612 {
2613 return c_value_of_root (var_handle);
2614 }
2615
2616 static struct value *
2617 cplus_value_of_child (struct varobj *parent, int index)
2618 {
2619 struct value *value = NULL;
2620 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
2621 return value;
2622 }
2623
2624 static struct type *
2625 cplus_type_of_child (struct varobj *parent, int index)
2626 {
2627 struct type *type = NULL;
2628 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
2629 return type;
2630 }
2631
2632 static char *
2633 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2634 {
2635
2636 /* If we have one of our special types, don't print out
2637 any value. */
2638 if (CPLUS_FAKE_CHILD (var))
2639 return xstrdup ("");
2640
2641 return c_value_of_variable (var, format);
2642 }
2643 \f
2644 /* Java */
2645
2646 static int
2647 java_number_of_children (struct varobj *var)
2648 {
2649 return cplus_number_of_children (var);
2650 }
2651
2652 static char *
2653 java_name_of_variable (struct varobj *parent)
2654 {
2655 char *p, *name;
2656
2657 name = cplus_name_of_variable (parent);
2658 /* If the name has "-" in it, it is because we
2659 needed to escape periods in the name... */
2660 p = name;
2661
2662 while (*p != '\000')
2663 {
2664 if (*p == '-')
2665 *p = '.';
2666 p++;
2667 }
2668
2669 return name;
2670 }
2671
2672 static char *
2673 java_name_of_child (struct varobj *parent, int index)
2674 {
2675 char *name, *p;
2676
2677 name = cplus_name_of_child (parent, index);
2678 /* Escape any periods in the name... */
2679 p = name;
2680
2681 while (*p != '\000')
2682 {
2683 if (*p == '.')
2684 *p = '-';
2685 p++;
2686 }
2687
2688 return name;
2689 }
2690
2691 static char *
2692 java_path_expr_of_child (struct varobj *child)
2693 {
2694 return NULL;
2695 }
2696
2697 static struct value *
2698 java_value_of_root (struct varobj **var_handle)
2699 {
2700 return cplus_value_of_root (var_handle);
2701 }
2702
2703 static struct value *
2704 java_value_of_child (struct varobj *parent, int index)
2705 {
2706 return cplus_value_of_child (parent, index);
2707 }
2708
2709 static struct type *
2710 java_type_of_child (struct varobj *parent, int index)
2711 {
2712 return cplus_type_of_child (parent, index);
2713 }
2714
2715 static char *
2716 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2717 {
2718 return cplus_value_of_variable (var, format);
2719 }
2720 \f
2721 extern void _initialize_varobj (void);
2722 void
2723 _initialize_varobj (void)
2724 {
2725 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2726
2727 varobj_table = xmalloc (sizeof_table);
2728 memset (varobj_table, 0, sizeof_table);
2729
2730 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2731 &varobjdebug, _("\
2732 Set varobj debugging."), _("\
2733 Show varobj debugging."), _("\
2734 When non-zero, varobj debugging is enabled."),
2735 NULL,
2736 show_varobjdebug,
2737 &setlist, &showlist);
2738 }
2739
2740 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2741 are defined on globals.
2742 Invalidated varobjs will be always printed in_scope="invalid". */
2743 void
2744 varobj_invalidate (void)
2745 {
2746 struct varobj **all_rootvarobj;
2747 struct varobj **varp;
2748
2749 if (varobj_list (&all_rootvarobj) > 0)
2750 {
2751 varp = all_rootvarobj;
2752 while (*varp != NULL)
2753 {
2754 /* Floating varobjs are reparsed on each stop, so we don't care if
2755 the presently parsed expression refers to something that's gone. */
2756 if ((*varp)->root->floating)
2757 continue;
2758
2759 /* global var must be re-evaluated. */
2760 if ((*varp)->root->valid_block == NULL)
2761 {
2762 struct varobj *tmp_var;
2763
2764 /* Try to create a varobj with same expression. If we succeed replace
2765 the old varobj, otherwise invalidate it. */
2766 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME);
2767 if (tmp_var != NULL)
2768 {
2769 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
2770 varobj_delete (*varp, NULL, 0);
2771 install_variable (tmp_var);
2772 }
2773 else
2774 (*varp)->root->is_valid = 0;
2775 }
2776 else /* locals must be invalidated. */
2777 (*varp)->root->is_valid = 0;
2778
2779 varp++;
2780 }
2781 xfree (all_rootvarobj);
2782 }
2783 return;
2784 }