]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/aarch64.cc
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2024 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
109 static bool
110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static bool
114 is_mrs_tpidr_el0(const Insntype insn)
115 { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116
117 static unsigned int
118 aarch64_rm(const Insntype insn)
119 { return aarch64_bits(insn, 16, 5); }
120
121 static unsigned int
122 aarch64_rn(const Insntype insn)
123 { return aarch64_bits(insn, 5, 5); }
124
125 static unsigned int
126 aarch64_rd(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
130 aarch64_rt(const Insntype insn)
131 { return aarch64_bits(insn, 0, 5); }
132
133 static unsigned int
134 aarch64_rt2(const Insntype insn)
135 { return aarch64_bits(insn, 10, 5); }
136
137 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138 static Insntype
139 aarch64_adr_encode_imm(Insntype adr, int imm21)
140 {
141 gold_assert(is_adr(adr));
142 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143 const int mask19 = (1 << 19) - 1;
144 const int mask2 = 3;
145 adr &= ~((mask19 << 5) | (mask2 << 29));
146 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147 return adr;
148 }
149
150 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153 static int64_t
154 aarch64_adrp_decode_imm(const Insntype adrp)
155 {
156 const int mask19 = (1 << 19) - 1;
157 const int mask2 = 3;
158 gold_assert(is_adrp(adrp));
159 // 21-bit imm encoded in adrp.
160 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161 // Retrieve msb of 21-bit-signed imm for sign extension.
162 uint64_t msbt = (imm >> 20) & 1;
163 // Real value is imm multiplied by 4k. Value now has 33-bit information.
164 int64_t value = imm << 12;
165 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166 // with value.
167 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168 }
169
170 static bool
171 aarch64_b(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x14000000; }
173
174 static bool
175 aarch64_bl(const Insntype insn)
176 { return (insn & 0xFC000000) == 0x94000000; }
177
178 static bool
179 aarch64_blr(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181
182 static bool
183 aarch64_br(const Insntype insn)
184 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185
186 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
187 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188 static bool
189 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190
191 static bool
192 aarch64_ldst(Insntype insn)
193 { return (insn & 0x0a000000) == 0x08000000; }
194
195 static bool
196 aarch64_ldst_ex(Insntype insn)
197 { return (insn & 0x3f000000) == 0x08000000; }
198
199 static bool
200 aarch64_ldst_pcrel(Insntype insn)
201 { return (insn & 0x3b000000) == 0x18000000; }
202
203 static bool
204 aarch64_ldst_nap(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28000000; }
206
207 static bool
208 aarch64_ldstp_pi(Insntype insn)
209 { return (insn & 0x3b800000) == 0x28800000; }
210
211 static bool
212 aarch64_ldstp_o(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29000000; }
214
215 static bool
216 aarch64_ldstp_pre(Insntype insn)
217 { return (insn & 0x3b800000) == 0x29800000; }
218
219 static bool
220 aarch64_ldst_ui(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000000; }
222
223 static bool
224 aarch64_ldst_piimm(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000400; }
226
227 static bool
228 aarch64_ldst_u(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000800; }
230
231 static bool
232 aarch64_ldst_preimm(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38000c00; }
234
235 static bool
236 aarch64_ldst_ro(Insntype insn)
237 { return (insn & 0x3b200c00) == 0x38200800; }
238
239 static bool
240 aarch64_ldst_uimm(Insntype insn)
241 { return (insn & 0x3b000000) == 0x39000000; }
242
243 static bool
244 aarch64_ldst_simd_m(Insntype insn)
245 { return (insn & 0xbfbf0000) == 0x0c000000; }
246
247 static bool
248 aarch64_ldst_simd_m_pi(Insntype insn)
249 { return (insn & 0xbfa00000) == 0x0c800000; }
250
251 static bool
252 aarch64_ldst_simd_s(Insntype insn)
253 { return (insn & 0xbf9f0000) == 0x0d000000; }
254
255 static bool
256 aarch64_ldst_simd_s_pi(Insntype insn)
257 { return (insn & 0xbf800000) == 0x0d800000; }
258
259 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262 // instructions PAIR is TRUE, RT and RT2 are returned.
263 static bool
264 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265 bool *pair, bool *load)
266 {
267 uint32_t opcode;
268 unsigned int r;
269 uint32_t opc = 0;
270 uint32_t v = 0;
271 uint32_t opc_v = 0;
272
273 /* Bail out quickly if INSN doesn't fall into the load-store
274 encoding space. */
275 if (!aarch64_ldst (insn))
276 return false;
277
278 *pair = false;
279 *load = false;
280 if (aarch64_ldst_ex (insn))
281 {
282 *rt = aarch64_rt (insn);
283 *rt2 = *rt;
284 if (aarch64_bit (insn, 21) == 1)
285 {
286 *pair = true;
287 *rt2 = aarch64_rt2 (insn);
288 }
289 *load = aarch64_ld (insn);
290 return true;
291 }
292 else if (aarch64_ldst_nap (insn)
293 || aarch64_ldstp_pi (insn)
294 || aarch64_ldstp_o (insn)
295 || aarch64_ldstp_pre (insn))
296 {
297 *pair = true;
298 *rt = aarch64_rt (insn);
299 *rt2 = aarch64_rt2 (insn);
300 *load = aarch64_ld (insn);
301 return true;
302 }
303 else if (aarch64_ldst_pcrel (insn)
304 || aarch64_ldst_ui (insn)
305 || aarch64_ldst_piimm (insn)
306 || aarch64_ldst_u (insn)
307 || aarch64_ldst_preimm (insn)
308 || aarch64_ldst_ro (insn)
309 || aarch64_ldst_uimm (insn))
310 {
311 *rt = aarch64_rt (insn);
312 *rt2 = *rt;
313 if (aarch64_ldst_pcrel (insn))
314 *load = true;
315 opc = aarch64_bits (insn, 22, 2);
316 v = aarch64_bit (insn, 26);
317 opc_v = opc | (v << 2);
318 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
319 || opc_v == 5 || opc_v == 7);
320 return true;
321 }
322 else if (aarch64_ldst_simd_m (insn)
323 || aarch64_ldst_simd_m_pi (insn))
324 {
325 *rt = aarch64_rt (insn);
326 *load = aarch64_bit (insn, 22);
327 opcode = (insn >> 12) & 0xf;
328 switch (opcode)
329 {
330 case 0:
331 case 2:
332 *rt2 = *rt + 3;
333 break;
334
335 case 4:
336 case 6:
337 *rt2 = *rt + 2;
338 break;
339
340 case 7:
341 *rt2 = *rt;
342 break;
343
344 case 8:
345 case 10:
346 *rt2 = *rt + 1;
347 break;
348
349 default:
350 return false;
351 }
352 return true;
353 }
354 else if (aarch64_ldst_simd_s (insn)
355 || aarch64_ldst_simd_s_pi (insn))
356 {
357 *rt = aarch64_rt (insn);
358 r = (insn >> 21) & 1;
359 *load = aarch64_bit (insn, 22);
360 opcode = (insn >> 13) & 0x7;
361 switch (opcode)
362 {
363 case 0:
364 case 2:
365 case 4:
366 *rt2 = *rt + r;
367 break;
368
369 case 1:
370 case 3:
371 case 5:
372 *rt2 = *rt + (r == 0 ? 2 : 3);
373 break;
374
375 case 6:
376 *rt2 = *rt + r;
377 break;
378
379 case 7:
380 *rt2 = *rt + (r == 0 ? 2 : 3);
381 break;
382
383 default:
384 return false;
385 }
386 return true;
387 }
388 return false;
389 } // End of "aarch64_mem_op_p".
390
391 // Return true if INSN is mac insn.
392 static bool
393 aarch64_mac(Insntype insn)
394 { return (insn & 0xff000000) == 0x9b000000; }
395
396 // Return true if INSN is multiply-accumulate.
397 // (This is similar to implementaton in elfnn-aarch64.c.)
398 static bool
399 aarch64_mlxl(Insntype insn)
400 {
401 uint32_t op31 = aarch64_op31(insn);
402 if (aarch64_mac(insn)
403 && (op31 == 0 || op31 == 1 || op31 == 5)
404 /* Exclude MUL instructions which are encoded as a multiple-accumulate
405 with RA = XZR. */
406 && aarch64_ra(insn) != AARCH64_ZR)
407 {
408 return true;
409 }
410 return false;
411 }
412 }; // End of "AArch64_insn_utilities".
413
414
415 // Insn length in byte.
416
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419
420
421 // Zero register encoding - 31.
422
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425
426
427 // Output_data_got_aarch64 class.
428
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432 public:
433 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
434 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435 : Output_data_got<size, big_endian>(),
436 symbol_table_(symtab), layout_(layout)
437 { }
438
439 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
440 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441 // applied in a static link.
442 void
443 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445
446
447 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
448 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
449 // relocation that needs to be applied in a static link.
450 void
451 add_static_reloc(unsigned int got_offset, unsigned int r_type,
452 Sized_relobj_file<size, big_endian>* relobj,
453 unsigned int index)
454 {
455 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456 index));
457 }
458
459
460 protected:
461 // Write out the GOT table.
462 void
463 do_write(Output_file* of) {
464 // The first entry in the GOT is the address of the .dynamic section.
465 gold_assert(this->data_size() >= size / 8);
466 Output_section* dynamic = this->layout_->dynamic_section();
467 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468 this->replace_constant(0, dynamic_addr);
469 Output_data_got<size, big_endian>::do_write(of);
470
471 // Handling static relocs
472 if (this->static_relocs_.empty())
473 return;
474
475 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476
477 gold_assert(parameters->doing_static_link());
478 const off_t offset = this->offset();
479 const section_size_type oview_size =
480 convert_to_section_size_type(this->data_size());
481 unsigned char* const oview = of->get_output_view(offset, oview_size);
482
483 Output_segment* tls_segment = this->layout_->tls_segment();
484 gold_assert(tls_segment != NULL);
485
486 AArch64_address aligned_tcb_address =
487 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488 tls_segment->maximum_alignment());
489
490 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491 {
492 Static_reloc& reloc(this->static_relocs_[i]);
493 AArch64_address value;
494
495 if (!reloc.symbol_is_global())
496 {
497 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498 const Symbol_value<size>* psymval =
499 reloc.relobj()->local_symbol(reloc.index());
500
501 // We are doing static linking. Issue an error and skip this
502 // relocation if the symbol is undefined or in a discarded_section.
503 bool is_ordinary;
504 unsigned int shndx = psymval->input_shndx(&is_ordinary);
505 if ((shndx == elfcpp::SHN_UNDEF)
506 || (is_ordinary
507 && shndx != elfcpp::SHN_UNDEF
508 && !object->is_section_included(shndx)
509 && !this->symbol_table_->is_section_folded(object, shndx)))
510 {
511 gold_error(_("undefined or discarded local symbol %u from "
512 " object %s in GOT"),
513 reloc.index(), reloc.relobj()->name().c_str());
514 continue;
515 }
516 value = psymval->value(object, 0);
517 }
518 else
519 {
520 const Symbol* gsym = reloc.symbol();
521 gold_assert(gsym != NULL);
522 if (gsym->is_forwarder())
523 gsym = this->symbol_table_->resolve_forwards(gsym);
524
525 // We are doing static linking. Issue an error and skip this
526 // relocation if the symbol is undefined or in a discarded_section
527 // unless it is a weakly_undefined symbol.
528 if ((gsym->is_defined_in_discarded_section()
529 || gsym->is_undefined())
530 && !gsym->is_weak_undefined())
531 {
532 gold_error(_("undefined or discarded symbol %s in GOT"),
533 gsym->name());
534 continue;
535 }
536
537 if (!gsym->is_weak_undefined())
538 {
539 const Sized_symbol<size>* sym =
540 static_cast<const Sized_symbol<size>*>(gsym);
541 value = sym->value();
542 }
543 else
544 value = 0;
545 }
546
547 unsigned got_offset = reloc.got_offset();
548 gold_assert(got_offset < oview_size);
549
550 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552 Valtype x;
553 switch (reloc.r_type())
554 {
555 case elfcpp::R_AARCH64_TLS_DTPREL64:
556 x = value;
557 break;
558 case elfcpp::R_AARCH64_TLS_TPREL64:
559 x = value + aligned_tcb_address;
560 break;
561 default:
562 gold_unreachable();
563 }
564 elfcpp::Swap<size, big_endian>::writeval(wv, x);
565 }
566
567 of->write_output_view(offset, oview_size, oview);
568 }
569
570 private:
571 // Symbol table of the output object.
572 Symbol_table* symbol_table_;
573 // A pointer to the Layout class, so that we can find the .dynamic
574 // section when we write out the GOT section.
575 Layout* layout_;
576
577 // This class represent dynamic relocations that need to be applied by
578 // gold because we are using TLS relocations in a static link.
579 class Static_reloc
580 {
581 public:
582 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584 { this->u_.global.symbol = gsym; }
585
586 Static_reloc(unsigned int got_offset, unsigned int r_type,
587 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589 {
590 this->u_.local.relobj = relobj;
591 this->u_.local.index = index;
592 }
593
594 // Return the GOT offset.
595 unsigned int
596 got_offset() const
597 { return this->got_offset_; }
598
599 // Relocation type.
600 unsigned int
601 r_type() const
602 { return this->r_type_; }
603
604 // Whether the symbol is global or not.
605 bool
606 symbol_is_global() const
607 { return this->symbol_is_global_; }
608
609 // For a relocation against a global symbol, the global symbol.
610 Symbol*
611 symbol() const
612 {
613 gold_assert(this->symbol_is_global_);
614 return this->u_.global.symbol;
615 }
616
617 // For a relocation against a local symbol, the defining object.
618 Sized_relobj_file<size, big_endian>*
619 relobj() const
620 {
621 gold_assert(!this->symbol_is_global_);
622 return this->u_.local.relobj;
623 }
624
625 // For a relocation against a local symbol, the local symbol index.
626 unsigned int
627 index() const
628 {
629 gold_assert(!this->symbol_is_global_);
630 return this->u_.local.index;
631 }
632
633 private:
634 // GOT offset of the entry to which this relocation is applied.
635 unsigned int got_offset_;
636 // Type of relocation.
637 unsigned int r_type_;
638 // Whether this relocation is against a global symbol.
639 bool symbol_is_global_;
640 // A global or local symbol.
641 union
642 {
643 struct
644 {
645 // For a global symbol, the symbol itself.
646 Symbol* symbol;
647 } global;
648 struct
649 {
650 // For a local symbol, the object defining the symbol.
651 Sized_relobj_file<size, big_endian>* relobj;
652 // For a local symbol, the symbol index.
653 unsigned int index;
654 } local;
655 } u_;
656 }; // End of inner class Static_reloc
657
658 std::vector<Static_reloc> static_relocs_;
659 }; // End of Output_data_got_aarch64
660
661
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668
669
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672
673
674 // Stub type enum constants.
675
676 enum
677 {
678 ST_NONE = 0,
679
680 // Using adrp/add pair, 4 insns (including alignment) without mem access,
681 // the fastest stub. This has a limited jump distance, which is tested by
682 // aarch64_valid_for_adrp_p.
683 ST_ADRP_BRANCH = 1,
684
685 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686 // unlimited in jump distance.
687 ST_LONG_BRANCH_ABS = 2,
688
689 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690 // mem access, slowest one. Only used in position independent executables.
691 ST_LONG_BRANCH_PCREL = 3,
692
693 // Stub for erratum 843419 handling.
694 ST_E_843419 = 4,
695
696 // Stub for erratum 835769 handling.
697 ST_E_835769 = 5,
698
699 // Number of total stub types.
700 ST_NUMBER = 6
701 };
702
703
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706
707 template<bool big_endian>
708 struct Stub_template
709 {
710 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711 const int insn_num;
712 };
713
714
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723
724 // Single static method to get stub template for a given stub type.
725 static const Stub_template<big_endian>*
726 get_stub_template(int type)
727 {
728 static Stub_template_repertoire<big_endian> singleton;
729 return singleton.stub_templates_[type];
730 }
731
732 private:
733 // Constructor - creates/initializes all stub templates.
734 Stub_template_repertoire();
735 ~Stub_template_repertoire()
736 { }
737
738 // Disallowing copy ctor and copy assignment operator.
739 Stub_template_repertoire(Stub_template_repertoire&);
740 Stub_template_repertoire& operator=(Stub_template_repertoire&);
741
742 // Data that stores all insn templates.
743 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 }; // End of "class Stub_template_repertoire".
745
746
747 // Constructor - creates/initilizes all stub templates.
748
749 template<bool big_endian>
750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752 // Insn array definitions.
753 const static Insntype ST_NONE_INSNS[] = {};
754
755 const static Insntype ST_ADRP_BRANCH_INSNS[] =
756 {
757 0x90000010, /* adrp ip0, X */
758 /* ADR_PREL_PG_HI21(X) */
759 0x91000210, /* add ip0, ip0, :lo12:X */
760 /* ADD_ABS_LO12_NC(X) */
761 0xd61f0200, /* br ip0 */
762 0x00000000, /* alignment padding */
763 };
764
765 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766 {
767 0x58000050, /* ldr ip0, 0x8 */
768 0xd61f0200, /* br ip0 */
769 0x00000000, /* address field */
770 0x00000000, /* address fields */
771 };
772
773 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774 {
775 0x58000090, /* ldr ip0, 0x10 */
776 0x10000011, /* adr ip1, #0 */
777 0x8b110210, /* add ip0, ip0, ip1 */
778 0xd61f0200, /* br ip0 */
779 0x00000000, /* address field */
780 0x00000000, /* address field */
781 0x00000000, /* alignment padding */
782 0x00000000, /* alignment padding */
783 };
784
785 const static Insntype ST_E_843419_INSNS[] =
786 {
787 0x00000000, /* Placeholder for erratum insn. */
788 0x14000000, /* b <label> */
789 };
790
791 // ST_E_835769 has the same stub template as ST_E_843419
792 // but we reproduce the array here so that the sizeof
793 // expressions in install_insn_template will work.
794 const static Insntype ST_E_835769_INSNS[] =
795 {
796 0x00000000, /* Placeholder for erratum insn. */
797 0x14000000, /* b <label> */
798 };
799
800 #define install_insn_template(T) \
801 const static Stub_template<big_endian> template_##T = { \
802 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803 this->stub_templates_[T] = &template_##T
804
805 install_insn_template(ST_NONE);
806 install_insn_template(ST_ADRP_BRANCH);
807 install_insn_template(ST_LONG_BRANCH_ABS);
808 install_insn_template(ST_LONG_BRANCH_PCREL);
809 install_insn_template(ST_E_843419);
810 install_insn_template(ST_E_835769);
811
812 #undef install_insn_template
813 }
814
815
816 // Base class for stubs.
817
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824
825 static const AArch64_address invalid_address =
826 static_cast<AArch64_address>(-1);
827
828 static const section_offset_type invalid_offset =
829 static_cast<section_offset_type>(-1);
830
831 Stub_base(int type)
832 : destination_address_(invalid_address),
833 offset_(invalid_offset),
834 type_(type)
835 {}
836
837 ~Stub_base()
838 {}
839
840 // Get stub type.
841 int
842 type() const
843 { return this->type_; }
844
845 // Get stub template that provides stub insn information.
846 const Stub_template<big_endian>*
847 stub_template() const
848 {
849 return Stub_template_repertoire<big_endian>::
850 get_stub_template(this->type());
851 }
852
853 // Get destination address.
854 AArch64_address
855 destination_address() const
856 {
857 gold_assert(this->destination_address_ != this->invalid_address);
858 return this->destination_address_;
859 }
860
861 // Set destination address.
862 void
863 set_destination_address(AArch64_address address)
864 {
865 gold_assert(address != this->invalid_address);
866 this->destination_address_ = address;
867 }
868
869 // Reset the destination address.
870 void
871 reset_destination_address()
872 { this->destination_address_ = this->invalid_address; }
873
874 // Get offset of code stub. For Reloc_stub, it is the offset from the
875 // beginning of its containing stub table; for Erratum_stub, it is the offset
876 // from the end of reloc_stubs.
877 section_offset_type
878 offset() const
879 {
880 gold_assert(this->offset_ != this->invalid_offset);
881 return this->offset_;
882 }
883
884 // Set stub offset.
885 void
886 set_offset(section_offset_type offset)
887 { this->offset_ = offset; }
888
889 // Return the stub insn.
890 const Insntype*
891 insns() const
892 { return this->stub_template()->insns; }
893
894 // Return num of stub insns.
895 unsigned int
896 insn_num() const
897 { return this->stub_template()->insn_num; }
898
899 // Get size of the stub.
900 int
901 stub_size() const
902 {
903 return this->insn_num() *
904 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905 }
906
907 // Write stub to output file.
908 void
909 write(unsigned char* view, section_size_type view_size)
910 { this->do_write(view, view_size); }
911
912 protected:
913 // Abstract method to be implemented by sub-classes.
914 virtual void
915 do_write(unsigned char*, section_size_type) = 0;
916
917 private:
918 // The last insn of a stub is a jump to destination insn. This field records
919 // the destination address.
920 AArch64_address destination_address_;
921 // The stub offset. Note this has difference interpretations between an
922 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923 // beginning of the containing stub_table, whereas for Erratum_stub, this is
924 // the offset from the end of reloc_stubs.
925 section_offset_type offset_;
926 // Stub type.
927 const int type_;
928 }; // End of "Stub_base".
929
930
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946
947 static const int STUB_ADDR_ALIGN;
948
949 static const Insntype invalid_insn = static_cast<Insntype>(-1);
950
951 Erratum_stub(The_aarch64_relobj* relobj, int type,
952 unsigned shndx, unsigned int sh_offset)
953 : Stub_base<size, big_endian>(type), relobj_(relobj),
954 shndx_(shndx), sh_offset_(sh_offset),
955 erratum_insn_(invalid_insn),
956 erratum_address_(this->invalid_address)
957 {}
958
959 ~Erratum_stub() {}
960
961 // Return the object that contains the erratum.
962 The_aarch64_relobj*
963 relobj()
964 { return this->relobj_; }
965
966 // Get section index of the erratum.
967 unsigned int
968 shndx() const
969 { return this->shndx_; }
970
971 // Get section offset of the erratum.
972 unsigned int
973 sh_offset() const
974 { return this->sh_offset_; }
975
976 // Get the erratum insn. This is the insn located at erratum_insn_address.
977 Insntype
978 erratum_insn() const
979 {
980 gold_assert(this->erratum_insn_ != this->invalid_insn);
981 return this->erratum_insn_;
982 }
983
984 // Set the insn that the erratum happens to.
985 void
986 set_erratum_insn(Insntype insn)
987 { this->erratum_insn_ = insn; }
988
989 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991 // is no longer the one we want to write out to the stub, update erratum_insn_
992 // with relocated version. Also note that in this case xn must not be "PC", so
993 // it is safe to move the erratum insn from the origin place to the stub. For
994 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995 // relocation spot (assertion added though).
996 void
997 update_erratum_insn(Insntype insn)
998 {
999 gold_assert(this->erratum_insn_ != this->invalid_insn);
1000 switch (this->type())
1001 {
1002 case ST_E_843419:
1003 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006 Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008 Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 // Update plain ld/st insn with relocated insn.
1010 this->erratum_insn_ = insn;
1011 break;
1012 case ST_E_835769:
1013 gold_assert(insn == this->erratum_insn());
1014 break;
1015 default:
1016 gold_unreachable();
1017 }
1018 }
1019
1020
1021 // Return the address where an erratum must be done.
1022 AArch64_address
1023 erratum_address() const
1024 {
1025 gold_assert(this->erratum_address_ != this->invalid_address);
1026 return this->erratum_address_;
1027 }
1028
1029 // Set the address where an erratum must be done.
1030 void
1031 set_erratum_address(AArch64_address addr)
1032 { this->erratum_address_ = addr; }
1033
1034 // Later relaxation passes of may alter the recorded erratum and destination
1035 // address. Given an up to date output section address of shidx_ in
1036 // relobj_ we can derive the erratum_address and destination address.
1037 void
1038 update_erratum_address(AArch64_address output_section_addr)
1039 {
1040 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1041 AArch64_address updated_addr = output_section_addr + this->sh_offset_;
1042 this->set_erratum_address(updated_addr);
1043 this->set_destination_address(updated_addr + BPI);
1044 }
1045
1046 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047 // sh_offset). We do not include 'type' in the calculation, because there is
1048 // at most one stub type at (obj, shndx, sh_offset).
1049 bool
1050 operator<(const Erratum_stub<size, big_endian>& k) const
1051 {
1052 if (this == &k)
1053 return false;
1054 // We group stubs by relobj.
1055 if (this->relobj_ != k.relobj_)
1056 return this->relobj_ < k.relobj_;
1057 // Then by section index.
1058 if (this->shndx_ != k.shndx_)
1059 return this->shndx_ < k.shndx_;
1060 // Lastly by section offset.
1061 return this->sh_offset_ < k.sh_offset_;
1062 }
1063
1064 void
1065 invalidate_erratum_stub()
1066 {
1067 gold_assert(this->erratum_insn_ != invalid_insn);
1068 this->erratum_insn_ = invalid_insn;
1069 }
1070
1071 bool
1072 is_invalidated_erratum_stub()
1073 { return this->erratum_insn_ == invalid_insn; }
1074
1075 protected:
1076 virtual void
1077 do_write(unsigned char*, section_size_type);
1078
1079 private:
1080 // The object that needs to be fixed.
1081 The_aarch64_relobj* relobj_;
1082 // The shndx in the object that needs to be fixed.
1083 const unsigned int shndx_;
1084 // The section offset in the obejct that needs to be fixed.
1085 const unsigned int sh_offset_;
1086 // The insn to be fixed.
1087 Insntype erratum_insn_;
1088 // The address of the above insn.
1089 AArch64_address erratum_address_;
1090 }; // End of "Erratum_stub".
1091
1092
1093 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1096
1097 template<int size, bool big_endian>
1098 class E843419_stub : public Erratum_stub<size, big_endian>
1099 {
1100 public:
1101 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1102
1103 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1104 unsigned int shndx, unsigned int sh_offset,
1105 unsigned int adrp_sh_offset)
1106 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1107 adrp_sh_offset_(adrp_sh_offset)
1108 {}
1109
1110 unsigned int
1111 adrp_sh_offset() const
1112 { return this->adrp_sh_offset_; }
1113
1114 private:
1115 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116 // can obtain it from its parent.)
1117 const unsigned int adrp_sh_offset_;
1118 };
1119
1120
1121 template<int size, bool big_endian>
1122 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1123
1124 // Comparator used in set definition.
1125 template<int size, bool big_endian>
1126 struct Erratum_stub_less
1127 {
1128 bool
1129 operator()(const Erratum_stub<size, big_endian>* s1,
1130 const Erratum_stub<size, big_endian>* s2) const
1131 { return *s1 < *s2; }
1132 };
1133
1134 // Erratum_stub implementation for writing stub to output file.
1135
1136 template<int size, bool big_endian>
1137 void
1138 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1139 {
1140 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1141 const Insntype* insns = this->insns();
1142 uint32_t num_insns = this->insn_num();
1143 Insntype* ip = reinterpret_cast<Insntype*>(view);
1144 // For current implemented erratum 843419 and 835769, the first insn in the
1145 // stub is always a copy of the problematic insn (in 843419, the mem access
1146 // insn, in 835769, the mac insn), followed by a jump-back.
1147 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1148 for (uint32_t i = 1; i < num_insns; ++i)
1149 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1150 }
1151
1152
1153 // Reloc stub class.
1154
1155 template<int size, bool big_endian>
1156 class Reloc_stub : public Stub_base<size, big_endian>
1157 {
1158 public:
1159 typedef Reloc_stub<size, big_endian> This;
1160 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1161
1162 // Branch range. This is used to calculate the section group size, as well as
1163 // determine whether a stub is needed.
1164 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1165 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1166
1167 // Constant used to determine if an offset fits in the adrp instruction
1168 // encoding.
1169 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1170 static const int MIN_ADRP_IMM = -(1 << 20);
1171
1172 static const int BYTES_PER_INSN = 4;
1173 static const int STUB_ADDR_ALIGN;
1174
1175 // Determine whether the offset fits in the jump/branch instruction.
1176 static bool
1177 aarch64_valid_branch_offset_p(int64_t offset)
1178 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1179
1180 // Determine whether the offset fits in the adrp immediate field.
1181 static bool
1182 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1183 {
1184 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1185 int64_t adrp_imm = Reloc::Page (dest) - Reloc::Page (location);
1186 adrp_imm = adrp_imm < 0 ? ~(~adrp_imm >> 12) : adrp_imm >> 12;
1187 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1188 }
1189
1190 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1191 // needed.
1192 static int
1193 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1194 AArch64_address target);
1195
1196 Reloc_stub(int type)
1197 : Stub_base<size, big_endian>(type)
1198 { }
1199
1200 ~Reloc_stub()
1201 { }
1202
1203 // The key class used to index the stub instance in the stub table's stub map.
1204 class Key
1205 {
1206 public:
1207 Key(int type, const Symbol* symbol, const Relobj* relobj,
1208 unsigned int r_sym, int32_t addend)
1209 : type_(type), addend_(addend)
1210 {
1211 if (symbol != NULL)
1212 {
1213 this->r_sym_ = Reloc_stub::invalid_index;
1214 this->u_.symbol = symbol;
1215 }
1216 else
1217 {
1218 gold_assert(relobj != NULL && r_sym != invalid_index);
1219 this->r_sym_ = r_sym;
1220 this->u_.relobj = relobj;
1221 }
1222 }
1223
1224 ~Key()
1225 { }
1226
1227 // Return stub type.
1228 int
1229 type() const
1230 { return this->type_; }
1231
1232 // Return the local symbol index or invalid_index.
1233 unsigned int
1234 r_sym() const
1235 { return this->r_sym_; }
1236
1237 // Return the symbol if there is one.
1238 const Symbol*
1239 symbol() const
1240 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1241
1242 // Return the relobj if there is one.
1243 const Relobj*
1244 relobj() const
1245 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1246
1247 // Whether this equals to another key k.
1248 bool
1249 eq(const Key& k) const
1250 {
1251 return ((this->type_ == k.type_)
1252 && (this->r_sym_ == k.r_sym_)
1253 && ((this->r_sym_ != Reloc_stub::invalid_index)
1254 ? (this->u_.relobj == k.u_.relobj)
1255 : (this->u_.symbol == k.u_.symbol))
1256 && (this->addend_ == k.addend_));
1257 }
1258
1259 // Return a hash value.
1260 size_t
1261 hash_value() const
1262 {
1263 size_t name_hash_value = gold::string_hash<char>(
1264 (this->r_sym_ != Reloc_stub::invalid_index)
1265 ? this->u_.relobj->name().c_str()
1266 : this->u_.symbol->name());
1267 // We only have 4 stub types.
1268 size_t stub_type_hash_value = 0x03 & this->type_;
1269 return (name_hash_value
1270 ^ stub_type_hash_value
1271 ^ ((this->r_sym_ & 0x3fff) << 2)
1272 ^ ((this->addend_ & 0xffff) << 16));
1273 }
1274
1275 // Functors for STL associative containers.
1276 struct hash
1277 {
1278 size_t
1279 operator()(const Key& k) const
1280 { return k.hash_value(); }
1281 };
1282
1283 struct equal_to
1284 {
1285 bool
1286 operator()(const Key& k1, const Key& k2) const
1287 { return k1.eq(k2); }
1288 };
1289
1290 private:
1291 // Stub type.
1292 const int type_;
1293 // If this is a local symbol, this is the index in the defining object.
1294 // Otherwise, it is invalid_index for a global symbol.
1295 unsigned int r_sym_;
1296 // If r_sym_ is an invalid index, this points to a global symbol.
1297 // Otherwise, it points to a relobj. We used the unsized and target
1298 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1299 // Arm_relobj, in order to avoid making the stub class a template
1300 // as most of the stub machinery is endianness-neutral. However, it
1301 // may require a bit of casting done by users of this class.
1302 union
1303 {
1304 const Symbol* symbol;
1305 const Relobj* relobj;
1306 } u_;
1307 // Addend associated with a reloc.
1308 int32_t addend_;
1309 }; // End of inner class Reloc_stub::Key
1310
1311 protected:
1312 // This may be overridden in the child class.
