]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/dwarf_reader.cc
* dwarf_reader.cc (Sized_dwarf_line_info::Sized_dwarf_line_info):
[thirdparty/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <vector>
27
28 #include "elfcpp_swap.h"
29 #include "dwarf.h"
30 #include "object.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
36
37 namespace gold {
38
39 struct LineStateMachine
40 {
41 int file_num;
42 uint64_t address;
43 int line_num;
44 int column_num;
45 unsigned int shndx; // the section address refers to
46 bool is_stmt; // stmt means statement.
47 bool basic_block;
48 bool end_sequence;
49 };
50
51 static void
52 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
53 {
54 lsm->file_num = 1;
55 lsm->address = 0;
56 lsm->line_num = 1;
57 lsm->column_num = 0;
58 lsm->shndx = -1U;
59 lsm->is_stmt = default_is_stmt;
60 lsm->basic_block = false;
61 lsm->end_sequence = false;
62 }
63
64 template<int size, bool big_endian>
65 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
66 unsigned int read_shndx)
67 : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
68 directories_(), files_(), current_header_index_(-1)
69 {
70 unsigned int debug_shndx;
71 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
72 {
73 // FIXME: do this more efficiently: section_name() isn't super-fast
74 std::string name = object->section_name(debug_shndx);
75 if (name == ".debug_line" || name == ".zdebug_line")
76 {
77 section_size_type buffer_size;
78 this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
79 false);
80 this->buffer_end_ = this->buffer_ + buffer_size;
81 break;
82 }
83 }
84 if (this->buffer_ == NULL)
85 return;
86
87 section_size_type uncompressed_size = 0;
88 unsigned char* uncompressed_data = NULL;
89 if (object->section_is_compressed(debug_shndx, &uncompressed_size))
90 {
91 uncompressed_data = new unsigned char[uncompressed_size];
92 if (!decompress_input_section(this->buffer_,
93 this->buffer_end_ - this->buffer_,
94 uncompressed_data,
95 uncompressed_size))
96 object->error(_("could not decompress section %s"),
97 object->section_name(debug_shndx).c_str());
98 this->buffer_ = uncompressed_data;
99 this->buffer_end_ = this->buffer_ + uncompressed_size;
100 }
101
102 // Find the relocation section for ".debug_line".
103 // We expect these for relobjs (.o's) but not dynobjs (.so's).
104 bool got_relocs = false;
105 for (unsigned int reloc_shndx = 0;
106 reloc_shndx < object->shnum();
107 ++reloc_shndx)
108 {
109 unsigned int reloc_sh_type = object->section_type(reloc_shndx);
110 if ((reloc_sh_type == elfcpp::SHT_REL
111 || reloc_sh_type == elfcpp::SHT_RELA)
112 && object->section_info(reloc_shndx) == debug_shndx)
113 {
114 got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
115 reloc_sh_type);
116 break;
117 }
118 }
119
120 // Finally, we need the symtab section to interpret the relocs.
121 if (got_relocs)
122 {
123 unsigned int symtab_shndx;
124 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
125 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
126 {
127 this->symtab_buffer_ = object->section_contents(
128 symtab_shndx, &this->symtab_buffer_size_, false);
129 break;
130 }
131 if (this->symtab_buffer_ == NULL)
132 return;
133 }
134
135 // Now that we have successfully read all the data, parse the debug
136 // info.
137 this->data_valid_ = true;
138 this->read_line_mappings(object, read_shndx);
139 }
140
141 // Read the DWARF header.
142
143 template<int size, bool big_endian>
144 const unsigned char*
145 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
146 const unsigned char* lineptr)
147 {
148 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
149 lineptr += 4;
150
151 // In DWARF2/3, if the initial length is all 1 bits, then the offset
152 // size is 8 and we need to read the next 8 bytes for the real length.
153 if (initial_length == 0xffffffff)
154 {
155 header_.offset_size = 8;
156 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
157 lineptr += 8;
158 }
159 else
160 header_.offset_size = 4;
161
162 header_.total_length = initial_length;
163
164 gold_assert(lineptr + header_.total_length <= buffer_end_);
165
166 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
167 lineptr += 2;
168
169 if (header_.offset_size == 4)
170 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
171 else
172 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
173 lineptr += header_.offset_size;
174
175 header_.min_insn_length = *lineptr;
176 lineptr += 1;
177
178 header_.default_is_stmt = *lineptr;
179 lineptr += 1;
180
181 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
182 lineptr += 1;
183
184 header_.line_range = *lineptr;
185 lineptr += 1;
186
187 header_.opcode_base = *lineptr;
188 lineptr += 1;
189
190 header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
191 header_.std_opcode_lengths[0] = 0;
192 for (int i = 1; i < header_.opcode_base; i++)
193 {
194 header_.std_opcode_lengths[i] = *lineptr;
195 lineptr += 1;
196 }
197
198 return lineptr;
199 }
200
201 // The header for a debug_line section is mildly complicated, because
202 // the line info is very tightly encoded.
