]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/dwarf_reader.cc
gold/
[thirdparty/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <vector>
27
28 #include "elfcpp_swap.h"
29 #include "dwarf.h"
30 #include "object.h"
31 #include "reloc.h"
32 #include "dwarf_reader.h"
33 #include "int_encoding.h"
34 #include "compressed_output.h"
35
36 namespace gold {
37
38 // Class Sized_elf_reloc_mapper
39
40 // Initialize the relocation tracker for section RELOC_SHNDX.
41
42 template<int size, bool big_endian>
43 bool
44 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
45 unsigned int reloc_shndx, unsigned int reloc_type)
46 {
47 this->reloc_type_ = reloc_type;
48 return this->track_relocs_.initialize(this->object_, reloc_shndx,
49 reloc_type);
50 }
51
52 // Looks in the symtab to see what section a symbol is in.
53
54 template<int size, bool big_endian>
55 unsigned int
56 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
57 unsigned int symndx, Address* value, bool* is_ordinary)
58 {
59 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
60 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
61 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
62 *value = elfsym.get_st_value();
63 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
64 is_ordinary);
65 }
66
67 // Return the section index and offset within the section of
68 // the target of the relocation for RELOC_OFFSET.
69
70 template<int size, bool big_endian>
71 unsigned int
72 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
73 off_t reloc_offset, off_t* target_offset)
74 {
75 this->track_relocs_.advance(reloc_offset);
76 if (reloc_offset != this->track_relocs_.next_offset())
77 return 0;
78 unsigned int symndx = this->track_relocs_.next_symndx();
79 typename elfcpp::Elf_types<size>::Elf_Addr value;
80 bool is_ordinary;
81 unsigned int target_shndx = this->symbol_section(symndx, &value,
82 &is_ordinary);
83 if (!is_ordinary)
84 return 0;
85 if (this->reloc_type_ == elfcpp::SHT_RELA)
86 value += this->track_relocs_.next_addend();
87 *target_offset = value;
88 return target_shndx;
89 }
90
91 static inline Elf_reloc_mapper*
92 make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
93 off_t symtab_size)
94 {
95 if (object->elfsize() == 32)
96 {
97 if (object->is_big_endian())
98 {
99 #ifdef HAVE_TARGET_32_BIG
100 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
101 symtab_size);
102 #else
103 gold_unreachable();
104 #endif
105 }
106 else
107 {
108 #ifdef HAVE_TARGET_32_LITTLE
109 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
110 symtab_size);
111 #else
112 gold_unreachable();
113 #endif
114 }
115 }
116 else if (object->elfsize() == 64)
117 {
118 if (object->is_big_endian())
119 {
120 #ifdef HAVE_TARGET_64_BIG
121 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
122 symtab_size);
123 #else
124 gold_unreachable();
125 #endif
126 }
127 else
128 {
129 #ifdef HAVE_TARGET_64_LITTLE
130 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
131 symtab_size);
132 #else
133 gold_unreachable();
134 #endif
135 }
136 }
137 else
138 gold_unreachable();
139 }
140
141 // class Dwarf_abbrev_table
142
143 void
144 Dwarf_abbrev_table::clear_abbrev_codes()
145 {
146 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
147 {
148 if (this->low_abbrev_codes_[code] != NULL)
149 {
150 delete this->low_abbrev_codes_[code];
151 this->low_abbrev_codes_[code] = NULL;
152 }
153 }
154 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
155 it != this->high_abbrev_codes_.end();
156 ++it)
157 {
158 if (it->second != NULL)
159 delete it->second;
160 }
161 this->high_abbrev_codes_.clear();
162 }
163
164 // Read the abbrev table from an object file.
165
166 bool
167 Dwarf_abbrev_table::do_read_abbrevs(
168 Relobj* object,
169 unsigned int abbrev_shndx,
170 off_t abbrev_offset)
171 {
172 this->clear_abbrev_codes();
173
174 // If we don't have relocations, abbrev_shndx will be 0, and
175 // we'll have to hunt for the .debug_abbrev section.
176 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
177 abbrev_shndx = this->abbrev_shndx_;
178 else if (abbrev_shndx == 0)
179 {
180 for (unsigned int i = 1; i < object->shnum(); ++i)
181 {
182 std::string name = object->section_name(i);
183 if (name == ".debug_abbrev")
184 {
185 abbrev_shndx = i;
186 // Correct the offset. For incremental update links, we have a
187 // relocated offset that is relative to the output section, but
188 // here we need an offset relative to the input section.
189 abbrev_offset -= object->output_section_offset(i);
190 break;
191 }
192 }
193 if (abbrev_shndx == 0)
194 return false;
195 }
196
197 // Get the section contents and decompress if necessary.
198 if (abbrev_shndx != this->abbrev_shndx_)
199 {
200 if (this->owns_buffer_ && this->buffer_ != NULL)
201 {
202 delete[] this->buffer_;
203 this->owns_buffer_ = false;
204 }
205
206 section_size_type buffer_size;
207 this->buffer_ =
208 object->decompressed_section_contents(abbrev_shndx,
209 &buffer_size,
210 &this->owns_buffer_);
211 this->buffer_end_ = this->buffer_ + buffer_size;
212 this->abbrev_shndx_ = abbrev_shndx;
213 }
214
215 this->buffer_pos_ = this->buffer_ + abbrev_offset;
216 return true;
217 }
218
219 // Lookup the abbrev code entry for CODE. This function is called
220 // only when the abbrev code is not in the direct lookup table.
221 // It may be in the hash table, it may not have been read yet,
222 // or it may not exist in the abbrev table.
223
224 const Dwarf_abbrev_table::Abbrev_code*
225 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
226 {
227 // See if the abbrev code is already in the hash table.
228 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
229 if (it != this->high_abbrev_codes_.end())
230 return it->second;
231
232 // Read and store abbrev code definitions until we find the
233 // one we're looking for.
234 for (;;)
235 {
236 // Read the abbrev code. A zero here indicates the end of the
237 // abbrev table.
238 size_t len;
239 if (this->buffer_pos_ >= this->buffer_end_)
240 return NULL;
241 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
242 if (nextcode == 0)
243 {
244 this->buffer_pos_ = this->buffer_end_;
245 return NULL;
246 }
247 this->buffer_pos_ += len;
248
249 // Read the tag.
250 if (this->buffer_pos_ >= this->buffer_end_)
251 return NULL;
252 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
253 this->buffer_pos_ += len;
254
255 // Read the has_children flag.
256 if (this->buffer_pos_ >= this->buffer_end_)
257 return NULL;
258 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
259 this->buffer_pos_ += 1;
260
261 // Read the list of (attribute, form) pairs.
262 Abbrev_code* entry = new Abbrev_code(tag, has_children);
263 for (;;)
264 {
265 // Read the attribute.
266 if (this->buffer_pos_ >= this->buffer_end_)
267 return NULL;
268 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
269 this->buffer_pos_ += len;
270
271 // Read the form.
272 if (this->buffer_pos_ >= this->buffer_end_)
273 return NULL;
274 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
275 this->buffer_pos_ += len;
276
277 // A (0,0) pair terminates the list.
278 if (attr == 0 && form == 0)
279 break;
280
281 if (attr == elfcpp::DW_AT_sibling)
282 entry->has_sibling_attribute = true;
283
284 entry->add_attribute(attr, form);
285 }
286
287 this->store_abbrev(nextcode, entry);
288 if (nextcode == code)
289 return entry;
290 }
291
292 return NULL;
293 }
294
295 // class Dwarf_ranges_table
296
297 // Read the ranges table from an object file.
298
299 bool
300 Dwarf_ranges_table::read_ranges_table(
301 Relobj* object,
302 const unsigned char* symtab,
303 off_t symtab_size,
304 unsigned int ranges_shndx)
305 {
306 // If we've already read this abbrev table, return immediately.
307 if (this->ranges_shndx_ > 0
308 && this->ranges_shndx_ == ranges_shndx)
309 return true;
310
311 // If we don't have relocations, ranges_shndx will be 0, and
312 // we'll have to hunt for the .debug_ranges section.
313 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
314 ranges_shndx = this->ranges_shndx_;
315 else if (ranges_shndx == 0)
316 {
317 for (unsigned int i = 1; i < object->shnum(); ++i)
318 {
319 std::string name = object->section_name(i);
320 if (name == ".debug_ranges")
321 {
322 ranges_shndx = i;
323 this->output_section_offset_ = object->output_section_offset(i);
324 break;
325 }
326 }
327 if (ranges_shndx == 0)
328 return false;
329 }
330
331 // Get the section contents and decompress if necessary.
