]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/xstormy16-tdep.c
2011-01-11 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "dis-asm.h"
32 #include "inferior.h"
33 #include "gdb_string.h"
34 #include "gdb_assert.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "doublest.h"
39 #include "osabi.h"
40 #include "objfiles.h"
41
42 enum gdb_regnum
43 {
44 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
45 Functions will return their values in register R2-R7 as they fit.
46 Otherwise a hidden pointer to an big enough area is given as argument
47 to the function in r2. Further arguments are beginning in r3 then.
48 R13 is used as frame pointer when GCC compiles w/o optimization
49 R14 is used as "PSW", displaying the CPU status.
50 R15 is used implicitely as stack pointer. */
51 E_R0_REGNUM,
52 E_R1_REGNUM,
53 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
54 E_R3_REGNUM,
55 E_R4_REGNUM,
56 E_R5_REGNUM,
57 E_R6_REGNUM,
58 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
59 E_R8_REGNUM,
60 E_R9_REGNUM,
61 E_R10_REGNUM,
62 E_R11_REGNUM,
63 E_R12_REGNUM,
64 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
65 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
66 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
67 E_PC_REGNUM,
68 E_NUM_REGS
69 };
70
71 /* Use an invalid address value as 'not available' marker. */
72 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
73
74 struct xstormy16_frame_cache
75 {
76 /* Base address. */
77 CORE_ADDR base;
78 CORE_ADDR pc;
79 LONGEST framesize;
80 int uses_fp;
81 CORE_ADDR saved_regs[E_NUM_REGS];
82 CORE_ADDR saved_sp;
83 };
84
85 /* Size of instructions, registers, etc. */
86 enum
87 {
88 xstormy16_inst_size = 2,
89 xstormy16_reg_size = 2,
90 xstormy16_pc_size = 4
91 };
92
93 /* Size of return datatype which fits into the remaining return registers. */
94 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
95 * xstormy16_reg_size)
96
97 /* Size of return datatype which fits into all return registers. */
98 enum
99 {
100 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
101 };
102
103 /* Function: xstormy16_register_name
104 Returns the name of the standard Xstormy16 register N. */
105
106 static const char *
107 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
108 {
109 static char *register_names[] = {
110 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
111 "r8", "r9", "r10", "r11", "r12", "r13",
112 "psw", "sp", "pc"
113 };
114
115 if (regnum < 0 || regnum >= E_NUM_REGS)
116 internal_error (__FILE__, __LINE__,
117 _("xstormy16_register_name: illegal register number %d"),
118 regnum);
119 else
120 return register_names[regnum];
121
122 }
123
124 static struct type *
125 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
126 {
127 if (regnum == E_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_uint32;
129 else
130 return builtin_type (gdbarch)->builtin_uint16;
131 }
132
133 /* Function: xstormy16_type_is_scalar
134 Makes the decision if a given type is a scalar types. Scalar
135 types are returned in the registers r2-r7 as they fit. */
136
137 static int
138 xstormy16_type_is_scalar (struct type *t)
139 {
140 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
141 && TYPE_CODE(t) != TYPE_CODE_UNION
142 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
143 }
144
145 /* Function: xstormy16_use_struct_convention
146 Returns non-zero if the given struct type will be returned using
147 a special convention, rather than the normal function return method.
148 7sed in the contexts of the "return" command, and of
149 target function calls from the debugger. */
150
151 static int
152 xstormy16_use_struct_convention (struct type *type)
153 {
154 return !xstormy16_type_is_scalar (type)
155 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
156 }
157
158 /* Function: xstormy16_extract_return_value
159 Find a function's return value in the appropriate registers (in
160 regbuf), and copy it into valbuf. */
161
162 static void
163 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
164 void *valbuf)
165 {
166 int len = TYPE_LENGTH (type);
167 int i, regnum = E_1ST_ARG_REGNUM;
168
169 for (i = 0; i < len; i += xstormy16_reg_size)
170 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
171 }
172
173 /* Function: xstormy16_store_return_value
174 Copy the function return value from VALBUF into the
175 proper location for a function return.