203
204 template<int size, bool big_endian>
205 const unsigned char*
206 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
207 const unsigned char* lineptr)
208 {
209 ++this->current_header_index_;
210
211 // Create a new directories_ entry and a new files_ entry for our new
212 // header. We initialize each with a single empty element, because
213 // dwarf indexes directory and filenames starting at 1.
214 gold_assert(static_cast<int>(this->directories_.size())
215 == this->current_header_index_);
216 gold_assert(static_cast<int>(this->files_.size())
217 == this->current_header_index_);
218 this->directories_.push_back(std::vector<std::string>(1));
219 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
220
221 // It is legal for the directory entry table to be empty.
222 if (*lineptr)
223 {
224 int dirindex = 1;
225 while (*lineptr)
226 {
227 const char* dirname = reinterpret_cast<const char*>(lineptr);
228 gold_assert(dirindex
229 == static_cast<int>(this->directories_.back().size()));
230 this->directories_.back().push_back(dirname);
231 lineptr += this->directories_.back().back().size() + 1;
232 dirindex++;
233 }
234 }
235 lineptr++;
236
237 // It is also legal for the file entry table to be empty.
238 if (*lineptr)
239 {
240 int fileindex = 1;
241 size_t len;
242 while (*lineptr)
243 {
244 const char* filename = reinterpret_cast<const char*>(lineptr);
245 lineptr += strlen(filename) + 1;
246
247 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
248 lineptr += len;
249
250 if (dirindex >= this->directories_.back().size())
251 dirindex = 0;
252 int dirindexi = static_cast<int>(dirindex);
253
254 read_unsigned_LEB_128(lineptr, &len); // mod_time
255 lineptr += len;
256
257 read_unsigned_LEB_128(lineptr, &len); // filelength
258 lineptr += len;
259
260 gold_assert(fileindex
261 == static_cast<int>(this->files_.back().size()));
262 this->files_.back().push_back(std::make_pair(dirindexi, filename));
263 fileindex++;
264 }
265 }
266 lineptr++;
267
268 return lineptr;
269 }
270
271 // Process a single opcode in the .debug.line structure.
272
273 // Templating on size and big_endian would yield more efficient (and
274 // simpler) code, but would bloat the binary. Speed isn't important
275 // here.
276
277 template<int size, bool big_endian>
278 bool
279 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
280 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
281 {
282 size_t oplen = 0;
283 size_t templen;
284 unsigned char opcode = *start;
285 oplen++;
286 start++;
287
288 // If the opcode is great than the opcode_base, it is a special
289 // opcode. Most line programs consist mainly of special opcodes.
290 if (opcode >= header_.opcode_base)
291 {
292 opcode -= header_.opcode_base;
293 const int advance_address = ((opcode / header_.line_range)
294 * header_.min_insn_length);
295 lsm->address += advance_address;
296
297 const int advance_line = ((opcode % header_.line_range)
298 + header_.line_base);
299 lsm->line_num += advance_line;
300 lsm->basic_block = true;
301 *len = oplen;
302 return true;
303 }
304
305 // Otherwise, we have the regular opcodes
306 switch (opcode)
307 {
308 case elfcpp::DW_LNS_copy:
309 lsm->basic_block = false;
310 *len = oplen;
311 return true;
312
313 case elfcpp::DW_LNS_advance_pc:
314 {
315 const uint64_t advance_address
316 = read_unsigned_LEB_128(start, &templen);
317 oplen += templen;
318 lsm->address += header_.min_insn_length * advance_address;
319 }
320 break;
321
322 case elfcpp::DW_LNS_advance_line:
323 {
324 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
325 oplen += templen;
326 lsm->line_num += advance_line;
327 }
328 break;
329
330 case elfcpp::DW_LNS_set_file:
331 {
332 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
333 oplen += templen;
334 lsm->file_num = fileno;
335 }
336 break;
337
338 case elfcpp::DW_LNS_set_column:
339 {
340 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
341 oplen += templen;
342 lsm->column_num = colno;
343 }
344 break;
345
346 case elfcpp::DW_LNS_negate_stmt:
347 lsm->is_stmt = !lsm->is_stmt;
348 break;
349
350 case elfcpp::DW_LNS_set_basic_block:
351 lsm->basic_block = true;
352 break;
353
354 case elfcpp::DW_LNS_fixed_advance_pc:
355 {
356 int advance_address;
357 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
358 oplen += 2;
359 lsm->address += advance_address;
360 }
361 break;
362
363 case elfcpp::DW_LNS_const_add_pc:
364 {
365 const int advance_address = (header_.min_insn_length
366 * ((255 - header_.opcode_base)
367 / header_.line_range));
368 lsm->address += advance_address;
369 }
370 break;
371
372 case elfcpp::DW_LNS_extended_op:
373 {
374 const uint64_t extended_op_len
375 = read_unsigned_LEB_128(start, &templen);
376 start += templen;
377 oplen += templen + extended_op_len;
378
379 const unsigned char extended_op = *start;
380 start++;
381
382 switch (extended_op)
383 {
384 case elfcpp::DW_LNE_end_sequence:
385 // This means that the current byte is the one immediately
386 // after a set of instructions. Record the current line
387 // for up to one less than the current address.