332 if (ranges_shndx != this->ranges_shndx_)
333 {
334 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
335 {
336 delete[] this->ranges_buffer_;
337 this->owns_ranges_buffer_ = false;
338 }
339
340 section_size_type buffer_size;
341 this->ranges_buffer_ =
342 object->decompressed_section_contents(ranges_shndx,
343 &buffer_size,
344 &this->owns_ranges_buffer_);
345 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
346 this->ranges_shndx_ = ranges_shndx;
347 }
348
349 if (this->ranges_reloc_mapper_ != NULL)
350 {
351 delete this->ranges_reloc_mapper_;
352 this->ranges_reloc_mapper_ = NULL;
353 }
354
355 // For incremental objects, we have no relocations.
356 if (object->is_incremental())
357 return true;
358
359 // Find the relocation section for ".debug_ranges".
360 unsigned int reloc_shndx = 0;
361 unsigned int reloc_type = 0;
362 for (unsigned int i = 0; i < object->shnum(); ++i)
363 {
364 reloc_type = object->section_type(i);
365 if ((reloc_type == elfcpp::SHT_REL
366 || reloc_type == elfcpp::SHT_RELA)
367 && object->section_info(i) == ranges_shndx)
368 {
369 reloc_shndx = i;
370 break;
371 }
372 }
373
374 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
375 symtab_size);
376 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
377
378 return true;
379 }
380
381 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
382
383 Dwarf_range_list*
384 Dwarf_ranges_table::read_range_list(
385 Relobj* object,
386 const unsigned char* symtab,
387 off_t symtab_size,
388 unsigned int addr_size,
389 unsigned int ranges_shndx,
390 off_t offset)
391 {
392 Dwarf_range_list* ranges;
393
394 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
395 return NULL;
396
397 // Correct the offset. For incremental update links, we have a
398 // relocated offset that is relative to the output section, but
399 // here we need an offset relative to the input section.
400 offset -= this->output_section_offset_;
401
402 // Read the range list at OFFSET.
403 ranges = new Dwarf_range_list();
404 off_t base = 0;
405 for (;
406 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
407 offset += 2 * addr_size)
408 {
409 off_t start;
410 off_t end;
411
412 // Read the raw contents of the section.
413 if (addr_size == 4)
414 {
415 start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
416 + offset);
417 end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
418 + offset + 4);
419 }
420 else
421 {
422 start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
423 + offset);
424 end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
425 + offset + 8);
426 }
427
428 // Check for relocations and adjust the values.
429 unsigned int shndx1 = 0;
430 unsigned int shndx2 = 0;
431 if (this->ranges_reloc_mapper_ != NULL)
432 {
433 shndx1 =
434 this->ranges_reloc_mapper_->get_reloc_target(offset, &start);
435 shndx2 =
436 this->ranges_reloc_mapper_->get_reloc_target(offset + addr_size,
437 &end);
438 }
439
440 // End of list is marked by a pair of zeroes.
441 if (shndx1 == 0 && start == 0 && end == 0)
442 break;
443
444 // A "base address selection entry" is identified by
445 // 0xffffffff for the first value of the pair. The second
446 // value is used as a base for subsequent range list entries.
447 if (shndx1 == 0 && start == -1)
448 base = end;
449 else if (shndx1 == shndx2)
450 {
451 if (shndx1 == 0 || object->is_section_included(shndx1))
452 ranges->add(shndx1, base + start, base + end);
453 }
454 else
455 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
456 "range list entry are in different sections"),
457 object->name().c_str());
458 }
459
460 return ranges;
461 }
462
463 // class Dwarf_pubnames_table
464
465 // Read the pubnames section SHNDX from the object file.
466
467 bool
468 Dwarf_pubnames_table::read_section(Relobj* object, unsigned int shndx)
469 {
470 section_size_type buffer_size;
471
472 // If we don't have relocations, shndx will be 0, and
473 // we'll have to hunt for the .debug_pubnames/pubtypes section.
474 if (shndx == 0)
475 {
476 const char* name = (this->is_pubtypes_
477 ? ".debug_pubtypes"
478 : ".debug_pubnames");
479 for (unsigned int i = 1; i < object->shnum(); ++i)
480 {
481 if (object->section_name(i) == name)
482 {
483 shndx = i;
484 this->output_section_offset_ = object->output_section_offset(i);
485 break;
486 }
487 }
488 if (shndx == 0)
489 return false;
490 }
491
492 this->buffer_ = object->decompressed_section_contents(shndx,
493 &buffer_size,
494 &this->owns_buffer_);
495 if (this->buffer_ == NULL)
496 return false;
497 this->buffer_end_ = this->buffer_ + buffer_size;
498 return true;
499 }
500
501 // Read the header for the set at OFFSET.
502
503 bool
504 Dwarf_pubnames_table::read_header(off_t offset)
505 {
506 // Correct the offset. For incremental update links, we have a
507 // relocated offset that is relative to the output section, but
508 // here we need an offset relative to the input section.
509 offset -= this->output_section_offset_;
510
511 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
512 return false;
513
514 const unsigned char* pinfo = this->buffer_ + offset;
515
516 // Read the unit_length field.
517 uint32_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
518 pinfo += 4;
519 if (unit_length == 0xffffffff)
520 {
521 unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
522 pinfo += 8;
523 this->offset_size_ = 8;
524 }
525 else
526 this->offset_size_ = 4;
527
528 // Check the version.
529 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
530 pinfo += 2;
531 if (version != 2)
532 return false;
533
534 // Skip the debug_info_offset and debug_info_size fields.
535 pinfo += 2 * this->offset_size_;
536
537 if (pinfo >= this->buffer_end_)
538 return false;
539
540 this->pinfo_ = pinfo;
541 return true;
542 }
543
544 // Read the next name from the set.
545
546 const char*
547 Dwarf_pubnames_table::next_name()
548 {
549 const unsigned char* pinfo = this->pinfo_;
550
551 // Read the offset within the CU. If this is zero, we have reached
552 // the end of the list.
553 uint32_t offset;
554 if (this->offset_size_ == 4)
555 offset = this->dwinfo_->read_from_pointer<32>(&pinfo);
556 else
557 offset = this->dwinfo_->read_from_pointer<64>(&pinfo);
558 if (offset == 0)
559 return NULL;
560
561 // Return a pointer to the string at the current location,
562 // and advance the pointer to the next entry.
563 const char* ret = reinterpret_cast<const char*>(pinfo);
564 while (pinfo < this->buffer_end_ && *pinfo != '\0')
565 ++pinfo;
566 if (pinfo < this->buffer_end_)
567 ++pinfo;
568
569 this->pinfo_ = pinfo;
570 return ret;
571 }
572
573 // class Dwarf_die
574
575 Dwarf_die::Dwarf_die(
576 Dwarf_info_reader* dwinfo,
577 off_t die_offset,
578 Dwarf_die* parent)
579 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
580 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
581 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
582 linkage_name_off_(-1), string_shndx_(0), specification_(0),
583 abstract_origin_(0)
584 {
585 size_t len;
586 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
587 if (pdie == NULL)
588 return;
589 unsigned int code = read_unsigned_LEB_128(pdie, &len);
590 if (code == 0)
591 {
592 if (parent != NULL)
593 parent->set_sibling_offset(die_offset + len);
594 return;
595 }
596 this->attr_offset_ = len;
597
598 // Lookup the abbrev code in the abbrev table.
599 this->abbrev_code_ = dwinfo->get_abbrev(code);
600 }
601
602 // Read all the attributes of the DIE.