176 Called only in the context of the "return" command. */
177
178 static void
179 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
180 const void *valbuf)
181 {
182 if (TYPE_LENGTH (type) == 1)
183 {
184 /* Add leading zeros to the value. */
185 char buf[xstormy16_reg_size];
186 memset (buf, 0, xstormy16_reg_size);
187 memcpy (buf, valbuf, 1);
188 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
189 }
190 else
191 {
192 int len = TYPE_LENGTH (type);
193 int i, regnum = E_1ST_ARG_REGNUM;
194
195 for (i = 0; i < len; i += xstormy16_reg_size)
196 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
197 }
198 }
199
200 static enum return_value_convention
201 xstormy16_return_value (struct gdbarch *gdbarch, struct type *func_type,
202 struct type *type, struct regcache *regcache,
203 gdb_byte *readbuf, const gdb_byte *writebuf)
204 {
205 if (xstormy16_use_struct_convention (type))
206 return RETURN_VALUE_STRUCT_CONVENTION;
207 if (writebuf)
208 xstormy16_store_return_value (type, regcache, writebuf);
209 else if (readbuf)
210 xstormy16_extract_return_value (type, regcache, readbuf);
211 return RETURN_VALUE_REGISTER_CONVENTION;
212 }
213
214 static CORE_ADDR
215 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
216 {
217 if (addr & 1)
218 ++addr;
219 return addr;
220 }
221
222 /* Function: xstormy16_push_dummy_call
223 Setup the function arguments for GDB to call a function in the inferior.
224 Called only in the context of a target function call from the debugger.
225 Returns the value of the SP register after the args are pushed. */
226
227 static CORE_ADDR
228 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
229 struct value *function,
230 struct regcache *regcache,
231 CORE_ADDR bp_addr, int nargs,
232 struct value **args,
233 CORE_ADDR sp, int struct_return,
234 CORE_ADDR struct_addr)
235 {
236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
237 CORE_ADDR stack_dest = sp;
238 int argreg = E_1ST_ARG_REGNUM;
239 int i, j;
240 int typelen, slacklen;
241 const gdb_byte *val;
242 char buf[xstormy16_pc_size];
243
244 /* If struct_return is true, then the struct return address will
245 consume one argument-passing register. */
246 if (struct_return)
247 {
248 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
249 argreg++;
250 }
251
252 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
253 fit in the remaining registers we're switching over to the stack.
254 No argument is put on stack partially and as soon as we switched
255 over to stack no further argument is put in a register even if it
256 would fit in the remaining unused registers. */
257 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
258 {
259 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
260 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
261 break;
262
263 /* Put argument into registers wordwise. */
264 val = value_contents (args[i]);
265 for (j = 0; j < typelen; j += xstormy16_reg_size)
266 regcache_cooked_write_unsigned (regcache, argreg++,
267 extract_unsigned_integer (val + j,
268 typelen - j ==
269 1 ? 1 :
270 xstormy16_reg_size,
271 byte_order));
272 }
273
274 /* Align SP */
275 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
276
277 /* Loop backwards through remaining arguments and push them on the stack,
278 wordaligned. */
279 for (j = nargs - 1; j >= i; j--)
280 {
281 char *val;
282
283 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284 slacklen = typelen & 1;
285 val = alloca (typelen + slacklen);
286 memcpy (val, value_contents (args[j]), typelen);
287 memset (val + typelen, 0, slacklen);
288
289 /* Now write this data to the stack. The stack grows upwards. */
290 write_memory (stack_dest, val, typelen + slacklen);
291 stack_dest += typelen + slacklen;
292 }
293
294 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
295 write_memory (stack_dest, buf, xstormy16_pc_size);
296 stack_dest += xstormy16_pc_size;
297
298 /* Update stack pointer. */
299 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
300
301 /* Return the new stack pointer minus the return address slot since
302 that's what DWARF2/GCC uses as the frame's CFA. */
303 return stack_dest - xstormy16_pc_size;
