]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/z8k-tdep.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / z8k-tdep.c
1 /* Target-machine dependent code for Zilog Z8000, for GDB.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "obstack.h"
29 #include "symtab.h"
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32 #include "dis-asm.h"
33 #include "gdbcore.h"
34
35
36 /* Return the saved PC from this frame.
37
38 If the frame has a memory copy of SRP_REGNUM, use that. If not,
39 just use the register SRP_REGNUM itself. */
40
41 CORE_ADDR
42 frame_saved_pc (frame)
43 struct frame_info *frame;
44 {
45 return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
46 }
47
48 #define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
49 #define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
50 #define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
51 #define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
52 #define IS_SUB2_SP(x) (x==0x1b87)
53 #define IS_MOVK_R5(x) (x==0x7905)
54 #define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
55 #define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
56
57 /* work out how much local space is on the stack and
58 return the pc pointing to the first push */
59
60 static CORE_ADDR
61 skip_adjust (pc, size)
62 CORE_ADDR pc;
63 int *size;
64 {
65 *size = 0;
66
67 if (IS_PUSH_FP (read_memory_short (pc))
68 && IS_MOV_SP_FP (read_memory_short (pc + 2)))
69 {
70 /* This is a function with an explict frame pointer */
71 pc += 4;
72 *size += 2; /* remember the frame pointer */
73 }
74
75 /* remember any stack adjustment */
76 if (IS_SUB_SP (read_memory_short (pc)))
77 {
78 *size += read_memory_short (pc + 2);
79 pc += 4;
80 }
81 return pc;
82 }
83
84 static CORE_ADDR examine_frame PARAMS ((CORE_ADDR, CORE_ADDR * regs, CORE_ADDR));
85 static CORE_ADDR
86 examine_frame (pc, regs, sp)
87 CORE_ADDR pc;
88 CORE_ADDR *regs;
89 CORE_ADDR sp;
90 {
91 int w = read_memory_short (pc);
92 int offset = 0;
93 int regno;
94
95 for (regno = 0; regno < NUM_REGS; regno++)
96 regs[regno] = 0;
97
98 while (IS_PUSHW (w) || IS_PUSHL (w))
99 {
100 /* work out which register is being pushed to where */
101 if (IS_PUSHL (w))
102 {
103 regs[w & 0xf] = offset;
104 regs[(w & 0xf) + 1] = offset + 2;
105 offset += 4;
106 }
107 else
108 {
109 regs[w & 0xf] = offset;
110 offset += 2;
111 }
112 pc += 2;
113 w = read_memory_short (pc);
114 }
115
116 if (IS_MOVE_FP (w))
117 {
118 /* We know the fp */
119
120 }
121 else if (IS_SUB_SP (w))
122 {
123 /* Subtracting a value from the sp, so were in a function
124 which needs stack space for locals, but has no fp. We fake up
125 the values as if we had an fp */
126 regs[FP_REGNUM] = sp;
127 }
128 else
129 {
130 /* This one didn't have an fp, we'll fake it up */
131 regs[SP_REGNUM] = sp;
132 }
133 /* stack pointer contains address of next frame */
134 /* regs[fp_regnum()] = fp; */
135 regs[SP_REGNUM] = sp;
136 return pc;
137 }
138
139 CORE_ADDR
140 z8k_skip_prologue (start_pc)
141 CORE_ADDR start_pc;
142 {
143 CORE_ADDR dummy[NUM_REGS];
144
145 return examine_frame (start_pc, dummy, 0);
146 }
147
148 CORE_ADDR
149 z8k_addr_bits_remove (addr)
150 CORE_ADDR addr;
151 {
152 return (addr & PTR_MASK);
153 }
154
155 int
156 read_memory_pointer (x)
157 CORE_ADDR x;
158 {
159 return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
160 }
161
162 CORE_ADDR
163 frame_chain (thisframe)
164 struct frame_info *thisframe;
165 {
166 if (thisframe->prev == 0)
167 {
168 /* This is the top of the stack, let's get the sp for real */
169 }
170 if (!inside_entry_file (thisframe->pc))
171 {
172 return read_memory_pointer (thisframe->frame);
173 }
174 return 0;
175 }
176
177 void
178 init_frame_pc ()
179 {
180 abort ();
181 }
182
183 /* Put here the code to store, into a struct frame_saved_regs,
184 the addresses of the saved registers of frame described by FRAME_INFO.
185 This includes special registers such as pc and fp saved in special
186 ways in the stack frame. sp is even more special:
187 the address we return for it IS the sp for the next frame. */
188
189 void
190 z8k_frame_init_saved_regs (frame_info)
191 struct frame_info *frame_info;
192 {
193 CORE_ADDR pc;
194 int w;
195
196 frame_saved_regs_zalloc (frame_info);
197 pc = get_pc_function_start (frame_info->pc);
198
199 /* wander down the instruction stream */
200 examine_frame (pc, frame_info->saved_regs, frame_info->frame);
201
202 }
203
204 void
205 z8k_push_dummy_frame ()
206 {
207 abort ();
208 }
209
210 int
211 gdb_print_insn_z8k (memaddr, info)
212 bfd_vma memaddr;
213 disassemble_info *info;
214 {
215 if (BIG)
216 return print_insn_z8001 (memaddr, info);
217 else
218 return print_insn_z8002 (memaddr, info);
219 }
220
221 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
222 is not the address of a valid instruction, the address of the next
223 instruction beyond ADDR otherwise. *PWORD1 receives the first word
224 of the instruction. */
225
226 CORE_ADDR
227 NEXT_PROLOGUE_INSN (addr, lim, pword1)
228 CORE_ADDR addr;
229 CORE_ADDR lim;
230 short *pword1;
231 {
232 char buf[2];
233 if (addr < lim + 8)
234 {
235 read_memory (addr, buf, 2);
236 *pword1 = extract_signed_integer (buf, 2);
237
238 return addr + 2;
239 }
240 return 0;
241 }
242
243 #if 0
244 /* Put here the code to store, into a struct frame_saved_regs,
245 the addresses of the saved registers of frame described by FRAME_INFO.