1313 virtual void
1314 do_write(unsigned char*, section_size_type);
1315
1316 private:
1317 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1318 }; // End of Reloc_stub
1319
1320 template<int size, bool big_endian>
1321 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1322
1323 // Write data to output file.
1324
1325 template<int size, bool big_endian>
1326 void
1327 Reloc_stub<size, big_endian>::
1328 do_write(unsigned char* view, section_size_type)
1329 {
1330 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1331 const uint32_t* insns = this->insns();
1332 uint32_t num_insns = this->insn_num();
1333 Insntype* ip = reinterpret_cast<Insntype*>(view);
1334 for (uint32_t i = 0; i < num_insns; ++i)
1335 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1336 }
1337
1338
1339 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1340 // needed.
1341
1342 template<int size, bool big_endian>
1343 inline int
1344 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1345 unsigned int r_type, AArch64_address location, AArch64_address dest)
1346 {
1347 int64_t branch_offset = 0;
1348 switch(r_type)
1349 {
1350 case elfcpp::R_AARCH64_CALL26:
1351 case elfcpp::R_AARCH64_JUMP26:
1352 branch_offset = dest - location;
1353 break;
1354 default:
1355 gold_unreachable();
1356 }
1357
1358 if (aarch64_valid_branch_offset_p(branch_offset))
1359 return ST_NONE;
1360
1361 if (aarch64_valid_for_adrp_p(location, dest))
1362 return ST_ADRP_BRANCH;
1363
1364 // Always use PC-relative addressing in case of -shared or -pie.
1365 if (parameters->options().output_is_position_independent())
1366 return ST_LONG_BRANCH_PCREL;
1367
1368 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1369 // But is only applicable to non-shared or non-pie.
1370 return ST_LONG_BRANCH_ABS;
1371 }
1372
1373 // A class to hold stubs for the ARM target. This contains 2 different types of
1374 // stubs - reloc stubs and erratum stubs.
1375
1376 template<int size, bool big_endian>
1377 class Stub_table : public Output_data
1378 {
1379 public:
1380 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1381 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1382 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1383 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1384 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1385 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1386 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1387 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1388 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1389 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1390 typedef Stub_table<size, big_endian> The_stub_table;
1391 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1392 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1393 Reloc_stub_map;
1394 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1395 typedef Relocate_info<size, big_endian> The_relocate_info;
1396
1397 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1398 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1399
1400 Stub_table(The_aarch64_input_section* owner)
1401 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1402 erratum_stubs_size_(0), prev_data_size_(0)
1403 { }
1404
1405 ~Stub_table()
1406 { }
1407
1408 The_aarch64_input_section*
1409 owner() const
1410 { return owner_; }
1411
1412 // Whether this stub table is empty.
1413 bool
1414 empty() const
1415 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1416
1417 // Return the current data size.
1418 off_t
1419 current_data_size() const
1420 { return this->current_data_size_for_child(); }
1421
1422 // Add a STUB using KEY. The caller is responsible for avoiding addition
1423 // if a STUB with the same key has already been added.
1424 void
1425 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1426
1427 // Add an erratum stub into the erratum stub set. The set is ordered by
1428 // (relobj, shndx, sh_offset).
1429 void
1430 add_erratum_stub(The_erratum_stub* stub);
1431
1432 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1433 The_erratum_stub*
1434 find_erratum_stub(The_aarch64_relobj* a64relobj,
1435 unsigned int shndx, unsigned int sh_offset);
1436
1437 // Find all the erratums for a given input section. The return value is a pair
1438 // of iterators [begin, end).
1439 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1440 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1441 unsigned int shndx);
1442
1443 // Compute the erratum stub address.
1444 AArch64_address
1445 erratum_stub_address(The_erratum_stub* stub) const
1446 {
1447 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1448 The_erratum_stub::STUB_ADDR_ALIGN);
1449 r += stub->offset();
1450 return r;
1451 }
1452
1453 // Finalize stubs. No-op here, just for completeness.
1454 void
1455 finalize_stubs()
1456 { }
1457
1458 // Look up a relocation stub using KEY. Return NULL if there is none.
1459 The_reloc_stub*
1460 find_reloc_stub(The_reloc_stub_key& key)
1461 {
1462 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1463 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1464 }
1465
1466 // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1467 void
1468 relocate_reloc_stubs(const The_relocate_info*,
1469 The_target_aarch64*,
1470 Output_section*,
1471 unsigned char*,
1472 AArch64_address,
1473 section_size_type);
1474
1475 // Relocate an erratum stub.
1476 void
1477 relocate_erratum_stub(The_erratum_stub*, unsigned char*);
1478
1479 // Update data size at the end of a relaxation pass. Return true if data size
1480 // is different from that of the previous relaxation pass.
1481 bool
1482 update_data_size_changed_p()
1483 {
1484 // No addralign changed here.
1485 off_t s = align_address(this->reloc_stubs_size_,
1486 The_erratum_stub::STUB_ADDR_ALIGN)
1487 + this->erratum_stubs_size_;
1488 bool changed = (s != this->prev_data_size_);
1489 this->prev_data_size_ = s;
1490 return changed;
1491 }
1492
1493 protected:
1494 // Write out section contents.
1495 void
1496 do_write(Output_file*);
1497
1498 // Return the required alignment.
1499 uint64_t
1500 do_addralign() const
1501 {
1502 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1503 The_erratum_stub::STUB_ADDR_ALIGN);
1504 }
1505
1506 // Reset address and file offset.
1507 void
1508 do_reset_address_and_file_offset()
1509 { this->set_current_data_size_for_child(this->prev_data_size_); }
1510
1511 // Set final data size.
1512 void
1513 set_final_data_size()
1514 { this->set_data_size(this->current_data_size()); }
1515
1516 private:
1517 // Relocate one reloc stub.
1518 void
1519 relocate_reloc_stub(The_reloc_stub*,
1520 const The_relocate_info*,
1521 The_target_aarch64*,
1522 Output_section*,
1523 unsigned char*,
1524 AArch64_address,
1525 section_size_type);
1526
1527 private:
1528 // Owner of this stub table.
1529 The_aarch64_input_section* owner_;
1530 // The relocation stubs.
1531 Reloc_stub_map reloc_stubs_;
1532 // The erratum stubs.
1533 Erratum_stub_set erratum_stubs_;
1534 // Size of reloc stubs.
1535 off_t reloc_stubs_size_;
1536 // Size of erratum stubs.
1537 off_t erratum_stubs_size_;
1538 // data size of this in the previous pass.
1539 off_t prev_data_size_;
1540 }; // End of Stub_table
1541
1542
1543 // Add an erratum stub into the erratum stub set. The set is ordered by
1544 // (relobj, shndx, sh_offset).
1545
1546 template<int size, bool big_endian>
1547 void
1548 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1549 {
1550 std::pair<Erratum_stub_set_iter, bool> ret =
1551 this->erratum_stubs_.insert(stub);
1552 gold_assert(ret.second);
1553 this->erratum_stubs_size_ = align_address(
1554 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1555 stub->set_offset(this->erratum_stubs_size_);
1556 this->erratum_stubs_size_ += stub->stub_size();
1557 }
1558
1559
1560 // Find if such erratum exists for given (obj, shndx, sh_offset).
1561
1562 template<int size, bool big_endian>
1563 Erratum_stub<size, big_endian>*
1564 Stub_table<size, big_endian>::find_erratum_stub(
1565 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1566 {
1567 // A dummy object used as key to search in the set.
1568 The_erratum_stub key(a64relobj, ST_NONE,
1569 shndx, sh_offset);
1570 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1571 if (i != this->erratum_stubs_.end())
1572 {
1573 The_erratum_stub* stub(*i);
1574 gold_assert(stub->erratum_insn() != 0);
1575 return stub;
1576 }
1577 return NULL;
1578 }
1579
1580
1581 // Find all the errata for a given input section. The return value is a pair of
1582 // iterators [begin, end).
1583
1584 template<int size, bool big_endian>
1585 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1586 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1587 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1588 The_aarch64_relobj* a64relobj, unsigned int shndx)
1589 {
1590 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1591 Erratum_stub_set_iter start, end;
1592 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1593 start = this->erratum_stubs_.lower_bound(&low_key);
1594 if (start == this->erratum_stubs_.end())
1595 return Result_pair(this->erratum_stubs_.end(),
1596 this->erratum_stubs_.end());
1597 end = start;
1598 while (end != this->erratum_stubs_.end() &&
1599 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1600 ++end;
1601 return Result_pair(start, end);
1602 }
1603
1604
1605 // Add a STUB using KEY. The caller is responsible for avoiding addition
1606 // if a STUB with the same key has already been added.
1607
1608 template<int size, bool big_endian>
1609 void
1610 Stub_table<size, big_endian>::add_reloc_stub(
1611 The_reloc_stub* stub, const The_reloc_stub_key& key)
1612 {
1613 gold_assert(stub->type() == key.type());
1614 this->reloc_stubs_[key] = stub;
1615
1616 // Assign stub offset early. We can do this because we never remove
1617 // reloc stubs and they are in the beginning of the stub table.
1618 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1619 The_reloc_stub::STUB_ADDR_ALIGN);
1620 stub->set_offset(this->reloc_stubs_size_);
1621 this->reloc_stubs_size_ += stub->stub_size();
1622 }
1623
1624
1625 // Relocate an erratum stub.
1626
1627 template<int size, bool big_endian>
1628 void
1629 Stub_table<size, big_endian>::
1630 relocate_erratum_stub(The_erratum_stub* estub,
1631 unsigned char* view)
1632 {
1633 // Just for convenience.
1634 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1635
1636 gold_assert(!estub->is_invalidated_erratum_stub());
1637 AArch64_address stub_address = this->erratum_stub_address(estub);
1638 // The address of "b" in the stub that is to be "relocated".
1639 AArch64_address stub_b_insn_address;
1640 // Branch offset that is to be filled in "b" insn.
1641 int b_offset = 0;
1642 switch (estub->type())
1643 {
1644 case ST_E_843419:
1645 case ST_E_835769:
1646 // The 1st insn of the erratum could be a relocation spot,
1647 // in this case we need to fix it with
1648 // "(*i)->erratum_insn()".
1649 elfcpp::Swap<32, big_endian>::writeval(
1650 view + (stub_address - this->address()),
1651 estub->erratum_insn());
1652 // For the erratum, the 2nd insn is a b-insn to be patched
1653 // (relocated).
1654 stub_b_insn_address = stub_address + 1 * BPI;
1655 b_offset = estub->destination_address() - stub_b_insn_address;
1656 AArch64_relocate_functions<size, big_endian>::construct_b(
1657 view + (stub_b_insn_address - this->address()),
1658 ((unsigned int)(b_offset)) & 0xfffffff);
1659 break;
1660 default:
1661 gold_unreachable();
1662 break;
1663 }
1664 estub->invalidate_erratum_stub();
1665 }
1666
1667
1668 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1669 // stubs.
1670
1671 template<int size, bool big_endian>
1672 void
1673 Stub_table<size, big_endian>::
1674 relocate_reloc_stubs(const The_relocate_info* relinfo,
1675 The_target_aarch64* target_aarch64,
1676 Output_section* output_section,
1677 unsigned char* view,
1678 AArch64_address address,
1679 section_size_type view_size)
1680 {
1681 // "view_size" is the total size of the stub_table.
1682 gold_assert(address == this->address() &&
1683 view_size == static_cast<section_size_type>(this->data_size()));
1684 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1685 p != this->reloc_stubs_.end(); ++p)
1686 relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
1687 view, address, view_size);
1688 }
1689
1690
1691 // Relocate one reloc stub. This is a helper for
1692 // Stub_table::relocate_reloc_stubs().
1693
1694 template<int size, bool big_endian>
1695 void
1696 Stub_table<size, big_endian>::
1697 relocate_reloc_stub(The_reloc_stub* stub,
1698 const The_relocate_info* relinfo,
1699 The_target_aarch64* target_aarch64,
1700 Output_section* output_section,
1701 unsigned char* view,
1702 AArch64_address address,
1703 section_size_type view_size)
1704 {
1705 // "offset" is the offset from the beginning of the stub_table.
1706 section_size_type offset = stub->offset();
1707 section_size_type stub_size = stub->stub_size();
1708 // "view_size" is the total size of the stub_table.
1709 gold_assert(offset + stub_size <= view_size);
1710
1711 target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
1712 view + offset, address + offset, view_size);
1713 }
1714
1715
1716 // Write out the stubs to file.
1717
1718 template<int size, bool big_endian>
1719 void
1720 Stub_table<size, big_endian>::do_write(Output_file* of)
1721 {
1722 off_t offset = this->offset();
1723 const section_size_type oview_size =
1724 convert_to_section_size_type(this->data_size());
1725 unsigned char* const oview = of->get_output_view(offset, oview_size);
1726
1727 // Write relocation stubs.
1728 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1729 p != this->reloc_stubs_.end(); ++p)
1730 {
1731 The_reloc_stub* stub = p->second;
1732 AArch64_address address = this->address() + stub->offset();
1733 gold_assert(address ==
1734 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1735 stub->write(oview + stub->offset(), stub->stub_size());
1736 }
1737
1738 // Write erratum stubs.
1739 unsigned int erratum_stub_start_offset =
1740 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1741 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1742 p != this->erratum_stubs_.end(); ++p)
1743 {
1744 The_erratum_stub* stub(*p);
1745 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1746 stub->stub_size());
1747 }
1748
1749 of->write_output_view(this->offset(), oview_size, oview);
1750 }
1751
1752
1753 // AArch64_relobj class.
1754
1755 template<int size, bool big_endian>
1756 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1757 {
1758 public:
1759 typedef AArch64_relobj<size, big_endian> This;
1760 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1761 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1762 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1763 typedef Stub_table<size, big_endian> The_stub_table;
1764 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1765 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1766 typedef std::vector<The_stub_table*> Stub_table_list;
1767 static const AArch64_address invalid_address =
1768 static_cast<AArch64_address>(-1);
1769
1770 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1771 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1772 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1773 stub_tables_()
1774 { }
1775
1776 ~AArch64_relobj()
1777 { }
1778
1779 // Return the stub table of the SHNDX-th section if there is one.
1780 The_stub_table*
1781 stub_table(unsigned int shndx) const
1782 {
1783 gold_assert(shndx < this->stub_tables_.size());
1784 return this->stub_tables_[shndx];
1785 }
1786
1787 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1788 void
1789 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1790 {
1791 gold_assert(shndx < this->stub_tables_.size());
1792 this->stub_tables_[shndx] = stub_table;
1793 }
1794
1795 // Entrance to errata scanning.
1796 void
1797 scan_errata(unsigned int shndx,
1798 const elfcpp::Shdr<size, big_endian>&,
1799 Output_section*, const Symbol_table*,
1800 The_target_aarch64*);
1801
1802 // Scan all relocation sections for stub generation.
1803 void
1804 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1805 const Layout*);
1806
1807 // Whether a section is a scannable text section.
1808 bool
1809 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1810 const Output_section*, const Symbol_table*);
1811
1812 // Convert regular input section with index SHNDX to a relaxed section.
1813 void
1814 convert_input_section_to_relaxed_section(unsigned shndx)
1815 {
1816 // The stubs have relocations and we need to process them after writing
1817 // out the stubs. So relocation now must follow section write.
1818 this->set_section_offset(shndx, -1ULL);
1819 this->set_relocs_must_follow_section_writes();
1820 }
1821
1822 // Structure for mapping symbol position.
1823 struct Mapping_symbol_position
1824 {
1825 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1826 shndx_(shndx), offset_(offset)
1827 {}
1828
1829 // "<" comparator used in ordered_map container.
1830 bool
1831 operator<(const Mapping_symbol_position& p) const
1832 {
1833 return (this->shndx_ < p.shndx_
1834 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1835 }
1836
1837 // Section index.
1838 unsigned int shndx_;
1839
1840 // Section offset.
1841 AArch64_address offset_;
1842 };
1843
1844 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1845
1846 protected:
1847 // Post constructor setup.
1848 void
1849 do_setup()
1850 {
1851 // Call parent's setup method.
1852 Sized_relobj_file<size, big_endian>::do_setup();
1853
1854 // Initialize look-up tables.
1855 this->stub_tables_.resize(this->shnum());
1856 }
1857
1858 virtual void
1859 do_relocate_sections(
1860 const Symbol_table* symtab, const Layout* layout,
1861 const unsigned char* pshdrs, Output_file* of,
1862 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1863
1864 // Count local symbols and (optionally) record mapping info.
1865 virtual void
1866 do_count_local_symbols(Stringpool_template<char>*,
1867 Stringpool_template<char>*);
1868
1869 private:
1870 // Fix all errata in the object, and for each erratum, relocate corresponding
1871 // erratum stub.
1872 void
1873 fix_errata_and_relocate_erratum_stubs(
1874 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1875
1876 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1877 // applied.
1878 bool
1879 try_fix_erratum_843419_optimized(
1880 The_erratum_stub*, AArch64_address,
1881 typename Sized_relobj_file<size, big_endian>::View_size&);
1882
1883 // Whether a section needs to be scanned for relocation stubs.
1884 bool
1885 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1886 const Relobj::Output_sections&,
1887 const Symbol_table*, const unsigned char*);
1888
1889 // List of stub tables.
1890 Stub_table_list stub_tables_;
1891
1892 // Mapping symbol information sorted by (section index, section_offset).
1893 Mapping_symbol_info mapping_symbol_info_;
1894 }; // End of AArch64_relobj
1895
1896
1897 // Override to record mapping symbol information.
1898 template<int size, bool big_endian>
1899 void
1900 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1901 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1902 {
1903 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1904
1905 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1906 // processing if not fixing erratum.
1907 if (!parameters->options().fix_cortex_a53_843419()
1908 && !parameters->options().fix_cortex_a53_835769())
1909 return;
1910
1911 const unsigned int loccount = this->local_symbol_count();
1912 if (loccount == 0)
1913 return;
1914
1915 // Read the symbol table section header.
1916 const unsigned int symtab_shndx = this->symtab_shndx();
1917 elfcpp::Shdr<size, big_endian>
1918 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1919 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1920
1921 // Read the local symbols.
1922 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1923 gold_assert(loccount == symtabshdr.get_sh_info());
1924 off_t locsize = loccount * sym_size;
1925 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1926 locsize, true, true);
1927
1928 // For mapping symbol processing, we need to read the symbol names.
1929 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1930 if (strtab_shndx >= this->shnum())
1931 {
1932 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1933 return;
1934 }
1935
1936 elfcpp::Shdr<size, big_endian>
1937 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1938 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1939 {
1940 this->error(_("symbol table name section has wrong type: %u"),
1941 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1942 return;
1943 }
1944
1945 const char* pnames =
1946 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1947 strtabshdr.get_sh_size(),
1948 false, false));
1949
1950 // Skip the first dummy symbol.
1951 psyms += sym_size;
1952 typename Sized_relobj_file<size, big_endian>::Local_values*
1953 plocal_values = this->local_values();
1954 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1955 {
1956 elfcpp::Sym<size, big_endian> sym(psyms);
1957 Symbol_value<size>& lv((*plocal_values)[i]);
1958 AArch64_address input_value = lv.input_value();
1959
1960 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1961 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1962 // symbols.
1963 // Mapping symbols could be one of the following 4 forms -
1964 // a) $x
1965 // b) $x.<any...>
1966 // c) $d
1967 // d) $d.<any...>
1968 const char* sym_name = pnames + sym.get_st_name();
1969 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1970 && (sym_name[2] == '\0' || sym_name[2] == '.'))
1971 {
1972 bool is_ordinary;
1973 unsigned int input_shndx =
1974 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1975 gold_assert(is_ordinary);
1976
1977 Mapping_symbol_position msp(input_shndx, input_value);
1978 // Insert mapping_symbol_info into map whose ordering is defined by
1979 // (shndx, offset_within_section).
1980 this->mapping_symbol_info_[msp] = sym_name[1];
1981 }
1982 }
1983 }
1984
1985
1986 // Fix all errata in the object and for each erratum, we relocate the
1987 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1988
1989 template<int size, bool big_endian>
1990 void
1991 AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
1992 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1993 {
1994 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1995 unsigned int shnum = this->shnum();
1996 const Relobj::Output_sections& out_sections(this->output_sections());
1997 for (unsigned int i = 1; i < shnum; ++i)
1998 {
1999 The_stub_table* stub_table = this->stub_table(i);
2000 if (!stub_table)
2001 continue;
2002 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2003 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
2004 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
2005 typename Sized_relobj_file<size, big_endian>::View_size&
2006 pview((*pviews)[i]);
2007 AArch64_address view_offset = 0;
2008 if (pview.is_input_output_view)
2009 {
2010 // In this case, write_sections has not added the output offset to
2011 // the view's address, so we must do so. Currently this only happens
2012 // for a relaxed section.
2013 unsigned int index = this->adjust_shndx(i);
2014 const Output_relaxed_input_section* poris =
2015 out_sections[index]->find_relaxed_input_section(this, index);
2016 gold_assert(poris != NULL);
2017 view_offset = poris->address() - pview.address;
2018 }
2019
2020 while (p != end)
2021 {
2022 The_erratum_stub* stub = *p;
2023
2024 // Double check data before fix.
2025 gold_assert(pview.address + view_offset + stub->sh_offset()
2026 == stub->erratum_address());
2027
2028 // Update previously recorded erratum insn with relocated
2029 // version.
2030 Insntype* ip =
2031 reinterpret_cast<Insntype*>(
2032 pview.view + view_offset + stub->sh_offset());
2033 Insntype insn_to_fix = ip[0];
2034 stub->update_erratum_insn(insn_to_fix);
2035
2036 // First try to see if erratum is 843419 and if it can be fixed
2037 // without using branch-to-stub.
2038 if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
2039 {
2040 // Replace the erratum insn with a branch-to-stub.
2041 AArch64_address stub_address =
2042 stub_table->erratum_stub_address(stub);
2043 unsigned int b_offset = stub_address - stub->erratum_address();
2044 AArch64_relocate_functions<size, big_endian>::construct_b(
2045 pview.view + view_offset + stub->sh_offset(),
2046 b_offset & 0xfffffff);
2047 }
2048
2049 // Erratum fix is done (or skipped), continue to relocate erratum
2050 // stub. Note, when erratum fix is skipped (either because we
2051 // proactively change the code sequence or the code sequence is
2052 // changed by relaxation, etc), we can still safely relocate the
2053 // erratum stub, ignoring the fact the erratum could never be
2054 // executed.
2055 stub_table->relocate_erratum_stub(
2056 stub,
2057 pview.view + (stub_table->address() - pview.address));
2058
2059 // Next erratum stub.
2060 ++p;
2061 }
2062 }
2063 }
2064
2065
2066 // This is an optimization for 843419. This erratum requires the sequence begin
2067 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2068 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2069 // in this case, we do not delete the erratum stub (too late to do so), it is
2070 // merely generated without ever being called.)
2071
2072 template<int size, bool big_endian>
2073 bool
2074 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2075 The_erratum_stub* stub, AArch64_address view_offset,
2076 typename Sized_relobj_file<size, big_endian>::View_size& pview)
2077 {
2078 if (stub->type() != ST_E_843419)
2079 return false;
2080
2081 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2082 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2083 E843419_stub<size, big_endian>* e843419_stub =
2084 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2085 AArch64_address pc =
2086 pview.address + view_offset + e843419_stub->adrp_sh_offset();
2087 unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2088 Insntype* adrp_view =
2089 reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
2090 Insntype adrp_insn = adrp_view[0];
2091
2092 // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2093 // from IE -> LE relaxation etc. This is a side-effect of TLS relaxation that
2094 // ADRP has been turned into MRS, there is no erratum risk anymore.
2095 // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2096 if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2097 return true;
2098
2099 // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2100 // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2101 // Like the above case, there is no erratum risk any more, we can safely
2102 // return true.
2103 if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2104 {
2105 Insntype* prev_view =
2106 reinterpret_cast<Insntype*>(
2107 pview.view + view_offset + adrp_offset - 4);
2108 Insntype prev_insn = prev_view[0];
2109
2110 if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2111 return true;
2112 }
2113
2114 /* If we reach here, the first instruction must be ADRP. */
2115 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2116 // Get adrp 33-bit signed imm value.
2117 int64_t adrp_imm = Insn_utilities::
2118 aarch64_adrp_decode_imm(adrp_insn);
2119 // adrp - final value transferred to target register is calculated as:
2120 // PC[11:0] = Zeros(12)
2121 // adrp_dest_value = PC + adrp_imm;
2122 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2123 // adr -final value transferred to target register is calucalted as:
2124 // PC + adr_imm
2125 // So we have:
2126 // PC + adr_imm = adrp_dest_value
2127 // ==>
2128 // adr_imm = adrp_dest_value - PC
2129 int64_t adr_imm = adrp_dest_value - pc;
2130 // Check if imm fits in adr (21-bit signed).
2131 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2132 {
2133 // Convert 'adrp' into 'adr'.
2134 Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2135 adr_insn = Insn_utilities::
2136 aarch64_adr_encode_imm(adr_insn, adr_imm);
2137 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2138 return true;
2139 }
2140 return false;
2141 }
2142
2143
2144 // Relocate sections.
2145
2146 template<int size, bool big_endian>
2147 void
2148 AArch64_relobj<size, big_endian>::do_relocate_sections(
2149 const Symbol_table* symtab, const Layout* layout,
2150 const unsigned char* pshdrs, Output_file* of,
2151 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2152 {
2153 // Relocate the section data.
2154 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2155 1, this->shnum() - 1);
2156
2157 // We do not generate stubs if doing a relocatable link.
2158 if (parameters->options().relocatable())
2159 return;
2160
2161 // This part only relocates erratum stubs that belong to input sections of this
2162 // object file.
2163 if (parameters->options().fix_cortex_a53_843419()
2164 || parameters->options().fix_cortex_a53_835769())
2165 this->fix_errata_and_relocate_erratum_stubs(pviews);
2166
2167 Relocate_info<size, big_endian> relinfo;
2168 relinfo.symtab = symtab;
2169 relinfo.layout = layout;
2170 relinfo.object = this;
2171
2172 // This part relocates all reloc stubs that are contained in stub_tables of
2173 // this object file.
2174 unsigned int shnum = this->shnum();
2175 The_target_aarch64* target = The_target_aarch64::current_target();
2176
2177 for (unsigned int i = 1; i < shnum; ++i)
2178 {
2179 The_aarch64_input_section* aarch64_input_section =
2180 target->find_aarch64_input_section(this, i);
2181 if (aarch64_input_section != NULL
2182 && aarch64_input_section->is_stub_table_owner()
2183 && !aarch64_input_section->stub_table()->empty())
2184 {
2185 Output_section* os = this->output_section(i);
2186 gold_assert(os != NULL);
2187
2188 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2189 relinfo.reloc_shdr = NULL;
2190 relinfo.data_shndx = i;
2191 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2192
2193 typename Sized_relobj_file<size, big_endian>::View_size&
2194 view_struct = (*pviews)[i];
2195 gold_assert(view_struct.view != NULL);
2196
2197 The_stub_table* stub_table = aarch64_input_section->stub_table();
2198 off_t offset = stub_table->address() - view_struct.address;
2199 unsigned char* view = view_struct.view + offset;
2200 AArch64_address address = stub_table->address();
2201 section_size_type view_size = stub_table->data_size();
2202 stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
2203 view_size);
2204 }
2205 }
2206 }
2207
2208
2209 // Determine if an input section is scannable for stub processing. SHDR is
2210 // the header of the section and SHNDX is the section index. OS is the output
2211 // section for the input section and SYMTAB is the global symbol table used to
2212 // look up ICF information.
2213
2214 template<int size, bool big_endian>
2215 bool
2216 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2217 const elfcpp::Shdr<size, big_endian>& text_shdr,
2218 unsigned int text_shndx,
2219 const Output_section* os,
2220 const Symbol_table* symtab)
2221 {
2222 // Skip any empty sections, unallocated sections or sections whose
2223 // type are not SHT_PROGBITS.
2224 if (text_shdr.get_sh_size() == 0
2225 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2226 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2227 return false;
2228
2229 // Skip any discarded or ICF'ed sections.
2230 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2231 return false;
2232
2233 // Skip exception frame.
2234 if (strcmp(os->name(), ".eh_frame") == 0)
2235 return false ;
2236
2237 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2238 os->find_relaxed_input_section(this, text_shndx) != NULL);
2239
2240 return true;
2241 }
2242
2243
2244 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2245 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2246
2247 template<int size, bool big_endian>
2248 bool
2249 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2250 const elfcpp::Shdr<size, big_endian>& shdr,
2251 const Relobj::Output_sections& out_sections,
2252 const Symbol_table* symtab,
2253 const unsigned char* pshdrs)
2254 {
2255 unsigned int sh_type = shdr.get_sh_type();
2256 if (sh_type != elfcpp::SHT_RELA)
2257 return false;
2258
2259 // Ignore empty section.
2260 off_t sh_size = shdr.get_sh_size();
2261 if (sh_size == 0)
2262 return false;
2263
2264 // Ignore reloc section with unexpected symbol table. The
2265 // error will be reported in the final link.
2266 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2267 return false;
2268
2269 gold_assert(sh_type == elfcpp::SHT_RELA);
2270 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2271
2272 // Ignore reloc section with unexpected entsize or uneven size.
2273 // The error will be reported in the final link.
2274 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2275 return false;
2276
2277 // Ignore reloc section with bad info. This error will be
2278 // reported in the final link.
2279 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2280 if (text_shndx >= this->shnum())
2281 return false;
2282
2283 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2284 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2285 text_shndx * shdr_size);
2286 return this->text_section_is_scannable(text_shdr, text_shndx,
2287 out_sections[text_shndx], symtab);
2288 }
2289
2290
2291 // Scan section SHNDX for erratum 843419 and 835769.
2292
2293 template<int size, bool big_endian>
2294 void
2295 AArch64_relobj<size, big_endian>::scan_errata(
2296 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2297 Output_section* os, const Symbol_table* symtab,
2298 The_target_aarch64* target)
2299 {
2300 if (shdr.get_sh_size() == 0
2301 || (shdr.get_sh_flags() &
2302 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2303 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2304 return;
2305
2306 if (!os || symtab->is_section_folded(this, shndx)) return;
2307
2308 AArch64_address output_offset = this->get_output_section_offset(shndx);
2309 AArch64_address output_address;
2310 if (output_offset != invalid_address)
2311 output_address = os->address() + output_offset;
2312 else
2313 {
2314 const Output_relaxed_input_section* poris =
2315 os->find_relaxed_input_section(this, shndx);
2316 if (!poris) return;
2317 output_address = poris->address();
2318 }
2319
2320 // Update the addresses in previously generated erratum stubs. Unlike when
2321 // we scan relocations for stubs, if section addresses have changed due to
2322 // other relaxations we are unlikely to scan the same erratum instances
2323 // again.
2324 The_stub_table* stub_table = this->stub_table(shndx);
2325 if (stub_table)
2326 {
2327 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2328 ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
2329 for (Erratum_stub_set_iter p = ipair.first; p != ipair.second; ++p)
2330 (*p)->update_erratum_address(output_address);
2331 }
2332
2333 section_size_type input_view_size = 0;
2334 const unsigned char* input_view =
2335 this->section_contents(shndx, &input_view_size, false);
2336
2337 Mapping_symbol_position section_start(shndx, 0);
2338 // Find the first mapping symbol record within section shndx.
2339 typename Mapping_symbol_info::const_iterator p =
2340 this->mapping_symbol_info_.lower_bound(section_start);
2341 while (p != this->mapping_symbol_info_.end() &&
2342 p->first.shndx_ == shndx)
2343 {
2344 typename Mapping_symbol_info::const_iterator prev = p;
2345 ++p;
2346 if (prev->second == 'x')
2347 {
2348 section_size_type span_start =
2349 convert_to_section_size_type(prev->first.offset_);
2350 section_size_type span_end;
2351 if (p != this->mapping_symbol_info_.end()
2352 && p->first.shndx_ == shndx)
2353 span_end = convert_to_section_size_type(p->first.offset_);
2354 else
2355 span_end = convert_to_section_size_type(shdr.get_sh_size());
2356
2357 // Here we do not share the scanning code of both errata. For 843419,
2358 // only the last few insns of each page are examined, which is fast,
2359 // whereas, for 835769, every insn pair needs to be checked.