304 }
305
306 /* Function: xstormy16_scan_prologue
307 Decode the instructions within the given address range.
308 Decide when we must have reached the end of the function prologue.
309 If a frame_info pointer is provided, fill in its saved_regs etc.
310
311 Returns the address of the first instruction after the prologue. */
312
313 static CORE_ADDR
314 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
315 CORE_ADDR start_addr, CORE_ADDR end_addr,
316 struct xstormy16_frame_cache *cache,
317 struct frame_info *this_frame)
318 {
319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320 CORE_ADDR next_addr;
321 ULONGEST inst, inst2;
322 LONGEST offset;
323 int regnum;
324
325 /* Initialize framesize with size of PC put on stack by CALLF inst. */
326 cache->saved_regs[E_PC_REGNUM] = 0;
327 cache->framesize = xstormy16_pc_size;
328
329 if (start_addr >= end_addr)
330 return end_addr;
331
332 for (next_addr = start_addr;
333 next_addr < end_addr; next_addr += xstormy16_inst_size)
334 {
335 inst = read_memory_unsigned_integer (next_addr,
336 xstormy16_inst_size, byte_order);
337 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
338 xstormy16_inst_size, byte_order);
339
340 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
341 {
342 regnum = inst & 0x000f;
343 cache->saved_regs[regnum] = cache->framesize;
344 cache->framesize += xstormy16_reg_size;
345 }
346
347 /* Optional stack allocation for args and local vars <= 4 byte. */
348 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
349 {
350 cache->framesize += ((inst & 0x0030) >> 4) + 1;
351 }
352
353 /* optional stack allocation for args and local vars > 4 && < 16 byte */
354 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
355 {
356 cache->framesize += (inst & 0x00f0) >> 4;
357 }
358
359 /* Optional stack allocation for args and local vars >= 16 byte. */
360 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
361 {
362 cache->framesize += inst2;
363 next_addr += xstormy16_inst_size;
364 }
365
366 else if (inst == 0x46fd) /* mov r13, r15 */
367 {
368 cache->uses_fp = 1;
369 }
370
371 /* optional copying of args in r2-r7 to r10-r13. */
372 /* Probably only in optimized case but legal action for prologue. */
373 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
374 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
375 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
376 ;
377
378 /* Optional copying of args in r2-r7 to stack. */
379 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
380 (bit3 always 1, bit2-0 = reg) */
381 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
382 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
383 {
384 regnum = inst & 0x0007;
385 /* Only 12 of 16 bits of the argument are used for the
386 signed offset. */
387 offset = (LONGEST) (inst2 & 0x0fff);
388 if (offset & 0x0800)
389 offset -= 0x1000;
390
391 cache->saved_regs[regnum] = cache->framesize + offset;
392 next_addr += xstormy16_inst_size;
393 }
394
395 else /* Not a prologue instruction. */
396 break;
397 }
398
399 return next_addr;
400 }
401
402 /* Function: xstormy16_skip_prologue
403 If the input address is in a function prologue,
404 returns the address of the end of the prologue;
405 else returns the input address.
406
407 Note: the input address is likely to be the function start,
408 since this function is mainly used for advancing a breakpoint
409 to the first line, or stepping to the first line when we have
410 stepped into a function call. */
411
412 static CORE_ADDR
413 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
414 {
415 CORE_ADDR func_addr = 0, func_end = 0;
416 char *func_name;
417
418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
419 {
420 struct symtab_and_line sal;
421 struct symbol *sym;
422 struct xstormy16_frame_cache cache;
423 CORE_ADDR plg_end;
424
425 memset (&cache, 0, sizeof cache);
426
427 /* Don't trust line number debug info in frameless functions. */
428 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
429 &cache, NULL);
430 if (!cache.uses_fp)
431 return plg_end;
432
433 /* Found a function. */
434 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
435 /* Don't use line number debug info for assembly source files. */
436 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
437 {
438 sal = find_pc_line (func_addr, 0);
439 if (sal.end && sal.end < func_end)
440 {
441 /* Found a line number, use it as end of prologue. */
442 return sal.end;
443 }
444 }
445 /* No useable line symbol. Use result of prologue parsing method. */
446 return plg_end;
447 }
448