603
604 bool
605 Dwarf_die::read_attributes()
606 {
607 if (this->attributes_read_)
608 return true;
609
610 gold_assert(this->abbrev_code_ != NULL);
611
612 const unsigned char* pdie =
613 this->dwinfo_->buffer_at_offset(this->die_offset_);
614 if (pdie == NULL)
615 return false;
616 const unsigned char* pattr = pdie + this->attr_offset_;
617
618 unsigned int nattr = this->abbrev_code_->attributes.size();
619 this->attributes_.reserve(nattr);
620 for (unsigned int i = 0; i < nattr; ++i)
621 {
622 size_t len;
623 unsigned int attr = this->abbrev_code_->attributes[i].attr;
624 unsigned int form = this->abbrev_code_->attributes[i].form;
625 if (form == elfcpp::DW_FORM_indirect)
626 {
627 form = read_unsigned_LEB_128(pattr, &len);
628 pattr += len;
629 }
630 off_t attr_off = this->die_offset_ + (pattr - pdie);
631 bool ref_form = false;
632 Attribute_value attr_value;
633 attr_value.attr = attr;
634 attr_value.form = form;
635 attr_value.aux.shndx = 0;
636 switch(form)
637 {
638 case elfcpp::DW_FORM_flag_present:
639 attr_value.val.intval = 1;
640 break;
641 case elfcpp::DW_FORM_strp:
642 {
643 off_t str_off;
644 if (this->dwinfo_->offset_size() == 4)
645 str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
646 else
647 str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
648 unsigned int shndx =
649 this->dwinfo_->lookup_reloc(attr_off, &str_off);
650 attr_value.aux.shndx = shndx;
651 attr_value.val.refval = str_off;
652 break;
653 }
654 case elfcpp::DW_FORM_sec_offset:
655 {
656 off_t sec_off;
657 if (this->dwinfo_->offset_size() == 4)
658 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
659 else
660 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
661 unsigned int shndx =
662 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
663 attr_value.aux.shndx = shndx;
664 attr_value.val.refval = sec_off;
665 ref_form = true;
666 break;
667 }
668 case elfcpp::DW_FORM_addr:
669 case elfcpp::DW_FORM_ref_addr:
670 {
671 off_t sec_off;
672 if (this->dwinfo_->address_size() == 4)
673 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
674 else
675 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
676 unsigned int shndx =
677 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
678 attr_value.aux.shndx = shndx;
679 attr_value.val.refval = sec_off;
680 ref_form = true;
681 break;
682 }
683 case elfcpp::DW_FORM_block1:
684 attr_value.aux.blocklen = *pattr++;
685 attr_value.val.blockval = pattr;
686 pattr += attr_value.aux.blocklen;
687 break;
688 case elfcpp::DW_FORM_block2:
689 attr_value.aux.blocklen =
690 this->dwinfo_->read_from_pointer<16>(&pattr);
691 attr_value.val.blockval = pattr;
692 pattr += attr_value.aux.blocklen;
693 break;
694 case elfcpp::DW_FORM_block4:
695 attr_value.aux.blocklen =
696 this->dwinfo_->read_from_pointer<32>(&pattr);
697 attr_value.val.blockval = pattr;
698 pattr += attr_value.aux.blocklen;
699 break;
700 case elfcpp::DW_FORM_block:
701 case elfcpp::DW_FORM_exprloc:
702 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
703 attr_value.val.blockval = pattr + len;
704 pattr += len + attr_value.aux.blocklen;
705 break;
706 case elfcpp::DW_FORM_data1:
707 case elfcpp::DW_FORM_flag:
708 attr_value.val.intval = *pattr++;
709 break;
710 case elfcpp::DW_FORM_ref1:
711 attr_value.val.refval = *pattr++;
712 ref_form = true;
713 break;
714 case elfcpp::DW_FORM_data2:
715 attr_value.val.intval =
716 this->dwinfo_->read_from_pointer<16>(&pattr);
717 break;
718 case elfcpp::DW_FORM_ref2:
719 attr_value.val.refval =
720 this->dwinfo_->read_from_pointer<16>(&pattr);
721 ref_form = true;
722 break;
723 case elfcpp::DW_FORM_data4:
724 {
725 off_t sec_off;
726 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
727 unsigned int shndx =
728 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
729 attr_value.aux.shndx = shndx;
730 attr_value.val.intval = sec_off;
731 break;
732 }
733 case elfcpp::DW_FORM_ref4:
734 {
735 off_t sec_off;
736 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
737 unsigned int shndx =
738 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
739 attr_value.aux.shndx = shndx;
740 attr_value.val.refval = sec_off;
741 ref_form = true;
742 break;
743 }
744 case elfcpp::DW_FORM_data8:
745 {
746 off_t sec_off;
747 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
748 unsigned int shndx =
749 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
750 attr_value.aux.shndx = shndx;
751 attr_value.val.intval = sec_off;
752 break;
753 }
754 case elfcpp::DW_FORM_ref_sig8:
755 attr_value.val.uintval =
756 this->dwinfo_->read_from_pointer<64>(&pattr);
757 break;
758 case elfcpp::DW_FORM_ref8:
759 {
760 off_t sec_off;
761 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
762 unsigned int shndx =
763 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
764 attr_value.aux.shndx = shndx;
765 attr_value.val.refval = sec_off;
766 ref_form = true;
767 break;
768 }
769 case elfcpp::DW_FORM_ref_udata:
770 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
771 ref_form = true;
772 pattr += len;
773 break;
774 case elfcpp::DW_FORM_udata:
775 case elfcpp::DW_FORM_GNU_addr_index:
776 case elfcpp::DW_FORM_GNU_str_index:
777 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
778 pattr += len;
779 break;
780 case elfcpp::DW_FORM_sdata:
781 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
782 pattr += len;
783 break;
784 case elfcpp::DW_FORM_string:
785 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
786 len = strlen(attr_value.val.stringval);
787 pattr += len + 1;
788 break;
789 default:
790 return false;
791 }
792
793 // Cache the most frequently-requested attributes.
794 switch (attr)
795 {
796 case elfcpp::DW_AT_name:
797 if (form == elfcpp::DW_FORM_string)
798 this->name_ = attr_value.val.stringval;
799 else if (form == elfcpp::DW_FORM_strp)
800 {
801 // All indirect strings should refer to the same
802 // string section, so we just save the last one seen.
803 this->string_shndx_ = attr_value.aux.shndx;
804 this->name_off_ = attr_value.val.refval;
805 }
806 break;
807 case elfcpp::DW_AT_linkage_name:
808 case elfcpp::DW_AT_MIPS_linkage_name:
809 if (form == elfcpp::DW_FORM_string)
810 this->linkage_name_ = attr_value.val.stringval;
811 else if (form == elfcpp::DW_FORM_strp)
812 {
813 // All indirect strings should refer to the same
814 // string section, so we just save the last one seen.
815 this->string_shndx_ = attr_value.aux.shndx;
816 this->linkage_name_off_ = attr_value.val.refval;
817 }
818 break;
819 case elfcpp::DW_AT_specification:
820 if (ref_form)
821 this->specification_ = attr_value.val.refval;
822 break;
823 case elfcpp::DW_AT_abstract_origin:
824 if (ref_form)
825 this->abstract_origin_ = attr_value.val.refval;
826 break;
827 case elfcpp::DW_AT_sibling:
828 if (ref_form && attr_value.aux.shndx == 0)
829 this->sibling_offset_ = attr_value.val.refval;
830 default:
831 break;
832 }
833
834 this->attributes_.push_back(attr_value);
835 }
836
837 // Now that we know where the next DIE begins, record the offset
838 // to avoid later recalculation.
839 if (this->has_children())
840 this->child_offset_ = this->die_offset_ + (pattr - pdie);
841 else
842 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
843
844 this->attributes_read_ = true;
845 return true;
846 }
847
848 // Skip all the attributes of the DIE and return the offset of the next DIE.
849
850 off_t
851 Dwarf_die::skip_attributes()
852 {
853 gold_assert(this->abbrev_code_ != NULL);
854
855 const unsigned char* pdie =
856 this->dwinfo_->buffer_at_offset(this->die_offset_);
857 if (pdie == NULL)
858 return 0;
859 const unsigned char* pattr = pdie + this->attr_offset_;
860
861 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
862 {
863 size_t len;
864 unsigned int form = this->abbrev_code_->attributes[i].form;
865 if (form == elfcpp::DW_FORM_indirect)
866 {
867 form = read_unsigned_LEB_128(pattr, &len);
868 pattr += len;
869 }
870 switch(form)
871 {
872 case elfcpp::DW_FORM_flag_present:
873 break;
874 case elfcpp::DW_FORM_strp:
875 case elfcpp::DW_FORM_sec_offset:
876 pattr += this->dwinfo_->offset_size();
877 break;
878 case elfcpp::DW_FORM_addr:
879 case elfcpp::DW_FORM_ref_addr:
880 pattr += this->dwinfo_->address_size();
881 break;
882 case elfcpp::DW_FORM_block1:
883 pattr += 1 + *pattr;
884 break;
885 case elfcpp::DW_FORM_block2:
886 {
887 uint16_t block_size;
888 block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
889 pattr += block_size;
890 break;
891 }
892 case elfcpp::DW_FORM_block4:
893 {
894 uint32_t block_size;
895 block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
896 pattr += block_size;
897 break;
898 }
899 case elfcpp::DW_FORM_block:
900 case elfcpp::DW_FORM_exprloc:
901 {
902 uint64_t block_size;
903 block_size = read_unsigned_LEB_128(pattr, &len);
904 pattr += len + block_size;
905 break;
906 }
907 case elfcpp::DW_FORM_data1:
908 case elfcpp::DW_FORM_ref1:
909 case elfcpp::DW_FORM_flag:
910 pattr += 1;
911 break;
912 case elfcpp::DW_FORM_data2:
913 case elfcpp::DW_FORM_ref2:
914 pattr += 2;
915 break;
916 case elfcpp::DW_FORM_data4:
917 case elfcpp::DW_FORM_ref4:
918 pattr += 4;
919 break;
920 case elfcpp::DW_FORM_data8:
921 case elfcpp::DW_FORM_ref8:
922 case elfcpp::DW_FORM_ref_sig8:
923 pattr += 8;
924 break;
925 case elfcpp::DW_FORM_ref_udata:
926 case elfcpp::DW_FORM_udata:
927 case elfcpp::DW_FORM_GNU_addr_index:
928 case elfcpp::DW_FORM_GNU_str_index:
929 read_unsigned_LEB_128(pattr, &len);
930 pattr += len;
931 break;
932 case elfcpp::DW_FORM_sdata:
933 read_signed_LEB_128(pattr, &len);
934 pattr += len;
935 break;
936 case elfcpp::DW_FORM_string:
937 len = strlen(reinterpret_cast<const char*>(pattr));
938 pattr += len + 1;
939 break;
940 default:
941 return 0;
942 }
943 }
944
945 return this->die_offset_ + (pattr - pdie);
946 }
947
948 // Get the name of the DIE and cache it.