2360
2361 if (parameters->options().fix_cortex_a53_843419())
2362 target->scan_erratum_843419_span(
2363 this, shndx, span_start, span_end,
2364 const_cast<unsigned char*>(input_view), output_address);
2365
2366 if (parameters->options().fix_cortex_a53_835769())
2367 target->scan_erratum_835769_span(
2368 this, shndx, span_start, span_end,
2369 const_cast<unsigned char*>(input_view), output_address);
2370 }
2371 }
2372 }
2373
2374
2375 // Scan relocations for stub generation.
2376
2377 template<int size, bool big_endian>
2378 void
2379 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2380 The_target_aarch64* target,
2381 const Symbol_table* symtab,
2382 const Layout* layout)
2383 {
2384 unsigned int shnum = this->shnum();
2385 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2386
2387 // Read the section headers.
2388 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2389 shnum * shdr_size,
2390 true, true);
2391
2392 // To speed up processing, we set up hash tables for fast lookup of
2393 // input offsets to output addresses.
2394 this->initialize_input_to_output_maps();
2395
2396 const Relobj::Output_sections& out_sections(this->output_sections());
2397
2398 Relocate_info<size, big_endian> relinfo;
2399 relinfo.symtab = symtab;
2400 relinfo.layout = layout;
2401 relinfo.object = this;
2402
2403 // Do relocation stubs scanning.
2404 const unsigned char* p = pshdrs + shdr_size;
2405 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2406 {
2407 const elfcpp::Shdr<size, big_endian> shdr(p);
2408 if (parameters->options().fix_cortex_a53_843419()
2409 || parameters->options().fix_cortex_a53_835769())
2410 scan_errata(i, shdr, out_sections[i], symtab, target);
2411 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2412 pshdrs))
2413 {
2414 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2415 AArch64_address output_offset =
2416 this->get_output_section_offset(index);
2417 AArch64_address output_address;
2418 if (output_offset != invalid_address)
2419 {
2420 output_address = out_sections[index]->address() + output_offset;
2421 }
2422 else
2423 {
2424 // Currently this only happens for a relaxed section.
2425 const Output_relaxed_input_section* poris =
2426 out_sections[index]->find_relaxed_input_section(this, index);
2427 gold_assert(poris != NULL);
2428 output_address = poris->address();
2429 }
2430
2431 // Get the relocations.
2432 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2433 shdr.get_sh_size(),
2434 true, false);
2435
2436 // Get the section contents.
2437 section_size_type input_view_size = 0;
2438 const unsigned char* input_view =
2439 this->section_contents(index, &input_view_size, false);
2440
2441 relinfo.reloc_shndx = i;
2442 relinfo.data_shndx = index;
2443 unsigned int sh_type = shdr.get_sh_type();
2444 unsigned int reloc_size;
2445 gold_assert (sh_type == elfcpp::SHT_RELA);
2446 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2447
2448 Output_section* os = out_sections[index];
2449 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2450 shdr.get_sh_size() / reloc_size,
2451 os,
2452 output_offset == invalid_address,
2453 input_view, output_address,
2454 input_view_size);
2455 }
2456 }
2457 }
2458
2459
2460 // A class to wrap an ordinary input section containing executable code.
2461
2462 template<int size, bool big_endian>
2463 class AArch64_input_section : public Output_relaxed_input_section
2464 {
2465 public:
2466 typedef Stub_table<size, big_endian> The_stub_table;
2467
2468 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2469 : Output_relaxed_input_section(relobj, shndx, 1),
2470 stub_table_(NULL),
2471 original_contents_(NULL), original_size_(0),
2472 original_addralign_(1)
2473 { }
2474
2475 ~AArch64_input_section()
2476 { delete[] this->original_contents_; }
2477
2478 // Initialize.
2479 void
2480 init();
2481
2482 // Set the stub_table.
2483 void
2484 set_stub_table(The_stub_table* st)
2485 { this->stub_table_ = st; }
2486
2487 // Whether this is a stub table owner.
2488 bool
2489 is_stub_table_owner() const
2490 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2491
2492 // Return the original size of the section.
2493 uint32_t
2494 original_size() const
2495 { return this->original_size_; }
2496
2497 // Return the stub table.
2498 The_stub_table*
2499 stub_table()
2500 { return stub_table_; }
2501
2502 protected:
2503 // Write out this input section.
2504 void
2505 do_write(Output_file*);
2506
2507 // Return required alignment of this.
2508 uint64_t
2509 do_addralign() const
2510 {
2511 if (this->is_stub_table_owner())
2512 return std::max(this->stub_table_->addralign(),
2513 static_cast<uint64_t>(this->original_addralign_));
2514 else
2515 return this->original_addralign_;
2516 }
2517
2518 // Finalize data size.
2519 void
2520 set_final_data_size();
2521
2522 // Reset address and file offset.
2523 void
2524 do_reset_address_and_file_offset();
2525
2526 // Output offset.
2527 bool
2528 do_output_offset(const Relobj* object, unsigned int shndx,
2529 section_offset_type offset,
2530 section_offset_type* poutput) const
2531 {
2532 if ((object == this->relobj())
2533 && (shndx == this->shndx())
2534 && (offset >= 0)
2535 && (offset <=
2536 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2537 {
2538 *poutput = offset;
2539 return true;
2540 }
2541 else
2542 return false;
2543 }
2544
2545 private:
2546 // Copying is not allowed.
2547 AArch64_input_section(const AArch64_input_section&);
2548 AArch64_input_section& operator=(const AArch64_input_section&);
2549
2550 // The relocation stubs.
2551 The_stub_table* stub_table_;
2552 // Original section contents. We have to make a copy here since the file
2553 // containing the original section may not be locked when we need to access
2554 // the contents.
2555 unsigned char* original_contents_;
2556 // Section size of the original input section.
2557 uint32_t original_size_;
2558 // Address alignment of the original input section.
2559 uint32_t original_addralign_;
2560 }; // End of AArch64_input_section
2561
2562
2563 // Finalize data size.
2564
2565 template<int size, bool big_endian>
2566 void
2567 AArch64_input_section<size, big_endian>::set_final_data_size()
2568 {
2569 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2570
2571 if (this->is_stub_table_owner())
2572 {
2573 this->stub_table_->finalize_data_size();
2574 off = align_address(off, this->stub_table_->addralign());
2575 off += this->stub_table_->data_size();
2576 }
2577 this->set_data_size(off);
2578 }
2579
2580
2581 // Reset address and file offset.
2582
2583 template<int size, bool big_endian>
2584 void
2585 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2586 {
2587 // Size of the original input section contents.
2588 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2589
2590 // If this is a stub table owner, account for the stub table size.
2591 if (this->is_stub_table_owner())
2592 {
2593 The_stub_table* stub_table = this->stub_table_;
2594
2595 // Reset the stub table's address and file offset. The
2596 // current data size for child will be updated after that.
2597 stub_table_->reset_address_and_file_offset();
2598 off = align_address(off, stub_table_->addralign());
2599 off += stub_table->current_data_size();
2600 }
2601
2602 this->set_current_data_size(off);
2603 }
2604
2605
2606 // Initialize an Arm_input_section.
2607
2608 template<int size, bool big_endian>
2609 void
2610 AArch64_input_section<size, big_endian>::init()
2611 {
2612 Relobj* relobj = this->relobj();
2613 unsigned int shndx = this->shndx();
2614
2615 // We have to cache original size, alignment and contents to avoid locking
2616 // the original file.
2617 this->original_addralign_ =
2618 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2619
2620 // This is not efficient but we expect only a small number of relaxed
2621 // input sections for stubs.
2622 section_size_type section_size;
2623 const unsigned char* section_contents =
2624 relobj->section_contents(shndx, &section_size, false);
2625 this->original_size_ =
2626 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2627
2628 gold_assert(this->original_contents_ == NULL);
2629 this->original_contents_ = new unsigned char[section_size];
2630 memcpy(this->original_contents_, section_contents, section_size);
2631
2632 // We want to make this look like the original input section after
2633 // output sections are finalized.
2634 Output_section* os = relobj->output_section(shndx);
2635 off_t offset = relobj->output_section_offset(shndx);
2636 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2637 this->set_address(os->address() + offset);
2638 this->set_file_offset(os->offset() + offset);
2639 this->set_current_data_size(this->original_size_);
2640 this->finalize_data_size();
2641 }
2642
2643
2644 // Write data to output file.
2645
2646 template<int size, bool big_endian>
2647 void
2648 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2649 {
2650 // We have to write out the original section content.
2651 gold_assert(this->original_contents_ != NULL);
2652 of->write(this->offset(), this->original_contents_,
2653 this->original_size_);
2654
2655 // If this owns a stub table and it is not empty, write it.
2656 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2657 this->stub_table_->write(of);
2658 }
2659
2660
2661 // Arm output section class. This is defined mainly to add a number of stub
2662 // generation methods.
2663
2664 template<int size, bool big_endian>
2665 class AArch64_output_section : public Output_section
2666 {
2667 public:
2668 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2669 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2670 typedef Stub_table<size, big_endian> The_stub_table;
2671 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2672
2673 public:
2674 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2675 elfcpp::Elf_Xword flags)
2676 : Output_section(name, type, flags)
2677 { }
2678
2679 ~AArch64_output_section() {}
2680
2681 // Group input sections for stub generation.
2682 void
2683 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2684 const Task*);
2685
2686 private:
2687 typedef Output_section::Input_section Input_section;
2688 typedef Output_section::Input_section_list Input_section_list;
2689
2690 // Create a stub group.
2691 void
2692 create_stub_group(Input_section_list::const_iterator,
2693 Input_section_list::const_iterator,
2694 Input_section_list::const_iterator,
2695 The_target_aarch64*,
2696 std::vector<Output_relaxed_input_section*>&,
2697 const Task*);
2698 }; // End of AArch64_output_section
2699
2700
2701 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2702 // the input section that will be the owner of the stub table.
2703
2704 template<int size, bool big_endian> void
2705 AArch64_output_section<size, big_endian>::create_stub_group(
2706 Input_section_list::const_iterator first,
2707 Input_section_list::const_iterator last,
2708 Input_section_list::const_iterator owner,
2709 The_target_aarch64* target,
2710 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2711 const Task* task)
2712 {
2713 // Currently we convert ordinary input sections into relaxed sections only
2714 // at this point.
2715 The_aarch64_input_section* input_section;
2716 if (owner->is_relaxed_input_section())
2717 gold_unreachable();
2718 else
2719 {
2720 gold_assert(owner->is_input_section());
2721 // Create a new relaxed input section. We need to lock the original
2722 // file.
2723 Task_lock_obj<Object> tl(task, owner->relobj());
2724 input_section =
2725 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2726 new_relaxed_sections.push_back(input_section);
2727 }
2728
2729 // Create a stub table.
2730 The_stub_table* stub_table =
2731 target->new_stub_table(input_section);
2732
2733 input_section->set_stub_table(stub_table);
2734
2735 Input_section_list::const_iterator p = first;
2736 // Look for input sections or relaxed input sections in [first ... last].
2737 do
2738 {
2739 if (p->is_input_section() || p->is_relaxed_input_section())
2740 {
2741 // The stub table information for input sections live
2742 // in their objects.
2743 The_aarch64_relobj* aarch64_relobj =
2744 static_cast<The_aarch64_relobj*>(p->relobj());
2745 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2746 }
2747 }
2748 while (p++ != last);
2749 }
2750
2751
2752 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2753 // stub groups. We grow a stub group by adding input section until the size is
2754 // just below GROUP_SIZE. The last input section will be converted into a stub
2755 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2756 // after the stub table, effectively doubling the group size.
2757 //
2758 // This is similar to the group_sections() function in elf32-arm.c but is
2759 // implemented differently.
2760
2761 template<int size, bool big_endian>
2762 void AArch64_output_section<size, big_endian>::group_sections(
2763 section_size_type group_size,
2764 bool stubs_always_after_branch,
2765 Target_aarch64<size, big_endian>* target,
2766 const Task* task)
2767 {
2768 typedef enum
2769 {
2770 NO_GROUP,
2771 FINDING_STUB_SECTION,
2772 HAS_STUB_SECTION
2773 } State;
2774
2775 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2776
2777 State state = NO_GROUP;
2778 section_size_type off = 0;
2779 section_size_type group_begin_offset = 0;
2780 section_size_type group_end_offset = 0;
2781 section_size_type stub_table_end_offset = 0;
2782 Input_section_list::const_iterator group_begin =
2783 this->input_sections().end();
2784 Input_section_list::const_iterator stub_table =
2785 this->input_sections().end();
2786 Input_section_list::const_iterator group_end = this->input_sections().end();
2787 for (Input_section_list::const_iterator p = this->input_sections().begin();
2788 p != this->input_sections().end();
2789 ++p)
2790 {
2791 section_size_type section_begin_offset =
2792 align_address(off, p->addralign());
2793 section_size_type section_end_offset =
2794 section_begin_offset + p->data_size();
2795
2796 // Check to see if we should group the previously seen sections.
2797 switch (state)
2798 {
2799 case NO_GROUP:
2800 break;
2801
2802 case FINDING_STUB_SECTION:
2803 // Adding this section makes the group larger than GROUP_SIZE.
2804 if (section_end_offset - group_begin_offset >= group_size)
2805 {
2806 if (stubs_always_after_branch)
2807 {
2808 gold_assert(group_end != this->input_sections().end());
2809 this->create_stub_group(group_begin, group_end, group_end,
2810 target, new_relaxed_sections,
2811 task);
2812 state = NO_GROUP;
2813 }
2814 else
2815 {
2816 // Input sections up to stub_group_size bytes after the stub
2817 // table can be handled by it too.
2818 state = HAS_STUB_SECTION;
2819 stub_table = group_end;
2820 stub_table_end_offset = group_end_offset;
2821 }
2822 }
2823 break;
2824
2825 case HAS_STUB_SECTION:
2826 // Adding this section makes the post stub-section group larger
2827 // than GROUP_SIZE.
2828 gold_unreachable();
2829 // NOT SUPPORTED YET. For completeness only.
2830 if (section_end_offset - stub_table_end_offset >= group_size)
2831 {
2832 gold_assert(group_end != this->input_sections().end());
2833 this->create_stub_group(group_begin, group_end, stub_table,
2834 target, new_relaxed_sections, task);
2835 state = NO_GROUP;
2836 }
2837 break;
2838
2839 default:
2840 gold_unreachable();
2841 }
2842
2843 // If we see an input section and currently there is no group, start
2844 // a new one. Skip any empty sections. We look at the data size
2845 // instead of calling p->relobj()->section_size() to avoid locking.
2846 if ((p->is_input_section() || p->is_relaxed_input_section())
2847 && (p->data_size() != 0))
2848 {
2849 if (state == NO_GROUP)
2850 {
2851 state = FINDING_STUB_SECTION;
2852 group_begin = p;
2853 group_begin_offset = section_begin_offset;
2854 }
2855
2856 // Keep track of the last input section seen.
2857 group_end = p;
2858 group_end_offset = section_end_offset;
2859 }
2860
2861 off = section_end_offset;
2862 }
2863
2864 // Create a stub group for any ungrouped sections.
2865 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2866 {
2867 gold_assert(group_end != this->input_sections().end());
2868 this->create_stub_group(group_begin, group_end,
2869 (state == FINDING_STUB_SECTION
2870 ? group_end
2871 : stub_table),
2872 target, new_relaxed_sections, task);
2873 }
2874
2875 if (!new_relaxed_sections.empty())
2876 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2877
2878 // Update the section offsets
2879 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2880 {
2881 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2882 new_relaxed_sections[i]->relobj());
2883 unsigned int shndx = new_relaxed_sections[i]->shndx();
2884 // Tell AArch64_relobj that this input section is converted.
2885 relobj->convert_input_section_to_relaxed_section(shndx);
2886 }
2887 } // End of AArch64_output_section::group_sections
2888
2889
2890 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2891
2892
2893 // The aarch64 target class.
2894 // See the ABI at
2895 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2896 template<int size, bool big_endian>
2897 class Target_aarch64 : public Sized_target<size, big_endian>
2898 {
2899 public:
2900 typedef Target_aarch64<size, big_endian> This;
2901 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2902 Reloc_section;
2903 typedef Relocate_info<size, big_endian> The_relocate_info;
2904 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2905 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2906 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2907 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2908 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2909 typedef Stub_table<size, big_endian> The_stub_table;
2910 typedef std::vector<The_stub_table*> Stub_table_list;
2911 typedef typename Stub_table_list::iterator Stub_table_iterator;
2912 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2913 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2914 typedef Unordered_map<Section_id,
2915 AArch64_input_section<size, big_endian>*,
2916 Section_id_hash> AArch64_input_section_map;
2917 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2918 const static int TCB_SIZE = size / 8 * 2;
2919 static const Address invalid_address = static_cast<Address>(-1);
2920
2921 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2922 : Sized_target<size, big_endian>(info),
2923 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2924 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2925 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2926 got_mod_index_offset_(-1U),
2927 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2928 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2929 { }
2930
2931 // Scan the relocations to determine unreferenced sections for
2932 // garbage collection.
2933 void
2934 gc_process_relocs(Symbol_table* symtab,
2935 Layout* layout,
2936 Sized_relobj_file<size, big_endian>* object,
2937 unsigned int data_shndx,
2938 unsigned int sh_type,
2939 const unsigned char* prelocs,
2940 size_t reloc_count,
2941 Output_section* output_section,
2942 bool needs_special_offset_handling,
2943 size_t local_symbol_count,
2944 const unsigned char* plocal_symbols);
2945
2946 // Scan the relocations to look for symbol adjustments.
2947 void
2948 scan_relocs(Symbol_table* symtab,
2949 Layout* layout,
2950 Sized_relobj_file<size, big_endian>* object,
2951 unsigned int data_shndx,
2952 unsigned int sh_type,
2953 const unsigned char* prelocs,
2954 size_t reloc_count,
2955 Output_section* output_section,
2956 bool needs_special_offset_handling,
2957 size_t local_symbol_count,
2958 const unsigned char* plocal_symbols);
2959
2960 // Finalize the sections.
2961 void
2962 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2963
2964 // Return the value to use for a dynamic which requires special
2965 // treatment.
2966 uint64_t
2967 do_dynsym_value(const Symbol*) const;
2968
2969 // Relocate a section.
2970 void
2971 relocate_section(const Relocate_info<size, big_endian>*,
2972 unsigned int sh_type,
2973 const unsigned char* prelocs,
2974 size_t reloc_count,
2975 Output_section* output_section,
2976 bool needs_special_offset_handling,
2977 unsigned char* view,
2978 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2979 section_size_type view_size,
2980 const Reloc_symbol_changes*);
2981
2982 // Scan the relocs during a relocatable link.
2983 void
2984 scan_relocatable_relocs(Symbol_table* symtab,
2985 Layout* layout,
2986 Sized_relobj_file<size, big_endian>* object,
2987 unsigned int data_shndx,
2988 unsigned int sh_type,
2989 const unsigned char* prelocs,
2990 size_t reloc_count,
2991 Output_section* output_section,
2992 bool needs_special_offset_handling,
2993 size_t local_symbol_count,
2994 const unsigned char* plocal_symbols,
2995 Relocatable_relocs*);
2996
2997 // Scan the relocs for --emit-relocs.
2998 void
2999 emit_relocs_scan(Symbol_table* symtab,
3000 Layout* layout,
3001 Sized_relobj_file<size, big_endian>* object,
3002 unsigned int data_shndx,
3003 unsigned int sh_type,
3004 const unsigned char* prelocs,
3005 size_t reloc_count,
3006 Output_section* output_section,
3007 bool needs_special_offset_handling,
3008 size_t local_symbol_count,
3009 const unsigned char* plocal_syms,
3010 Relocatable_relocs* rr);
3011
3012 // Relocate a section during a relocatable link.
3013 void
3014 relocate_relocs(
3015 const Relocate_info<size, big_endian>*,
3016 unsigned int sh_type,
3017 const unsigned char* prelocs,
3018 size_t reloc_count,
3019 Output_section* output_section,
3020 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
3021 unsigned char* view,
3022 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3023 section_size_type view_size,
3024 unsigned char* reloc_view,
3025 section_size_type reloc_view_size);
3026
3027 // Return the symbol index to use for a target specific relocation.
3028 // The only target specific relocation is R_AARCH64_TLSDESC for a
3029 // local symbol, which is an absolute reloc.
3030 unsigned int
3031 do_reloc_symbol_index(void*, unsigned int r_type) const
3032 {
3033 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
3034 return 0;
3035 }
3036
3037 // Return the addend to use for a target specific relocation.
3038 uint64_t
3039 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3040
3041 // Return the PLT section.
3042 uint64_t
3043 do_plt_address_for_global(const Symbol* gsym) const
3044 { return this->plt_section()->address_for_global(gsym); }
3045
3046 uint64_t
3047 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
3048 { return this->plt_section()->address_for_local(relobj, symndx); }
3049
3050 // This function should be defined in targets that can use relocation
3051 // types to determine (implemented in local_reloc_may_be_function_pointer
3052 // and global_reloc_may_be_function_pointer)
3053 // if a function's pointer is taken. ICF uses this in safe mode to only
3054 // fold those functions whose pointer is defintely not taken.
3055 bool
3056 do_can_check_for_function_pointers() const
3057 { return true; }
3058
3059 // Return the number of entries in the PLT.
3060 unsigned int
3061 plt_entry_count() const;
3062
3063 //Return the offset of the first non-reserved PLT entry.
3064 unsigned int
3065 first_plt_entry_offset() const;
3066
3067 // Return the size of each PLT entry.
3068 unsigned int
3069 plt_entry_size() const;
3070
3071 // Create a stub table.
3072 The_stub_table*
3073 new_stub_table(The_aarch64_input_section*);
3074
3075 // Create an aarch64 input section.
3076 The_aarch64_input_section*
3077 new_aarch64_input_section(Relobj*, unsigned int);
3078
3079 // Find an aarch64 input section instance for a given OBJ and SHNDX.
3080 The_aarch64_input_section*
3081 find_aarch64_input_section(Relobj*, unsigned int) const;
3082
3083 // Return the thread control block size.
3084 unsigned int
3085 tcb_size() const { return This::TCB_SIZE; }
3086
3087 // Scan a section for stub generation.
3088 void
3089 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3090 const unsigned char*, size_t, Output_section*,
3091 bool, const unsigned char*,
3092 Address,
3093 section_size_type);
3094
3095 // Scan a relocation section for stub.
3096 template<int sh_type>
3097 void
3098 scan_reloc_section_for_stubs(
3099 const The_relocate_info* relinfo,
3100 const unsigned char* prelocs,
3101 size_t reloc_count,
3102 Output_section* output_section,
3103 bool needs_special_offset_handling,
3104 const unsigned char* view,
3105 Address view_address,
3106 section_size_type);
3107
3108 // Relocate a single reloc stub.
3109 void
3110 relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3111 Output_section*, unsigned char*, Address,
3112 section_size_type);
3113
3114 // Get the default AArch64 target.
3115 static This*
3116 current_target()
3117 {
3118 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3119 && parameters->target().get_size() == size
3120 && parameters->target().is_big_endian() == big_endian);
3121 return static_cast<This*>(parameters->sized_target<size, big_endian>());
3122 }
3123
3124
3125 // Scan erratum 843419 for a part of a section.
3126 void
3127 scan_erratum_843419_span(
3128 AArch64_relobj<size, big_endian>*,
3129 unsigned int,
3130 const section_size_type,
3131 const section_size_type,
3132 unsigned char*,
3133 Address);
3134
3135 // Scan erratum 835769 for a part of a section.
3136 void
3137 scan_erratum_835769_span(
3138 AArch64_relobj<size, big_endian>*,
3139 unsigned int,
3140 const section_size_type,
3141 const section_size_type,
3142 unsigned char*,
3143 Address);
3144
3145 protected:
3146 void
3147 do_select_as_default_target()
3148 {
3149 gold_assert(aarch64_reloc_property_table == NULL);
3150 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3151 }
3152
3153 // Add a new reloc argument, returning the index in the vector.
3154 size_t
3155 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3156 unsigned int r_sym)
3157 {
3158 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3159 return this->tlsdesc_reloc_info_.size() - 1;
3160 }
3161
3162 virtual Output_data_plt_aarch64<size, big_endian>*
3163 do_make_data_plt(Layout* layout,
3164 Output_data_got_aarch64<size, big_endian>* got,
3165 Output_data_space* got_plt,
3166 Output_data_space* got_irelative)
3167 {
3168 return new Output_data_plt_aarch64_standard<size, big_endian>(
3169 layout, got, got_plt, got_irelative);
3170 }
3171
3172
3173 // do_make_elf_object to override the same function in the base class.
3174 Object*
3175 do_make_elf_object(const std::string&, Input_file*, off_t,
3176 const elfcpp::Ehdr<size, big_endian>&);
3177
3178 Output_data_plt_aarch64<size, big_endian>*
3179 make_data_plt(Layout* layout,
3180 Output_data_got_aarch64<size, big_endian>* got,
3181 Output_data_space* got_plt,
3182 Output_data_space* got_irelative)
3183 {
3184 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3185 }
3186
3187 // We only need to generate stubs, and hence perform relaxation if we are
3188 // not doing relocatable linking.
3189 virtual bool
3190 do_may_relax() const
3191 { return !parameters->options().relocatable(); }
3192
3193 // Relaxation hook. This is where we do stub generation.
3194 virtual bool
3195 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3196
3197 void
3198 group_sections(Layout* layout,
3199 section_size_type group_size,
3200 bool stubs_always_after_branch,
3201 const Task* task);
3202
3203 void
3204 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3205 const Sized_symbol<size>*, unsigned int,
3206 const Symbol_value<size>*,
3207 typename elfcpp::Elf_types<size>::Elf_Swxword,
3208 Address Elf_Addr);
3209
3210 // Make an output section.
3211 Output_section*
3212 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3213 elfcpp::Elf_Xword flags)
3214 { return new The_aarch64_output_section(name, type, flags); }
3215
3216 private:
3217 // The class which scans relocations.
3218 class Scan
3219 {
3220 public:
3221 Scan()
3222 : issued_non_pic_error_(false)
3223 { }
3224
3225 inline void
3226 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3227 Sized_relobj_file<size, big_endian>* object,
3228 unsigned int data_shndx,
3229 Output_section* output_section,
3230 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3231 const elfcpp::Sym<size, big_endian>& lsym,
3232 bool is_discarded);
3233
3234 inline void
3235 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3236 Sized_relobj_file<size, big_endian>* object,
3237 unsigned int data_shndx,
3238 Output_section* output_section,
3239 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3240 Symbol* gsym);
3241
3242 inline bool
3243 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3244 Target_aarch64<size, big_endian>* ,
3245 Sized_relobj_file<size, big_endian>* ,
3246 unsigned int ,
3247 Output_section* ,
3248 const elfcpp::Rela<size, big_endian>& ,
3249 unsigned int r_type,
3250 const elfcpp::Sym<size, big_endian>&);
3251
3252 inline bool
3253 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3254 Target_aarch64<size, big_endian>* ,
3255 Sized_relobj_file<size, big_endian>* ,
3256 unsigned int ,
3257 Output_section* ,
3258 const elfcpp::Rela<size, big_endian>& ,
3259 unsigned int r_type,
3260 Symbol* gsym);
3261
3262 private:
3263 static void
3264 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3265 unsigned int r_type);
3266
3267 static void
3268 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3269 unsigned int r_type, Symbol*);
3270
3271 inline bool
3272 possible_function_pointer_reloc(unsigned int r_type);
3273
3274 void
3275 check_non_pic(Relobj*, unsigned int r_type);
3276
3277 bool
3278 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3279 unsigned int r_type);
3280
3281 // Whether we have issued an error about a non-PIC compilation.
3282 bool issued_non_pic_error_;
3283 };
3284
3285 // The class which implements relocation.
3286 class Relocate
3287 {
3288 public:
3289 Relocate()
3290 : skip_call_tls_get_addr_(false)
3291 { }
3292
3293 ~Relocate()
3294 { }
3295
3296 // Do a relocation. Return false if the caller should not issue
3297 // any warnings about this relocation.
3298 inline bool
3299 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3300 Target_aarch64*, Output_section*, size_t, const unsigned char*,
3301 const Sized_symbol<size>*, const Symbol_value<size>*,
3302 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3303 section_size_type);
3304
3305 private:
3306 inline typename AArch64_relocate_functions<size, big_endian>::Status
3307 relocate_tls(const Relocate_info<size, big_endian>*,
3308 Target_aarch64<size, big_endian>*,
3309 size_t,
3310 const elfcpp::Rela<size, big_endian>&,
3311 unsigned int r_type, const Sized_symbol<size>*,
3312 const Symbol_value<size>*,
3313 unsigned char*,
3314 typename elfcpp::Elf_types<size>::Elf_Addr);
3315
3316 inline typename AArch64_relocate_functions<size, big_endian>::Status
3317 tls_gd_to_le(
3318 const Relocate_info<size, big_endian>*,
3319 Target_aarch64<size, big_endian>*,
3320 const elfcpp::Rela<size, big_endian>&,
3321 unsigned int,
3322 unsigned char*,
3323 const Symbol_value<size>*);
3324
3325 inline typename AArch64_relocate_functions<size, big_endian>::Status
3326 tls_ld_to_le(
3327 const Relocate_info<size, big_endian>*,
3328 Target_aarch64<size, big_endian>*,
3329 const elfcpp::Rela<size, big_endian>&,
3330 unsigned int,
3331 unsigned char*,
3332 const Symbol_value<size>*);
3333
3334 inline typename AArch64_relocate_functions<size, big_endian>::Status
3335 tls_ie_to_le(
3336 const Relocate_info<size, big_endian>*,
3337 Target_aarch64<size, big_endian>*,
3338 const elfcpp::Rela<size, big_endian>&,
3339 unsigned int,
3340 unsigned char*,
3341 const Symbol_value<size>*);
3342
3343 inline typename AArch64_relocate_functions<size, big_endian>::Status
3344 tls_desc_gd_to_le(
3345 const Relocate_info<size, big_endian>*,
3346 Target_aarch64<size, big_endian>*,
3347 const elfcpp::Rela<size, big_endian>&,
3348 unsigned int,
3349 unsigned char*,
3350 const Symbol_value<size>*);
3351
3352 inline typename AArch64_relocate_functions<size, big_endian>::Status
3353 tls_desc_gd_to_ie(
3354 const Relocate_info<size, big_endian>*,
3355 Target_aarch64<size, big_endian>*,
3356 const elfcpp::Rela<size, big_endian>&,
3357 unsigned int,
3358 unsigned char*,
3359 const Symbol_value<size>*,
3360 typename elfcpp::Elf_types<size>::Elf_Addr,
3361 typename elfcpp::Elf_types<size>::Elf_Addr);
3362
3363 bool skip_call_tls_get_addr_;
3364
3365 }; // End of class Relocate
3366
3367 // Adjust TLS relocation type based on the options and whether this
3368 // is a local symbol.
3369 static tls::Tls_optimization
3370 optimize_tls_reloc(bool is_final, int r_type);
3371
3372 // Get the GOT section, creating it if necessary.
3373 Output_data_got_aarch64<size, big_endian>*
3374 got_section(Symbol_table*, Layout*);
3375
3376 // Get the GOT PLT section.
3377 Output_data_space*
3378 got_plt_section() const
3379 {
3380 gold_assert(this->got_plt_ != NULL);
3381 return this->got_plt_;
3382 }
3383
3384 // Get the GOT section for TLSDESC entries.
3385 Output_data_got<size, big_endian>*
3386 got_tlsdesc_section() const
3387 {
3388 gold_assert(this->got_tlsdesc_ != NULL);
3389 return this->got_tlsdesc_;
3390 }
3391
3392 // Create the PLT section.
3393 void
3394 make_plt_section(Symbol_table* symtab, Layout* layout);
3395
3396 // Create a PLT entry for a global symbol.