246 This includes special registers such as pc and fp saved in special
247 ways in the stack frame. sp is even more special:
248 the address we return for it IS the sp for the next frame.
249
250 We cache the result of doing this in the frame_cache_obstack, since
251 it is fairly expensive. */
252
253 void
254 frame_find_saved_regs (fip, fsrp)
255 struct frame_info *fip;
256 struct frame_saved_regs *fsrp;
257 {
258 int locals;
259 CORE_ADDR pc;
260 CORE_ADDR adr;
261 int i;
262
263 memset (fsrp, 0, sizeof *fsrp);
264
265 pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
266
267 {
268 adr = FRAME_FP (fip) - locals;
269 for (i = 0; i < 8; i++)
270 {
271 int word = read_memory_short (pc);
272
273 pc += 2;
274 if (IS_PUSHL (word))
275 {
276 fsrp->regs[word & 0xf] = adr;
277 fsrp->regs[(word & 0xf) + 1] = adr - 2;
278 adr -= 4;
279 }
280 else if (IS_PUSHW (word))
281 {
282 fsrp->regs[word & 0xf] = adr;
283 adr -= 2;
284 }
285 else
286 break;
287 }
288
289 }
290
291 fsrp->regs[PC_REGNUM] = fip->frame + 4;
292 fsrp->regs[FP_REGNUM] = fip->frame;
293
294 }
295 #endif
296
297 int
298 saved_pc_after_call ()
299 {
300 return ADDR_BITS_REMOVE
301 (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
302 }
303
304
305 void
306 extract_return_value (type, regbuf, valbuf)
307 struct type *type;
308 char *regbuf;
309 char *valbuf;
310 {
311 int b;
312 int len = TYPE_LENGTH (type);
313
314 for (b = 0; b < len; b += 2)
315 {
316 int todo = len - b;
317
318 if (todo > 2)
319 todo = 2;
320 memcpy (valbuf + b, regbuf + b, todo);
321 }
322 }
323
324 void
325 write_return_value (type, valbuf)
326 struct type *type;
327 char *valbuf;
328 {
329 int reg;
330 int len;
331
332 for (len = 0; len < TYPE_LENGTH (type); len += 2)
333 write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
334 }
335
336 void
337 store_struct_return (addr, sp)
338 CORE_ADDR addr;
339 CORE_ADDR sp;
340 {
341 write_register (2, addr);
342 }
343
344
345 void
346 print_register_hook (regno)
347 int regno;
348 {
349 if ((regno & 1) == 0 && regno < 16)
350 {
351 unsigned short l[2];
352
353 read_relative_register_raw_bytes (regno, (char *) (l + 0));
354 read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
355 printf_unfiltered ("\t");
356 printf_unfiltered ("%04x%04x", l[0], l[1]);
357 }
358
359 if ((regno & 3) == 0 && regno < 16)
360 {
361 unsigned short l[4];
362
363 read_relative_register_raw_bytes (regno, (char *) (l + 0));
364 read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
365 read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
366 read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
367
368 printf_unfiltered ("\t");
369 printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
370 }
371 if (regno == 15)
372 {
373 unsigned short rval;
374 int i;
375
376 read_relative_register_raw_bytes (regno, (char *) (&rval));
377
378 printf_unfiltered ("\n");
379 for (i = 0; i < 10; i += 2)
380 {
381 printf_unfiltered ("(sp+%d=%04x)", i, read_memory_short (rval + i));
382 }
383 }
384
385 }
386
387 void
388 z8k_pop_frame ()
389 {
390 }
391
392 struct cmd_list_element *setmemorylist;
393
394 void
395 z8k_set_pointer_size (newsize)
396 int newsize;
397 {
398 static int oldsize = 0;
399
400 if (oldsize != newsize)
401 {
402 printf_unfiltered ("pointer size set to %d bits\n", newsize);
403 oldsize = newsize;
404 if (newsize == 32)
405 {
406 BIG = 1;
407 }
408 else
409 {
410 BIG = 0;
411 }
412 _initialize_gdbtypes ();
413 }
414 }
415
416 static void
417 segmented_command (args, from_tty)
418 char *args;
419 int from_tty;
420 {
421 z8k_set_pointer_size (32);
422 }
423
424 static void
425 unsegmented_command (args, from_tty)
426 char *args;
427 int from_tty;
428 {
429 z8k_set_pointer_size (16);
430 }
431
432 static void
433 set_memory (args, from_tty)
434 char *args;
435 int from_tty;
436 {
437 printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
438 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
439 }
440
441 void
442 _initialize_z8ktdep ()
443 {
444 tm_print_insn = gdb_print_insn_z8k;
445
446 add_prefix_cmd ("memory", no_class, set_memory,
447 "set the memory model", &setmemorylist, "set memory ", 0,
448 &setlist);
449 add_cmd ("segmented", class_support, segmented_command,
450 "Set segmented memory model.", &setmemorylist);
451 add_cmd ("unsegmented", class_support, unsegmented_command,
452 "Set unsegmented memory model.", &setmemorylist);
453
454 }