949
950 void
951 Dwarf_die::set_name()
952 {
953 if (this->name_ != NULL || !this->read_attributes())
954 return;
955 if (this->name_off_ != -1)
956 this->name_ = this->dwinfo_->get_string(this->name_off_,
957 this->string_shndx_);
958 }
959
960 // Get the linkage name of the DIE and cache it.
961
962 void
963 Dwarf_die::set_linkage_name()
964 {
965 if (this->linkage_name_ != NULL || !this->read_attributes())
966 return;
967 if (this->linkage_name_off_ != -1)
968 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
969 this->string_shndx_);
970 }
971
972 // Return the value of attribute ATTR.
973
974 const Dwarf_die::Attribute_value*
975 Dwarf_die::attribute(unsigned int attr)
976 {
977 if (!this->read_attributes())
978 return NULL;
979 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
980 {
981 if (this->attributes_[i].attr == attr)
982 return &this->attributes_[i];
983 }
984 return NULL;
985 }
986
987 const char*
988 Dwarf_die::string_attribute(unsigned int attr)
989 {
990 const Attribute_value* attr_val = this->attribute(attr);
991 if (attr_val == NULL)
992 return NULL;
993 switch (attr_val->form)
994 {
995 case elfcpp::DW_FORM_string:
996 return attr_val->val.stringval;
997 case elfcpp::DW_FORM_strp:
998 return this->dwinfo_->get_string(attr_val->val.refval,
999 attr_val->aux.shndx);
1000 default:
1001 return NULL;
1002 }
1003 }
1004
1005 int64_t
1006 Dwarf_die::int_attribute(unsigned int attr)
1007 {
1008 const Attribute_value* attr_val = this->attribute(attr);
1009 if (attr_val == NULL)
1010 return 0;
1011 switch (attr_val->form)
1012 {
1013 case elfcpp::DW_FORM_flag_present:
1014 case elfcpp::DW_FORM_data1:
1015 case elfcpp::DW_FORM_flag:
1016 case elfcpp::DW_FORM_data2:
1017 case elfcpp::DW_FORM_data4:
1018 case elfcpp::DW_FORM_data8:
1019 case elfcpp::DW_FORM_sdata:
1020 return attr_val->val.intval;
1021 default:
1022 return 0;
1023 }
1024 }
1025
1026 uint64_t
1027 Dwarf_die::uint_attribute(unsigned int attr)
1028 {
1029 const Attribute_value* attr_val = this->attribute(attr);
1030 if (attr_val == NULL)
1031 return 0;
1032 switch (attr_val->form)
1033 {
1034 case elfcpp::DW_FORM_flag_present:
1035 case elfcpp::DW_FORM_data1:
1036 case elfcpp::DW_FORM_flag:
1037 case elfcpp::DW_FORM_data4:
1038 case elfcpp::DW_FORM_data8:
1039 case elfcpp::DW_FORM_ref_sig8:
1040 case elfcpp::DW_FORM_udata:
1041 return attr_val->val.uintval;
1042 default:
1043 return 0;
1044 }
1045 }
1046
1047 off_t
1048 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1049 {
1050 const Attribute_value* attr_val = this->attribute(attr);
1051 if (attr_val == NULL)
1052 return -1;
1053 switch (attr_val->form)
1054 {
1055 case elfcpp::DW_FORM_sec_offset:
1056 case elfcpp::DW_FORM_addr:
1057 case elfcpp::DW_FORM_ref_addr:
1058 case elfcpp::DW_FORM_ref1:
1059 case elfcpp::DW_FORM_ref2:
1060 case elfcpp::DW_FORM_ref4:
1061 case elfcpp::DW_FORM_ref8:
1062 case elfcpp::DW_FORM_ref_udata:
1063 *shndx = attr_val->aux.shndx;
1064 return attr_val->val.refval;
1065 case elfcpp::DW_FORM_ref_sig8:
1066 *shndx = attr_val->aux.shndx;
1067 return attr_val->val.uintval;
1068 case elfcpp::DW_FORM_data4:
1069 case elfcpp::DW_FORM_data8:
1070 *shndx = attr_val->aux.shndx;
1071 return attr_val->val.intval;
1072 default:
1073 return -1;
1074 }
1075 }
1076
1077 off_t
1078 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1079 {
1080 const Attribute_value* attr_val = this->attribute(attr);
1081 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1082 return -1;
1083
1084 *shndx = attr_val->aux.shndx;
1085 return attr_val->val.refval;
1086 }
1087
1088 // Return the offset of this DIE's first child.
1089
1090 off_t
1091 Dwarf_die::child_offset()
1092 {
1093 gold_assert(this->abbrev_code_ != NULL);
1094 if (!this->has_children())
1095 return 0;
1096 if (this->child_offset_ == 0)
1097 this->child_offset_ = this->skip_attributes();
1098 return this->child_offset_;
1099 }
1100
1101 // Return the offset of this DIE's next sibling.
1102
1103 off_t
1104 Dwarf_die::sibling_offset()
1105 {
1106 gold_assert(this->abbrev_code_ != NULL);
1107
1108 if (this->sibling_offset_ != 0)
1109 return this->sibling_offset_;
1110
1111 if (!this->has_children())
1112 {
1113 this->sibling_offset_ = this->skip_attributes();
1114 return this->sibling_offset_;
1115 }
1116
1117 if (this->has_sibling_attribute())
1118 {
1119 if (!this->read_attributes())
1120 return 0;
1121 if (this->sibling_offset_ != 0)
1122 return this->sibling_offset_;
1123 }
1124
1125 // Skip over the children.
1126 off_t child_offset = this->child_offset();
1127 while (child_offset > 0)
1128 {
1129 Dwarf_die die(this->dwinfo_, child_offset, this);
1130 // The Dwarf_die ctor will set this DIE's sibling offset
1131 // when it reads a zero abbrev code.
1132 if (die.tag() == 0)
1133 break;
1134 child_offset = die.sibling_offset();
1135 }
1136
1137 // This should be set by now. If not, there was a problem reading
1138 // the DWARF info, and we return 0.
1139 return this->sibling_offset_;
1140 }
1141
1142 // class Dwarf_info_reader
1143
1144 // Begin parsing the debug info. This calls visit_compilation_unit()
1145 // or visit_type_unit() for each compilation or type unit found in the
1146 // section, and visit_die() for each top-level DIE.
1147
1148 void
1149 Dwarf_info_reader::parse()
1150 {
1151 if (this->object_->is_big_endian())
1152 {
1153 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1154 this->do_parse<true>();
1155 #else
1156 gold_unreachable();
1157 #endif
1158 }
1159 else
1160 {
1161 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1162 this->do_parse<false>();
1163 #else
1164 gold_unreachable();
1165 #endif
1166 }
1167 }
1168
1169 template<bool big_endian>
1170 void
1171 Dwarf_info_reader::do_parse()
1172 {
1173 // Get the section contents and decompress if necessary.
1174 section_size_type buffer_size;
1175 bool buffer_is_new;
1176 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1177 &buffer_size,
1178 &buffer_is_new);
1179 if (this->buffer_ == NULL || buffer_size == 0)
1180 return;
1181 this->buffer_end_ = this->buffer_ + buffer_size;
1182
1183 // The offset of this input section in the output section.