3397 void
3398 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3399
3400 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3401 void
3402 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3403 Sized_relobj_file<size, big_endian>* relobj,
3404 unsigned int local_sym_index);
3405
3406 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3407 void
3408 define_tls_base_symbol(Symbol_table*, Layout*);
3409
3410 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3411 void
3412 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3413
3414 // Create a GOT entry for the TLS module index.
3415 unsigned int
3416 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3417 Sized_relobj_file<size, big_endian>* object);
3418
3419 // Get the PLT section.
3420 Output_data_plt_aarch64<size, big_endian>*
3421 plt_section() const
3422 {
3423 gold_assert(this->plt_ != NULL);
3424 return this->plt_;
3425 }
3426
3427 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3428 // ST_E_843419, we need an additional field for adrp offset.
3429 void create_erratum_stub(
3430 AArch64_relobj<size, big_endian>* relobj,
3431 unsigned int shndx,
3432 section_size_type erratum_insn_offset,
3433 Address erratum_address,
3434 typename Insn_utilities::Insntype erratum_insn,
3435 int erratum_type,
3436 unsigned int e843419_adrp_offset=0);
3437
3438 // Return whether this is a 3-insn erratum sequence.
3439 bool is_erratum_843419_sequence(
3440 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3441 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3442 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3443
3444 // Return whether this is a 835769 sequence.
3445 // (Similarly implemented as in elfnn-aarch64.c.)
3446 bool is_erratum_835769_sequence(
3447 typename elfcpp::Swap<32,big_endian>::Valtype,
3448 typename elfcpp::Swap<32,big_endian>::Valtype);
3449
3450 // Get the dynamic reloc section, creating it if necessary.
3451 Reloc_section*
3452 rela_dyn_section(Layout*);
3453
3454 // Get the section to use for TLSDESC relocations.
3455 Reloc_section*
3456 rela_tlsdesc_section(Layout*) const;
3457
3458 // Get the section to use for IRELATIVE relocations.
3459 Reloc_section*
3460 rela_irelative_section(Layout*);
3461
3462 // Add a potential copy relocation.
3463 void
3464 copy_reloc(Symbol_table* symtab, Layout* layout,
3465 Sized_relobj_file<size, big_endian>* object,
3466 unsigned int shndx, Output_section* output_section,
3467 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3468 {
3469 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3470 this->copy_relocs_.copy_reloc(symtab, layout,
3471 symtab->get_sized_symbol<size>(sym),
3472 object, shndx, output_section,
3473 r_type, reloc.get_r_offset(),
3474 reloc.get_r_addend(),
3475 this->rela_dyn_section(layout));
3476 }
3477
3478 // Information about this specific target which we pass to the
3479 // general Target structure.
3480 static const Target::Target_info aarch64_info;
3481
3482 // The types of GOT entries needed for this platform.
3483 // These values are exposed to the ABI in an incremental link.
3484 // Do not renumber existing values without changing the version
3485 // number of the .gnu_incremental_inputs section.
3486 enum Got_type
3487 {
3488 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3489 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3490 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3491 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3492 };
3493
3494 // This type is used as the argument to the target specific
3495 // relocation routines. The only target specific reloc is
3496 // R_AARCh64_TLSDESC against a local symbol.
3497 struct Tlsdesc_info
3498 {
3499 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3500 unsigned int a_r_sym)
3501 : object(a_object), r_sym(a_r_sym)
3502 { }
3503
3504 // The object in which the local symbol is defined.
3505 Sized_relobj_file<size, big_endian>* object;
3506 // The local symbol index in the object.
3507 unsigned int r_sym;
3508 };
3509
3510 // The GOT section.
3511 Output_data_got_aarch64<size, big_endian>* got_;
3512 // The PLT section.
3513 Output_data_plt_aarch64<size, big_endian>* plt_;
3514 // The GOT PLT section.
3515 Output_data_space* got_plt_;
3516 // The GOT section for IRELATIVE relocations.
3517 Output_data_space* got_irelative_;
3518 // The GOT section for TLSDESC relocations.
3519 Output_data_got<size, big_endian>* got_tlsdesc_;
3520 // The _GLOBAL_OFFSET_TABLE_ symbol.
3521 Symbol* global_offset_table_;
3522 // The dynamic reloc section.
3523 Reloc_section* rela_dyn_;
3524 // The section to use for IRELATIVE relocs.
3525 Reloc_section* rela_irelative_;
3526 // Relocs saved to avoid a COPY reloc.
3527 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3528 // Offset of the GOT entry for the TLS module index.
3529 unsigned int got_mod_index_offset_;
3530 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3531 // specific relocation. Here we store the object and local symbol
3532 // index for the relocation.
3533 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3534 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3535 bool tls_base_symbol_defined_;
3536 // List of stub_tables
3537 Stub_table_list stub_tables_;
3538 // Actual stub group size
3539 section_size_type stub_group_size_;
3540 AArch64_input_section_map aarch64_input_section_map_;
3541 }; // End of Target_aarch64
3542
3543
3544 template<>
3545 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3546 {
3547 64, // size
3548 false, // is_big_endian
3549 elfcpp::EM_AARCH64, // machine_code
3550 false, // has_make_symbol
3551 false, // has_resolve
3552 false, // has_code_fill
3553 false, // is_default_stack_executable
3554 true, // can_icf_inline_merge_sections
3555 '\0', // wrap_char
3556 "/lib/ld.so.1", // program interpreter
3557 0x400000, // default_text_segment_address
3558 0x10000, // abi_pagesize (overridable by -z max-page-size)
3559 0x1000, // common_pagesize (overridable by -z common-page-size)
3560 false, // isolate_execinstr
3561 0, // rosegment_gap
3562 elfcpp::SHN_UNDEF, // small_common_shndx
3563 elfcpp::SHN_UNDEF, // large_common_shndx
3564 0, // small_common_section_flags
3565 0, // large_common_section_flags
3566 NULL, // attributes_section
3567 NULL, // attributes_vendor
3568 "_start", // entry_symbol_name
3569 32, // hash_entry_size
3570 elfcpp::SHT_PROGBITS, // unwind_section_type
3571 };
3572
3573 template<>
3574 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3575 {
3576 32, // size
3577 false, // is_big_endian
3578 elfcpp::EM_AARCH64, // machine_code
3579 false, // has_make_symbol
3580 false, // has_resolve
3581 false, // has_code_fill
3582 false, // is_default_stack_executable
3583 false, // can_icf_inline_merge_sections
3584 '\0', // wrap_char
3585 "/lib/ld.so.1", // program interpreter
3586 0x400000, // default_text_segment_address
3587 0x10000, // abi_pagesize (overridable by -z max-page-size)
3588 0x1000, // common_pagesize (overridable by -z common-page-size)
3589 false, // isolate_execinstr
3590 0, // rosegment_gap
3591 elfcpp::SHN_UNDEF, // small_common_shndx
3592 elfcpp::SHN_UNDEF, // large_common_shndx
3593 0, // small_common_section_flags
3594 0, // large_common_section_flags
3595 NULL, // attributes_section
3596 NULL, // attributes_vendor
3597 "_start", // entry_symbol_name
3598 32, // hash_entry_size
3599 elfcpp::SHT_PROGBITS, // unwind_section_type
3600 };
3601
3602 template<>
3603 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3604 {
3605 64, // size
3606 true, // is_big_endian
3607 elfcpp::EM_AARCH64, // machine_code
3608 false, // has_make_symbol
3609 false, // has_resolve
3610 false, // has_code_fill
3611 false, // is_default_stack_executable
3612 true, // can_icf_inline_merge_sections
3613 '\0', // wrap_char
3614 "/lib/ld.so.1", // program interpreter
3615 0x400000, // default_text_segment_address
3616 0x10000, // abi_pagesize (overridable by -z max-page-size)
3617 0x1000, // common_pagesize (overridable by -z common-page-size)
3618 false, // isolate_execinstr
3619 0, // rosegment_gap
3620 elfcpp::SHN_UNDEF, // small_common_shndx
3621 elfcpp::SHN_UNDEF, // large_common_shndx
3622 0, // small_common_section_flags
3623 0, // large_common_section_flags
3624 NULL, // attributes_section
3625 NULL, // attributes_vendor
3626 "_start", // entry_symbol_name
3627 32, // hash_entry_size
3628 elfcpp::SHT_PROGBITS, // unwind_section_type
3629 };
3630
3631 template<>
3632 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3633 {
3634 32, // size
3635 true, // is_big_endian
3636 elfcpp::EM_AARCH64, // machine_code
3637 false, // has_make_symbol
3638 false, // has_resolve
3639 false, // has_code_fill
3640 false, // is_default_stack_executable
3641 false, // can_icf_inline_merge_sections
3642 '\0', // wrap_char
3643 "/lib/ld.so.1", // program interpreter
3644 0x400000, // default_text_segment_address
3645 0x10000, // abi_pagesize (overridable by -z max-page-size)
3646 0x1000, // common_pagesize (overridable by -z common-page-size)
3647 false, // isolate_execinstr
3648 0, // rosegment_gap
3649 elfcpp::SHN_UNDEF, // small_common_shndx
3650 elfcpp::SHN_UNDEF, // large_common_shndx
3651 0, // small_common_section_flags
3652 0, // large_common_section_flags
3653 NULL, // attributes_section
3654 NULL, // attributes_vendor
3655 "_start", // entry_symbol_name
3656 32, // hash_entry_size
3657 elfcpp::SHT_PROGBITS, // unwind_section_type
3658 };
3659
3660 // Get the GOT section, creating it if necessary.
3661
3662 template<int size, bool big_endian>
3663 Output_data_got_aarch64<size, big_endian>*
3664 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3665 Layout* layout)
3666 {
3667 if (this->got_ == NULL)
3668 {
3669 gold_assert(symtab != NULL && layout != NULL);
3670
3671 // When using -z now, we can treat .got.plt as a relro section.
3672 // Without -z now, it is modified after program startup by lazy
3673 // PLT relocations.
3674 bool is_got_plt_relro = parameters->options().now();
3675 Output_section_order got_order = (is_got_plt_relro
3676 ? ORDER_RELRO
3677 : ORDER_RELRO_LAST);
3678 Output_section_order got_plt_order = (is_got_plt_relro
3679 ? ORDER_RELRO
3680 : ORDER_NON_RELRO_FIRST);
3681
3682 // Layout of .got and .got.plt sections.
3683 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3684 // ...
3685 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3686 // .gotplt[1] reserved for ld.so (resolver)
3687 // .gotplt[2] reserved
3688
3689 // Generate .got section.
3690 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3691 layout);
3692 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3693 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3694 this->got_, got_order, true);
3695 // The first word of GOT is reserved for the address of .dynamic.
3696 // We put 0 here now. The value will be replaced later in
3697 // Output_data_got_aarch64::do_write.
3698 this->got_->add_constant(0);
3699
3700 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3701 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3702 // even if there is a .got.plt section.
3703 this->global_offset_table_ =
3704 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3705 Symbol_table::PREDEFINED,
3706 this->got_,
3707 0, 0, elfcpp::STT_OBJECT,
3708 elfcpp::STB_LOCAL,
3709 elfcpp::STV_HIDDEN, 0,
3710 false, false);
3711
3712 // Generate .got.plt section.
3713 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3714 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3715 (elfcpp::SHF_ALLOC
3716 | elfcpp::SHF_WRITE),
3717 this->got_plt_, got_plt_order,
3718 is_got_plt_relro);
3719
3720 // The first three entries are reserved.
3721 this->got_plt_->set_current_data_size(
3722 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3723
3724 // If there are any IRELATIVE relocations, they get GOT entries
3725 // in .got.plt after the jump slot entries.
3726 this->got_irelative_ = new Output_data_space(size / 8,
3727 "** GOT IRELATIVE PLT");
3728 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3729 (elfcpp::SHF_ALLOC
3730 | elfcpp::SHF_WRITE),
3731 this->got_irelative_,
3732 got_plt_order,
3733 is_got_plt_relro);
3734
3735 // If there are any TLSDESC relocations, they get GOT entries in
3736 // .got.plt after the jump slot and IRELATIVE entries.
3737 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3738 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3739 (elfcpp::SHF_ALLOC
3740 | elfcpp::SHF_WRITE),
3741 this->got_tlsdesc_,
3742 got_plt_order,
3743 is_got_plt_relro);
3744
3745 if (!is_got_plt_relro)
3746 {
3747 // Those bytes can go into the relro segment.
3748 layout->increase_relro(
3749 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3750 }
3751
3752 }
3753 return this->got_;
3754 }
3755
3756 // Get the dynamic reloc section, creating it if necessary.
3757
3758 template<int size, bool big_endian>
3759 typename Target_aarch64<size, big_endian>::Reloc_section*
3760 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3761 {
3762 if (this->rela_dyn_ == NULL)
3763 {
3764 gold_assert(layout != NULL);
3765 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3766 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3767 elfcpp::SHF_ALLOC, this->rela_dyn_,
3768 ORDER_DYNAMIC_RELOCS, false);
3769 }
3770 return this->rela_dyn_;
3771 }
3772
3773 // Get the section to use for IRELATIVE relocs, creating it if
3774 // necessary. These go in .rela.dyn, but only after all other dynamic
3775 // relocations. They need to follow the other dynamic relocations so
3776 // that they can refer to global variables initialized by those
3777 // relocs.
3778
3779 template<int size, bool big_endian>
3780 typename Target_aarch64<size, big_endian>::Reloc_section*
3781 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3782 {
3783 if (this->rela_irelative_ == NULL)
3784 {
3785 // Make sure we have already created the dynamic reloc section.
3786 this->rela_dyn_section(layout);
3787 this->rela_irelative_ = new Reloc_section(false);
3788 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3789 elfcpp::SHF_ALLOC, this->rela_irelative_,
3790 ORDER_DYNAMIC_RELOCS, false);
3791 gold_assert(this->rela_dyn_->output_section()
3792 == this->rela_irelative_->output_section());
3793 }
3794 return this->rela_irelative_;
3795 }
3796
3797
3798 // do_make_elf_object to override the same function in the base class. We need
3799 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3800 // store backend specific information. Hence we need to have our own ELF object
3801 // creation.
3802
3803 template<int size, bool big_endian>
3804 Object*
3805 Target_aarch64<size, big_endian>::do_make_elf_object(
3806 const std::string& name,
3807 Input_file* input_file,
3808 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3809 {
3810 int et = ehdr.get_e_type();
3811 // ET_EXEC files are valid input for --just-symbols/-R,
3812 // and we treat them as relocatable objects.
3813 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3814 return Sized_target<size, big_endian>::do_make_elf_object(
3815 name, input_file, offset, ehdr);
3816 else if (et == elfcpp::ET_REL)
3817 {
3818 AArch64_relobj<size, big_endian>* obj =
3819 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3820 obj->setup();
3821 return obj;
3822 }
3823 else if (et == elfcpp::ET_DYN)
3824 {
3825 // Keep base implementation.
3826 Sized_dynobj<size, big_endian>* obj =
3827 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3828 obj->setup();
3829 return obj;
3830 }
3831 else
3832 {
3833 gold_error(_("%s: unsupported ELF file type %d"),
3834 name.c_str(), et);
3835 return NULL;
3836 }
3837 }
3838
3839
3840 // Scan a relocation for stub generation.
3841
3842 template<int size, bool big_endian>
3843 void
3844 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3845 const Relocate_info<size, big_endian>* relinfo,
3846 unsigned int r_type,
3847 const Sized_symbol<size>* gsym,
3848 unsigned int r_sym,
3849 const Symbol_value<size>* psymval,
3850 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3851 Address address)
3852 {
3853 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3854 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3855
3856 Symbol_value<size> symval;
3857 if (gsym != NULL)
3858 {
3859 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3860 get_reloc_property(r_type);
3861 if (gsym->use_plt_offset(arp->reference_flags()))
3862 {
3863 // This uses a PLT, change the symbol value.
3864 symval.set_output_value(this->plt_address_for_global(gsym));
3865 psymval = &symval;
3866 }
3867 else if (gsym->is_undefined())
3868 {
3869 // There is no need to generate a stub symbol if the original symbol
3870 // is undefined.
3871 gold_debug(DEBUG_TARGET,
3872 "stub: not creating a stub for undefined symbol %s in file %s",
3873 gsym->name(), aarch64_relobj->name().c_str());
3874 return;
3875 }
3876 }
3877
3878 // Get the symbol value.
3879 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3880
3881 // Owing to pipelining, the PC relative branches below actually skip
3882 // two instructions when the branch offset is 0.
3883 Address destination = static_cast<Address>(-1);
3884 switch (r_type)
3885 {
3886 case elfcpp::R_AARCH64_CALL26:
3887 case elfcpp::R_AARCH64_JUMP26:
3888 destination = value + addend;
3889 break;
3890 default:
3891 gold_unreachable();
3892 }
3893
3894 int stub_type = The_reloc_stub::
3895 stub_type_for_reloc(r_type, address, destination);
3896 if (stub_type == ST_NONE)
3897 return;
3898
3899 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3900 gold_assert(stub_table != NULL);
3901
3902 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3903 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3904 if (stub == NULL)
3905 {
3906 stub = new The_reloc_stub(stub_type);
3907 stub_table->add_reloc_stub(stub, key);
3908 }
3909 stub->set_destination_address(destination);
3910 } // End of Target_aarch64::scan_reloc_for_stub
3911
3912
3913 // This function scans a relocation section for stub generation.
3914 // The template parameter Relocate must be a class type which provides
3915 // a single function, relocate(), which implements the machine
3916 // specific part of a relocation.
3917
3918 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3919 // SHT_REL or SHT_RELA.
3920
3921 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3922 // of relocs. OUTPUT_SECTION is the output section.
3923 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3924 // mapped to output offsets.
3925
3926 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3927 // VIEW_SIZE is the size. These refer to the input section, unless
3928 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3929 // the output section.
3930
3931 template<int size, bool big_endian>
3932 template<int sh_type>
3933 void inline
3934 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3935 const Relocate_info<size, big_endian>* relinfo,
3936 const unsigned char* prelocs,
3937 size_t reloc_count,
3938 Output_section* /*output_section*/,
3939 bool /*needs_special_offset_handling*/,
3940 const unsigned char* /*view*/,
3941 Address view_address,
3942 section_size_type)
3943 {
3944 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3945
3946 const int reloc_size =
3947 Reloc_types<sh_type,size,big_endian>::reloc_size;
3948 AArch64_relobj<size, big_endian>* object =
3949 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3950 unsigned int local_count = object->local_symbol_count();
3951
3952 gold::Default_comdat_behavior default_comdat_behavior;
3953 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3954
3955 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3956 {
3957 Reltype reloc(prelocs);
3958 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3959 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3960 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3961 if (r_type != elfcpp::R_AARCH64_CALL26
3962 && r_type != elfcpp::R_AARCH64_JUMP26)
3963 continue;
3964
3965 section_offset_type offset =
3966 convert_to_section_size_type(reloc.get_r_offset());
3967
3968 // Get the addend.
3969 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3970 reloc.get_r_addend();
3971
3972 const Sized_symbol<size>* sym;
3973 Symbol_value<size> symval;
3974 const Symbol_value<size> *psymval;
3975 bool is_defined_in_discarded_section;
3976 unsigned int shndx;
3977 const Symbol* gsym = NULL;
3978 if (r_sym < local_count)
3979 {
3980 sym = NULL;
3981 psymval = object->local_symbol(r_sym);
3982
3983 // If the local symbol belongs to a section we are discarding,
3984 // and that section is a debug section, try to find the
3985 // corresponding kept section and map this symbol to its
3986 // counterpart in the kept section. The symbol must not
3987 // correspond to a section we are folding.
3988 bool is_ordinary;
3989 shndx = psymval->input_shndx(&is_ordinary);
3990 is_defined_in_discarded_section =
3991 (is_ordinary
3992 && shndx != elfcpp::SHN_UNDEF
3993 && !object->is_section_included(shndx)
3994 && !relinfo->symtab->is_section_folded(object, shndx));
3995
3996 // We need to compute the would-be final value of this local
3997 // symbol.
3998 if (!is_defined_in_discarded_section)
3999 {
4000 typedef Sized_relobj_file<size, big_endian> ObjType;
4001 if (psymval->is_section_symbol())
4002 symval.set_is_section_symbol();
4003 typename ObjType::Compute_final_local_value_status status =
4004 object->compute_final_local_value(r_sym, psymval, &symval,
4005 relinfo->symtab);
4006 if (status == ObjType::CFLV_OK)
4007 {
4008 // Currently we cannot handle a branch to a target in
4009 // a merged section. If this is the case, issue an error
4010 // and also free the merge symbol value.
4011 if (!symval.has_output_value())
4012 {
4013 const std::string& section_name =
4014 object->section_name(shndx);
4015 object->error(_("cannot handle branch to local %u "
4016 "in a merged section %s"),
4017 r_sym, section_name.c_str());
4018 }
4019 psymval = &symval;
4020 }
4021 else
4022 {
4023 // We cannot determine the final value.
4024 continue;
4025 }
4026 }
4027 }
4028 else
4029 {
4030 gsym = object->global_symbol(r_sym);
4031 gold_assert(gsym != NULL);
4032 if (gsym->is_forwarder())
4033 gsym = relinfo->symtab->resolve_forwards(gsym);
4034
4035 sym = static_cast<const Sized_symbol<size>*>(gsym);
4036 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
4037 symval.set_output_symtab_index(sym->symtab_index());
4038 else
4039 symval.set_no_output_symtab_entry();
4040
4041 // We need to compute the would-be final value of this global
4042 // symbol.
4043 const Symbol_table* symtab = relinfo->symtab;
4044 const Sized_symbol<size>* sized_symbol =
4045 symtab->get_sized_symbol<size>(gsym);
4046 Symbol_table::Compute_final_value_status status;
4047 typename elfcpp::Elf_types<size>::Elf_Addr value =
4048 symtab->compute_final_value<size>(sized_symbol, &status);
4049
4050 // Skip this if the symbol has not output section.
4051 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
4052 continue;
4053 symval.set_output_value(value);
4054
4055 if (gsym->type() == elfcpp::STT_TLS)
4056 symval.set_is_tls_symbol();
4057 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4058 symval.set_is_ifunc_symbol();
4059 psymval = &symval;
4060
4061 is_defined_in_discarded_section =
4062 (gsym->is_defined_in_discarded_section()
4063 && gsym->is_undefined());
4064 shndx = 0;
4065 }
4066
4067 Symbol_value<size> symval2;
4068 if (is_defined_in_discarded_section)
4069 {
4070 std::string name = object->section_name(relinfo->data_shndx);
4071
4072 if (comdat_behavior == CB_UNDETERMINED)
4073 comdat_behavior = default_comdat_behavior.get(name.c_str());
4074
4075 if (comdat_behavior == CB_PRETEND)
4076 {
4077 bool found;
4078 typename elfcpp::Elf_types<size>::Elf_Addr value =
4079 object->map_to_kept_section(shndx, name, &found);
4080 if (found)
4081 symval2.set_output_value(value + psymval->input_value());
4082 else
4083 symval2.set_output_value(0);
4084 }
4085 else
4086 {
4087 if (comdat_behavior == CB_ERROR)
4088 issue_discarded_error(relinfo, i, offset, r_sym, gsym);
4089 symval2.set_output_value(0);
4090 }
4091 symval2.set_no_output_symtab_entry();
4092 psymval = &symval2;
4093 }
4094
4095 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4096 addend, view_address + offset);
4097 } // End of iterating relocs in a section
4098 } // End of Target_aarch64::scan_reloc_section_for_stubs
4099
4100
4101 // Scan an input section for stub generation.
4102
4103 template<int size, bool big_endian>
4104 void
4105 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4106 const Relocate_info<size, big_endian>* relinfo,
4107 unsigned int sh_type,
4108 const unsigned char* prelocs,
4109 size_t reloc_count,
4110 Output_section* output_section,
4111 bool needs_special_offset_handling,
4112 const unsigned char* view,
4113 Address view_address,
4114 section_size_type view_size)
4115 {
4116 gold_assert(sh_type == elfcpp::SHT_RELA);
4117 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4118 relinfo,
4119 prelocs,
4120 reloc_count,
4121 output_section,
4122 needs_special_offset_handling,
4123 view,
4124 view_address,
4125 view_size);
4126 }
4127
4128
4129 // Relocate a single reloc stub.
4130
4131 template<int size, bool big_endian>
4132 void Target_aarch64<size, big_endian>::
4133 relocate_reloc_stub(The_reloc_stub* stub,
4134 const The_relocate_info*,
4135 Output_section*,
4136 unsigned char* view,
4137 Address address,
4138 section_size_type)
4139 {
4140 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4141 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4142 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4143
4144 Insntype* ip = reinterpret_cast<Insntype*>(view);
4145 int insn_number = stub->insn_num();
4146 const uint32_t* insns = stub->insns();
4147 // Check the insns are really those stub insns.
4148 for (int i = 0; i < insn_number; ++i)
4149 {
4150 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4151 gold_assert(((uint32_t)insn == insns[i]));
4152 }
4153
4154 Address dest = stub->destination_address();
4155
4156 switch(stub->type())
4157 {
4158 case ST_ADRP_BRANCH:
4159 {
4160 // 1st reloc is ADR_PREL_PG_HI21
4161 The_reloc_functions_status status =
4162 The_reloc_functions::adrp(view, dest, address);
4163 // An error should never arise in the above step. If so, please
4164 // check 'aarch64_valid_for_adrp_p'.
4165 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4166
4167 // 2nd reloc is ADD_ABS_LO12_NC
4168 const AArch64_reloc_property* arp =
4169 aarch64_reloc_property_table->get_reloc_property(
4170 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4171 gold_assert(arp != NULL);
4172 status = The_reloc_functions::template
4173 rela_general<32>(view + 4, dest, 0, arp);
4174 // An error should never arise, it is an "_NC" relocation.
4175 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4176 }
4177 break;
4178
4179 case ST_LONG_BRANCH_ABS:
4180 // 1st reloc is R_AARCH64_PREL64, at offset 8
4181 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4182 break;
4183
4184 case ST_LONG_BRANCH_PCREL:
4185 {
4186 // "PC" calculation is the 2nd insn in the stub.
4187 uint64_t offset = dest - (address + 4);
4188 // Offset is placed at offset 4 and 5.
4189 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4190 }
4191 break;
4192
4193 default:
4194 gold_unreachable();
4195 }
4196 }
4197
4198
4199 // A class to handle the PLT data.
4200 // This is an abstract base class that handles most of the linker details
4201 // but does not know the actual contents of PLT entries. The derived
4202 // classes below fill in those details.
4203
4204 template<int size, bool big_endian>
4205 class Output_data_plt_aarch64 : public Output_section_data
4206 {
4207 public:
4208 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4209 Reloc_section;
4210 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4211
4212 Output_data_plt_aarch64(Layout* layout,
4213 uint64_t addralign,
4214 Output_data_got_aarch64<size, big_endian>* got,
4215 Output_data_space* got_plt,
4216 Output_data_space* got_irelative)
4217 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4218 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4219 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4220 { this->init(layout); }
4221
4222 // Initialize the PLT section.
4223 void
4224 init(Layout* layout);
4225
4226 // Add an entry to the PLT.
4227 void
4228 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4229
4230 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4231 unsigned int
4232 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4233 Sized_relobj_file<size, big_endian>* relobj,
4234 unsigned int local_sym_index);
4235
4236 // Add the relocation for a PLT entry.
4237 void
4238 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4239 unsigned int got_offset);
4240
4241 // Add the reserved TLSDESC_PLT entry to the PLT.
4242 void
4243 reserve_tlsdesc_entry(unsigned int got_offset)
4244 { this->tlsdesc_got_offset_ = got_offset; }
4245
4246 // Return true if a TLSDESC_PLT entry has been reserved.
4247 bool
4248 has_tlsdesc_entry() const
4249 { return this->tlsdesc_got_offset_ != -1U; }
4250
4251 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4252 unsigned int
4253 get_tlsdesc_got_offset() const
4254 { return this->tlsdesc_got_offset_; }
4255
4256 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4257 unsigned int
4258 get_tlsdesc_plt_offset() const
4259 {
4260 return (this->first_plt_entry_offset() +
4261 (this->count_ + this->irelative_count_)
4262 * this->get_plt_entry_size());
4263 }
4264
4265 // Return the .rela.plt section data.
4266 Reloc_section*
4267 rela_plt()
4268 { return this->rel_; }
4269
4270 // Return where the TLSDESC relocations should go.
4271 Reloc_section*
4272 rela_tlsdesc(Layout*);
4273
4274 // Return where the IRELATIVE relocations should go in the PLT
4275 // relocations.
4276 Reloc_section*
4277 rela_irelative(Symbol_table*, Layout*);
4278
4279 // Return whether we created a section for IRELATIVE relocations.
4280 bool
4281 has_irelative_section() const
4282 { return this->irelative_rel_ != NULL; }
4283
4284 // Return the number of PLT entries.
4285 unsigned int
4286 entry_count() const
4287 { return this->count_ + this->irelative_count_; }
4288
4289 // Return the offset of the first non-reserved PLT entry.
4290 unsigned int
4291 first_plt_entry_offset() const
4292 { return this->do_first_plt_entry_offset(); }
4293
4294 // Return the size of a PLT entry.
4295 unsigned int
4296 get_plt_entry_size() const
4297 { return this->do_get_plt_entry_size(); }
4298
4299 // Return the reserved tlsdesc entry size.
4300 unsigned int
4301 get_plt_tlsdesc_entry_size() const
4302 { return this->do_get_plt_tlsdesc_entry_size(); }
4303
4304 // Return the PLT address to use for a global symbol.
4305 uint64_t
4306 address_for_global(const Symbol*);
4307
4308 // Return the PLT address to use for a local symbol.
4309 uint64_t
4310 address_for_local(const Relobj*, unsigned int symndx);
4311
4312 protected:
4313 // Fill in the first PLT entry.
4314 void
4315 fill_first_plt_entry(unsigned char* pov,
4316 Address got_address,
4317 Address plt_address)
4318 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4319
4320 // Fill in a normal PLT entry.
4321 void
4322 fill_plt_entry(unsigned char* pov,
4323 Address got_address,
4324 Address plt_address,
4325 unsigned int got_offset,
4326 unsigned int plt_offset)
4327 {
4328 this->do_fill_plt_entry(pov, got_address, plt_address,
4329 got_offset, plt_offset);
4330 }
4331
4332 // Fill in the reserved TLSDESC PLT entry.
4333 void
4334 fill_tlsdesc_entry(unsigned char* pov,
4335 Address gotplt_address,
4336 Address plt_address,
4337 Address got_base,
4338 unsigned int tlsdesc_got_offset,
4339 unsigned int plt_offset)
4340 {
4341 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4342 tlsdesc_got_offset, plt_offset);
4343 }
4344
4345 virtual unsigned int
4346 do_first_plt_entry_offset() const = 0;
4347
4348 virtual unsigned int
4349 do_get_plt_entry_size() const = 0;
4350
4351 virtual unsigned int
4352 do_get_plt_tlsdesc_entry_size() const = 0;
4353
4354 virtual void
4355 do_fill_first_plt_entry(unsigned char* pov,
4356 Address got_addr,
4357 Address plt_addr) = 0;
4358
4359 virtual void
4360 do_fill_plt_entry(unsigned char* pov,
4361 Address got_address,
4362 Address plt_address,
4363 unsigned int got_offset,
4364 unsigned int plt_offset) = 0;
4365
4366 virtual void
4367 do_fill_tlsdesc_entry(unsigned char* pov,
4368 Address gotplt_address,
4369 Address plt_address,
4370 Address got_base,
4371 unsigned int tlsdesc_got_offset,
4372 unsigned int plt_offset) = 0;
4373
4374 void
4375 do_adjust_output_section(Output_section* os);
4376
4377 // Write to a map file.
4378 void
4379 do_print_to_mapfile(Mapfile* mapfile) const
4380 { mapfile->print_output_data(this, _("** PLT")); }
4381
4382 private:
4383 // Set the final size.
4384 void
4385 set_final_data_size();
4386
4387 // Write out the PLT data.
4388 void
4389 do_write(Output_file*);
4390
4391 // The reloc section.
4392 Reloc_section* rel_;
4393
4394 // The TLSDESC relocs, if necessary. These must follow the regular
4395 // PLT relocs.