449 /* No function symbol -- just return the PC. */
450
451 return (CORE_ADDR) pc;
452 }
453
454 /* The epilogue is defined here as the area at the end of a function,
455 either on the `ret' instruction itself or after an instruction which
456 destroys the function's stack frame. */
457 static int
458 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
461 CORE_ADDR func_addr = 0, func_end = 0;
462
463 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
464 {
465 ULONGEST inst, inst2;
466 CORE_ADDR addr = func_end - xstormy16_inst_size;
467
468 /* The Xstormy16 epilogue is max. 14 bytes long. */
469 if (pc < func_end - 7 * xstormy16_inst_size)
470 return 0;
471
472 /* Check if we're on a `ret' instruction. Otherwise it's
473 too dangerous to proceed. */
474 inst = read_memory_unsigned_integer (addr,
475 xstormy16_inst_size, byte_order);
476 if (inst != 0x0003)
477 return 0;
478
479 while ((addr -= xstormy16_inst_size) >= func_addr)
480 {
481 inst = read_memory_unsigned_integer (addr,
482 xstormy16_inst_size,
483 byte_order);
484 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
485 continue;
486 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
487 break;
488 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
489 xstormy16_inst_size,
490 byte_order);
491 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
492 {
493 addr -= xstormy16_inst_size;
494 break;
495 }
496 return 0;
497 }
498 if (pc > addr)
499 return 1;
500 }
501 return 0;
502 }
503
504 const static unsigned char *
505 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
506 int *lenptr)
507 {
508 static unsigned char breakpoint[] = { 0x06, 0x0 };
509 *lenptr = sizeof (breakpoint);
510 return breakpoint;
511 }
512
513 /* Given a pointer to a jump table entry, return the address
514 of the function it jumps to. Return 0 if not found. */
515 static CORE_ADDR
516 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
517 {
518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
519 struct obj_section *faddr_sect = find_pc_section (faddr);
520
521 if (faddr_sect)
522 {
523 LONGEST inst, inst2, addr;
524 char buf[2 * xstormy16_inst_size];
525
526 /* Return faddr if it's not pointing into the jump table. */
527 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
528 return faddr;
529
530 if (!target_read_memory (faddr, buf, sizeof buf))
531 {
532 inst = extract_unsigned_integer (buf,
533 xstormy16_inst_size, byte_order);
534 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
535 xstormy16_inst_size, byte_order);
536 addr = inst2 << 8 | (inst & 0xff);
537 return addr;
538 }
539 }
540 return 0;
541 }
542
543 /* Given a function's address, attempt to find (and return) the
544 address of the corresponding jump table entry. Return 0 if
545 not found. */
546 static CORE_ADDR
547 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
548 {
549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
550 struct obj_section *faddr_sect = find_pc_section (faddr);
551
552 if (faddr_sect)
553 {
554 struct obj_section *osect;
555
556 /* Return faddr if it's already a pointer to a jump table entry. */
557 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
558 return faddr;
559
560 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
561 {
562 if (!strcmp (osect->the_bfd_section->name, ".plt"))
563 break;
564 }
565
566 if (osect < faddr_sect->objfile->sections_end)
567 {
568 CORE_ADDR addr, endaddr;
569
570 addr = obj_section_addr (osect);
571 endaddr = obj_section_endaddr (osect);
572
573 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
574 {
575 LONGEST inst, inst2, faddr2;
576 char buf[2 * xstormy16_inst_size];
577
578 if (target_read_memory (addr, buf, sizeof buf))
579 return 0;
580 inst = extract_unsigned_integer (buf,
581 xstormy16_inst_size,
582 byte_order);
583 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
584 xstormy16_inst_size,
585 byte_order);
586 faddr2 = inst2 << 8 | (inst & 0xff);
587 if (faddr == faddr2)
588 return addr;
589 }
590 }
591 }
592 return 0;
593 }
594
595 static CORE_ADDR
596 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
597 {
598 struct gdbarch *gdbarch = get_frame_arch (frame);
599 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
600
601 if (tmp && tmp != pc)
602 return tmp;
603 return 0;
604 }
605
606 /* Function pointers are 16 bit. The address space is 24 bit, using
607 32 bit addresses. Pointers to functions on the XStormy16 are implemented
608 by using 16 bit pointers, which are either direct pointers in case the
609 function begins below 0x10000, or indirect pointers into a jump table.