1184 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1185
1186 // Start tracking relocations for this section.
1187 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1188 this->symtab_size_);
1189 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1190
1191 // Loop over compilation units (or type units).
1192 unsigned int abbrev_shndx = this->abbrev_shndx_;
1193 off_t abbrev_offset = 0;
1194 const unsigned char* pinfo = this->buffer_;
1195 while (pinfo < this->buffer_end_)
1196 {
1197 // Read the compilation (or type) unit header.
1198 const unsigned char* cu_start = pinfo;
1199 this->cu_offset_ = cu_start - this->buffer_;
1200 this->cu_length_ = this->buffer_end_ - cu_start;
1201
1202 // Read unit_length (4 or 12 bytes).
1203 if (!this->check_buffer(pinfo + 4))
1204 break;
1205 uint32_t unit_length =
1206 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1207 pinfo += 4;
1208 if (unit_length == 0xffffffff)
1209 {
1210 if (!this->check_buffer(pinfo + 8))
1211 break;
1212 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1213 pinfo += 8;
1214 this->offset_size_ = 8;
1215 }
1216 else
1217 this->offset_size_ = 4;
1218 if (!this->check_buffer(pinfo + unit_length))
1219 break;
1220 const unsigned char* cu_end = pinfo + unit_length;
1221 this->cu_length_ = cu_end - cu_start;
1222 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1223 break;
1224
1225 // Read version (2 bytes).
1226 this->cu_version_ =
1227 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1228 pinfo += 2;
1229
1230 // Read debug_abbrev_offset (4 or 8 bytes).
1231 if (this->offset_size_ == 4)
1232 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1233 else
1234 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1235 if (this->reloc_shndx_ > 0)
1236 {
1237 off_t reloc_offset = pinfo - this->buffer_;
1238 off_t value;
1239 abbrev_shndx =
1240 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1241 if (abbrev_shndx == 0)
1242 return;
1243 if (this->reloc_type_ == elfcpp::SHT_REL)
1244 abbrev_offset += value;
1245 else
1246 abbrev_offset = value;
1247 }
1248 pinfo += this->offset_size_;
1249
1250 // Read address_size (1 byte).
1251 this->address_size_ = *pinfo++;
1252
1253 // For type units, read the two extra fields.
1254 uint64_t signature = 0;
1255 off_t type_offset = 0;
1256 if (this->is_type_unit_)
1257 {
1258 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1259 break;
1260
1261 // Read type_signature (8 bytes).
1262 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1263 pinfo += 8;
1264
1265 // Read type_offset (4 or 8 bytes).
1266 if (this->offset_size_ == 4)
1267 type_offset =
1268 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1269 else
1270 type_offset =
1271 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1272 pinfo += this->offset_size_;
1273 }
1274
1275 // Read the .debug_abbrev table.
1276 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1277 abbrev_offset);
1278
1279 // Visit the root DIE.
1280 Dwarf_die root_die(this,
1281 pinfo - (this->buffer_ + this->cu_offset_),
1282 NULL);
1283 if (root_die.tag() != 0)
1284 {
1285 // Visit the CU or TU.
1286 if (this->is_type_unit_)
1287 this->visit_type_unit(section_offset + this->cu_offset_,
1288 type_offset, signature, &root_die);
1289 else
1290 this->visit_compilation_unit(section_offset + this->cu_offset_,
1291 cu_end - cu_start, &root_die);
1292 }
1293
1294 // Advance to the next CU.
1295 pinfo = cu_end;
1296 }
1297
1298 if (buffer_is_new)
1299 {
1300 delete[] this->buffer_;
1301 this->buffer_ = NULL;
1302 }
1303 }
1304
1305 // Read the DWARF string table.
1306
1307 bool
1308 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1309 {
1310 Relobj* object = this->object_;
1311
1312 // If we don't have relocations, string_shndx will be 0, and
1313 // we'll have to hunt for the .debug_str section.
1314 if (string_shndx == 0)
1315 {
1316 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1317 {
1318 std::string name = object->section_name(i);
1319 if (name == ".debug_str")
1320 {
1321 string_shndx = i;
1322 this->string_output_section_offset_ =
1323 object->output_section_offset(i);
1324 break;
1325 }
1326 }
1327 if (string_shndx == 0)
1328 return false;
1329 }
1330
1331 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1332 {
1333 delete[] this->string_buffer_;
1334 this->owns_string_buffer_ = false;
1335 }
1336
1337 // Get the secton contents and decompress if necessary.
1338 section_size_type buffer_size;
1339 const unsigned char* buffer =
1340 object->decompressed_section_contents(string_shndx,
1341 &buffer_size,
1342 &this->owns_string_buffer_);
1343 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1344 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1345 this->string_shndx_ = string_shndx;
1346 return true;
1347 }
1348
1349 // Read a possibly unaligned integer of SIZE.
1350 template <int valsize>
1351 inline typename elfcpp::Valtype_base<valsize>::Valtype
1352 Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1353 {
1354 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1355 if (this->object_->is_big_endian())
1356 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1357 else
1358 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1359 return return_value;
1360 }
1361
1362 // Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1363 template <int valsize>
1364 inline typename elfcpp::Valtype_base<valsize>::Valtype
1365 Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1366 {
1367 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1368 if (this->object_->is_big_endian())
1369 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1370 else
1371 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1372 *source += valsize / 8;
1373 return return_value;
1374 }
1375
1376 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1377 // and return the section index and offset of the target.
1378
1379 unsigned int
1380 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1381 {
1382 off_t value;
1383 attr_off += this->cu_offset_;
1384 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1385 if (shndx == 0)
1386 return 0;
1387 if (this->reloc_type_ == elfcpp::SHT_REL)
1388 *target_off += value;
1389 else
1390 *target_off = value;
1391 return shndx;
1392 }
1393
1394 // Return a string from the DWARF string table.
1395
1396 const char*
1397 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1398 {
1399 if (!this->read_string_table(string_shndx))
1400 return NULL;
1401
1402 // Correct the offset. For incremental update links, we have a
1403 // relocated offset that is relative to the output section, but
1404 // here we need an offset relative to the input section.
1405 str_off -= this->string_output_section_offset_;
1406
1407 const char* p = this->string_buffer_ + str_off;
1408
1409 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1410 return NULL;
1411
1412 return p;
1413 }
1414
1415 // The following are default, do-nothing, implementations of the
1416 // hook methods normally provided by a derived class. We provide
1417 // default implementations rather than no implementation so that
1418 // a derived class needs to implement only the hooks that it needs
1419 // to use.
1420
1421 // Process a compilation unit and parse its child DIE.
1422
1423 void
1424 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1425 {
1426 }
1427
1428 // Process a type unit and parse its child DIE.
1429
1430 void
1431 Dwarf_info_reader::visit_type_unit(off_t, off_t, uint64_t, Dwarf_die*)
1432 {
1433 }
1434
1435 // Print a warning about a corrupt debug section.
1436
1437 void
1438 Dwarf_info_reader::warn_corrupt_debug_section() const
1439 {
1440 gold_warning(_("%s: corrupt debug info in %s"),
1441 this->object_->name().c_str(),
1442 this->object_->section_name(this->shndx_).c_str());
1443 }
1444
1445 // class Sized_dwarf_line_info
1446
1447 struct LineStateMachine
1448 {
1449 int file_num;
1450 uint64_t address;
1451 int line_num;
1452 int column_num;
1453 unsigned int shndx; // the section address refers to
1454 bool is_stmt; // stmt means statement.
1455 bool basic_block;
1456 bool end_sequence;
1457 };
1458
1459 static void
1460 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1461 {
1462 lsm->file_num = 1;
1463 lsm->address = 0;
1464 lsm->line_num = 1;
1465 lsm->column_num = 0;
1466 lsm->shndx = -1U;
1467 lsm->is_stmt = default_is_stmt;
1468 lsm->basic_block = false;
1469 lsm->end_sequence = false;
1470 }
1471
1472 template<int size, bool big_endian>
1473 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1474 Object* object,
1475 unsigned int read_shndx)
1476 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1477 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1478 current_header_index_(-1)
1479 {
1480 unsigned int debug_shndx;
1481
1482 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1483 {
1484 // FIXME: do this more efficiently: section_name() isn't super-fast
1485 std::string name = object->section_name(debug_shndx);
1486 if (name == ".debug_line" || name == ".zdebug_line")
1487 {
1488 section_size_type buffer_size;
1489 bool is_new = false;
1490 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1491 &buffer_size,
1492 &is_new);
1493 if (is_new)
1494 this->buffer_start_ = this->buffer_;
1495 this->buffer_end_ = this->buffer_ + buffer_size;
1496 break;
1497 }
1498 }
1499 if (this->buffer_ == NULL)
1500 return;
1501
1502 // Find the relocation section for ".debug_line".