4396 Reloc_section* tlsdesc_rel_;
4397
4398 // The IRELATIVE relocs, if necessary. These must follow the
4399 // regular PLT relocations.
4400 Reloc_section* irelative_rel_;
4401
4402 // The .got section.
4403 Output_data_got_aarch64<size, big_endian>* got_;
4404
4405 // The .got.plt section.
4406 Output_data_space* got_plt_;
4407
4408 // The part of the .got.plt section used for IRELATIVE relocs.
4409 Output_data_space* got_irelative_;
4410
4411 // The number of PLT entries.
4412 unsigned int count_;
4413
4414 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4415 // follow the regular PLT entries.
4416 unsigned int irelative_count_;
4417
4418 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4419 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4420 // indicates an offset is not allocated.
4421 unsigned int tlsdesc_got_offset_;
4422 };
4423
4424 // Initialize the PLT section.
4425
4426 template<int size, bool big_endian>
4427 void
4428 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4429 {
4430 this->rel_ = new Reloc_section(false);
4431 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4432 elfcpp::SHF_ALLOC, this->rel_,
4433 ORDER_DYNAMIC_PLT_RELOCS, false);
4434 }
4435
4436 template<int size, bool big_endian>
4437 void
4438 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4439 Output_section* os)
4440 {
4441 os->set_entsize(this->get_plt_entry_size());
4442 }
4443
4444 // Add an entry to the PLT.
4445
4446 template<int size, bool big_endian>
4447 void
4448 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4449 Layout* layout, Symbol* gsym)
4450 {
4451 gold_assert(!gsym->has_plt_offset());
4452
4453 unsigned int* pcount;
4454 unsigned int plt_reserved;
4455 Output_section_data_build* got;
4456
4457 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4458 && gsym->can_use_relative_reloc(false))
4459 {
4460 pcount = &this->irelative_count_;
4461 plt_reserved = 0;
4462 got = this->got_irelative_;
4463 }
4464 else
4465 {
4466 pcount = &this->count_;
4467 plt_reserved = this->first_plt_entry_offset();
4468 got = this->got_plt_;
4469 }
4470
4471 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4472 + plt_reserved);
4473
4474 ++*pcount;
4475
4476 section_offset_type got_offset = got->current_data_size();
4477
4478 // Every PLT entry needs a GOT entry which points back to the PLT
4479 // entry (this will be changed by the dynamic linker, normally
4480 // lazily when the function is called).
4481 got->set_current_data_size(got_offset + size / 8);
4482
4483 // Every PLT entry needs a reloc.
4484 this->add_relocation(symtab, layout, gsym, got_offset);
4485
4486 // Note that we don't need to save the symbol. The contents of the
4487 // PLT are independent of which symbols are used. The symbols only
4488 // appear in the relocations.
4489 }
4490
4491 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4492 // the PLT offset.
4493
4494 template<int size, bool big_endian>
4495 unsigned int
4496 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4497 Symbol_table* symtab,
4498 Layout* layout,
4499 Sized_relobj_file<size, big_endian>* relobj,
4500 unsigned int local_sym_index)
4501 {
4502 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4503 ++this->irelative_count_;
4504
4505 section_offset_type got_offset = this->got_irelative_->current_data_size();
4506
4507 // Every PLT entry needs a GOT entry which points back to the PLT
4508 // entry.
4509 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4510
4511 // Every PLT entry needs a reloc.
4512 Reloc_section* rela = this->rela_irelative(symtab, layout);
4513 rela->add_symbolless_local_addend(relobj, local_sym_index,
4514 elfcpp::R_AARCH64_IRELATIVE,
4515 this->got_irelative_, got_offset, 0);
4516
4517 return plt_offset;
4518 }
4519
4520 // Add the relocation for a PLT entry.
4521
4522 template<int size, bool big_endian>
4523 void
4524 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4525 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4526 {
4527 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4528 && gsym->can_use_relative_reloc(false))
4529 {
4530 Reloc_section* rela = this->rela_irelative(symtab, layout);
4531 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4532 this->got_irelative_, got_offset, 0);
4533 }
4534 else
4535 {
4536 gsym->set_needs_dynsym_entry();
4537 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4538 got_offset, 0);
4539 }
4540 }
4541
4542 // Return where the TLSDESC relocations should go, creating it if
4543 // necessary. These follow the JUMP_SLOT relocations.
4544
4545 template<int size, bool big_endian>
4546 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4547 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4548 {
4549 if (this->tlsdesc_rel_ == NULL)
4550 {
4551 this->tlsdesc_rel_ = new Reloc_section(false);
4552 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4553 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4554 ORDER_DYNAMIC_PLT_RELOCS, false);
4555 gold_assert(this->tlsdesc_rel_->output_section()
4556 == this->rel_->output_section());
4557 }
4558 return this->tlsdesc_rel_;
4559 }
4560
4561 // Return where the IRELATIVE relocations should go in the PLT. These
4562 // follow the JUMP_SLOT and the TLSDESC relocations.
4563
4564 template<int size, bool big_endian>
4565 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4566 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4567 Layout* layout)
4568 {
4569 if (this->irelative_rel_ == NULL)
4570 {
4571 // Make sure we have a place for the TLSDESC relocations, in
4572 // case we see any later on.
4573 this->rela_tlsdesc(layout);
4574 this->irelative_rel_ = new Reloc_section(false);
4575 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4576 elfcpp::SHF_ALLOC, this->irelative_rel_,
4577 ORDER_DYNAMIC_PLT_RELOCS, false);
4578 gold_assert(this->irelative_rel_->output_section()
4579 == this->rel_->output_section());
4580
4581 if (parameters->doing_static_link())
4582 {
4583 // A statically linked executable will only have a .rela.plt
4584 // section to hold R_AARCH64_IRELATIVE relocs for
4585 // STT_GNU_IFUNC symbols. The library will use these
4586 // symbols to locate the IRELATIVE relocs at program startup
4587 // time.
4588 symtab->define_in_output_data("__rela_iplt_start", NULL,
4589 Symbol_table::PREDEFINED,
4590 this->irelative_rel_, 0, 0,
4591 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4592 elfcpp::STV_HIDDEN, 0, false, true);
4593 symtab->define_in_output_data("__rela_iplt_end", NULL,
4594 Symbol_table::PREDEFINED,
4595 this->irelative_rel_, 0, 0,
4596 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4597 elfcpp::STV_HIDDEN, 0, true, true);
4598 }
4599 }
4600 return this->irelative_rel_;
4601 }
4602
4603 // Return the PLT address to use for a global symbol.
4604
4605 template<int size, bool big_endian>
4606 uint64_t
4607 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4608 const Symbol* gsym)
4609 {
4610 uint64_t offset = 0;
4611 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4612 && gsym->can_use_relative_reloc(false))
4613 offset = (this->first_plt_entry_offset() +
4614 this->count_ * this->get_plt_entry_size());
4615 return this->address() + offset + gsym->plt_offset();
4616 }
4617
4618 // Return the PLT address to use for a local symbol. These are always
4619 // IRELATIVE relocs.
4620
4621 template<int size, bool big_endian>
4622 uint64_t
4623 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4624 const Relobj* object,
4625 unsigned int r_sym)
4626 {
4627 return (this->address()
4628 + this->first_plt_entry_offset()
4629 + this->count_ * this->get_plt_entry_size()
4630 + object->local_plt_offset(r_sym));
4631 }
4632
4633 // Set the final size.
4634
4635 template<int size, bool big_endian>
4636 void
4637 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4638 {
4639 unsigned int count = this->count_ + this->irelative_count_;
4640 unsigned int extra_size = 0;
4641 if (this->has_tlsdesc_entry())
4642 extra_size += this->get_plt_tlsdesc_entry_size();
4643 this->set_data_size(this->first_plt_entry_offset()
4644 + count * this->get_plt_entry_size()
4645 + extra_size);
4646 }
4647
4648 template<int size, bool big_endian>
4649 class Output_data_plt_aarch64_standard :
4650 public Output_data_plt_aarch64<size, big_endian>
4651 {
4652 public:
4653 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4654 Output_data_plt_aarch64_standard(
4655 Layout* layout,
4656 Output_data_got_aarch64<size, big_endian>* got,
4657 Output_data_space* got_plt,
4658 Output_data_space* got_irelative)
4659 : Output_data_plt_aarch64<size, big_endian>(layout,
4660 size == 32 ? 4 : 8,
4661 got, got_plt,
4662 got_irelative)
4663 { }
4664
4665 protected:
4666 // Return the offset of the first non-reserved PLT entry.
4667 virtual unsigned int
4668 do_first_plt_entry_offset() const
4669 { return this->first_plt_entry_size; }
4670
4671 // Return the size of a PLT entry
4672 virtual unsigned int
4673 do_get_plt_entry_size() const
4674 { return this->plt_entry_size; }
4675
4676 // Return the size of a tlsdesc entry
4677 virtual unsigned int
4678 do_get_plt_tlsdesc_entry_size() const
4679 { return this->plt_tlsdesc_entry_size; }
4680
4681 virtual void
4682 do_fill_first_plt_entry(unsigned char* pov,
4683 Address got_address,
4684 Address plt_address);
4685
4686 virtual void
4687 do_fill_plt_entry(unsigned char* pov,
4688 Address got_address,
4689 Address plt_address,
4690 unsigned int got_offset,
4691 unsigned int plt_offset);
4692
4693 virtual void
4694 do_fill_tlsdesc_entry(unsigned char* pov,
4695 Address gotplt_address,
4696 Address plt_address,
4697 Address got_base,
4698 unsigned int tlsdesc_got_offset,
4699 unsigned int plt_offset);
4700
4701 private:
4702 // The size of the first plt entry size.
4703 static const int first_plt_entry_size = 32;
4704 // The size of the plt entry size.
4705 static const int plt_entry_size = 16;
4706 // The size of the plt tlsdesc entry size.
4707 static const int plt_tlsdesc_entry_size = 32;
4708 // Template for the first PLT entry.
4709 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4710 // Template for subsequent PLT entries.
4711 static const uint32_t plt_entry[plt_entry_size / 4];
4712 // The reserved TLSDESC entry in the PLT for an executable.
4713 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4714 };
4715
4716 // The first entry in the PLT for an executable.
4717
4718 template<>
4719 const uint32_t
4720 Output_data_plt_aarch64_standard<32, false>::
4721 first_plt_entry[first_plt_entry_size / 4] =
4722 {
4723 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4724 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4725 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4726 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4727 0xd61f0220, /* br x17 */
4728 0xd503201f, /* nop */
4729 0xd503201f, /* nop */
4730 0xd503201f, /* nop */
4731 };
4732
4733
4734 template<>
4735 const uint32_t
4736 Output_data_plt_aarch64_standard<32, true>::
4737 first_plt_entry[first_plt_entry_size / 4] =
4738 {
4739 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4740 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4741 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4742 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4743 0xd61f0220, /* br x17 */
4744 0xd503201f, /* nop */
4745 0xd503201f, /* nop */
4746 0xd503201f, /* nop */
4747 };
4748
4749
4750 template<>
4751 const uint32_t
4752 Output_data_plt_aarch64_standard<64, false>::
4753 first_plt_entry[first_plt_entry_size / 4] =
4754 {
4755 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4756 0x90000010, /* adrp x16, PLT_GOT+16 */
4757 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4758 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4759 0xd61f0220, /* br x17 */
4760 0xd503201f, /* nop */
4761 0xd503201f, /* nop */
4762 0xd503201f, /* nop */
4763 };
4764
4765
4766 template<>
4767 const uint32_t
4768 Output_data_plt_aarch64_standard<64, true>::
4769 first_plt_entry[first_plt_entry_size / 4] =
4770 {
4771 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4772 0x90000010, /* adrp x16, PLT_GOT+16 */
4773 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4774 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4775 0xd61f0220, /* br x17 */
4776 0xd503201f, /* nop */
4777 0xd503201f, /* nop */
4778 0xd503201f, /* nop */
4779 };
4780
4781
4782 template<>
4783 const uint32_t
4784 Output_data_plt_aarch64_standard<32, false>::
4785 plt_entry[plt_entry_size / 4] =
4786 {
4787 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4788 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4789 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4790 0xd61f0220, /* br x17. */
4791 };
4792
4793
4794 template<>
4795 const uint32_t
4796 Output_data_plt_aarch64_standard<32, true>::
4797 plt_entry[plt_entry_size / 4] =
4798 {
4799 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4800 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4801 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4802 0xd61f0220, /* br x17. */
4803 };
4804
4805
4806 template<>
4807 const uint32_t
4808 Output_data_plt_aarch64_standard<64, false>::
4809 plt_entry[plt_entry_size / 4] =
4810 {
4811 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4812 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4813 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4814 0xd61f0220, /* br x17. */
4815 };
4816
4817
4818 template<>
4819 const uint32_t
4820 Output_data_plt_aarch64_standard<64, true>::
4821 plt_entry[plt_entry_size / 4] =
4822 {
4823 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4824 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4825 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4826 0xd61f0220, /* br x17. */
4827 };
4828
4829
4830 template<int size, bool big_endian>
4831 void
4832 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4833 unsigned char* pov,
4834 Address got_address,
4835 Address plt_address)
4836 {
4837 // PLT0 of the small PLT looks like this in ELF64 -
4838 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4839 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4840 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4841 // symbol resolver
4842 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4843 // GOTPLT entry for this.
4844 // br x17
4845 // PLT0 will be slightly different in ELF32 due to different got entry
4846 // size.
4847 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4848 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4849
4850 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4851 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4852 // FIXME: This only works for 64bit
4853 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4854 gotplt_2nd_ent, plt_address + 4);
4855
4856 // Fill in R_AARCH64_LDST8_LO12
4857 elfcpp::Swap<32, big_endian>::writeval(
4858 pov + 8,
4859 ((this->first_plt_entry[2] & 0xffc003ff)
4860 | ((gotplt_2nd_ent & 0xff8) << 7)));
4861
4862 // Fill in R_AARCH64_ADD_ABS_LO12
4863 elfcpp::Swap<32, big_endian>::writeval(
4864 pov + 12,
4865 ((this->first_plt_entry[3] & 0xffc003ff)
4866 | ((gotplt_2nd_ent & 0xfff) << 10)));
4867 }
4868
4869
4870 // Subsequent entries in the PLT for an executable.
4871 // FIXME: This only works for 64bit
4872
4873 template<int size, bool big_endian>
4874 void
4875 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4876 unsigned char* pov,
4877 Address got_address,
4878 Address plt_address,
4879 unsigned int got_offset,
4880 unsigned int plt_offset)
4881 {
4882 memcpy(pov, this->plt_entry, this->plt_entry_size);
4883
4884 Address gotplt_entry_address = got_address + got_offset;
4885 Address plt_entry_address = plt_address + plt_offset;
4886
4887 // Fill in R_AARCH64_PCREL_ADR_HI21
4888 AArch64_relocate_functions<size, big_endian>::adrp(
4889 pov,
4890 gotplt_entry_address,
4891 plt_entry_address);
4892
4893 // Fill in R_AARCH64_LDST64_ABS_LO12
4894 elfcpp::Swap<32, big_endian>::writeval(
4895 pov + 4,
4896 ((this->plt_entry[1] & 0xffc003ff)
4897 | ((gotplt_entry_address & 0xff8) << 7)));
4898
4899 // Fill in R_AARCH64_ADD_ABS_LO12
4900 elfcpp::Swap<32, big_endian>::writeval(
4901 pov + 8,
4902 ((this->plt_entry[2] & 0xffc003ff)
4903 | ((gotplt_entry_address & 0xfff) <<10)));
4904
4905 }
4906
4907
4908 template<>
4909 const uint32_t
4910 Output_data_plt_aarch64_standard<32, false>::
4911 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4912 {
4913 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4914 0x90000002, /* adrp x2, 0 */
4915 0x90000003, /* adrp x3, 0 */
4916 0xb9400042, /* ldr w2, [w2, #0] */
4917 0x11000063, /* add w3, w3, 0 */
4918 0xd61f0040, /* br x2 */
4919 0xd503201f, /* nop */
4920 0xd503201f, /* nop */
4921 };
4922
4923 template<>
4924 const uint32_t
4925 Output_data_plt_aarch64_standard<32, true>::
4926 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4927 {
4928 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4929 0x90000002, /* adrp x2, 0 */
4930 0x90000003, /* adrp x3, 0 */
4931 0xb9400042, /* ldr w2, [w2, #0] */
4932 0x11000063, /* add w3, w3, 0 */
4933 0xd61f0040, /* br x2 */
4934 0xd503201f, /* nop */
4935 0xd503201f, /* nop */
4936 };
4937
4938 template<>
4939 const uint32_t
4940 Output_data_plt_aarch64_standard<64, false>::
4941 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4942 {
4943 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4944 0x90000002, /* adrp x2, 0 */
4945 0x90000003, /* adrp x3, 0 */
4946 0xf9400042, /* ldr x2, [x2, #0] */
4947 0x91000063, /* add x3, x3, 0 */
4948 0xd61f0040, /* br x2 */
4949 0xd503201f, /* nop */
4950 0xd503201f, /* nop */
4951 };
4952
4953 template<>
4954 const uint32_t
4955 Output_data_plt_aarch64_standard<64, true>::
4956 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4957 {
4958 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4959 0x90000002, /* adrp x2, 0 */
4960 0x90000003, /* adrp x3, 0 */
4961 0xf9400042, /* ldr x2, [x2, #0] */
4962 0x91000063, /* add x3, x3, 0 */
4963 0xd61f0040, /* br x2 */
4964 0xd503201f, /* nop */
4965 0xd503201f, /* nop */
4966 };
4967
4968 template<int size, bool big_endian>
4969 void
4970 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4971 unsigned char* pov,
4972 Address gotplt_address,
4973 Address plt_address,
4974 Address got_base,
4975 unsigned int tlsdesc_got_offset,
4976 unsigned int plt_offset)
4977 {
4978 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4979
4980 // move DT_TLSDESC_GOT address into x2
4981 // move .got.plt address into x3
4982 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4983 Address plt_entry_address = plt_address + plt_offset;
4984
4985 // R_AARCH64_ADR_PREL_PG_HI21
4986 AArch64_relocate_functions<size, big_endian>::adrp(
4987 pov + 4,
4988 tlsdesc_got_entry,
4989 plt_entry_address + 4);
4990
4991 // R_AARCH64_ADR_PREL_PG_HI21
4992 AArch64_relocate_functions<size, big_endian>::adrp(
4993 pov + 8,
4994 gotplt_address,
4995 plt_entry_address + 8);
4996
4997 // R_AARCH64_LDST64_ABS_LO12
4998 elfcpp::Swap<32, big_endian>::writeval(
4999 pov + 12,
5000 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
5001 | ((tlsdesc_got_entry & 0xff8) << 7)));
5002
5003 // R_AARCH64_ADD_ABS_LO12
5004 elfcpp::Swap<32, big_endian>::writeval(
5005 pov + 16,
5006 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
5007 | ((gotplt_address & 0xfff) << 10)));
5008 }
5009
5010 // Write out the PLT. This uses the hand-coded instructions above,
5011 // and adjusts them as needed. This is specified by the AMD64 ABI.
5012
5013 template<int size, bool big_endian>
5014 void
5015 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
5016 {
5017 const off_t offset = this->offset();
5018 const section_size_type oview_size =
5019 convert_to_section_size_type(this->data_size());
5020 unsigned char* const oview = of->get_output_view(offset, oview_size);
5021
5022 const off_t got_file_offset = this->got_plt_->offset();
5023 gold_assert(got_file_offset + this->got_plt_->data_size()
5024 == this->got_irelative_->offset());
5025
5026 const section_size_type got_size =
5027 convert_to_section_size_type(this->got_plt_->data_size()
5028 + this->got_irelative_->data_size());
5029 unsigned char* const got_view = of->get_output_view(got_file_offset,
5030 got_size);
5031
5032 unsigned char* pov = oview;
5033
5034 // The base address of the .plt section.
5035 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
5036 // The base address of the PLT portion of the .got section.
5037 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
5038 = this->got_plt_->address();
5039
5040 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
5041 pov += this->first_plt_entry_offset();
5042
5043 // The first three entries in .got.plt are reserved.
5044 unsigned char* got_pov = got_view;
5045 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
5046 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5047
5048 unsigned int plt_offset = this->first_plt_entry_offset();
5049 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5050 const unsigned int count = this->count_ + this->irelative_count_;
5051 for (unsigned int plt_index = 0;
5052 plt_index < count;
5053 ++plt_index,
5054 pov += this->get_plt_entry_size(),
5055 got_pov += size / 8,
5056 plt_offset += this->get_plt_entry_size(),
5057 got_offset += size / 8)
5058 {
5059 // Set and adjust the PLT entry itself.
5060 this->fill_plt_entry(pov, gotplt_address, plt_address,
5061 got_offset, plt_offset);
5062
5063 // Set the entry in the GOT, which points to plt0.
5064 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
5065 }
5066
5067 if (this->has_tlsdesc_entry())
5068 {
5069 // Set and adjust the reserved TLSDESC PLT entry.
5070 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
5071 // The base address of the .base section.
5072 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
5073 this->got_->address();
5074 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
5075 tlsdesc_got_offset, plt_offset);
5076 pov += this->get_plt_tlsdesc_entry_size();
5077 }
5078
5079 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
5080 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
5081
5082 of->write_output_view(offset, oview_size, oview);
5083 of->write_output_view(got_file_offset, got_size, got_view);
5084 }
5085
5086 // Telling how to update the immediate field of an instruction.
5087 struct AArch64_howto
5088 {
5089 // The immediate field mask.
5090 elfcpp::Elf_Xword dst_mask;
5091
5092 // The offset to apply relocation immediate
5093 int doffset;
5094
5095 // The second part offset, if the immediate field has two parts.
5096 // -1 if the immediate field has only one part.
5097 int doffset2;
5098 };
5099
5100 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5101 {
5102 {0, -1, -1}, // DATA
5103 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
5104 {0xffffe0, 5, -1}, // LD [23:5]-imm19
5105 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
5106 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
5107 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
5108 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
5109 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
5110 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
5111 {0x3ffffff, 0, -1}, // B [25:0]-imm26
5112 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
5113 };
5114
5115 // AArch64 relocate function class
5116
5117 template<int size, bool big_endian>
5118 class AArch64_relocate_functions
5119 {
5120 public:
5121 typedef enum
5122 {
5123 STATUS_OKAY, // No error during relocation.
5124 STATUS_OVERFLOW, // Relocation overflow.
5125 STATUS_BAD_RELOC, // Relocation cannot be applied.
5126 } Status;
5127
5128 typedef AArch64_relocate_functions<size, big_endian> This;
5129 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5130 typedef Relocate_info<size, big_endian> The_relocate_info;
5131 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5132 typedef Reloc_stub<size, big_endian> The_reloc_stub;
5133 typedef Stub_table<size, big_endian> The_stub_table;
5134 typedef elfcpp::Rela<size, big_endian> The_rela;
5135 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5136
5137 // Return the page address of the address.
5138 // Page(address) = address & ~0xFFF
5139
5140 static inline AArch64_valtype
5141 Page(Address address)
5142 {
5143 return (address & (~static_cast<Address>(0xFFF)));
5144 }
5145
5146 private:
5147 // Update instruction (pointed by view) with selected bits (immed).
5148 // val = (val & ~dst_mask) | (immed << doffset)
5149
5150 template<int valsize>
5151 static inline void
5152 update_view(unsigned char* view,
5153 AArch64_valtype immed,
5154 elfcpp::Elf_Xword doffset,
5155 elfcpp::Elf_Xword dst_mask)
5156 {
5157 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5158 Valtype* wv = reinterpret_cast<Valtype*>(view);
5159 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5160
5161 // Clear immediate fields.
5162 val &= ~dst_mask;
5163 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5164 static_cast<Valtype>(val | (immed << doffset)));
5165 }
5166
5167 // Update two parts of an instruction (pointed by view) with selected
5168 // bits (immed1 and immed2).
5169 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5170
5171 template<int valsize>
5172 static inline void
5173 update_view_two_parts(
5174 unsigned char* view,
5175 AArch64_valtype immed1,
5176 AArch64_valtype immed2,
5177 elfcpp::Elf_Xword doffset1,
5178 elfcpp::Elf_Xword doffset2,
5179 elfcpp::Elf_Xword dst_mask)
5180 {
5181 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5182 Valtype* wv = reinterpret_cast<Valtype*>(view);
5183 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5184 val &= ~dst_mask;
5185 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5186 static_cast<Valtype>(val | (immed1 << doffset1) |
5187 (immed2 << doffset2)));
5188 }
5189
5190 // Update adr or adrp instruction with immed.
5191 // In adr and adrp: [30:29] immlo [23:5] immhi
5192
5193 static inline void
5194 update_adr(unsigned char* view, AArch64_valtype immed)
5195 {
5196 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5197 This::template update_view_two_parts<32>(
5198 view,
5199 immed & 0x3,
5200 (immed & 0x1ffffc) >> 2,
5201 29,
5202 5,
5203 dst_mask);
5204 }
5205
5206 // Update movz/movn instruction with bits immed.
5207 // Set instruction to movz if is_movz is true, otherwise set instruction
5208 // to movn.
5209
5210 static inline void
5211 update_movnz(unsigned char* view,
5212 AArch64_valtype immed,
5213 bool is_movz)
5214 {
5215 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5216 Valtype* wv = reinterpret_cast<Valtype*>(view);
5217 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5218
5219 const elfcpp::Elf_Xword doffset =
5220 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5221 const elfcpp::Elf_Xword dst_mask =
5222 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5223
5224 // Clear immediate fields and opc code.
5225 val &= ~(dst_mask | (0x3 << 29));
5226
5227 // Set instruction to movz or movn.
5228 // movz: [30:29] is 10 movn: [30:29] is 00
5229 if (is_movz)
5230 val |= (0x2 << 29);
5231
5232 elfcpp::Swap<32, big_endian>::writeval(wv,
5233 static_cast<Valtype>(val | (immed << doffset)));
5234 }
5235
5236 public:
5237
5238 // Update selected bits in text.
5239
5240 template<int valsize>
5241 static inline typename This::Status
5242 reloc_common(unsigned char* view, Address x,
5243 const AArch64_reloc_property* reloc_property)
5244 {
5245 // Select bits from X.
5246 Address immed = reloc_property->select_x_value(x);
5247
5248 // Update view.
5249 const AArch64_reloc_property::Reloc_inst inst =
5250 reloc_property->reloc_inst();
5251 // If it is a data relocation or instruction has 2 parts of immediate
5252 // fields, you should not call pcrela_general.
5253 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5254 aarch64_howto[inst].doffset != -1);
5255 This::template update_view<valsize>(view, immed,
5256 aarch64_howto[inst].doffset,
5257 aarch64_howto[inst].dst_mask);
5258
5259 // Do check overflow or alignment if needed.
5260 return (reloc_property->checkup_x_value(x)
5261 ? This::STATUS_OKAY
5262 : This::STATUS_OVERFLOW);
5263 }
5264
5265 // Construct a B insn. Note, although we group it here with other relocation
5266 // operation, there is actually no 'relocation' involved here.
5267 static inline void
5268 construct_b(unsigned char* view, unsigned int branch_offset)
5269 {
5270 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5271 26, 0, 0xffffffff);
5272 }
5273
5274 // Do a simple rela relocation at unaligned addresses.
5275
5276 template<int valsize>
5277 static inline typename This::Status
5278 rela_ua(unsigned char* view,
5279 const Sized_relobj_file<size, big_endian>* object,
5280 const Symbol_value<size>* psymval,
5281 AArch64_valtype addend,
5282 const AArch64_reloc_property* reloc_property)
5283 {
5284 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5285 Valtype;
5286 typename elfcpp::Elf_types<size>::Elf_Addr x =
5287 psymval->value(object, addend);
5288 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5289 static_cast<Valtype>(x));
5290 return (reloc_property->checkup_x_value(x)
5291 ? This::STATUS_OKAY
5292 : This::STATUS_OVERFLOW);
5293 }
5294
5295 // Do a simple pc-relative relocation at unaligned addresses.
5296
5297 template<int valsize>
5298 static inline typename This::Status
5299 pcrela_ua(unsigned char* view,
5300 const Sized_relobj_file<size, big_endian>* object,
5301 const Symbol_value<size>* psymval,
5302 AArch64_valtype addend,
5303 Address address,
5304 const AArch64_reloc_property* reloc_property)
5305 {
5306 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5307 Valtype;
5308 Address x = psymval->value(object, addend) - address;
5309 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5310 static_cast<Valtype>(x));
5311 return (reloc_property->checkup_x_value(x)
5312 ? This::STATUS_OKAY
5313 : This::STATUS_OVERFLOW);
5314 }
5315
5316 // Do a simple rela relocation at aligned addresses.
5317
5318 template<int valsize>
5319 static inline typename This::Status
5320 rela(
5321 unsigned char* view,
5322 const Sized_relobj_file<size, big_endian>* object,
5323 const Symbol_value<size>* psymval,
5324 AArch64_valtype addend,
5325 const AArch64_reloc_property* reloc_property)
5326 {
5327 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5328 Valtype* wv = reinterpret_cast<Valtype*>(view);
5329 Address x = psymval->value(object, addend);
5330 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5331 return (reloc_property->checkup_x_value(x)
5332 ? This::STATUS_OKAY
5333 : This::STATUS_OVERFLOW);
5334 }
5335
5336 // Do relocate. Update selected bits in text.
5337 // new_val = (val & ~dst_mask) | (immed << doffset)
5338
5339 template<int valsize>
5340 static inline typename This::Status
5341 rela_general(unsigned char* view,
5342 const Sized_relobj_file<size, big_endian>* object,
5343 const Symbol_value<size>* psymval,
5344 AArch64_valtype addend,
5345 const AArch64_reloc_property* reloc_property)
5346 {
5347 // Calculate relocation.
5348 Address x = psymval->value(object, addend);
5349 return This::template reloc_common<valsize>(view, x, reloc_property);
5350 }
5351
5352 // Do relocate. Update selected bits in text.
5353 // new val = (val & ~dst_mask) | (immed << doffset)
5354
5355 template<int valsize>
5356 static inline typename This::Status
5357 rela_general(
5358 unsigned char* view,
5359 AArch64_valtype s,
5360 AArch64_valtype addend,
5361 const AArch64_reloc_property* reloc_property)
5362 {
5363 // Calculate relocation.
5364 Address x = s + addend;
5365 return This::template reloc_common<valsize>(view, x, reloc_property);
5366 }
5367
5368 // Do address relative relocate. Update selected bits in text.
5369 // new val = (val & ~dst_mask) | (immed << doffset)
5370
5371 template<int valsize>
5372 static inline typename This::Status
5373 pcrela_general(
5374 unsigned char* view,
5375 const Sized_relobj_file<size, big_endian>* object,
5376 const Symbol_value<size>* psymval,
5377 AArch64_valtype addend,
5378 Address address,
5379 const AArch64_reloc_property* reloc_property)
5380 {
5381 // Calculate relocation.
5382 Address x = psymval->value(object, addend) - address;
5383 return This::template reloc_common<valsize>(view, x, reloc_property);
5384 }
5385
5386
5387 // Calculate (S + A) - address, update adr instruction.
5388
5389 static inline typename This::Status
5390 adr(unsigned char* view,
5391 const Sized_relobj_file<size, big_endian>* object,
5392 const Symbol_value<size>* psymval,
5393 Address addend,
5394 Address address,
5395 const AArch64_reloc_property* /* reloc_property */)
5396 {
5397 AArch64_valtype x = psymval->value(object, addend) - address;
5398 // Pick bits [20:0] of X.
5399 AArch64_valtype immed = x & 0x1fffff;
5400 update_adr(view, immed);
5401 // Check -2^20 <= X < 2^20
5402 return (size == 64 && Bits<21>::has_overflow((x))
5403 ? This::STATUS_OVERFLOW
5404 : This::STATUS_OKAY);
5405 }
5406
5407 // Calculate PG(S+A) - PG(address), update adrp instruction.
5408 // R_AARCH64_ADR_PREL_PG_HI21
5409
5410 static inline typename This::Status
5411 adrp(
5412 unsigned char* view,
5413 Address sa,
5414 Address address)
5415 {
5416 AArch64_valtype x = This::Page(sa) - This::Page(address);
5417 // Pick [32:12] of X.