610 The next two functions convert 16 bit pointers into 24 (32) bit addresses
611 and vice versa. */
612
613 static CORE_ADDR
614 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
615 struct type *type, const gdb_byte *buf)
616 {
617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
618 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
619 CORE_ADDR addr
620 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
621
622 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
623 {
624 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
625 if (addr2)
626 addr = addr2;
627 }
628
629 return addr;
630 }
631
632 static void
633 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
634 struct type *type, gdb_byte *buf, CORE_ADDR addr)
635 {
636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
637 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
638
639 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
640 {
641 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
642 if (addr2)
643 addr = addr2;
644 }
645 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
646 }
647
648 static struct xstormy16_frame_cache *
649 xstormy16_alloc_frame_cache (void)
650 {
651 struct xstormy16_frame_cache *cache;
652 int i;
653
654 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
655
656 cache->base = 0;
657 cache->saved_sp = 0;
658 cache->pc = 0;
659 cache->uses_fp = 0;
660 cache->framesize = 0;
661 for (i = 0; i < E_NUM_REGS; ++i)
662 cache->saved_regs[i] = REG_UNAVAIL;
663
664 return cache;
665 }
666
667 static struct xstormy16_frame_cache *
668 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
669 {
670 struct gdbarch *gdbarch = get_frame_arch (this_frame);
671 struct xstormy16_frame_cache *cache;
672 CORE_ADDR current_pc;
673 int i;
674
675 if (*this_cache)
676 return *this_cache;
677
678 cache = xstormy16_alloc_frame_cache ();
679 *this_cache = cache;
680
681 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
682 if (cache->base == 0)
683 return cache;
684
685 cache->pc = get_frame_func (this_frame);
686 current_pc = get_frame_pc (this_frame);
687 if (cache->pc)
688 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
689 cache, this_frame);
690
691 if (!cache->uses_fp)
692 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
693
694 cache->saved_sp = cache->base - cache->framesize;
695
696 for (i = 0; i < E_NUM_REGS; ++i)
697 if (cache->saved_regs[i] != REG_UNAVAIL)
698 cache->saved_regs[i] += cache->saved_sp;
699
700 return cache;
701 }
702
703 static struct value *
704 xstormy16_frame_prev_register (struct frame_info *this_frame,
705 void **this_cache, int regnum)
706 {
707 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
708 this_cache);
709 gdb_assert (regnum >= 0);
710
711 if (regnum == E_SP_REGNUM && cache->saved_sp)
712 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
713
714 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
715 return frame_unwind_got_memory (this_frame, regnum,
716 cache->saved_regs[regnum]);
717
718 return frame_unwind_got_register (this_frame, regnum, regnum);
719 }
720
721 static void
722 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
723 struct frame_id *this_id)
724 {
725 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
726 this_cache);
727
728 /* This marks the outermost frame. */
729 if (cache->base == 0)
730 return;
731
732 *this_id = frame_id_build (cache->saved_sp, cache->pc);
733 }
734
735 static CORE_ADDR
736 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
737 {
738 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
739 this_cache);
740 return cache->base;
741 }
742
743 static const struct frame_unwind xstormy16_frame_unwind = {
744 NORMAL_FRAME,
745 xstormy16_frame_this_id,
746 xstormy16_frame_prev_register,
747 NULL,
748 default_frame_sniffer
749 };
750
751 static const struct frame_base xstormy16_frame_base = {
752 &xstormy16_frame_unwind,
753 xstormy16_frame_base_address,
754 xstormy16_frame_base_address,
755 xstormy16_frame_base_address
756 };
757
758 static CORE_ADDR
759 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
760 {
761 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
762 }
763
764 static CORE_ADDR
765 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
766 {
767 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
768 }
769
770 static struct frame_id
771 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
772 {
773 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
774 return frame_id_build (sp, get_frame_pc (this_frame));
775 }
776
777
778 /* Function: xstormy16_gdbarch_init
779 Initializer function for the xstormy16 gdbarch vector.
780 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
781
782 static struct gdbarch *
783 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
784 {
785 struct gdbarch *gdbarch;
786
787 /* find a candidate among the list of pre-declared architectures. */
788 arches = gdbarch_list_lookup_by_info (arches, &info);
789 if (arches != NULL)
790 return (arches->gdbarch);
791
792 gdbarch = gdbarch_alloc (&info, NULL);
793
794 /*
795 * Basic register fields and methods, datatype sizes and stuff.
796 */
797
798 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
799 set_gdbarch_num_pseudo_regs (gdbarch, 0);
800 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
801 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
802 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
803 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
804
805 set_gdbarch_char_signed (gdbarch, 0);
806 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
807 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
808 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
809 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
810
811 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
812 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
813 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814
815 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
816 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
817 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
818
819 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
820 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
821
822 /* Stack grows up. */
823 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
824
825 /*
826 * Frame Info
827 */
828 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
829 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
830 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
831 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
832 frame_base_set_default (gdbarch, &xstormy16_frame_base);
833
834 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
835 set_gdbarch_in_function_epilogue_p (gdbarch,
836 xstormy16_in_function_epilogue_p);
837
838 /* These values and methods are used when gdb calls a target function. */
839 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
840 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
841 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
842
843 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
844
845 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
846
847 gdbarch_init_osabi (info, gdbarch);
848
849 dwarf2_append_unwinders (gdbarch);
850 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
851
852 return gdbarch;
853 }
854
855 /* Function: _initialize_xstormy16_tdep
856 Initializer function for the Sanyo Xstormy16a module.
857 Called by gdb at start-up. */
858
859 /* -Wmissing-prototypes */
860 extern initialize_file_ftype _initialize_xstormy16_tdep;
861
862 void
863 _initialize_xstormy16_tdep (void)
864 {
865 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
866 }