1503 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1504 unsigned int reloc_shndx = 0;
1505 for (unsigned int i = 0; i < object->shnum(); ++i)
1506 {
1507 unsigned int reloc_sh_type = object->section_type(i);
1508 if ((reloc_sh_type == elfcpp::SHT_REL
1509 || reloc_sh_type == elfcpp::SHT_RELA)
1510 && object->section_info(i) == debug_shndx)
1511 {
1512 reloc_shndx = i;
1513 this->track_relocs_type_ = reloc_sh_type;
1514 break;
1515 }
1516 }
1517
1518 // Finally, we need the symtab section to interpret the relocs.
1519 if (reloc_shndx != 0)
1520 {
1521 unsigned int symtab_shndx;
1522 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1523 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1524 {
1525 this->symtab_buffer_ = object->section_contents(
1526 symtab_shndx, &this->symtab_buffer_size_, false);
1527 break;
1528 }
1529 if (this->symtab_buffer_ == NULL)
1530 return;
1531 }
1532
1533 this->reloc_mapper_ =
1534 new Sized_elf_reloc_mapper<size, big_endian>(object,
1535 this->symtab_buffer_,
1536 this->symtab_buffer_size_);
1537 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1538 return;
1539
1540 // Now that we have successfully read all the data, parse the debug
1541 // info.
1542 this->data_valid_ = true;
1543 this->read_line_mappings(read_shndx);
1544 }
1545
1546 // Read the DWARF header.
1547
1548 template<int size, bool big_endian>
1549 const unsigned char*
1550 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1551 const unsigned char* lineptr)
1552 {
1553 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1554 lineptr += 4;
1555
1556 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1557 // size is 8 and we need to read the next 8 bytes for the real length.
1558 if (initial_length == 0xffffffff)
1559 {
1560 header_.offset_size = 8;
1561 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1562 lineptr += 8;
1563 }
1564 else
1565 header_.offset_size = 4;
1566
1567 header_.total_length = initial_length;
1568
1569 gold_assert(lineptr + header_.total_length <= buffer_end_);
1570
1571 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1572 lineptr += 2;
1573
1574 if (header_.offset_size == 4)
1575 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1576 else
1577 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1578 lineptr += header_.offset_size;
1579
1580 header_.min_insn_length = *lineptr;
1581 lineptr += 1;
1582
1583 header_.default_is_stmt = *lineptr;
1584 lineptr += 1;
1585
1586 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1587 lineptr += 1;
1588
1589 header_.line_range = *lineptr;
1590 lineptr += 1;
1591
1592 header_.opcode_base = *lineptr;
1593 lineptr += 1;
1594
1595 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1596 header_.std_opcode_lengths[0] = 0;
1597 for (int i = 1; i < header_.opcode_base; i++)
1598 {
1599 header_.std_opcode_lengths[i] = *lineptr;
1600 lineptr += 1;
1601 }
1602
1603 return lineptr;
1604 }
1605
1606 // The header for a debug_line section is mildly complicated, because
1607 // the line info is very tightly encoded.
1608
1609 template<int size, bool big_endian>
1610 const unsigned char*
1611 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1612 const unsigned char* lineptr)
1613 {
1614 ++this->current_header_index_;
1615
1616 // Create a new directories_ entry and a new files_ entry for our new
1617 // header. We initialize each with a single empty element, because
1618 // dwarf indexes directory and filenames starting at 1.
1619 gold_assert(static_cast<int>(this->directories_.size())
1620 == this->current_header_index_);
1621 gold_assert(static_cast<int>(this->files_.size())
1622 == this->current_header_index_);
1623 this->directories_.push_back(std::vector<std::string>(1));
1624 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1625
1626 // It is legal for the directory entry table to be empty.
1627 if (*lineptr)
1628 {
1629 int dirindex = 1;
1630 while (*lineptr)
1631 {
1632 const char* dirname = reinterpret_cast<const char*>(lineptr);
1633 gold_assert(dirindex
1634 == static_cast<int>(this->directories_.back().size()));
1635 this->directories_.back().push_back(dirname);
1636 lineptr += this->directories_.back().back().size() + 1;
1637 dirindex++;
1638 }
1639 }
1640 lineptr++;
1641
1642 // It is also legal for the file entry table to be empty.
1643 if (*lineptr)
1644 {
1645 int fileindex = 1;
1646 size_t len;
1647 while (*lineptr)
1648 {
1649 const char* filename = reinterpret_cast<const char*>(lineptr);
1650 lineptr += strlen(filename) + 1;
1651
1652 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1653 lineptr += len;
1654
1655 if (dirindex >= this->directories_.back().size())
1656 dirindex = 0;
1657 int dirindexi = static_cast<int>(dirindex);
1658
1659 read_unsigned_LEB_128(lineptr, &len); // mod_time
1660 lineptr += len;
1661
1662 read_unsigned_LEB_128(lineptr, &len); // filelength
1663 lineptr += len;
1664
1665 gold_assert(fileindex
1666 == static_cast<int>(this->files_.back().size()));
1667 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1668 fileindex++;
1669 }
1670 }
1671 lineptr++;
1672
1673 return lineptr;
1674 }
1675
1676 // Process a single opcode in the .debug.line structure.
1677
1678 template<int size, bool big_endian>
1679 bool
1680 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1681 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1682 {
1683 size_t oplen = 0;
1684 size_t templen;
1685 unsigned char opcode = *start;
1686 oplen++;
1687 start++;
1688
1689 // If the opcode is great than the opcode_base, it is a special
1690 // opcode. Most line programs consist mainly of special opcodes.
1691 if (opcode >= header_.opcode_base)
1692 {
1693 opcode -= header_.opcode_base;
1694 const int advance_address = ((opcode / header_.line_range)
1695 * header_.min_insn_length);
1696 lsm->address += advance_address;
1697
1698 const int advance_line = ((opcode % header_.line_range)
1699 + header_.line_base);
1700 lsm->line_num += advance_line;
1701 lsm->basic_block = true;
1702 *len = oplen;
1703 return true;
1704 }
1705
1706 // Otherwise, we have the regular opcodes
1707 switch (opcode)
1708 {
1709 case elfcpp::DW_LNS_copy:
1710 lsm->basic_block = false;
1711 *len = oplen;
1712 return true;
1713
1714 case elfcpp::DW_LNS_advance_pc:
1715 {
1716 const uint64_t advance_address
1717 = read_unsigned_LEB_128(start, &templen);
1718 oplen += templen;
1719 lsm->address += header_.min_insn_length * advance_address;
1720 }
1721 break;
1722
1723 case elfcpp::DW_LNS_advance_line:
1724 {
1725 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1726 oplen += templen;
1727 lsm->line_num += advance_line;
1728 }
1729 break;
1730
1731 case elfcpp::DW_LNS_set_file:
1732 {
1733 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1734 oplen += templen;
1735 lsm->file_num = fileno;
1736 }
1737 break;
1738
1739 case elfcpp::DW_LNS_set_column:
1740 {
1741 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1742 oplen += templen;
1743 lsm->column_num = colno;
1744 }
1745 break;
1746
1747 case elfcpp::DW_LNS_negate_stmt:
1748 lsm->is_stmt = !lsm->is_stmt;
1749 break;
1750
1751 case elfcpp::DW_LNS_set_basic_block:
1752 lsm->basic_block = true;
1753 break;
1754
1755 case elfcpp::DW_LNS_fixed_advance_pc:
1756 {
1757 int advance_address;
1758 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1759 oplen += 2;
1760 lsm->address += advance_address;
1761 }
1762 break;
1763
1764 case elfcpp::DW_LNS_const_add_pc:
1765 {
1766 const int advance_address = (header_.min_insn_length
1767 * ((255 - header_.opcode_base)
1768 / header_.line_range));
1769 lsm->address += advance_address;
1770 }
1771 break;
1772
1773 case elfcpp::DW_LNS_extended_op:
1774 {
1775 const uint64_t extended_op_len
1776 = read_unsigned_LEB_128(start, &templen);
1777 start += templen;
1778 oplen += templen + extended_op_len;
1779
1780 const unsigned char extended_op = *start;
1781 start++;
1782
1783 switch (extended_op)
1784 {
1785 case elfcpp::DW_LNE_end_sequence:
1786 // This means that the current byte is the one immediately
1787 // after a set of instructions. Record the current line
1788 // for up to one less than the current address.