5418 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5419 update_adr(view, immed);
5420 // Check -2^32 <= X < 2^32
5421 return (size == 64 && Bits<33>::has_overflow((x))
5422 ? This::STATUS_OVERFLOW
5423 : This::STATUS_OKAY);
5424 }
5425
5426 // Calculate PG(S+A) - PG(address), update adrp instruction.
5427 // R_AARCH64_ADR_PREL_PG_HI21
5428
5429 static inline typename This::Status
5430 adrp(unsigned char* view,
5431 const Sized_relobj_file<size, big_endian>* object,
5432 const Symbol_value<size>* psymval,
5433 Address addend,
5434 Address address,
5435 const AArch64_reloc_property* reloc_property)
5436 {
5437 Address sa = psymval->value(object, addend);
5438 AArch64_valtype x = This::Page(sa) - This::Page(address);
5439 // Pick [32:12] of X.
5440 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5441 update_adr(view, immed);
5442 return (reloc_property->checkup_x_value(x)
5443 ? This::STATUS_OKAY
5444 : This::STATUS_OVERFLOW);
5445 }
5446
5447 // Update mov[n/z] instruction. Check overflow if needed.
5448 // If X >=0, set the instruction to movz and its immediate value to the
5449 // selected bits S.
5450 // If X < 0, set the instruction to movn and its immediate value to
5451 // NOT (selected bits of).
5452
5453 static inline typename This::Status
5454 movnz(unsigned char* view,
5455 AArch64_valtype x,
5456 const AArch64_reloc_property* reloc_property)
5457 {
5458 // Select bits from X.
5459 Address immed;
5460 bool is_movz;
5461 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5462 if (static_cast<SignedW>(x) >= 0)
5463 {
5464 immed = reloc_property->select_x_value(x);
5465 is_movz = true;
5466 }
5467 else
5468 {
5469 immed = reloc_property->select_x_value(~x);;
5470 is_movz = false;
5471 }
5472
5473 // Update movnz instruction.
5474 update_movnz(view, immed, is_movz);
5475
5476 // Do check overflow or alignment if needed.
5477 return (reloc_property->checkup_x_value(x)
5478 ? This::STATUS_OKAY
5479 : This::STATUS_OVERFLOW);
5480 }
5481
5482 static inline bool
5483 maybe_apply_stub(unsigned int,
5484 const The_relocate_info*,
5485 const The_rela&,
5486 unsigned char*,
5487 Address,
5488 const Sized_symbol<size>*,
5489 const Symbol_value<size>*,
5490 const Sized_relobj_file<size, big_endian>*,
5491 section_size_type);
5492
5493 }; // End of AArch64_relocate_functions
5494
5495
5496 // For a certain relocation type (usually jump/branch), test to see if the
5497 // destination needs a stub to fulfil. If so, re-route the destination of the
5498 // original instruction to the stub, note, at this time, the stub has already
5499 // been generated.
5500
5501 template<int size, bool big_endian>
5502 bool
5503 AArch64_relocate_functions<size, big_endian>::
5504 maybe_apply_stub(unsigned int r_type,
5505 const The_relocate_info* relinfo,
5506 const The_rela& rela,
5507 unsigned char* view,
5508 Address address,
5509 const Sized_symbol<size>* gsym,
5510 const Symbol_value<size>* psymval,
5511 const Sized_relobj_file<size, big_endian>* object,
5512 section_size_type current_group_size)
5513 {
5514 if (parameters->options().relocatable())
5515 return false;
5516
5517 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5518 Address branch_target = psymval->value(object, 0) + addend;
5519 int stub_type =
5520 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5521 if (stub_type == ST_NONE)
5522 return false;
5523
5524 const The_aarch64_relobj* aarch64_relobj =
5525 static_cast<const The_aarch64_relobj*>(object);
5526 const AArch64_reloc_property* arp =
5527 aarch64_reloc_property_table->get_reloc_property(r_type);
5528 gold_assert(arp != NULL);
5529
5530 // We don't create stubs for undefined symbols, but do for weak.
5531 if (gsym
5532 && !gsym->use_plt_offset(arp->reference_flags())
5533 && gsym->is_undefined())
5534 {
5535 gold_debug(DEBUG_TARGET,
5536 "stub: looking for a stub for undefined symbol %s in file %s",
5537 gsym->name(), aarch64_relobj->name().c_str());
5538 return false;
5539 }
5540
5541 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5542 gold_assert(stub_table != NULL);
5543
5544 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5545 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5546 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5547 gold_assert(stub != NULL);
5548
5549 Address new_branch_target = stub_table->address() + stub->offset();
5550 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5551 new_branch_target - address;
5552 typename This::Status status = This::template
5553 rela_general<32>(view, branch_offset, 0, arp);
5554 if (status != This::STATUS_OKAY)
5555 gold_error(_("Stub is too far away, try a smaller value "
5556 "for '--stub-group-size'. The current value is 0x%lx."),
5557 static_cast<unsigned long>(current_group_size));
5558 return true;
5559 }
5560
5561
5562 // Group input sections for stub generation.
5563 //
5564 // We group input sections in an output section so that the total size,
5565 // including any padding space due to alignment is smaller than GROUP_SIZE
5566 // unless the only input section in group is bigger than GROUP_SIZE already.
5567 // Then an ARM stub table is created to follow the last input section
5568 // in group. For each group an ARM stub table is created an is placed
5569 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5570 // extend the group after the stub table.
5571
5572 template<int size, bool big_endian>
5573 void
5574 Target_aarch64<size, big_endian>::group_sections(
5575 Layout* layout,
5576 section_size_type group_size,
5577 bool stubs_always_after_branch,
5578 const Task* task)
5579 {
5580 // Group input sections and insert stub table
5581 Layout::Section_list section_list;
5582 layout->get_executable_sections(&section_list);
5583 for (Layout::Section_list::const_iterator p = section_list.begin();
5584 p != section_list.end();
5585 ++p)
5586 {
5587 AArch64_output_section<size, big_endian>* output_section =
5588 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5589 output_section->group_sections(group_size, stubs_always_after_branch,
5590 this, task);
5591 }
5592 }
5593
5594
5595 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5596 // section of RELOBJ.
5597
5598 template<int size, bool big_endian>
5599 AArch64_input_section<size, big_endian>*
5600 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5601 Relobj* relobj, unsigned int shndx) const
5602 {
5603 Section_id sid(relobj, shndx);
5604 typename AArch64_input_section_map::const_iterator p =
5605 this->aarch64_input_section_map_.find(sid);
5606 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5607 }
5608
5609
5610 // Make a new AArch64_input_section object.
5611
5612 template<int size, bool big_endian>
5613 AArch64_input_section<size, big_endian>*
5614 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5615 Relobj* relobj, unsigned int shndx)
5616 {
5617 Section_id sid(relobj, shndx);
5618
5619 AArch64_input_section<size, big_endian>* input_section =
5620 new AArch64_input_section<size, big_endian>(relobj, shndx);
5621 input_section->init();
5622
5623 // Register new AArch64_input_section in map for look-up.
5624 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5625 this->aarch64_input_section_map_.insert(
5626 std::make_pair(sid, input_section));
5627
5628 // Make sure that it we have not created another AArch64_input_section
5629 // for this input section already.
5630 gold_assert(ins.second);
5631
5632 return input_section;
5633 }
5634
5635
5636 // Relaxation hook. This is where we do stub generation.
5637
5638 template<int size, bool big_endian>
5639 bool
5640 Target_aarch64<size, big_endian>::do_relax(
5641 int pass,
5642 const Input_objects* input_objects,
5643 Symbol_table* symtab,
5644 Layout* layout ,
5645 const Task* task)
5646 {
5647 gold_assert(!parameters->options().relocatable());
5648 if (pass == 1)
5649 {
5650 // We don't handle negative stub_group_size right now.
5651 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5652 if (this->stub_group_size_ == 1)
5653 {
5654 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5655 // will fail to link. The user will have to relink with an explicit
5656 // group size option.
5657 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5658 4096 * 4;
5659 }
5660 group_sections(layout, this->stub_group_size_, true, task);
5661 }
5662 else
5663 {
5664 // If this is not the first pass, addresses and file offsets have
5665 // been reset at this point, set them here.
5666 for (Stub_table_iterator sp = this->stub_tables_.begin();
5667 sp != this->stub_tables_.end(); ++sp)
5668 {
5669 The_stub_table* stt = *sp;
5670 The_aarch64_input_section* owner = stt->owner();
5671 off_t off = align_address(owner->original_size(),
5672 stt->addralign());
5673 stt->set_address_and_file_offset(owner->address() + off,
5674 owner->offset() + off);
5675 }
5676 }
5677
5678 // Scan relocs for relocation stubs
5679 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5680 op != input_objects->relobj_end();
5681 ++op)
5682 {
5683 The_aarch64_relobj* aarch64_relobj =
5684 static_cast<The_aarch64_relobj*>(*op);
5685 // Lock the object so we can read from it. This is only called
5686 // single-threaded from Layout::finalize, so it is OK to lock.
5687 Task_lock_obj<Object> tl(task, aarch64_relobj);
5688 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5689 }
5690
5691 bool any_stub_table_changed = false;
5692 for (Stub_table_iterator siter = this->stub_tables_.begin();
5693 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5694 {
5695 The_stub_table* stub_table = *siter;
5696 if (stub_table->update_data_size_changed_p())
5697 {
5698 The_aarch64_input_section* owner = stub_table->owner();
5699 uint64_t address = owner->address();
5700 off_t offset = owner->offset();
5701 owner->reset_address_and_file_offset();
5702 owner->set_address_and_file_offset(address, offset);
5703
5704 any_stub_table_changed = true;
5705 }
5706 }
5707
5708 // Do not continue relaxation.
5709 bool continue_relaxation = any_stub_table_changed;
5710 if (!continue_relaxation)
5711 for (Stub_table_iterator sp = this->stub_tables_.begin();
5712 (sp != this->stub_tables_.end());
5713 ++sp)
5714 (*sp)->finalize_stubs();
5715
5716 return continue_relaxation;
5717 }
5718
5719
5720 // Make a new Stub_table.
5721
5722 template<int size, bool big_endian>
5723 Stub_table<size, big_endian>*
5724 Target_aarch64<size, big_endian>::new_stub_table(
5725 AArch64_input_section<size, big_endian>* owner)
5726 {
5727 Stub_table<size, big_endian>* stub_table =
5728 new Stub_table<size, big_endian>(owner);
5729 stub_table->set_address(align_address(
5730 owner->address() + owner->data_size(), 8));
5731 stub_table->set_file_offset(owner->offset() + owner->data_size());
5732 stub_table->finalize_data_size();
5733
5734 this->stub_tables_.push_back(stub_table);
5735
5736 return stub_table;
5737 }
5738
5739
5740 template<int size, bool big_endian>
5741 uint64_t
5742 Target_aarch64<size, big_endian>::do_reloc_addend(
5743 void* arg, unsigned int r_type, uint64_t) const
5744 {
5745 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5746 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5747 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5748 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5749 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5750 gold_assert(psymval->is_tls_symbol());
5751 // The value of a TLS symbol is the offset in the TLS segment.
5752 return psymval->value(ti.object, 0);
5753 }
5754
5755 // Return the number of entries in the PLT.
5756
5757 template<int size, bool big_endian>
5758 unsigned int
5759 Target_aarch64<size, big_endian>::plt_entry_count() const
5760 {
5761 if (this->plt_ == NULL)
5762 return 0;
5763 return this->plt_->entry_count();
5764 }
5765
5766 // Return the offset of the first non-reserved PLT entry.
5767
5768 template<int size, bool big_endian>
5769 unsigned int
5770 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5771 {
5772 return this->plt_->first_plt_entry_offset();
5773 }
5774
5775 // Return the size of each PLT entry.
5776
5777 template<int size, bool big_endian>
5778 unsigned int
5779 Target_aarch64<size, big_endian>::plt_entry_size() const
5780 {
5781 return this->plt_->get_plt_entry_size();
5782 }
5783
5784 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5785
5786 template<int size, bool big_endian>
5787 void
5788 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5789 Symbol_table* symtab, Layout* layout)
5790 {
5791 if (this->tls_base_symbol_defined_)
5792 return;
5793
5794 Output_segment* tls_segment = layout->tls_segment();
5795 if (tls_segment != NULL)
5796 {
5797 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5798 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5799 Symbol_table::PREDEFINED,
5800 tls_segment, 0, 0,
5801 elfcpp::STT_TLS,
5802 elfcpp::STB_LOCAL,
5803 elfcpp::STV_HIDDEN, 0,
5804 Symbol::SEGMENT_START,
5805 true);
5806 }
5807 this->tls_base_symbol_defined_ = true;
5808 }
5809
5810 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5811
5812 template<int size, bool big_endian>
5813 void
5814 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5815 Symbol_table* symtab, Layout* layout)
5816 {
5817 if (this->plt_ == NULL)
5818 this->make_plt_section(symtab, layout);
5819
5820 if (!this->plt_->has_tlsdesc_entry())
5821 {
5822 // Allocate the TLSDESC_GOT entry.
5823 Output_data_got_aarch64<size, big_endian>* got =
5824 this->got_section(symtab, layout);
5825 unsigned int got_offset = got->add_constant(0);
5826
5827 // Allocate the TLSDESC_PLT entry.
5828 this->plt_->reserve_tlsdesc_entry(got_offset);
5829 }
5830 }
5831
5832 // Create a GOT entry for the TLS module index.
5833
5834 template<int size, bool big_endian>
5835 unsigned int
5836 Target_aarch64<size, big_endian>::got_mod_index_entry(
5837 Symbol_table* symtab, Layout* layout,
5838 Sized_relobj_file<size, big_endian>* object)
5839 {
5840 if (this->got_mod_index_offset_ == -1U)
5841 {
5842 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5843 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5844 Output_data_got_aarch64<size, big_endian>* got =
5845 this->got_section(symtab, layout);
5846 unsigned int got_offset = got->add_constant(0);
5847 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5848 got_offset, 0);
5849 got->add_constant(0);
5850 this->got_mod_index_offset_ = got_offset;
5851 }
5852 return this->got_mod_index_offset_;
5853 }
5854
5855 // Optimize the TLS relocation type based on what we know about the
5856 // symbol. IS_FINAL is true if the final address of this symbol is
5857 // known at link time.
5858
5859 template<int size, bool big_endian>
5860 tls::Tls_optimization
5861 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5862 int r_type)
5863 {
5864 // If we are generating a shared library, then we can't do anything
5865 // in the linker
5866 if (parameters->options().shared())
5867 return tls::TLSOPT_NONE;
5868
5869 switch (r_type)
5870 {
5871 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5872 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5873 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5874 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5875 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5876 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5877 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5878 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5879 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5880 case elfcpp::R_AARCH64_TLSDESC_LDR:
5881 case elfcpp::R_AARCH64_TLSDESC_ADD:
5882 case elfcpp::R_AARCH64_TLSDESC_CALL:
5883 // These are General-Dynamic which permits fully general TLS
5884 // access. Since we know that we are generating an executable,
5885 // we can convert this to Initial-Exec. If we also know that
5886 // this is a local symbol, we can further switch to Local-Exec.
5887 if (is_final)
5888 return tls::TLSOPT_TO_LE;
5889 return tls::TLSOPT_TO_IE;
5890
5891 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5892 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5893 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5894 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5895 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5896 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5897 // These are Local-Dynamic, which refer to local symbols in the
5898 // dynamic TLS block. Since we know that we generating an
5899 // executable, we can switch to Local-Exec.
5900 return tls::TLSOPT_TO_LE;
5901
5902 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5903 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5904 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5905 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5906 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5907 // These are Initial-Exec relocs which get the thread offset
5908 // from the GOT. If we know that we are linking against the
5909 // local symbol, we can switch to Local-Exec, which links the
5910 // thread offset into the instruction.
5911 if (is_final)
5912 return tls::TLSOPT_TO_LE;
5913 return tls::TLSOPT_NONE;
5914
5915 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5916 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5917 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5918 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5919 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5920 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5921 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5922 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5923 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
5924 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5925 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
5926 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5927 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
5928 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5929 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
5930 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5931 // When we already have Local-Exec, there is nothing further we
5932 // can do.
5933 return tls::TLSOPT_NONE;
5934
5935 default:
5936 gold_unreachable();
5937 }
5938 }
5939
5940 // Returns true if this relocation type could be that of a function pointer.
5941
5942 template<int size, bool big_endian>
5943 inline bool
5944 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5945 unsigned int r_type)
5946 {
5947 switch (r_type)
5948 {
5949 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5950 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5951 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5952 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5953 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5954 {
5955 return true;
5956 }
5957 }
5958 return false;
5959 }
5960
5961 // For safe ICF, scan a relocation for a local symbol to check if it
5962 // corresponds to a function pointer being taken. In that case mark
5963 // the function whose pointer was taken as not foldable.
5964
5965 template<int size, bool big_endian>
5966 inline bool
5967 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5968 Symbol_table* ,
5969 Layout* ,
5970 Target_aarch64<size, big_endian>* ,
5971 Sized_relobj_file<size, big_endian>* ,
5972 unsigned int ,
5973 Output_section* ,
5974 const elfcpp::Rela<size, big_endian>& ,
5975 unsigned int r_type,
5976 const elfcpp::Sym<size, big_endian>&)
5977 {
5978 // When building a shared library, do not fold any local symbols.
5979 return (parameters->options().shared()
5980 || possible_function_pointer_reloc(r_type));
5981 }
5982
5983 // For safe ICF, scan a relocation for a global symbol to check if it
5984 // corresponds to a function pointer being taken. In that case mark
5985 // the function whose pointer was taken as not foldable.
5986
5987 template<int size, bool big_endian>
5988 inline bool
5989 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5990 Symbol_table* ,
5991 Layout* ,
5992 Target_aarch64<size, big_endian>* ,
5993 Sized_relobj_file<size, big_endian>* ,
5994 unsigned int ,
5995 Output_section* ,
5996 const elfcpp::Rela<size, big_endian>& ,
5997 unsigned int r_type,
5998 Symbol* gsym)
5999 {
6000 // When building a shared library, do not fold symbols whose visibility
6001 // is hidden, internal or protected.
6002 return ((parameters->options().shared()
6003 && (gsym->visibility() == elfcpp::STV_INTERNAL
6004 || gsym->visibility() == elfcpp::STV_PROTECTED
6005 || gsym->visibility() == elfcpp::STV_HIDDEN))
6006 || possible_function_pointer_reloc(r_type));
6007 }
6008
6009 // Report an unsupported relocation against a local symbol.
6010
6011 template<int size, bool big_endian>
6012 void
6013 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
6014 Sized_relobj_file<size, big_endian>* object,
6015 unsigned int r_type)
6016 {
6017 gold_error(_("%s: unsupported reloc %u against local symbol"),
6018 object->name().c_str(), r_type);
6019 }
6020
6021 // We are about to emit a dynamic relocation of type R_TYPE. If the
6022 // dynamic linker does not support it, issue an error.
6023
6024 template<int size, bool big_endian>
6025 void
6026 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
6027 unsigned int r_type)
6028 {
6029 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
6030
6031 switch (r_type)
6032 {
6033 // These are the relocation types supported by glibc for AARCH64.
6034 case elfcpp::R_AARCH64_NONE:
6035 case elfcpp::R_AARCH64_COPY:
6036 case elfcpp::R_AARCH64_GLOB_DAT:
6037 case elfcpp::R_AARCH64_JUMP_SLOT:
6038 case elfcpp::R_AARCH64_RELATIVE:
6039 case elfcpp::R_AARCH64_TLS_DTPREL64:
6040 case elfcpp::R_AARCH64_TLS_DTPMOD64:
6041 case elfcpp::R_AARCH64_TLS_TPREL64:
6042 case elfcpp::R_AARCH64_TLSDESC:
6043 case elfcpp::R_AARCH64_IRELATIVE:
6044 case elfcpp::R_AARCH64_ABS32:
6045 case elfcpp::R_AARCH64_ABS64:
6046 return;
6047
6048 default:
6049 break;
6050 }
6051
6052 // This prevents us from issuing more than one error per reloc
6053 // section. But we can still wind up issuing more than one
6054 // error per object file.
6055 if (this->issued_non_pic_error_)
6056 return;
6057 gold_assert(parameters->options().output_is_position_independent());
6058 object->error(_("requires unsupported dynamic reloc; "
6059 "recompile with -fPIC"));
6060 this->issued_non_pic_error_ = true;
6061 return;
6062 }
6063
6064 // Return whether we need to make a PLT entry for a relocation of the
6065 // given type against a STT_GNU_IFUNC symbol.
6066
6067 template<int size, bool big_endian>
6068 bool
6069 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6070 Sized_relobj_file<size, big_endian>* object,
6071 unsigned int r_type)
6072 {
6073 const AArch64_reloc_property* arp =
6074 aarch64_reloc_property_table->get_reloc_property(r_type);
6075 gold_assert(arp != NULL);
6076
6077 int flags = arp->reference_flags();
6078 if (flags & Symbol::TLS_REF)
6079 {
6080 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6081 object->name().c_str(), arp->name().c_str());
6082 return false;
6083 }
6084 return flags != 0;
6085 }
6086
6087 // Scan a relocation for a local symbol.
6088
6089 template<int size, bool big_endian>
6090 inline void
6091 Target_aarch64<size, big_endian>::Scan::local(
6092 Symbol_table* symtab,
6093 Layout* layout,
6094 Target_aarch64<size, big_endian>* target,
6095 Sized_relobj_file<size, big_endian>* object,
6096 unsigned int data_shndx,
6097 Output_section* output_section,
6098 const elfcpp::Rela<size, big_endian>& rela,
6099 unsigned int r_type,
6100 const elfcpp::Sym<size, big_endian>& lsym,
6101 bool is_discarded)
6102 {
6103 if (is_discarded)
6104 return;
6105
6106 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6107 Reloc_section;
6108 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6109
6110 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6111 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6112 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6113 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6114
6115 switch (r_type)
6116 {
6117 case elfcpp::R_AARCH64_NONE:
6118 break;
6119
6120 case elfcpp::R_AARCH64_ABS32:
6121 case elfcpp::R_AARCH64_ABS16:
6122 if (parameters->options().output_is_position_independent())
6123 {
6124 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6125 object->name().c_str(), r_type);
6126 }
6127 break;
6128
6129 case elfcpp::R_AARCH64_ABS64:
6130 // If building a shared library or pie, we need to mark this as a dynmic
6131 // reloction, so that the dynamic loader can relocate it.
6132 if (parameters->options().output_is_position_independent())
6133 {
6134 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6135 rela_dyn->add_local_relative(object, r_sym,
6136 elfcpp::R_AARCH64_RELATIVE,
6137 output_section,
6138 data_shndx,
6139 rela.get_r_offset(),
6140 rela.get_r_addend(),
6141 is_ifunc);
6142 }
6143 break;
6144
6145 case elfcpp::R_AARCH64_PREL64:
6146 case elfcpp::R_AARCH64_PREL32:
6147 case elfcpp::R_AARCH64_PREL16:
6148 break;
6149
6150 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6151 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6152 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6153 // The above relocations are used to access GOT entries.
6154 {
6155 Output_data_got_aarch64<size, big_endian>* got =
6156 target->got_section(symtab, layout);
6157 bool is_new = false;
6158 // This symbol requires a GOT entry.
6159 if (is_ifunc)
6160 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6161 else
6162 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6163 if (is_new && parameters->options().output_is_position_independent())
6164 target->rela_dyn_section(layout)->
6165 add_local_relative(object,
6166 r_sym,
6167 elfcpp::R_AARCH64_RELATIVE,
6168 got,
6169 object->local_got_offset(r_sym,
6170 GOT_TYPE_STANDARD),
6171 0,
6172 false);
6173 }
6174 break;
6175
6176 case elfcpp::R_AARCH64_MOVW_UABS_G0: // 263
6177 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC: // 264
6178 case elfcpp::R_AARCH64_MOVW_UABS_G1: // 265
6179 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC: // 266
6180 case elfcpp::R_AARCH64_MOVW_UABS_G2: // 267
6181 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC: // 268
6182 case elfcpp::R_AARCH64_MOVW_UABS_G3: // 269
6183 case elfcpp::R_AARCH64_MOVW_SABS_G0: // 270
6184 case elfcpp::R_AARCH64_MOVW_SABS_G1: // 271
6185 case elfcpp::R_AARCH64_MOVW_SABS_G2: // 272
6186 if (parameters->options().output_is_position_independent())
6187 {
6188 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6189 object->name().c_str(), r_type);
6190 }
6191 break;
6192
6193 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6194 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6195 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6196 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6197 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6198 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6199 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6200 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6201 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6202 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6203 break;
6204
6205 // Control flow, pc-relative. We don't need to do anything for a relative
6206 // addressing relocation against a local symbol if it does not reference
6207 // the GOT.
6208 case elfcpp::R_AARCH64_TSTBR14:
6209 case elfcpp::R_AARCH64_CONDBR19:
6210 case elfcpp::R_AARCH64_JUMP26:
6211 case elfcpp::R_AARCH64_CALL26:
6212 break;
6213
6214 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6215 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6216 {
6217 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6218 optimize_tls_reloc(!parameters->options().shared(), r_type);
6219 if (tlsopt == tls::TLSOPT_TO_LE)
6220 break;
6221
6222 layout->set_has_static_tls();
6223 // Create a GOT entry for the tp-relative offset.
6224 if (!parameters->doing_static_link())
6225 {
6226 Output_data_got_aarch64<size, big_endian>* got =
6227 target->got_section(symtab, layout);
6228 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6229 target->rela_dyn_section(layout),
6230 elfcpp::R_AARCH64_TLS_TPREL64);
6231 }
6232 else if (!object->local_has_got_offset(r_sym,
6233 GOT_TYPE_TLS_OFFSET))
6234 {
6235 Output_data_got_aarch64<size, big_endian>* got =
6236 target->got_section(symtab, layout);
6237 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6238 unsigned int got_offset =
6239 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6240 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6241 gold_assert(addend == 0);
6242 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6243 object, r_sym);
6244 }
6245 }
6246 break;
6247
6248 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6249 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6250 {
6251 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6252 optimize_tls_reloc(!parameters->options().shared(), r_type);
6253 if (tlsopt == tls::TLSOPT_TO_LE)
6254 {
6255 layout->set_has_static_tls();
6256 break;
6257 }
6258 gold_assert(tlsopt == tls::TLSOPT_NONE);
6259
6260 Output_data_got_aarch64<size, big_endian>* got =
6261 target->got_section(symtab, layout);
6262 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6263 GOT_TYPE_TLS_PAIR,
6264 target->rela_dyn_section(layout),
6265 elfcpp::R_AARCH64_TLS_DTPMOD64);
6266 }
6267 break;
6268
6269 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6270 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6271 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6272 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6273 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6274 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6275 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6276 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6277 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6278 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6279 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6280 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6281 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6282 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6283 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6284 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6285 {
6286 layout->set_has_static_tls();
6287 bool output_is_shared = parameters->options().shared();
6288 if (output_is_shared)
6289 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6290 object->name().c_str(), r_type);
6291 }
6292 break;
6293
6294 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6295 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6296 {
6297 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6298 optimize_tls_reloc(!parameters->options().shared(), r_type);
6299 if (tlsopt == tls::TLSOPT_NONE)
6300 {
6301 // Create a GOT entry for the module index.
6302 target->got_mod_index_entry(symtab, layout, object);
6303 }
6304 else if (tlsopt != tls::TLSOPT_TO_LE)
6305 unsupported_reloc_local(object, r_type);
6306 }
6307 break;
6308
6309 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6310 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6311 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6312 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6313 break;
6314
6315 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6316 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6317 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6318 {
6319 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6320 optimize_tls_reloc(!parameters->options().shared(), r_type);
6321 target->define_tls_base_symbol(symtab, layout);
6322 if (tlsopt == tls::TLSOPT_NONE)
6323 {
6324 // Create reserved PLT and GOT entries for the resolver.
6325 target->reserve_tlsdesc_entries(symtab, layout);
6326
6327 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6328 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6329 // entry needs to be in an area in .got.plt, not .got. Call
6330 // got_section to make sure the section has been created.
6331 target->got_section(symtab, layout);
6332 Output_data_got<size, big_endian>* got =
6333 target->got_tlsdesc_section();
6334 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6335 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6336 {
6337 unsigned int got_offset = got->add_constant(0);
6338 got->add_constant(0);
6339 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6340 got_offset);
6341 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6342 // We store the arguments we need in a vector, and use
6343 // the index into the vector as the parameter to pass
6344 // to the target specific routines.
6345 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6346 void* arg = reinterpret_cast<void*>(intarg);
6347 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6348 got, got_offset, 0);
6349 }
6350 }
6351 else if (tlsopt != tls::TLSOPT_TO_LE)
6352 unsupported_reloc_local(object, r_type);
6353 }
6354 break;
6355
6356 case elfcpp::R_AARCH64_TLSDESC_CALL:
6357 break;
6358
6359 default:
6360 unsupported_reloc_local(object, r_type);
6361 }
6362 }
6363
6364
6365 // Report an unsupported relocation against a global symbol.
6366
6367 template<int size, bool big_endian>
6368 void
6369 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6370 Sized_relobj_file<size, big_endian>* object,
6371 unsigned int r_type,
6372 Symbol* gsym)
6373 {
6374 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6375 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6376 }
6377
6378 template<int size, bool big_endian>
6379 inline void
6380 Target_aarch64<size, big_endian>::Scan::global(
6381 Symbol_table* symtab,
6382 Layout* layout,
6383 Target_aarch64<size, big_endian>* target,
6384 Sized_relobj_file<size, big_endian> * object,
6385 unsigned int data_shndx,
6386 Output_section* output_section,
6387 const elfcpp::Rela<size, big_endian>& rela,
6388 unsigned int r_type,
6389 Symbol* gsym)
6390 {
6391 // A STT_GNU_IFUNC symbol may require a PLT entry.
6392 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6393 && this->reloc_needs_plt_for_ifunc(object, r_type))
6394 target->make_plt_entry(symtab, layout, gsym);
6395
6396 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6397 Reloc_section;
6398 const AArch64_reloc_property* arp =
6399 aarch64_reloc_property_table->get_reloc_property(r_type);
6400 gold_assert(arp != NULL);
6401
6402 switch (r_type)
6403 {
6404 case elfcpp::R_AARCH64_NONE:
6405 break;
6406
6407 case elfcpp::R_AARCH64_ABS16:
6408 case elfcpp::R_AARCH64_ABS32:
6409 case elfcpp::R_AARCH64_ABS64:
6410 {
6411 // Make a PLT entry if necessary.
6412 if (gsym->needs_plt_entry())
6413 {
6414 target->make_plt_entry(symtab, layout, gsym);
6415 // Since this is not a PC-relative relocation, we may be
6416 // taking the address of a function. In that case we need to
6417 // set the entry in the dynamic symbol table to the address of
6418 // the PLT entry.
6419 if (gsym->is_from_dynobj() && !parameters->options().shared())
6420 gsym->set_needs_dynsym_value();
6421 }
6422 // Make a dynamic relocation if necessary.
6423 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6424 {
6425 if (!parameters->options().output_is_position_independent()
6426 && gsym->may_need_copy_reloc())
6427 {
6428 target->copy_reloc(symtab, layout, object,
6429 data_shndx, output_section, gsym, rela);
6430 }
6431 else if (r_type == elfcpp::R_AARCH64_ABS64
6432 && gsym->type() == elfcpp::STT_GNU_IFUNC
6433 && gsym->can_use_relative_reloc(false)
6434 && !gsym->is_from_dynobj()
6435 && !gsym->is_undefined()
6436 && !gsym->is_preemptible())
6437 {
6438 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6439 // symbol. This makes a function address in a PIE executable
6440 // match the address in a shared library that it links against.
