]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/vax-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright (C) 1986, 1989, 1991, 1992, 1995, 1996, 1998, 1999, 2000, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "dis-asm.h"
26 #include "floatformat.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "osabi.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "trad-frame.h"
36 #include "value.h"
37
38 #include "gdb_string.h"
39
40 #include "vax-tdep.h"
41
42 /* Return the name of register REGNUM. */
43
44 static const char *
45 vax_register_name (int regnum)
46 {
47 static char *register_names[] =
48 {
49 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
50 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
51 "ps",
52 };
53
54 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
55 return register_names[regnum];
56
57 return NULL;
58 }
59
60 /* Return the GDB type object for the "standard" data type of data in
61 register REGNUM. */
62
63 static struct type *
64 vax_register_type (struct gdbarch *gdbarch, int regnum)
65 {
66 return builtin_type_int;
67 }
68 \f
69 /* Core file support. */
70
71 /* Supply register REGNUM from the buffer specified by GREGS and LEN
72 in the general-purpose register set REGSET to register cache
73 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
74
75 static void
76 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
77 int regnum, const void *gregs, size_t len)
78 {
79 const gdb_byte *regs = gregs;
80 int i;
81
82 for (i = 0; i < VAX_NUM_REGS; i++)
83 {
84 if (regnum == i || regnum == -1)
85 regcache_raw_supply (regcache, i, regs + i * 4);
86 }
87 }
88
89 /* VAX register set. */
90
91 static struct regset vax_gregset =
92 {
93 NULL,
94 vax_supply_gregset
95 };
96
97 /* Return the appropriate register set for the core section identified
98 by SECT_NAME and SECT_SIZE. */
99
100 static const struct regset *
101 vax_regset_from_core_section (struct gdbarch *gdbarch,
102 const char *sect_name, size_t sect_size)
103 {
104 if (strcmp (sect_name, ".reg") == 0 && sect_size >= VAX_NUM_REGS * 4)
105 return &vax_gregset;
106
107 return NULL;
108 }
109 \f
110 /* The VAX UNIX calling convention uses R1 to pass a structure return
111 value address instead of passing it as a first (hidden) argument as
112 the VMS calling convention suggests. */
113
114 static CORE_ADDR
115 vax_store_arguments (struct regcache *regcache, int nargs,
116 struct value **args, CORE_ADDR sp)
117 {
118 gdb_byte buf[4];
119 int count = 0;
120 int i;
121
122 /* We create an argument list on the stack, and make the argument
123 pointer to it. */
124
125 /* Push arguments in reverse order. */
126 for (i = nargs - 1; i >= 0; i--)
127 {
128 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
129
130 sp -= (len + 3) & ~3;
131 count += (len + 3) / 4;
132 write_memory (sp, value_contents_all (args[i]), len);
133 }
134
135 /* Push argument count. */
136 sp -= 4;
137 store_unsigned_integer (buf, 4, count);
138 write_memory (sp, buf, 4);
139
140 /* Update the argument pointer. */
141 store_unsigned_integer (buf, 4, sp);
142 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
143
144 return sp;
145 }
146
147 static CORE_ADDR
148 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
149 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
150 struct value **args, CORE_ADDR sp, int struct_return,
151 CORE_ADDR struct_addr)
152 {
153 CORE_ADDR fp = sp;
154 gdb_byte buf[4];
155
156 /* Set up the function arguments. */
157 sp = vax_store_arguments (regcache, nargs, args, sp);
158
159 /* Store return value address. */
160 if (struct_return)
161 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
162
163 /* Store return address in the PC slot. */
164 sp -= 4;
165 store_unsigned_integer (buf, 4, bp_addr);
166 write_memory (sp, buf, 4);
167
168 /* Store the (fake) frame pointer in the FP slot. */
169 sp -= 4;
170 store_unsigned_integer (buf, 4, fp);
171 write_memory (sp, buf, 4);
172
173 /* Skip the AP slot. */
174 sp -= 4;
175
176 /* Store register save mask and control bits. */
177 sp -= 4;
178 store_unsigned_integer (buf, 4, 0);
179 write_memory (sp, buf, 4);
180
181 /* Store condition handler. */
182 sp -= 4;
183 store_unsigned_integer (buf, 4, 0);
184 write_memory (sp, buf, 4);
185
186 /* Update the stack pointer and frame pointer. */
187 store_unsigned_integer (buf, 4, sp);
188 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
189 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
190
191 /* Return the saved (fake) frame pointer. */
192 return fp;
193 }
194
195 static struct frame_id
196 vax_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
197 {
198 CORE_ADDR fp;
199
200 fp = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
201 return frame_id_build (fp, frame_pc_unwind (next_frame));
202 }
203 \f
204
205 static enum return_value_convention
206 vax_return_value (struct gdbarch *gdbarch, struct type *type,
207 struct regcache *regcache, gdb_byte *readbuf,
208 const gdb_byte *writebuf)
209 {
210 int len = TYPE_LENGTH (type);
211 gdb_byte buf[8];
212
213 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
214 || TYPE_CODE (type) == TYPE_CODE_UNION
215 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
216 {
217 /* The default on VAX is to return structures in static memory.