1789 lsm->line_num = -1;
1790 lsm->end_sequence = true;
1791 *len = oplen;
1792 return true;
1793
1794 case elfcpp::DW_LNE_set_address:
1795 {
1796 lsm->address =
1797 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1798 typename Reloc_map::const_iterator it
1799 = this->reloc_map_.find(start - this->buffer_);
1800 if (it != reloc_map_.end())
1801 {
1802 // If this is a SHT_RELA section, then ignore the
1803 // section contents. This assumes that this is a
1804 // straight reloc which just uses the reloc addend.
1805 // The reloc addend has already been included in the
1806 // symbol value.
1807 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1808 lsm->address = 0;
1809 // Add in the symbol value.
1810 lsm->address += it->second.second;
1811 lsm->shndx = it->second.first;
1812 }
1813 else
1814 {
1815 // If we're a normal .o file, with relocs, every
1816 // set_address should have an associated relocation.
1817 if (this->input_is_relobj())
1818 this->data_valid_ = false;
1819 }
1820 break;
1821 }
1822 case elfcpp::DW_LNE_define_file:
1823 {
1824 const char* filename = reinterpret_cast<const char*>(start);
1825 templen = strlen(filename) + 1;
1826 start += templen;
1827
1828 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1829
1830 if (dirindex >= this->directories_.back().size())
1831 dirindex = 0;
1832 int dirindexi = static_cast<int>(dirindex);
1833
1834 // This opcode takes two additional ULEB128 parameters
1835 // (mod_time and filelength), but we don't use those
1836 // values. Because OPLEN already tells us how far to
1837 // skip to the next opcode, we don't need to read
1838 // them at all.
1839
1840 this->files_.back().push_back(std::make_pair(dirindexi,
1841 filename));
1842 }
1843 break;
1844 }
1845 }
1846 break;
1847
1848 default:
1849 {
1850 // Ignore unknown opcode silently
1851 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1852 {
1853 size_t templen;
1854 read_unsigned_LEB_128(start, &templen);
1855 start += templen;
1856 oplen += templen;
1857 }
1858 }
1859 break;
1860 }
1861 *len = oplen;
1862 return false;
1863 }
1864
1865 // Read the debug information at LINEPTR and store it in the line
1866 // number map.
1867
1868 template<int size, bool big_endian>
1869 unsigned const char*
1870 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1871 unsigned int shndx)
1872 {
1873 struct LineStateMachine lsm;
1874
1875 // LENGTHSTART is the place the length field is based on. It is the
1876 // point in the header after the initial length field.
1877 const unsigned char* lengthstart = buffer_;
1878
1879 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1880 // 0xffffffff at the start.
1881 if (header_.offset_size == 8)
1882 lengthstart += 12;
1883 else
1884 lengthstart += 4;
1885
1886 while (lineptr < lengthstart + header_.total_length)
1887 {
1888 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1889 while (!lsm.end_sequence)
1890 {
1891 size_t oplength;
1892 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1893 if (add_line
1894 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1895 {
1896 Offset_to_lineno_entry entry
1897 = { static_cast<off_t>(lsm.address),
1898 this->current_header_index_,
1899 static_cast<unsigned int>(lsm.file_num),
1900 true, lsm.line_num };
1901 std::vector<Offset_to_lineno_entry>&
1902 map(this->line_number_map_[lsm.shndx]);
1903 // If we see two consecutive entries with the same
1904 // offset and a real line number, then mark the first
1905 // one as non-canonical.
1906 if (!map.empty()
1907 && (map.back().offset == static_cast<off_t>(lsm.address))
1908 && lsm.line_num != -1
1909 && map.back().line_num != -1)
1910 map.back().last_line_for_offset = false;
1911 map.push_back(entry);
1912 }
1913 lineptr += oplength;
1914 }
1915 }
1916
1917 return lengthstart + header_.total_length;
1918 }
1919
1920 // Read the relocations into a Reloc_map.
1921
1922 template<int size, bool big_endian>
1923 void
1924 Sized_dwarf_line_info<size, big_endian>::read_relocs()
1925 {
1926 if (this->symtab_buffer_ == NULL)
1927 return;
1928
1929 off_t value;
1930 off_t reloc_offset;
1931 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
1932 {
1933 const unsigned int shndx =
1934 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1935
1936 // There is no reason to record non-ordinary section indexes, or
1937 // SHN_UNDEF, because they will never match the real section.
1938 if (shndx != 0)
1939 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
1940
1941 this->reloc_mapper_->advance(reloc_offset + 1);
1942 }
1943 }
1944
1945 // Read the line number info.
1946
1947 template<int size, bool big_endian>
1948 void
1949 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
1950 {
1951 gold_assert(this->data_valid_ == true);
1952
1953 this->read_relocs();
1954 while (this->buffer_ < this->buffer_end_)
1955 {
1956 const unsigned char* lineptr = this->buffer_;
1957 lineptr = this->read_header_prolog(lineptr);
1958 lineptr = this->read_header_tables(lineptr);
1959 lineptr = this->read_lines(lineptr, shndx);
1960 this->buffer_ = lineptr;
1961 }
1962
1963 // Sort the lines numbers, so addr2line can use binary search.
1964 for (typename Lineno_map::iterator it = line_number_map_.begin();
1965 it != line_number_map_.end();
1966 ++it)
1967 // Each vector needs to be sorted by offset.
1968 std::sort(it->second.begin(), it->second.end());
1969 }
1970
1971 // Some processing depends on whether the input is a .o file or not.
1972 // For instance, .o files have relocs, and have .debug_lines
1973 // information on a per section basis. .so files, on the other hand,
1974 // lack relocs, and offsets are unique, so we can ignore the section
1975 // information.
1976
1977 template<int size, bool big_endian>
1978 bool
1979 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
1980 {
1981 // Only .o files have relocs and the symtab buffer that goes with them.
1982 return this->symtab_buffer_ != NULL;
1983 }
1984
1985 // Given an Offset_to_lineno_entry vector, and an offset, figure out
1986 // if the offset points into a function according to the vector (see
1987 // comments below for the algorithm). If it does, return an iterator
1988 // into the vector that points to the line-number that contains that
1989 // offset. If not, it returns vector::end().
1990
1991 static std::vector<Offset_to_lineno_entry>::const_iterator
1992 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
1993 off_t offset)
1994 {
1995 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
1996
1997 // lower_bound() returns the smallest offset which is >= lookup_key.
1998 // If no offset in offsets is >= lookup_key, returns end().
1999 std::vector<Offset_to_lineno_entry>::const_iterator it
2000 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2001
2002 // This code is easiest to understand with a concrete example.
2003 // Here's a possible offsets array:
2004 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2005 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2006 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2007 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2008 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2009 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2010 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2011 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2012 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2013 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2014 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2015 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2016 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2017 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2018 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2019 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2020 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2021 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2022 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2023 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2024 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
2025 // The entries with line_num == -1 mark the end of a function: the
2026 // associated offset is one past the last instruction in the
2027 // function. This can correspond to the beginning of the next
2028 // function (as is true for offset 3232); alternately, there can be
2029 // a gap between the end of one function and the start of the next
2030 // (as is true for some others, most obviously from 3236->5764).
2031 //
2032 // Case 1: lookup_key has offset == 10. lower_bound returns
2033 // offsets[0]. Since it's not an exact match and we're
2034 // at the beginning of offsets, we return end() (invalid).
2035 // Case 2: lookup_key has offset 10000. lower_bound returns
2036 // offset[21] (end()). We return end() (invalid).
2037 // Case 3: lookup_key has offset == 3211. lower_bound matches
2038 // offsets[0] exactly, and that's the entry we return.
2039 // Case 4: lookup_key has offset == 3232. lower_bound returns
2040 // offsets[4]. That's an exact match, but indicates
2041 // end-of-function. We check if offsets[5] is also an
2042 // exact match but not end-of-function. It is, so we
2043 // return offsets[5].
2044 // Case 5: lookup_key has offset == 3214. lower_bound returns
2045 // offsets[1]. Since it's not an exact match, we back
2046 // up to the offset that's < lookup_key, offsets[0].
2047 // We note offsets[0] is a valid entry (not end-of-function),
2048 // so that's the entry we return.
2049 // Case 6: lookup_key has offset == 4000. lower_bound returns
2050 // offsets[8]. Since it's not an exact match, we back
2051 // up to offsets[7]. Since offsets[7] indicates
2052 // end-of-function, we know lookup_key is between
2053 // functions, so we return end() (not a valid offset).
2054 // Case 7: lookup_key has offset == 5794. lower_bound returns
2055 // offsets[19]. Since it's not an exact match, we back
2056 // up to offsets[16]. Note we back up to the *first*
2057 // entry with offset 5793, not just offsets[19-1].