6441 Reloc_section* rela_dyn =
6442 target->rela_irelative_section(layout);
6443 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6444 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6445 output_section, object,
6446 data_shndx,
6447 rela.get_r_offset(),
6448 rela.get_r_addend());
6449 }
6450 else if (r_type == elfcpp::R_AARCH64_ABS64
6451 && gsym->can_use_relative_reloc(false))
6452 {
6453 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6454 rela_dyn->add_global_relative(gsym,
6455 elfcpp::R_AARCH64_RELATIVE,
6456 output_section,
6457 object,
6458 data_shndx,
6459 rela.get_r_offset(),
6460 rela.get_r_addend(),
6461 false);
6462 }
6463 else
6464 {
6465 check_non_pic(object, r_type);
6466 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6467 rela_dyn = target->rela_dyn_section(layout);
6468 rela_dyn->add_global(
6469 gsym, r_type, output_section, object,
6470 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6471 }
6472 }
6473 }
6474 break;
6475
6476 case elfcpp::R_AARCH64_PREL16:
6477 case elfcpp::R_AARCH64_PREL32:
6478 case elfcpp::R_AARCH64_PREL64:
6479 // This is used to fill the GOT absolute address.
6480 if (gsym->needs_plt_entry())
6481 {
6482 target->make_plt_entry(symtab, layout, gsym);
6483 }
6484 break;
6485
6486 case elfcpp::R_AARCH64_MOVW_UABS_G0: // 263
6487 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC: // 264
6488 case elfcpp::R_AARCH64_MOVW_UABS_G1: // 265
6489 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC: // 266
6490 case elfcpp::R_AARCH64_MOVW_UABS_G2: // 267
6491 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC: // 268
6492 case elfcpp::R_AARCH64_MOVW_UABS_G3: // 269
6493 case elfcpp::R_AARCH64_MOVW_SABS_G0: // 270
6494 case elfcpp::R_AARCH64_MOVW_SABS_G1: // 271
6495 case elfcpp::R_AARCH64_MOVW_SABS_G2: // 272
6496 if (parameters->options().output_is_position_independent())
6497 {
6498 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6499 object->name().c_str(), r_type);
6500 }
6501 // Make a PLT entry if necessary.
6502 if (gsym->needs_plt_entry())
6503 {
6504 target->make_plt_entry(symtab, layout, gsym);
6505 // Since this is not a PC-relative relocation, we may be
6506 // taking the address of a function. In that case we need to
6507 // set the entry in the dynamic symbol table to the address of
6508 // the PLT entry.
6509 if (gsym->is_from_dynobj() && !parameters->options().shared())
6510 gsym->set_needs_dynsym_value();
6511 }
6512 break;
6513
6514 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6515 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6516 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6517 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6518 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6519 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6520 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6521 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6522 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6523 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6524 {
6525 if (gsym->needs_plt_entry())
6526 target->make_plt_entry(symtab, layout, gsym);
6527 // Make a dynamic relocation if necessary.
6528 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6529 {
6530 if (parameters->options().output_is_executable()
6531 && gsym->may_need_copy_reloc())
6532 {
6533 target->copy_reloc(symtab, layout, object,
6534 data_shndx, output_section, gsym, rela);
6535 }
6536 }
6537 break;
6538 }
6539
6540 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6541 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6542 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6543 {
6544 // The above relocations are used to access GOT entries.
6545 // Note a GOT entry is an *address* to a symbol.
6546 // The symbol requires a GOT entry
6547 Output_data_got_aarch64<size, big_endian>* got =
6548 target->got_section(symtab, layout);
6549 if (gsym->final_value_is_known())
6550 {
6551 // For a STT_GNU_IFUNC symbol we want the PLT address.
6552 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6553 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6554 else
6555 got->add_global(gsym, GOT_TYPE_STANDARD);
6556 }
6557 else
6558 {
6559 // If this symbol is not fully resolved, we need to add a dynamic
6560 // relocation for it.
6561 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6562
6563 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6564 //
6565 // 1) The symbol may be defined in some other module.
6566 // 2) We are building a shared library and this is a protected
6567 // symbol; using GLOB_DAT means that the dynamic linker can use
6568 // the address of the PLT in the main executable when appropriate
6569 // so that function address comparisons work.
6570 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6571 // again so that function address comparisons work.
6572 if (gsym->is_from_dynobj()
6573 || gsym->is_undefined()
6574 || gsym->is_preemptible()
6575 || (gsym->visibility() == elfcpp::STV_PROTECTED
6576 && parameters->options().shared())
6577 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6578 && parameters->options().output_is_position_independent()))
6579 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6580 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6581 else
6582 {
6583 // For a STT_GNU_IFUNC symbol we want to write the PLT
6584 // offset into the GOT, so that function pointer
6585 // comparisons work correctly.
6586 bool is_new;
6587 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6588 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6589 else
6590 {
6591 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6592 // Tell the dynamic linker to use the PLT address
6593 // when resolving relocations.
6594 if (gsym->is_from_dynobj()
6595 && !parameters->options().shared())
6596 gsym->set_needs_dynsym_value();
6597 }
6598 if (is_new)
6599 {
6600 rela_dyn->add_global_relative(
6601 gsym, elfcpp::R_AARCH64_RELATIVE,
6602 got,
6603 gsym->got_offset(GOT_TYPE_STANDARD),
6604 0,
6605 false);
6606 }
6607 }
6608 }
6609 break;
6610 }
6611
6612 case elfcpp::R_AARCH64_TSTBR14:
6613 case elfcpp::R_AARCH64_CONDBR19:
6614 case elfcpp::R_AARCH64_JUMP26:
6615 case elfcpp::R_AARCH64_CALL26:
6616 {
6617 if (gsym->final_value_is_known())
6618 break;
6619
6620 if (gsym->is_defined() &&
6621 !gsym->is_from_dynobj() &&
6622 !gsym->is_preemptible())
6623 break;
6624
6625 // Make plt entry for function call.
6626 target->make_plt_entry(symtab, layout, gsym);
6627 break;
6628 }
6629
6630 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6631 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6632 {
6633 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6634 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6635 if (tlsopt == tls::TLSOPT_TO_LE)
6636 {
6637 layout->set_has_static_tls();
6638 break;
6639 }
6640 gold_assert(tlsopt == tls::TLSOPT_NONE);
6641
6642 // General dynamic.
6643 Output_data_got_aarch64<size, big_endian>* got =
6644 target->got_section(symtab, layout);
6645 // Create 2 consecutive entries for module index and offset.
6646 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6647 target->rela_dyn_section(layout),
6648 elfcpp::R_AARCH64_TLS_DTPMOD64,
6649 elfcpp::R_AARCH64_TLS_DTPREL64);
6650 }
6651 break;
6652
6653 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6654 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6655 {
6656 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6657 optimize_tls_reloc(!parameters->options().shared(), r_type);
6658 if (tlsopt == tls::TLSOPT_NONE)
6659 {
6660 // Create a GOT entry for the module index.
6661 target->got_mod_index_entry(symtab, layout, object);
6662 }
6663 else if (tlsopt != tls::TLSOPT_TO_LE)
6664 unsupported_reloc_local(object, r_type);
6665 }
6666 break;
6667
6668 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6669 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6670 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6671 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6672 break;
6673
6674 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6675 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6676 {
6677 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6678 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6679 if (tlsopt == tls::TLSOPT_TO_LE)
6680 break;
6681
6682 layout->set_has_static_tls();
6683 // Create a GOT entry for the tp-relative offset.
6684 Output_data_got_aarch64<size, big_endian>* got
6685 = target->got_section(symtab, layout);
6686 if (!parameters->doing_static_link())
6687 {
6688 got->add_global_with_rel(
6689 gsym, GOT_TYPE_TLS_OFFSET,
6690 target->rela_dyn_section(layout),
6691 elfcpp::R_AARCH64_TLS_TPREL64);
6692 }
6693 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6694 {
6695 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6696 unsigned int got_offset =
6697 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6698 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6699 gold_assert(addend == 0);
6700 got->add_static_reloc(got_offset,
6701 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6702 }
6703 }
6704 break;
6705
6706 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6707 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6708 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6709 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6710 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6711 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6712 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6713 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6714 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6715 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6716 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6717 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6718 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6719 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6720 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6721 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: // Local executable
6722 layout->set_has_static_tls();
6723 if (parameters->options().shared())
6724 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6725 object->name().c_str(), r_type);
6726 break;
6727
6728 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6729 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6730 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6731 {
6732 target->define_tls_base_symbol(symtab, layout);
6733 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6734 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6735 if (tlsopt == tls::TLSOPT_NONE)
6736 {
6737 // Create reserved PLT and GOT entries for the resolver.
6738 target->reserve_tlsdesc_entries(symtab, layout);
6739
6740 // Create a double GOT entry with an R_AARCH64_TLSDESC
6741 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6742 // entry needs to be in an area in .got.plt, not .got. Call
6743 // got_section to make sure the section has been created.
6744 target->got_section(symtab, layout);
6745 Output_data_got<size, big_endian>* got =
6746 target->got_tlsdesc_section();
6747 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6748 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6749 elfcpp::R_AARCH64_TLSDESC, 0);
6750 }
6751 else if (tlsopt == tls::TLSOPT_TO_IE)
6752 {
6753 // Create a GOT entry for the tp-relative offset.
6754 Output_data_got<size, big_endian>* got
6755 = target->got_section(symtab, layout);
6756 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6757 target->rela_dyn_section(layout),
6758 elfcpp::R_AARCH64_TLS_TPREL64);
6759 }
6760 else if (tlsopt != tls::TLSOPT_TO_LE)
6761 unsupported_reloc_global(object, r_type, gsym);
6762 }
6763 break;
6764
6765 case elfcpp::R_AARCH64_TLSDESC_CALL:
6766 break;
6767
6768 default:
6769 gold_error(_("%s: unsupported reloc type in global scan"),
6770 aarch64_reloc_property_table->
6771 reloc_name_in_error_message(r_type).c_str());
6772 }
6773 return;
6774 } // End of Scan::global
6775
6776
6777 // Create the PLT section.
6778 template<int size, bool big_endian>
6779 void
6780 Target_aarch64<size, big_endian>::make_plt_section(
6781 Symbol_table* symtab, Layout* layout)
6782 {
6783 if (this->plt_ == NULL)
6784 {
6785 // Create the GOT section first.
6786 this->got_section(symtab, layout);
6787
6788 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6789 this->got_irelative_);
6790
6791 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6792 (elfcpp::SHF_ALLOC
6793 | elfcpp::SHF_EXECINSTR),
6794 this->plt_, ORDER_PLT, false);
6795
6796 // Make the sh_info field of .rela.plt point to .plt.
6797 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6798 rela_plt_os->set_info_section(this->plt_->output_section());
6799 }
6800 }
6801
6802 // Return the section for TLSDESC relocations.
6803
6804 template<int size, bool big_endian>
6805 typename Target_aarch64<size, big_endian>::Reloc_section*
6806 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6807 {
6808 return this->plt_section()->rela_tlsdesc(layout);
6809 }
6810
6811 // Create a PLT entry for a global symbol.
6812
6813 template<int size, bool big_endian>
6814 void
6815 Target_aarch64<size, big_endian>::make_plt_entry(
6816 Symbol_table* symtab,
6817 Layout* layout,
6818 Symbol* gsym)
6819 {
6820 if (gsym->has_plt_offset())
6821 return;
6822
6823 if (this->plt_ == NULL)
6824 this->make_plt_section(symtab, layout);
6825
6826 this->plt_->add_entry(symtab, layout, gsym);
6827 }
6828
6829 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6830
6831 template<int size, bool big_endian>
6832 void
6833 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6834 Symbol_table* symtab, Layout* layout,
6835 Sized_relobj_file<size, big_endian>* relobj,
6836 unsigned int local_sym_index)
6837 {
6838 if (relobj->local_has_plt_offset(local_sym_index))
6839 return;
6840 if (this->plt_ == NULL)
6841 this->make_plt_section(symtab, layout);
6842 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6843 relobj,
6844 local_sym_index);
6845 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6846 }
6847
6848 template<int size, bool big_endian>
6849 void
6850 Target_aarch64<size, big_endian>::gc_process_relocs(
6851 Symbol_table* symtab,
6852 Layout* layout,
6853 Sized_relobj_file<size, big_endian>* object,
6854 unsigned int data_shndx,
6855 unsigned int sh_type,
6856 const unsigned char* prelocs,
6857 size_t reloc_count,
6858 Output_section* output_section,
6859 bool needs_special_offset_handling,
6860 size_t local_symbol_count,
6861 const unsigned char* plocal_symbols)
6862 {
6863 typedef Target_aarch64<size, big_endian> Aarch64;
6864 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6865 Classify_reloc;
6866
6867 if (sh_type == elfcpp::SHT_REL)
6868 {
6869 return;
6870 }
6871
6872 gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6873 symtab,
6874 layout,
6875 this,
6876 object,
6877 data_shndx,
6878 prelocs,
6879 reloc_count,
6880 output_section,
6881 needs_special_offset_handling,
6882 local_symbol_count,
6883 plocal_symbols);
6884 }
6885
6886 // Scan relocations for a section.
6887
6888 template<int size, bool big_endian>
6889 void
6890 Target_aarch64<size, big_endian>::scan_relocs(
6891 Symbol_table* symtab,
6892 Layout* layout,
6893 Sized_relobj_file<size, big_endian>* object,
6894 unsigned int data_shndx,
6895 unsigned int sh_type,
6896 const unsigned char* prelocs,
6897 size_t reloc_count,
6898 Output_section* output_section,
6899 bool needs_special_offset_handling,
6900 size_t local_symbol_count,
6901 const unsigned char* plocal_symbols)
6902 {
6903 typedef Target_aarch64<size, big_endian> Aarch64;
6904 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6905 Classify_reloc;
6906
6907 if (sh_type == elfcpp::SHT_REL)
6908 {
6909 gold_error(_("%s: unsupported REL reloc section"),
6910 object->name().c_str());
6911 return;
6912 }
6913
6914 gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6915 symtab,
6916 layout,
6917 this,
6918 object,
6919 data_shndx,
6920 prelocs,
6921 reloc_count,
6922 output_section,
6923 needs_special_offset_handling,
6924 local_symbol_count,
6925 plocal_symbols);
6926 }
6927
6928 // Return the value to use for a dynamic which requires special
6929 // treatment. This is how we support equality comparisons of function
6930 // pointers across shared library boundaries, as described in the
6931 // processor specific ABI supplement.
6932
6933 template<int size, bool big_endian>
6934 uint64_t
6935 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6936 {
6937 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6938 return this->plt_address_for_global(gsym);
6939 }
6940
6941
6942 // Finalize the sections.
6943
6944 template<int size, bool big_endian>
6945 void
6946 Target_aarch64<size, big_endian>::do_finalize_sections(
6947 Layout* layout,
6948 const Input_objects*,
6949 Symbol_table* symtab)
6950 {
6951 const Reloc_section* rel_plt = (this->plt_ == NULL
6952 ? NULL
6953 : this->plt_->rela_plt());
6954 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6955 this->rela_dyn_, true, false, false);
6956
6957 // Emit any relocs we saved in an attempt to avoid generating COPY
6958 // relocs.
6959 if (this->copy_relocs_.any_saved_relocs())
6960 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6961
6962 // Fill in some more dynamic tags.
6963 Output_data_dynamic* const odyn = layout->dynamic_data();
6964 if (odyn != NULL)
6965 {
6966 if (this->plt_ != NULL
6967 && this->plt_->output_section() != NULL
6968 && this->plt_ ->has_tlsdesc_entry())
6969 {
6970 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6971 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6972 this->got_->finalize_data_size();
6973 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6974 this->plt_, plt_offset);
6975 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6976 this->got_, got_offset);
6977 }
6978 }
6979
6980 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6981 // the .got section.
6982 Symbol* sym = this->global_offset_table_;
6983 if (sym != NULL)
6984 {
6985 uint64_t data_size = this->got_->current_data_size();
6986 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6987
6988 // If the .got section is more than 0x8000 bytes, we add
6989 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6990 // bit relocations have a greater chance of working.
6991 if (data_size >= 0x8000)
6992 symtab->get_sized_symbol<size>(sym)->set_value(
6993 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6994 }
6995
6996 if (parameters->doing_static_link()
6997 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6998 {
6999 // If linking statically, make sure that the __rela_iplt symbols
7000 // were defined if necessary, even if we didn't create a PLT.
7001 static const Define_symbol_in_segment syms[] =
7002 {
7003 {
7004 "__rela_iplt_start", // name
7005 elfcpp::PT_LOAD, // segment_type
7006 elfcpp::PF_W, // segment_flags_set
7007 elfcpp::PF(0), // segment_flags_clear
7008 0, // value
7009 0, // size
7010 elfcpp::STT_NOTYPE, // type
7011 elfcpp::STB_GLOBAL, // binding
7012 elfcpp::STV_HIDDEN, // visibility
7013 0, // nonvis
7014 Symbol::SEGMENT_START, // offset_from_base
7015 true // only_if_ref
7016 },
7017 {
7018 "__rela_iplt_end", // name
7019 elfcpp::PT_LOAD, // segment_type
7020 elfcpp::PF_W, // segment_flags_set
7021 elfcpp::PF(0), // segment_flags_clear
7022 0, // value
7023 0, // size
7024 elfcpp::STT_NOTYPE, // type
7025 elfcpp::STB_GLOBAL, // binding
7026 elfcpp::STV_HIDDEN, // visibility
7027 0, // nonvis
7028 Symbol::SEGMENT_START, // offset_from_base
7029 true // only_if_ref
7030 }
7031 };
7032
7033 symtab->define_symbols(layout, 2, syms,
7034 layout->script_options()->saw_sections_clause());
7035 }
7036
7037 return;
7038 }
7039
7040 // Perform a relocation.
7041
7042 template<int size, bool big_endian>
7043 inline bool
7044 Target_aarch64<size, big_endian>::Relocate::relocate(
7045 const Relocate_info<size, big_endian>* relinfo,
7046 unsigned int,
7047 Target_aarch64<size, big_endian>* target,
7048 Output_section* ,
7049 size_t relnum,
7050 const unsigned char* preloc,
7051 const Sized_symbol<size>* gsym,
7052 const Symbol_value<size>* psymval,
7053 unsigned char* view,
7054 typename elfcpp::Elf_types<size>::Elf_Addr address,
7055 section_size_type /* view_size */)
7056 {
7057 if (view == NULL)
7058 return true;
7059
7060 typedef AArch64_relocate_functions<size, big_endian> Reloc;
7061
7062 const elfcpp::Rela<size, big_endian> rela(preloc);
7063 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7064 const AArch64_reloc_property* reloc_property =
7065 aarch64_reloc_property_table->get_reloc_property(r_type);
7066
7067 if (reloc_property == NULL)
7068 {
7069 std::string reloc_name =
7070 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
7071 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7072 _("cannot relocate %s in object file"),
7073 reloc_name.c_str());
7074 return true;
7075 }
7076
7077 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
7078
7079 // Pick the value to use for symbols defined in the PLT.
7080 Symbol_value<size> symval;
7081 if (gsym != NULL
7082 && gsym->use_plt_offset(reloc_property->reference_flags()))
7083 {
7084 symval.set_output_value(target->plt_address_for_global(gsym));
7085 psymval = &symval;
7086 }
7087 else if (gsym == NULL && psymval->is_ifunc_symbol())
7088 {
7089 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7090 if (object->local_has_plt_offset(r_sym))
7091 {
7092 symval.set_output_value(target->plt_address_for_local(object, r_sym));
7093 psymval = &symval;
7094 }
7095 }
7096
7097 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7098
7099 // Get the GOT offset if needed.
7100 // For aarch64, the GOT pointer points to the start of the GOT section.
7101 bool have_got_offset = false;
7102 int got_offset = 0;
7103 int got_base = (target->got_ != NULL
7104 ? (target->got_->current_data_size() >= 0x8000
7105 ? 0x8000 : 0)
7106 : 0);
7107 switch (r_type)
7108 {
7109 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
7110 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
7111 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
7112 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
7113 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
7114 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
7115 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
7116 case elfcpp::R_AARCH64_GOTREL64:
7117 case elfcpp::R_AARCH64_GOTREL32:
7118 case elfcpp::R_AARCH64_GOT_LD_PREL19:
7119 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
7120 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7121 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7122 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7123 if (gsym != NULL)
7124 {
7125 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7126 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7127 }
7128 else
7129 {
7130 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7131 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7132 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7133 - got_base);
7134 }
7135 have_got_offset = true;
7136 break;
7137
7138 default:
7139 break;
7140 }
7141
7142 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7143 typename elfcpp::Elf_types<size>::Elf_Addr value;
7144 switch (r_type)
7145 {
7146 case elfcpp::R_AARCH64_NONE:
7147 break;
7148
7149 case elfcpp::R_AARCH64_ABS64:
7150 if (!parameters->options().apply_dynamic_relocs()
7151 && parameters->options().output_is_position_independent()
7152 && gsym != NULL
7153 && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7154 && !gsym->can_use_relative_reloc(false))
7155 // We have generated an absolute dynamic relocation, so do not
7156 // apply the relocation statically. (Works around bugs in older
7157 // Android dynamic linkers.)
7158 break;
7159 reloc_status = Reloc::template rela_ua<64>(
7160 view, object, psymval, addend, reloc_property);
7161 break;
7162
7163 case elfcpp::R_AARCH64_ABS32:
7164 if (!parameters->options().apply_dynamic_relocs()
7165 && parameters->options().output_is_position_independent()
7166 && gsym != NULL
7167 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7168 // We have generated an absolute dynamic relocation, so do not
7169 // apply the relocation statically. (Works around bugs in older
7170 // Android dynamic linkers.)
7171 break;
7172 reloc_status = Reloc::template rela_ua<32>(
7173 view, object, psymval, addend, reloc_property);
7174 break;
7175
7176 case elfcpp::R_AARCH64_ABS16:
7177 if (!parameters->options().apply_dynamic_relocs()
7178 && parameters->options().output_is_position_independent()
7179 && gsym != NULL
7180 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7181 // We have generated an absolute dynamic relocation, so do not
7182 // apply the relocation statically. (Works around bugs in older
7183 // Android dynamic linkers.)
7184 break;
7185 reloc_status = Reloc::template rela_ua<16>(
7186 view, object, psymval, addend, reloc_property);
7187 break;
7188
7189 case elfcpp::R_AARCH64_PREL64:
7190 reloc_status = Reloc::template pcrela_ua<64>(
7191 view, object, psymval, addend, address, reloc_property);
7192 break;
7193
7194 case elfcpp::R_AARCH64_PREL32:
7195 reloc_status = Reloc::template pcrela_ua<32>(
7196 view, object, psymval, addend, address, reloc_property);
7197 break;
7198
7199 case elfcpp::R_AARCH64_PREL16:
7200 reloc_status = Reloc::template pcrela_ua<16>(
7201 view, object, psymval, addend, address, reloc_property);
7202 break;
7203
7204 case elfcpp::R_AARCH64_MOVW_UABS_G0:
7205 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7206 case elfcpp::R_AARCH64_MOVW_UABS_G1:
7207 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7208 case elfcpp::R_AARCH64_MOVW_UABS_G2:
7209 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7210 case elfcpp::R_AARCH64_MOVW_UABS_G3:
7211 reloc_status = Reloc::template rela_general<32>(
7212 view, object, psymval, addend, reloc_property);
7213 break;
7214 case elfcpp::R_AARCH64_MOVW_SABS_G0:
7215 case elfcpp::R_AARCH64_MOVW_SABS_G1:
7216 case elfcpp::R_AARCH64_MOVW_SABS_G2:
7217 reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7218 reloc_property);
7219 break;
7220
7221 case elfcpp::R_AARCH64_LD_PREL_LO19:
7222 reloc_status = Reloc::template pcrela_general<32>(
7223 view, object, psymval, addend, address, reloc_property);
7224 break;
7225
7226 case elfcpp::R_AARCH64_ADR_PREL_LO21:
7227 reloc_status = Reloc::adr(view, object, psymval, addend,
7228 address, reloc_property);
7229 break;
7230
7231 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7232 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7233 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7234 reloc_property);
7235 break;
7236
7237 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7238 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7239 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7240 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7241 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7242 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7243 reloc_status = Reloc::template rela_general<32>(
7244 view, object, psymval, addend, reloc_property);
7245 break;
7246
7247 case elfcpp::R_AARCH64_CALL26:
7248 if (this->skip_call_tls_get_addr_)
7249 {
7250 // Double check that the TLSGD insn has been optimized away.
7251 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7252 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7253 reinterpret_cast<Insntype*>(view));
7254 gold_assert((insn & 0xff000000) == 0x91000000);
7255
7256 reloc_status = Reloc::STATUS_OKAY;
7257 this->skip_call_tls_get_addr_ = false;
7258 // Return false to stop further processing this reloc.
7259 return false;
7260 }
7261 // Fall through.
7262 case elfcpp::R_AARCH64_JUMP26:
7263 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7264 gsym, psymval, object,
7265 target->stub_group_size_))
7266 break;
7267 // Fall through.
7268 case elfcpp::R_AARCH64_TSTBR14:
7269 case elfcpp::R_AARCH64_CONDBR19:
7270 reloc_status = Reloc::template pcrela_general<32>(
7271 view, object, psymval, addend, address, reloc_property);
7272 break;
7273
7274 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7275 gold_assert(have_got_offset);
7276 value = target->got_->address() + got_base + got_offset;
7277 reloc_status = Reloc::adrp(view, value + addend, address);
7278 break;
7279
7280 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7281 gold_assert(have_got_offset);
7282 value = target->got_->address() + got_base + got_offset;
7283 reloc_status = Reloc::template rela_general<32>(
7284 view, value, addend, reloc_property);
7285 break;
7286
7287 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7288 {
7289 gold_assert(have_got_offset);
7290 value = target->got_->address() + got_base + got_offset + addend -
7291 Reloc::Page(target->got_->address() + got_base);
7292 if ((value & 7) != 0)
7293 reloc_status = Reloc::STATUS_OVERFLOW;
7294 else
7295 reloc_status = Reloc::template reloc_common<32>(
7296 view, value, reloc_property);
7297 break;
7298 }
7299
7300 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7301 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7302 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7303 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7304 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7305 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7306 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7307 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7308 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7309 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7310 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7311 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7312 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7313 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7314 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7315 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7316 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7317 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7318 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7319 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7320 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7321 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7322 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7323 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7324 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7325 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7326 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7327 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7328 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7329 case elfcpp::R_AARCH64_TLSDESC_CALL:
7330 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7331 gsym, psymval, view, address);
7332 break;
7333
7334 // These are dynamic relocations, which are unexpected when linking.
7335 case elfcpp::R_AARCH64_COPY:
7336 case elfcpp::R_AARCH64_GLOB_DAT:
7337 case elfcpp::R_AARCH64_JUMP_SLOT:
7338 case elfcpp::R_AARCH64_RELATIVE:
7339 case elfcpp::R_AARCH64_IRELATIVE:
7340 case elfcpp::R_AARCH64_TLS_DTPREL64:
7341 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7342 case elfcpp::R_AARCH64_TLS_TPREL64:
7343 case elfcpp::R_AARCH64_TLSDESC:
7344 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7345 _("unexpected reloc %u in object file"),
7346 r_type);
7347 break;
7348
7349 default:
7350 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7351 _("unsupported reloc %s"),
7352 reloc_property->name().c_str());
7353 break;
7354 }
7355
7356 // Report any errors.
7357 switch (reloc_status)
7358 {
7359 case Reloc::STATUS_OKAY:
7360 break;
7361 case Reloc::STATUS_OVERFLOW:
7362 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7363 _("relocation overflow in %s"),
7364 reloc_property->name().c_str());
7365 break;
7366 case Reloc::STATUS_BAD_RELOC:
7367 gold_error_at_location(
7368 relinfo,
7369 relnum,
7370 rela.get_r_offset(),
7371 _("unexpected opcode while processing relocation %s"),
7372 reloc_property->name().c_str());
7373 break;
7374 default:
7375 gold_unreachable();
7376 }
7377
7378 return true;
7379 }
7380
7381
7382 template<int size, bool big_endian>
7383 inline
7384 typename AArch64_relocate_functions<size, big_endian>::Status
7385 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7386 const Relocate_info<size, big_endian>* relinfo,
7387 Target_aarch64<size, big_endian>* target,
7388 size_t relnum,
7389 const elfcpp::Rela<size, big_endian>& rela,
7390 unsigned int r_type, const Sized_symbol<size>* gsym,
7391 const Symbol_value<size>* psymval,
7392 unsigned char* view,
7393 typename elfcpp::Elf_types<size>::Elf_Addr address)
7394 {
7395 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7396 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7397
7398 Output_segment* tls_segment = relinfo->layout->tls_segment();
7399 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7400 const AArch64_reloc_property* reloc_property =
7401 aarch64_reloc_property_table->get_reloc_property(r_type);
7402 gold_assert(reloc_property != NULL);
7403
7404 const bool is_final = (gsym == NULL
7405 ? !parameters->options().shared()
7406 : gsym->final_value_is_known());
7407 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7408 optimize_tls_reloc(is_final, r_type);
7409
7410 Sized_relobj_file<size, big_endian>* object = relinfo->object;
7411 int tls_got_offset_type;
7412 switch (r_type)
7413 {
7414 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7415 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7416 {
7417 if (tlsopt == tls::TLSOPT_TO_LE)
7418 {
7419 if (tls_segment == NULL)
7420 {
7421 gold_assert(parameters->errors()->error_count() > 0
7422 || issue_undefined_symbol_error(gsym));
7423 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7424 }
7425 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7426 psymval);
7427 }
7428 else if (tlsopt == tls::TLSOPT_NONE)
7429 {
7430 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7431 // Firstly get the address for the got entry.
7432 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7433 if (gsym != NULL)
7434 {
7435 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7436 got_entry_address = target->got_->address() +
7437 gsym->got_offset(tls_got_offset_type);
7438 }
7439 else
7440 {
7441 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7442 gold_assert(
7443 object->local_has_got_offset(r_sym, tls_got_offset_type));
7444 got_entry_address = target->got_->address() +
7445 object->local_got_offset(r_sym, tls_got_offset_type);
7446 }
7447
7448 // Relocate the address into adrp/ld, adrp/add pair.
7449 switch (r_type)
7450 {
7451 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7452 return aarch64_reloc_funcs::adrp(
7453 view, got_entry_address + addend, address);
7454
7455 break;
7456
7457 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7458 return aarch64_reloc_funcs::template rela_general<32>(
7459 view, got_entry_address, addend, reloc_property);
7460 break;
7461
7462 default:
7463 gold_unreachable();
7464 }
7465 }
7466 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7467 _("unsupported gd_to_ie relaxation on %u"),
7468 r_type);
7469 }
7470 break;
7471
7472 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7473 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7474 {
7475 if (tlsopt == tls::TLSOPT_TO_LE)
7476 {
7477 if (tls_segment == NULL)
7478 {
7479 gold_assert(parameters->errors()->error_count() > 0
7480 || issue_undefined_symbol_error(gsym));
7481 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7482 }
7483 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7484 psymval);
7485 }
7486
7487 gold_assert(tlsopt == tls::TLSOPT_NONE);
7488 // Relocate the field with the offset of the GOT entry for
7489 // the module index.
7490 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7491 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7492 target->got_->address());
7493
7494 switch (r_type)
7495 {
7496 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7497 return aarch64_reloc_funcs::adrp(
7498 view, got_entry_address + addend, address);
7499 break;
7500
7501 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7502 return aarch64_reloc_funcs::template rela_general<32>(
7503 view, got_entry_address, addend, reloc_property);
7504 break;
7505
7506 default:
7507 gold_unreachable();
7508 }
7509 }
7510 break;
7511
7512 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7513 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7514 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7515 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7516 {
7517 AArch64_address value = psymval->value(object, 0);
7518 if (tlsopt == tls::TLSOPT_TO_LE)
7519 {
7520 if (tls_segment == NULL)
7521 {
7522 gold_assert(parameters->errors()->error_count() > 0
7523 || issue_undefined_symbol_error(gsym));
7524 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7525 }
7526 }
7527 switch (r_type)
7528 {
7529 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7530 return aarch64_reloc_funcs::movnz(view, value + addend,
7531 reloc_property);
7532 break;
7533
7534 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7535 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7536 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7537 return aarch64_reloc_funcs::template rela_general<32>(
7538 view, value, addend, reloc_property);
7539 break;
7540
7541 default:
7542 gold_unreachable();
7543 }
7544 // We should never reach here.