218 Consequently a function must return the address where we can
219 find the return value. */
220
221 if (readbuf)
222 {
223 ULONGEST addr;
224
225 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
226 read_memory (addr, readbuf, len);
227 }
228
229 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
230 }
231
232 if (readbuf)
233 {
234 /* Read the contents of R0 and (if necessary) R1. */
235 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
236 if (len > 4)
237 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
238 memcpy (readbuf, buf, len);
239 }
240 if (writebuf)
241 {
242 /* Read the contents to R0 and (if necessary) R1. */
243 memcpy (buf, writebuf, len);
244 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
245 if (len > 4)
246 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
247 }
248
249 return RETURN_VALUE_REGISTER_CONVENTION;
250 }
251 \f
252
253 /* Use the program counter to determine the contents and size of a
254 breakpoint instruction. Return a pointer to a string of bytes that
255 encode a breakpoint instruction, store the length of the string in
256 *LEN and optionally adjust *PC to point to the correct memory
257 location for inserting the breakpoint. */
258
259 static const gdb_byte *
260 vax_breakpoint_from_pc (CORE_ADDR *pc, int *len)
261 {
262 static gdb_byte break_insn[] = { 3 };
263
264 *len = sizeof (break_insn);
265 return break_insn;
266 }
267 \f
268 /* Advance PC across any function entry prologue instructions
269 to reach some "real" code. */
270
271 static CORE_ADDR
272 vax_skip_prologue (CORE_ADDR pc)
273 {
274 gdb_byte op = read_memory_unsigned_integer (pc, 1);
275
276 if (op == 0x11)
277 pc += 2; /* skip brb */
278 if (op == 0x31)
279 pc += 3; /* skip brw */
280 if (op == 0xC2
281 && (read_memory_unsigned_integer (pc + 2, 1)) == 0x5E)
282 pc += 3; /* skip subl2 */
283 if (op == 0x9E
284 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xAE
285 && (read_memory_unsigned_integer (pc + 3, 1)) == 0x5E)
286 pc += 4; /* skip movab */
287 if (op == 0x9E
288 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xCE
289 && (read_memory_unsigned_integer (pc + 4, 1)) == 0x5E)
290 pc += 5; /* skip movab */
291 if (op == 0x9E
292 && (read_memory_unsigned_integer (pc + 1, 1)) == 0xEE
293 && (read_memory_unsigned_integer (pc + 6, 1)) == 0x5E)
294 pc += 7; /* skip movab */
295
296 return pc;
297 }
298 \f
299
300 /* Unwinding the stack is relatively easy since the VAX has a
301 dedicated frame pointer, and frames are set up automatically as the
302 result of a function call. Most of the relevant information can be
303 inferred from the documentation of the Procedure Call Instructions
304 in the VAX MACRO and Instruction Set Reference Manual. */
305
306 struct vax_frame_cache
307 {
308 /* Base address. */
309 CORE_ADDR base;
310
311 /* Table of saved registers. */
312 struct trad_frame_saved_reg *saved_regs;
313 };
314
315 struct vax_frame_cache *
316 vax_frame_cache (struct frame_info *next_frame, void **this_cache)
317 {
318 struct vax_frame_cache *cache;
319 CORE_ADDR addr;
320 ULONGEST mask;
321 int regnum;
322
323 if (*this_cache)
324 return *this_cache;
325
326 /* Allocate a new cache. */
327 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
328 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
329
330 /* The frame pointer is used as the base for the frame. */
331 cache->base = frame_unwind_register_unsigned (next_frame, VAX_FP_REGNUM);
332 if (cache->base == 0)
333 return cache;
334
335 /* The register save mask and control bits determine the layout of
336 the stack frame. */
337 mask = get_frame_memory_unsigned (next_frame, cache->base + 4, 4) >> 16;
338
339 /* These are always saved. */
340 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
341 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
342 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
343 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
344
345 /* Scan the register save mask and record the location of the saved
346 registers. */
347 addr = cache->base + 20;
348 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
349 {
350 if (mask & (1 << regnum))
351 {
352 cache->saved_regs[regnum].addr = addr;
353 addr += 4;
354 }
355 }
356
357 /* The CALLS/CALLG flag determines whether this frame has a General
358 Argument List or a Stack Argument List. */
359 if (mask & (1 << 13))
360 {
361 ULONGEST numarg;
362
363 /* This is a procedure with Stack Argument List. Adjust the
364 stack address for the arguments that were pushed onto the
365 stack. The return instruction will automatically pop the
366 arguments from the stack. */
367 numarg = get_frame_memory_unsigned (next_frame, addr, 1);
368 addr += 4 + numarg * 4;
369 }
370
371 /* Bits 1:0 of the stack pointer were saved in the control bits. */
372 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
373
374 return cache;
375 }
376
377 static void