2058 // We note offsets[16] is a valid entry, so we return it.
2059 // If offsets[16] had had line_num == -1, we would have
2060 // checked offsets[17]. The reason for this is that
2061 // 16 and 17 can be in an arbitrary order, since we sort
2062 // only by offset and last_line_for_offset. (Note it
2063 // doesn't help to use line_number as a tertiary sort key,
2064 // since sometimes we want the -1 to be first and sometimes
2065 // we want it to be last.)
2066
2067 // This deals with cases (1) and (2).
2068 if ((it == offsets->begin() && offset < it->offset)
2069 || it == offsets->end())
2070 return offsets->end();
2071
2072 // This deals with cases (3) and (4).
2073 if (offset == it->offset)
2074 {
2075 while (it != offsets->end()
2076 && it->offset == offset
2077 && it->line_num == -1)
2078 ++it;
2079 if (it == offsets->end() || it->offset != offset)
2080 return offsets->end();
2081 else
2082 return it;
2083 }
2084
2085 // This handles the first part of case (7) -- we back up to the
2086 // *first* entry that has the offset that's behind us.
2087 gold_assert(it != offsets->begin());
2088 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2089 --it;
2090 const off_t range_value = it->offset;
2091 while (it != offsets->begin() && (it-1)->offset == range_value)
2092 --it;
2093
2094 // This handles cases (5), (6), and (7): if any entry in the
2095 // equal_range [it, range_end) has a line_num != -1, it's a valid
2096 // match. If not, we're not in a function. The line number we saw
2097 // last for an offset will be sorted first, so it'll get returned if
2098 // it's present.
2099 for (; it != range_end; ++it)
2100 if (it->line_num != -1)
2101 return it;
2102 return offsets->end();
2103 }
2104
2105 // Returns the canonical filename:lineno for the address passed in.
2106 // If other_lines is not NULL, appends the non-canonical lines
2107 // assigned to the same address.
2108
2109 template<int size, bool big_endian>
2110 std::string
2111 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2112 unsigned int shndx,
2113 off_t offset,
2114 std::vector<std::string>* other_lines)
2115 {
2116 if (this->data_valid_ == false)
2117 return "";
2118
2119 const std::vector<Offset_to_lineno_entry>* offsets;
2120 // If we do not have reloc information, then our input is a .so or
2121 // some similar data structure where all the information is held in
2122 // the offset. In that case, we ignore the input shndx.
2123 if (this->input_is_relobj())
2124 offsets = &this->line_number_map_[shndx];
2125 else
2126 offsets = &this->line_number_map_[-1U];
2127 if (offsets->empty())
2128 return "";
2129
2130 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2131 = offset_to_iterator(offsets, offset);
2132 if (it == offsets->end())
2133 return "";
2134
2135 std::string result = this->format_file_lineno(*it);
2136 if (other_lines != NULL)
2137 for (++it; it != offsets->end() && it->offset == offset; ++it)
2138 {
2139 if (it->line_num == -1)
2140 continue; // The end of a previous function.
2141 other_lines->push_back(this->format_file_lineno(*it));
2142 }
2143 return result;
2144 }
2145
2146 // Convert the file_num + line_num into a string.
2147
2148 template<int size, bool big_endian>
2149 std::string
2150 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2151 const Offset_to_lineno_entry& loc) const
2152 {
2153 std::string ret;
2154
2155 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2156 gold_assert(loc.file_num
2157 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2158 const std::pair<int, std::string>& filename_pair
2159 = this->files_[loc.header_num][loc.file_num];
2160 const std::string& filename = filename_pair.second;
2161
2162 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2163 gold_assert(filename_pair.first
2164 < static_cast<int>(this->directories_[loc.header_num].size()));
2165 const std::string& dirname
2166 = this->directories_[loc.header_num][filename_pair.first];
2167
2168 if (!dirname.empty())
2169 {
2170 ret += dirname;
2171 ret += "/";
2172 }
2173 ret += filename;
2174 if (ret.empty())
2175 ret = "(unknown)";
2176
2177 char buffer[64]; // enough to hold a line number
2178 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2179 ret += ":";
2180 ret += buffer;
2181
2182 return ret;
2183 }
2184
2185 // Dwarf_line_info routines.
2186
2187 static unsigned int next_generation_count = 0;
2188
2189 struct Addr2line_cache_entry
2190 {
2191 Object* object;
2192 unsigned int shndx;
2193 Dwarf_line_info* dwarf_line_info;
2194 unsigned int generation_count;
2195 unsigned int access_count;
2196
2197 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2198 : object(o), shndx(s), dwarf_line_info(d),
2199 generation_count(next_generation_count), access_count(0)
2200 {
2201 if (next_generation_count < (1U << 31))
2202 ++next_generation_count;
2203 }
2204 };
2205 // We expect this cache to be small, so don't bother with a hashtable
2206 // or priority queue or anything: just use a simple vector.
2207 static std::vector<Addr2line_cache_entry> addr2line_cache;
2208
2209 std::string
2210 Dwarf_line_info::one_addr2line(Object* object,
2211 unsigned int shndx, off_t offset,
2212 size_t cache_size,
2213 std::vector<std::string>* other_lines)
2214 {
2215 Dwarf_line_info* lineinfo = NULL;
2216 std::vector<Addr2line_cache_entry>::iterator it;
2217
2218 // First, check the cache. If we hit, update the counts.
2219 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2220 {
2221 if (it->object == object && it->shndx == shndx)
2222 {
2223 lineinfo = it->dwarf_line_info;
2224 it->generation_count = next_generation_count;
2225 // We cap generation_count at 2^31 -1 to avoid overflow.
2226 if (next_generation_count < (1U << 31))
2227 ++next_generation_count;
2228 // We cap access_count at 31 so 2^access_count doesn't overflow
2229 if (it->access_count < 31)
2230 ++it->access_count;
2231 break;
2232 }
2233 }
2234
2235 // If we don't hit the cache, create a new object and insert into the
2236 // cache.
2237 if (lineinfo == NULL)
2238 {
2239 switch (parameters->size_and_endianness())
2240 {
2241 #ifdef HAVE_TARGET_32_LITTLE
2242 case Parameters::TARGET_32_LITTLE:
2243 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2244 #endif
2245 #ifdef HAVE_TARGET_32_BIG
2246 case Parameters::TARGET_32_BIG:
2247 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2248 #endif
2249 #ifdef HAVE_TARGET_64_LITTLE
2250 case Parameters::TARGET_64_LITTLE:
2251 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2252 #endif
2253 #ifdef HAVE_TARGET_64_BIG
2254 case Parameters::TARGET_64_BIG:
2255 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2256 #endif
2257 default:
2258 gold_unreachable();
2259 }
2260 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2261 }
2262
2263 // Now that we have our object, figure out the answer
2264 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2265
2266 // Finally, if our cache has grown too big, delete old objects. We
2267 // assume the common (probably only) case is deleting only one object.
2268 // We use a pretty simple scheme to evict: function of LRU and MFU.
2269 while (addr2line_cache.size() > cache_size)
2270 {
2271 unsigned int lowest_score = ~0U;
2272 std::vector<Addr2line_cache_entry>::iterator lowest
2273 = addr2line_cache.end();
2274 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2275 {
2276 const unsigned int score = (it->generation_count
2277 + (1U << it->access_count));
2278 if (score < lowest_score)
2279 {
2280 lowest_score = score;
2281 lowest = it;
2282 }
2283 }
2284 if (lowest != addr2line_cache.end())
2285 {
2286 delete lowest->dwarf_line_info;
2287 addr2line_cache.erase(lowest);
2288 }
2289 }
2290
2291 return retval;
2292 }
2293
2294 void
2295 Dwarf_line_info::clear_addr2line_cache()
2296 {
2297 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2298 it != addr2line_cache.end();
2299 ++it)
2300 delete it->dwarf_line_info;
2301 addr2line_cache.clear();
2302 }
2303
2304 #ifdef HAVE_TARGET_32_LITTLE
2305 template
2306 class Sized_dwarf_line_info<32, false>;
2307 #endif
2308
2309 #ifdef HAVE_TARGET_32_BIG
2310 template
2311 class Sized_dwarf_line_info<32, true>;
2312 #endif
2313
2314 #ifdef HAVE_TARGET_64_LITTLE
2315 template
2316 class Sized_dwarf_line_info<64, false>;
2317 #endif
2318
2319 #ifdef HAVE_TARGET_64_BIG
2320 template
2321 class Sized_dwarf_line_info<64, true>;
2322 #endif
2323
2324 } // End namespace gold.