7545 }
7546 break;
7547
7548 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7549 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7550 {
7551 if (tlsopt == tls::TLSOPT_TO_LE)
7552 {
7553 if (tls_segment == NULL)
7554 {
7555 gold_assert(parameters->errors()->error_count() > 0
7556 || issue_undefined_symbol_error(gsym));
7557 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7558 }
7559 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7560 psymval);
7561 }
7562 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7563
7564 // Firstly get the address for the got entry.
7565 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7566 if (gsym != NULL)
7567 {
7568 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7569 got_entry_address = target->got_->address() +
7570 gsym->got_offset(tls_got_offset_type);
7571 }
7572 else
7573 {
7574 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7575 gold_assert(
7576 object->local_has_got_offset(r_sym, tls_got_offset_type));
7577 got_entry_address = target->got_->address() +
7578 object->local_got_offset(r_sym, tls_got_offset_type);
7579 }
7580 // Relocate the address into adrp/ld, adrp/add pair.
7581 switch (r_type)
7582 {
7583 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7584 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7585 address);
7586 break;
7587 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7588 return aarch64_reloc_funcs::template rela_general<32>(
7589 view, got_entry_address, addend, reloc_property);
7590 default:
7591 gold_unreachable();
7592 }
7593 }
7594 // We shall never reach here.
7595 break;
7596
7597 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7598 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7599 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7600 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7601 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7602 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7603 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7604 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7605 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7606 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7607 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7608 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7609 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7610 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7611 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7612 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7613 {
7614 gold_assert(tls_segment != NULL);
7615 AArch64_address value = psymval->value(object, 0);
7616
7617 if (!parameters->options().shared())
7618 {
7619 AArch64_address aligned_tcb_size =
7620 align_address(target->tcb_size(),
7621 tls_segment->maximum_alignment());
7622 value += aligned_tcb_size;
7623 switch (r_type)
7624 {
7625 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7626 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7627 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7628 return aarch64_reloc_funcs::movnz(view, value + addend,
7629 reloc_property);
7630 default:
7631 return aarch64_reloc_funcs::template
7632 rela_general<32>(view,
7633 value,
7634 addend,
7635 reloc_property);
7636 }
7637 }
7638 else
7639 gold_error(_("%s: unsupported reloc %u "
7640 "in non-static TLSLE mode."),
7641 object->name().c_str(), r_type);
7642 }
7643 break;
7644
7645 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7646 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7647 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7648 case elfcpp::R_AARCH64_TLSDESC_CALL:
7649 {
7650 if (tlsopt == tls::TLSOPT_TO_LE)
7651 {
7652 if (tls_segment == NULL)
7653 {
7654 gold_assert(parameters->errors()->error_count() > 0
7655 || issue_undefined_symbol_error(gsym));
7656 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7657 }
7658 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7659 view, psymval);
7660 }
7661 else
7662 {
7663 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7664 ? GOT_TYPE_TLS_OFFSET
7665 : GOT_TYPE_TLS_DESC);
7666 int got_tlsdesc_offset = 0;
7667 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7668 && tlsopt == tls::TLSOPT_NONE)
7669 {
7670 // We created GOT entries in the .got.tlsdesc portion of the
7671 // .got.plt section, but the offset stored in the symbol is the
7672 // offset within .got.tlsdesc.
7673 got_tlsdesc_offset = (target->got_tlsdesc_->address()
7674 - target->got_->address());
7675 }
7676 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7677 if (gsym != NULL)
7678 {
7679 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7680 got_entry_address = target->got_->address()
7681 + got_tlsdesc_offset
7682 + gsym->got_offset(tls_got_offset_type);
7683 }
7684 else
7685 {
7686 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7687 gold_assert(
7688 object->local_has_got_offset(r_sym, tls_got_offset_type));
7689 got_entry_address = target->got_->address() +
7690 got_tlsdesc_offset +
7691 object->local_got_offset(r_sym, tls_got_offset_type);
7692 }
7693 if (tlsopt == tls::TLSOPT_TO_IE)
7694 {
7695 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7696 view, psymval, got_entry_address,
7697 address);
7698 }
7699
7700 // Now do tlsdesc relocation.
7701 switch (r_type)
7702 {
7703 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7704 return aarch64_reloc_funcs::adrp(view,
7705 got_entry_address + addend,
7706 address);
7707 break;
7708 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7709 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7710 return aarch64_reloc_funcs::template rela_general<32>(
7711 view, got_entry_address, addend, reloc_property);
7712 break;
7713 case elfcpp::R_AARCH64_TLSDESC_CALL:
7714 return aarch64_reloc_funcs::STATUS_OKAY;
7715 break;
7716 default:
7717 gold_unreachable();
7718 }
7719 }
7720 }
7721 break;
7722
7723 default:
7724 gold_error(_("%s: unsupported TLS reloc %u."),
7725 object->name().c_str(), r_type);
7726 }
7727 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7728 } // End of relocate_tls.
7729
7730
7731 template<int size, bool big_endian>
7732 inline
7733 typename AArch64_relocate_functions<size, big_endian>::Status
7734 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7735 const Relocate_info<size, big_endian>* relinfo,
7736 Target_aarch64<size, big_endian>* target,
7737 const elfcpp::Rela<size, big_endian>& rela,
7738 unsigned int r_type,
7739 unsigned char* view,
7740 const Symbol_value<size>* psymval)
7741 {
7742 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7743 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7744 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7745
7746 Insntype* ip = reinterpret_cast<Insntype*>(view);
7747 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7748 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7749 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7750
7751 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7752 {
7753 // This is the 2nd relocs, optimization should already have been
7754 // done.
7755 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7756 return aarch64_reloc_funcs::STATUS_OKAY;
7757 }
7758
7759 // The original sequence is -
7760 // 90000000 adrp x0, 0 <main>
7761 // 91000000 add x0, x0, #0x0
7762 // 94000000 bl 0 <__tls_get_addr>
7763 // optimized to sequence -
7764 // d53bd040 mrs x0, tpidr_el0
7765 // 91400000 add x0, x0, #0x0, lsl #12
7766 // 91000000 add x0, x0, #0x0
7767
7768 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7769 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7770 // have to change "bl tls_get_addr", which does not have a corresponding tls
7771 // relocation type. So before proceeding, we need to make sure compiler
7772 // does not change the sequence.
7773 if(!(insn1 == 0x90000000 // adrp x0,0
7774 && insn2 == 0x91000000 // add x0, x0, #0x0
7775 && insn3 == 0x94000000)) // bl 0
7776 {
7777 // Ideally we should give up gd_to_le relaxation and do gd access.
7778 // However the gd_to_le relaxation decision has been made early
7779 // in the scan stage, where we did not allocate any GOT entry for
7780 // this symbol. Therefore we have to exit and report error now.
7781 gold_error(_("unexpected reloc insn sequence while relaxing "
7782 "tls gd to le for reloc %u."), r_type);
7783 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7784 }
7785
7786 // Write new insns.
7787 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7788 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7789 insn3 = 0x91000000; // add x0, x0, #0x0
7790 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7791 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7792 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7793
7794 // Calculate tprel value.
7795 Output_segment* tls_segment = relinfo->layout->tls_segment();
7796 gold_assert(tls_segment != NULL);
7797 AArch64_address value = psymval->value(relinfo->object, 0);
7798 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7799 AArch64_address aligned_tcb_size =
7800 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7801 AArch64_address x = value + aligned_tcb_size;
7802
7803 // After new insns are written, apply TLSLE relocs.
7804 const AArch64_reloc_property* rp1 =
7805 aarch64_reloc_property_table->get_reloc_property(
7806 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7807 const AArch64_reloc_property* rp2 =
7808 aarch64_reloc_property_table->get_reloc_property(
7809 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7810 gold_assert(rp1 != NULL && rp2 != NULL);
7811
7812 typename aarch64_reloc_funcs::Status s1 =
7813 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7814 x,
7815 addend,
7816 rp1);
7817 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7818 return s1;
7819
7820 typename aarch64_reloc_funcs::Status s2 =
7821 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7822 x,
7823 addend,
7824 rp2);
7825
7826 this->skip_call_tls_get_addr_ = true;
7827 return s2;
7828 } // End of tls_gd_to_le
7829
7830
7831 template<int size, bool big_endian>
7832 inline
7833 typename AArch64_relocate_functions<size, big_endian>::Status
7834 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7835 const Relocate_info<size, big_endian>* relinfo,
7836 Target_aarch64<size, big_endian>* target,
7837 const elfcpp::Rela<size, big_endian>& rela,
7838 unsigned int r_type,
7839 unsigned char* view,
7840 const Symbol_value<size>* psymval)
7841 {
7842 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7843 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7844 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7845
7846 Insntype* ip = reinterpret_cast<Insntype*>(view);
7847 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7848 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7849 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7850
7851 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7852 {
7853 // This is the 2nd relocs, optimization should already have been
7854 // done.
7855 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7856 return aarch64_reloc_funcs::STATUS_OKAY;
7857 }
7858
7859 // The original sequence is -
7860 // 90000000 adrp x0, 0 <main>
7861 // 91000000 add x0, x0, #0x0
7862 // 94000000 bl 0 <__tls_get_addr>
7863 // optimized to sequence -
7864 // d53bd040 mrs x0, tpidr_el0
7865 // 91400000 add x0, x0, #0x0, lsl #12
7866 // 91000000 add x0, x0, #0x0
7867
7868 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7869 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7870 // have to change "bl tls_get_addr", which does not have a corresponding tls
7871 // relocation type. So before proceeding, we need to make sure compiler
7872 // does not change the sequence.
7873 if(!(insn1 == 0x90000000 // adrp x0,0
7874 && insn2 == 0x91000000 // add x0, x0, #0x0
7875 && insn3 == 0x94000000)) // bl 0
7876 {
7877 // Ideally we should give up gd_to_le relaxation and do gd access.
7878 // However the gd_to_le relaxation decision has been made early
7879 // in the scan stage, where we did not allocate a GOT entry for
7880 // this symbol. Therefore we have to exit and report an error now.
7881 gold_error(_("unexpected reloc insn sequence while relaxing "
7882 "tls gd to le for reloc %u."), r_type);
7883 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7884 }
7885
7886 // Write new insns.
7887 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7888 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7889 insn3 = 0x91000000; // add x0, x0, #0x0
7890 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7891 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7892 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7893
7894 // Calculate tprel value.
7895 Output_segment* tls_segment = relinfo->layout->tls_segment();
7896 gold_assert(tls_segment != NULL);
7897 AArch64_address value = psymval->value(relinfo->object, 0);
7898 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7899 AArch64_address aligned_tcb_size =
7900 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7901 AArch64_address x = value + aligned_tcb_size;
7902
7903 // After new insns are written, apply TLSLE relocs.
7904 const AArch64_reloc_property* rp1 =
7905 aarch64_reloc_property_table->get_reloc_property(
7906 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7907 const AArch64_reloc_property* rp2 =
7908 aarch64_reloc_property_table->get_reloc_property(
7909 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7910 gold_assert(rp1 != NULL && rp2 != NULL);
7911
7912 typename aarch64_reloc_funcs::Status s1 =
7913 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7914 x,
7915 addend,
7916 rp1);
7917 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7918 return s1;
7919
7920 typename aarch64_reloc_funcs::Status s2 =
7921 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7922 x,
7923 addend,
7924 rp2);
7925
7926 this->skip_call_tls_get_addr_ = true;
7927 return s2;
7928
7929 } // End of tls_ld_to_le
7930
7931 template<int size, bool big_endian>
7932 inline
7933 typename AArch64_relocate_functions<size, big_endian>::Status
7934 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7935 const Relocate_info<size, big_endian>* relinfo,
7936 Target_aarch64<size, big_endian>* target,
7937 const elfcpp::Rela<size, big_endian>& rela,
7938 unsigned int r_type,
7939 unsigned char* view,
7940 const Symbol_value<size>* psymval)
7941 {
7942 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7943 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7944 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7945
7946 AArch64_address value = psymval->value(relinfo->object, 0);
7947 Output_segment* tls_segment = relinfo->layout->tls_segment();
7948 AArch64_address aligned_tcb_address =
7949 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7950 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7951 AArch64_address x = value + addend + aligned_tcb_address;
7952 // "x" is the offset to tp, we can only do this if x is within
7953 // range [0, 2^32-1]
7954 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7955 {
7956 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7957 r_type);
7958 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7959 }
7960
7961 Insntype* ip = reinterpret_cast<Insntype*>(view);
7962 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7963 unsigned int regno;
7964 Insntype newinsn;
7965 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7966 {
7967 // Generate movz.
7968 regno = (insn & 0x1f);
7969 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7970 }
7971 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7972 {
7973 // Generate movk.
7974 regno = (insn & 0x1f);
7975 gold_assert(regno == ((insn >> 5) & 0x1f));
7976 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7977 }
7978 else
7979 gold_unreachable();
7980
7981 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7982 return aarch64_reloc_funcs::STATUS_OKAY;
7983 } // End of tls_ie_to_le
7984
7985
7986 template<int size, bool big_endian>
7987 inline
7988 typename AArch64_relocate_functions<size, big_endian>::Status
7989 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7990 const Relocate_info<size, big_endian>* relinfo,
7991 Target_aarch64<size, big_endian>* target,
7992 const elfcpp::Rela<size, big_endian>& rela,
7993 unsigned int r_type,
7994 unsigned char* view,
7995 const Symbol_value<size>* psymval)
7996 {
7997 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7998 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7999 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8000
8001 // TLSDESC-GD sequence is like:
8002 // adrp x0, :tlsdesc:v1
8003 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8004 // add x0, x0, :tlsdesc_lo12:v1
8005 // .tlsdesccall v1
8006 // blr x1
8007 // After desc_gd_to_le optimization, the sequence will be like:
8008 // movz x0, #0x0, lsl #16
8009 // movk x0, #0x10
8010 // nop
8011 // nop
8012
8013 // Calculate tprel value.
8014 Output_segment* tls_segment = relinfo->layout->tls_segment();
8015 gold_assert(tls_segment != NULL);
8016 Insntype* ip = reinterpret_cast<Insntype*>(view);
8017 const elfcpp::Elf_Xword addend = rela.get_r_addend();
8018 AArch64_address value = psymval->value(relinfo->object, addend);
8019 AArch64_address aligned_tcb_size =
8020 align_address(target->tcb_size(), tls_segment->maximum_alignment());
8021 AArch64_address x = value + aligned_tcb_size;
8022 // x is the offset to tp, we can only do this if x is within range
8023 // [0, 2^32-1]. If x is out of range, fail and exit.
8024 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
8025 {
8026 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8027 "We Can't do gd_to_le relaxation.\n"), r_type);
8028 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
8029 }
8030 Insntype newinsn;
8031 switch (r_type)
8032 {
8033 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8034 case elfcpp::R_AARCH64_TLSDESC_CALL:
8035 // Change to nop
8036 newinsn = 0xd503201f;
8037 break;
8038
8039 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8040 // Change to movz.
8041 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
8042 break;
8043
8044 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8045 // Change to movk.
8046 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
8047 break;
8048
8049 default:
8050 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8051 r_type);
8052 gold_unreachable();
8053 }
8054 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8055 return aarch64_reloc_funcs::STATUS_OKAY;
8056 } // End of tls_desc_gd_to_le
8057
8058
8059 template<int size, bool big_endian>
8060 inline
8061 typename AArch64_relocate_functions<size, big_endian>::Status
8062 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
8063 const Relocate_info<size, big_endian>* /* relinfo */,
8064 Target_aarch64<size, big_endian>* /* target */,
8065 const elfcpp::Rela<size, big_endian>& rela,
8066 unsigned int r_type,
8067 unsigned char* view,
8068 const Symbol_value<size>* /* psymval */,
8069 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
8070 typename elfcpp::Elf_types<size>::Elf_Addr address)
8071 {
8072 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
8073 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8074
8075 // TLSDESC-GD sequence is like:
8076 // adrp x0, :tlsdesc:v1
8077 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8078 // add x0, x0, :tlsdesc_lo12:v1
8079 // .tlsdesccall v1
8080 // blr x1
8081 // After desc_gd_to_ie optimization, the sequence will be like:
8082 // adrp x0, :tlsie:v1
8083 // ldr x0, [x0, :tlsie_lo12:v1]
8084 // nop
8085 // nop
8086
8087 Insntype* ip = reinterpret_cast<Insntype*>(view);
8088 const elfcpp::Elf_Xword addend = rela.get_r_addend();
8089 Insntype newinsn;
8090 switch (r_type)
8091 {
8092 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8093 case elfcpp::R_AARCH64_TLSDESC_CALL:
8094 // Change to nop
8095 newinsn = 0xd503201f;
8096 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8097 break;
8098
8099 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8100 {
8101 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
8102 address);
8103 }
8104 break;
8105
8106 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8107 {
8108 // Set ldr target register to be x0.
8109 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
8110 insn &= 0xffffffe0;
8111 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
8112 // Do relocation.
8113 const AArch64_reloc_property* reloc_property =
8114 aarch64_reloc_property_table->get_reloc_property(
8115 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8116 return aarch64_reloc_funcs::template rela_general<32>(
8117 view, got_entry_address, addend, reloc_property);
8118 }
8119 break;
8120
8121 default:
8122 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8123 r_type);
8124 gold_unreachable();
8125 }
8126 return aarch64_reloc_funcs::STATUS_OKAY;
8127 } // End of tls_desc_gd_to_ie
8128
8129 // Relocate section data.
8130
8131 template<int size, bool big_endian>
8132 void
8133 Target_aarch64<size, big_endian>::relocate_section(
8134 const Relocate_info<size, big_endian>* relinfo,
8135 unsigned int sh_type,
8136 const unsigned char* prelocs,
8137 size_t reloc_count,
8138 Output_section* output_section,
8139 bool needs_special_offset_handling,
8140 unsigned char* view,
8141 typename elfcpp::Elf_types<size>::Elf_Addr address,
8142 section_size_type view_size,
8143 const Reloc_symbol_changes* reloc_symbol_changes)
8144 {
8145 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8146 typedef Target_aarch64<size, big_endian> Aarch64;
8147 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8148 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8149 Classify_reloc;
8150
8151 gold_assert(sh_type == elfcpp::SHT_RELA);
8152
8153 // See if we are relocating a relaxed input section. If so, the view
8154 // covers the whole output section and we need to adjust accordingly.
8155 if (needs_special_offset_handling)
8156 {
8157 const Output_relaxed_input_section* poris =
8158 output_section->find_relaxed_input_section(relinfo->object,
8159 relinfo->data_shndx);
8160 if (poris != NULL)
8161 {
8162 Address section_address = poris->address();
8163 section_size_type section_size = poris->data_size();
8164
8165 gold_assert((section_address >= address)
8166 && ((section_address + section_size)
8167 <= (address + view_size)));
8168
8169 off_t offset = section_address - address;
8170 view += offset;
8171 address += offset;
8172 view_size = section_size;
8173 }
8174 }
8175
8176 gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8177 gold::Default_comdat_behavior, Classify_reloc>(
8178 relinfo,
8179 this,
8180 prelocs,
8181 reloc_count,
8182 output_section,
8183 needs_special_offset_handling,
8184 view,
8185 address,
8186 view_size,
8187 reloc_symbol_changes);
8188 }
8189
8190 // Scan the relocs during a relocatable link.
8191
8192 template<int size, bool big_endian>
8193 void
8194 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8195 Symbol_table* symtab,
8196 Layout* layout,
8197 Sized_relobj_file<size, big_endian>* object,
8198 unsigned int data_shndx,
8199 unsigned int sh_type,
8200 const unsigned char* prelocs,
8201 size_t reloc_count,
8202 Output_section* output_section,
8203 bool needs_special_offset_handling,
8204 size_t local_symbol_count,
8205 const unsigned char* plocal_symbols,
8206 Relocatable_relocs* rr)
8207 {
8208 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8209 Classify_reloc;
8210 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8211 Scan_relocatable_relocs;
8212
8213 gold_assert(sh_type == elfcpp::SHT_RELA);
8214
8215 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8216 symtab,
8217 layout,
8218 object,
8219 data_shndx,
8220 prelocs,
8221 reloc_count,
8222 output_section,
8223 needs_special_offset_handling,
8224 local_symbol_count,
8225 plocal_symbols,
8226 rr);
8227 }
8228
8229 // Scan the relocs for --emit-relocs.
8230
8231 template<int size, bool big_endian>
8232 void
8233 Target_aarch64<size, big_endian>::emit_relocs_scan(
8234 Symbol_table* symtab,
8235 Layout* layout,
8236 Sized_relobj_file<size, big_endian>* object,
8237 unsigned int data_shndx,
8238 unsigned int sh_type,
8239 const unsigned char* prelocs,
8240 size_t reloc_count,
8241 Output_section* output_section,
8242 bool needs_special_offset_handling,
8243 size_t local_symbol_count,
8244 const unsigned char* plocal_syms,
8245 Relocatable_relocs* rr)
8246 {
8247 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8248 Classify_reloc;
8249 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8250 Emit_relocs_strategy;
8251
8252 gold_assert(sh_type == elfcpp::SHT_RELA);
8253
8254 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8255 symtab,
8256 layout,
8257 object,
8258 data_shndx,
8259 prelocs,
8260 reloc_count,
8261 output_section,
8262 needs_special_offset_handling,
8263 local_symbol_count,
8264 plocal_syms,
8265 rr);
8266 }
8267
8268 // Relocate a section during a relocatable link.
8269
8270 template<int size, bool big_endian>
8271 void
8272 Target_aarch64<size, big_endian>::relocate_relocs(
8273 const Relocate_info<size, big_endian>* relinfo,
8274 unsigned int sh_type,
8275 const unsigned char* prelocs,
8276 size_t reloc_count,
8277 Output_section* output_section,
8278 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8279 unsigned char* view,
8280 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8281 section_size_type view_size,
8282 unsigned char* reloc_view,
8283 section_size_type reloc_view_size)
8284 {
8285 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8286 Classify_reloc;
8287
8288 gold_assert(sh_type == elfcpp::SHT_RELA);
8289
8290 if (offset_in_output_section == this->invalid_address)
8291 {
8292 const Output_relaxed_input_section *poris
8293 = output_section->find_relaxed_input_section(relinfo->object,
8294 relinfo->data_shndx);
8295 if (poris != NULL)
8296 {
8297 Address section_address = poris->address();
8298 section_size_type section_size = poris->data_size();
8299
8300 gold_assert(section_address >= view_address
8301 && (section_address + section_size
8302 <= view_address + view_size));
8303
8304 off_t offset = section_address - view_address;
8305 view += offset;
8306 view_address += offset;
8307 view_size = section_size;
8308 }
8309 }
8310
8311 gold::relocate_relocs<size, big_endian, Classify_reloc>(
8312 relinfo,
8313 prelocs,
8314 reloc_count,
8315 output_section,
8316 offset_in_output_section,
8317 view,
8318 view_address,
8319 view_size,
8320 reloc_view,
8321 reloc_view_size);
8322 }
8323
8324
8325 // Return whether this is a 3-insn erratum sequence.
8326
8327 template<int size, bool big_endian>
8328 bool
8329 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8330 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8331 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8332 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8333 {
8334 unsigned rt1, rt2;
8335 bool load, pair;
8336
8337 // The 2nd insn is a single register load or store; or register pair
8338 // store.
8339 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8340 && (!pair || (pair && !load)))
8341 {
8342 // The 3rd insn is a load or store instruction from the "Load/store
8343 // register (unsigned immediate)" encoding class, using Rn as the
8344 // base address register.
8345 if (Insn_utilities::aarch64_ldst_uimm(insn3)
8346 && (Insn_utilities::aarch64_rn(insn3)
8347 == Insn_utilities::aarch64_rd(insn1)))
8348 return true;
8349 }
8350 return false;
8351 }
8352
8353
8354 // Return whether this is a 835769 sequence.
8355 // (Similarly implemented as in elfnn-aarch64.c.)
8356
8357 template<int size, bool big_endian>
8358 bool
8359 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8360 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8361 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8362 {
8363 uint32_t rt;
8364 uint32_t rt2 = 0;
8365 uint32_t rn;
8366 uint32_t rm;
8367 uint32_t ra;
8368 bool pair;
8369 bool load;
8370
8371 if (Insn_utilities::aarch64_mlxl(insn2)
8372 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8373 {
8374 /* Any SIMD memory op is independent of the subsequent MLA
8375 by definition of the erratum. */
8376 if (Insn_utilities::aarch64_bit(insn1, 26))
8377 return true;
8378
8379 /* If not SIMD, check for integer memory ops and MLA relationship. */
8380 rn = Insn_utilities::aarch64_rn(insn2);
8381 ra = Insn_utilities::aarch64_ra(insn2);
8382 rm = Insn_utilities::aarch64_rm(insn2);
8383
8384 /* If this is a load and there's a true(RAW) dependency, we are safe
8385 and this is not an erratum sequence. */
8386 if (load &&
8387 (rt == rn || rt == rm || rt == ra
8388 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8389 return false;
8390
8391 /* We conservatively put out stubs for all other cases (including
8392 writebacks). */
8393 return true;
8394 }
8395
8396 return false;
8397 }
8398
8399
8400 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8401
8402 template<int size, bool big_endian>
8403 void
8404 Target_aarch64<size, big_endian>::create_erratum_stub(
8405 AArch64_relobj<size, big_endian>* relobj,
8406 unsigned int shndx,
8407 section_size_type erratum_insn_offset,
8408 Address erratum_address,
8409 typename Insn_utilities::Insntype erratum_insn,
8410 int erratum_type,
8411 unsigned int e843419_adrp_offset)
8412 {
8413 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8414 The_stub_table* stub_table = relobj->stub_table(shndx);
8415 gold_assert(stub_table != NULL);
8416 if (stub_table->find_erratum_stub(relobj,
8417 shndx,
8418 erratum_insn_offset) == NULL)
8419 {
8420 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8421 The_erratum_stub* stub;
8422 if (erratum_type == ST_E_835769)
8423 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8424 erratum_insn_offset);
8425 else if (erratum_type == ST_E_843419)
8426 stub = new E843419_stub<size, big_endian>(
8427 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8428 else
8429 gold_unreachable();
8430 stub->set_erratum_insn(erratum_insn);
8431 stub->set_erratum_address(erratum_address);
8432 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8433 // always the next insn after erratum insn.
8434 stub->set_destination_address(erratum_address + BPI);
8435 stub_table->add_erratum_stub(stub);
8436 }
8437 }
8438
8439
8440 // Scan erratum for section SHNDX range [output_address + span_start,
8441 // output_address + span_end). Note here we do not share the code with
8442 // scan_erratum_843419_span function, because for 843419 we optimize by only
8443 // scanning the last few insns of a page, whereas for 835769, we need to scan
8444 // every insn.
8445
8446 template<int size, bool big_endian>
8447 void
8448 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8449 AArch64_relobj<size, big_endian>* relobj,
8450 unsigned int shndx,
8451 const section_size_type span_start,
8452 const section_size_type span_end,
8453 unsigned char* input_view,
8454 Address output_address)
8455 {
8456 typedef typename Insn_utilities::Insntype Insntype;
8457
8458 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8459
8460 // Adjust output_address and view to the start of span.
8461 output_address += span_start;
8462 input_view += span_start;
8463
8464 section_size_type span_length = span_end - span_start;
8465 section_size_type offset = 0;
8466 for (offset = 0; offset + BPI < span_length; offset += BPI)
8467 {
8468 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8469 Insntype insn1 = ip[0];
8470 Insntype insn2 = ip[1];
8471 if (is_erratum_835769_sequence(insn1, insn2))
8472 {
8473 Insntype erratum_insn = insn2;
8474 // "span_start + offset" is the offset for insn1. So for insn2, it is
8475 // "span_start + offset + BPI".
8476 section_size_type erratum_insn_offset = span_start + offset + BPI;
8477 Address erratum_address = output_address + offset + BPI;
8478 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8479 "section %d, offset 0x%08x."),
8480 relobj->name().c_str(), shndx,
8481 (unsigned int)(span_start + offset));
8482
8483 this->create_erratum_stub(relobj, shndx,
8484 erratum_insn_offset, erratum_address,
8485 erratum_insn, ST_E_835769);
8486 offset += BPI; // Skip mac insn.
8487 }
8488 }
8489 } // End of "Target_aarch64::scan_erratum_835769_span".
8490
8491
8492 // Scan erratum for section SHNDX range
8493 // [output_address + span_start, output_address + span_end).
8494
8495 template<int size, bool big_endian>
8496 void
8497 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8498 AArch64_relobj<size, big_endian>* relobj,
8499 unsigned int shndx,
8500 const section_size_type span_start,
8501 const section_size_type span_end,
8502 unsigned char* input_view,
8503 Address output_address)
8504 {
8505 typedef typename Insn_utilities::Insntype Insntype;
8506
8507 // Adjust output_address and view to the start of span.
8508 output_address += span_start;
8509 input_view += span_start;
8510
8511 if ((output_address & 0x03) != 0)
8512 return;
8513
8514 section_size_type offset = 0;
8515 section_size_type span_length = span_end - span_start;
8516 // The first instruction must be ending at 0xFF8 or 0xFFC.
8517 unsigned int page_offset = output_address & 0xFFF;
8518 // Make sure starting position, that is "output_address+offset",
8519 // starts at page position 0xff8 or 0xffc.
8520 if (page_offset < 0xff8)
8521 offset = 0xff8 - page_offset;
8522 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8523 {
8524 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8525 Insntype insn1 = ip[0];
8526 if (Insn_utilities::is_adrp(insn1))
8527 {
8528 Insntype insn2 = ip[1];
8529 Insntype insn3 = ip[2];
8530 Insntype erratum_insn;
8531 unsigned insn_offset;
8532 bool do_report = false;
8533 if (is_erratum_843419_sequence(insn1, insn2, insn3))
8534 {
8535 do_report = true;
8536 erratum_insn = insn3;
8537 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8538 }
8539 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8540 {
8541 // Optionally we can have an insn between ins2 and ins3
8542 Insntype insn_opt = ip[2];
8543 // And insn_opt must not be a branch.
8544 if (!Insn_utilities::aarch64_b(insn_opt)
8545 && !Insn_utilities::aarch64_bl(insn_opt)
8546 && !Insn_utilities::aarch64_blr(insn_opt)
8547 && !Insn_utilities::aarch64_br(insn_opt))
8548 {
8549 // And insn_opt must not write to dest reg in insn1. However
8550 // we do a conservative scan, which means we may fix/report
8551 // more than necessary, but it doesn't hurt.
8552
8553 Insntype insn4 = ip[3];
8554 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8555 {
8556 do_report = true;
8557 erratum_insn = insn4;
8558 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8559 }
8560 }
8561 }
8562 if (do_report)
8563 {
8564 unsigned int erratum_insn_offset =
8565 span_start + offset + insn_offset;
8566 Address erratum_address =
8567 output_address + offset + insn_offset;
8568 create_erratum_stub(relobj, shndx,
8569 erratum_insn_offset, erratum_address,
8570 erratum_insn, ST_E_843419,
8571 span_start + offset);
8572 }
8573 }
8574
8575 // Advance to next candidate instruction. We only consider instruction
8576 // sequences starting at a page offset of 0xff8 or 0xffc.
8577 page_offset = (output_address + offset) & 0xfff;
8578 if (page_offset == 0xff8)
8579 offset += 4;
8580 else // (page_offset == 0xffc), we move to next page's 0xff8.
8581 offset += 0xffc;
8582 }
8583 } // End of "Target_aarch64::scan_erratum_843419_span".
8584
8585
8586 // The selector for aarch64 object files.
8587
8588 template<int size, bool big_endian>
8589 class Target_selector_aarch64 : public Target_selector
8590 {
8591 public:
8592 Target_selector_aarch64();
8593
8594 virtual Target*
8595 do_instantiate_target()
8596 { return new Target_aarch64<size, big_endian>(); }
8597 };
8598
8599 template<>
8600 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8601 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8602 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8603 { }
8604
8605 template<>
8606 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8607 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8608 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8609 { }
8610
8611 template<>
8612 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8613 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8614 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8615 { }
8616
8617 template<>
8618 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8619 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8620 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8621 { }
8622
8623 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8624 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8625 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8626 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8627
8628 } // End anonymous namespace.