378 vax_frame_this_id (struct frame_info *next_frame, void **this_cache,
379 struct frame_id *this_id)
380 {
381 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
382
383 /* This marks the outermost frame. */
384 if (cache->base == 0)
385 return;
386
387 (*this_id) = frame_id_build (cache->base, frame_func_unwind (next_frame));
388 }
389
390 static void
391 vax_frame_prev_register (struct frame_info *next_frame, void **this_cache,
392 int regnum, int *optimizedp,
393 enum lval_type *lvalp, CORE_ADDR *addrp,
394 int *realnump, gdb_byte *valuep)
395 {
396 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
397
398 trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
399 optimizedp, lvalp, addrp, realnump, valuep);
400 }
401
402 static const struct frame_unwind vax_frame_unwind =
403 {
404 NORMAL_FRAME,
405 vax_frame_this_id,
406 vax_frame_prev_register
407 };
408
409 static const struct frame_unwind *
410 vax_frame_sniffer (struct frame_info *next_frame)
411 {
412 return &vax_frame_unwind;
413 }
414 \f
415
416 static CORE_ADDR
417 vax_frame_base_address (struct frame_info *next_frame, void **this_cache)
418 {
419 struct vax_frame_cache *cache = vax_frame_cache (next_frame, this_cache);
420
421 return cache->base;
422 }
423
424 static CORE_ADDR
425 vax_frame_args_address (struct frame_info *next_frame, void **this_cache)
426 {
427 return frame_unwind_register_unsigned (next_frame, VAX_AP_REGNUM);
428 }
429
430 static const struct frame_base vax_frame_base =
431 {
432 &vax_frame_unwind,
433 vax_frame_base_address,
434 vax_frame_base_address,
435 vax_frame_args_address
436 };
437
438 /* Return number of arguments for FRAME. */
439
440 static int
441 vax_frame_num_args (struct frame_info *frame)
442 {
443 CORE_ADDR args;
444
445 /* Assume that the argument pointer for the outermost frame is
446 hosed, as is the case on NetBSD/vax ELF. */
447 if (get_frame_base_address (frame) == 0)
448 return 0;
449
450 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
451 return get_frame_memory_unsigned (frame, args, 1);
452 }
453
454 static CORE_ADDR
455 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
456 {
457 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
458 }
459 \f
460
461 /* Initialize the current architecture based on INFO. If possible, re-use an
462 architecture from ARCHES, which is a list of architectures already created
463 during this debugging session.
464
465 Called e.g. at program startup, when reading a core file, and when reading
466 a binary file. */
467
468 static struct gdbarch *
469 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
470 {
471 struct gdbarch *gdbarch;
472
473 /* If there is already a candidate, use it. */
474 arches = gdbarch_list_lookup_by_info (arches, &info);
475 if (arches != NULL)
476 return arches->gdbarch;
477
478 gdbarch = gdbarch_alloc (&info, NULL);
479
480 set_gdbarch_float_format (gdbarch, &floatformat_vax_f);
481 set_gdbarch_double_format (gdbarch, &floatformat_vax_d);
482 set_gdbarch_long_double_format (gdbarch, &floatformat_vax_d);
483 set_gdbarch_long_double_bit(gdbarch, 64);
484
485 /* Register info */
486 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
487 set_gdbarch_register_name (gdbarch, vax_register_name);
488 set_gdbarch_register_type (gdbarch, vax_register_type);
489 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
490 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
491 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
492
493 set_gdbarch_regset_from_core_section
494 (gdbarch, vax_regset_from_core_section);
495
496 /* Frame and stack info */
497 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
498 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
499 set_gdbarch_frame_args_skip (gdbarch, 4);
500
501 /* Stack grows downward. */
502 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
503
504 /* Return value info */
505 set_gdbarch_return_value (gdbarch, vax_return_value);
506
507 /* Call dummy code. */
508 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
509 set_gdbarch_unwind_dummy_id (gdbarch, vax_unwind_dummy_id);
510
511 /* Breakpoint info */
512 set_gdbarch_breakpoint_from_pc (gdbarch, vax_breakpoint_from_pc);
513
514 /* Misc info */
515 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
516 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
517
518 set_gdbarch_print_insn (gdbarch, print_insn_vax);
519
520 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
521
522 frame_base_set_default (gdbarch, &vax_frame_base);
523
524 /* Hook in ABI-specific overrides, if they have been registered. */
525 gdbarch_init_osabi (info, gdbarch);
526
527 frame_unwind_append_sniffer (gdbarch, vax_frame_sniffer);
528
529 return (gdbarch);
530 }
531
532 /* Provide a prototype to silence -Wmissing-prototypes. */
533 void _initialize_vax_tdep (void);
534
535 void
536 _initialize_vax_tdep (void)
537 {
538 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
539 }