388 lsm->line_num = -1;
389 lsm->end_sequence = true;
390 *len = oplen;
391 return true;
392
393 case elfcpp::DW_LNE_set_address:
394 {
395 lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
396 typename Reloc_map::const_iterator it
397 = reloc_map_.find(start - this->buffer_);
398 if (it != reloc_map_.end())
399 {
400 // value + addend.
401 lsm->address += it->second.second;
402 lsm->shndx = it->second.first;
403 }
404 else
405 {
406 // If we're a normal .o file, with relocs, every
407 // set_address should have an associated relocation.
408 if (this->input_is_relobj())
409 this->data_valid_ = false;
410 }
411 break;
412 }
413 case elfcpp::DW_LNE_define_file:
414 {
415 const char* filename = reinterpret_cast<const char*>(start);
416 templen = strlen(filename) + 1;
417 start += templen;
418
419 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
420 oplen += templen;
421
422 if (dirindex >= this->directories_.back().size())
423 dirindex = 0;
424 int dirindexi = static_cast<int>(dirindex);
425
426 read_unsigned_LEB_128(start, &templen); // mod_time
427 oplen += templen;
428
429 read_unsigned_LEB_128(start, &templen); // filelength
430 oplen += templen;
431
432 this->files_.back().push_back(std::make_pair(dirindexi,
433 filename));
434 }
435 break;
436 }
437 }
438 break;
439
440 default:
441 {
442 // Ignore unknown opcode silently
443 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
444 {
445 size_t templen;
446 read_unsigned_LEB_128(start, &templen);
447 start += templen;
448 oplen += templen;
449 }
450 }
451 break;
452 }
453 *len = oplen;
454 return false;
455 }
456
457 // Read the debug information at LINEPTR and store it in the line
458 // number map.
459
460 template<int size, bool big_endian>
461 unsigned const char*
462 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
463 unsigned int shndx)
464 {
465 struct LineStateMachine lsm;
466
467 // LENGTHSTART is the place the length field is based on. It is the
468 // point in the header after the initial length field.
469 const unsigned char* lengthstart = buffer_;
470
471 // In 64 bit dwarf, the initial length is 12 bytes, because of the
472 // 0xffffffff at the start.
473 if (header_.offset_size == 8)
474 lengthstart += 12;
475 else
476 lengthstart += 4;
477
478 while (lineptr < lengthstart + header_.total_length)
479 {
480 ResetLineStateMachine(&lsm, header_.default_is_stmt);
481 while (!lsm.end_sequence)
482 {
483 size_t oplength;
484 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
485 if (add_line
486 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
487 {
488 Offset_to_lineno_entry entry
489 = { lsm.address, this->current_header_index_,
490 lsm.file_num, lsm.line_num };
491 line_number_map_[lsm.shndx].push_back(entry);
492 }
493 lineptr += oplength;
494 }
495 }
496
497 return lengthstart + header_.total_length;
498 }
499
500 // Looks in the symtab to see what section a symbol is in.
501
502 template<int size, bool big_endian>
503 unsigned int
504 Sized_dwarf_line_info<size, big_endian>::symbol_section(
505 Object* object,
506 unsigned int sym,
507 typename elfcpp::Elf_types<size>::Elf_Addr* value,
508 bool* is_ordinary)
509 {
510 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
511 gold_assert(sym * symsize < this->symtab_buffer_size_);
512 elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
513 *value = elfsym.get_st_value();
514 return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
515 }
516
517 // Read the relocations into a Reloc_map.
518
519 template<int size, bool big_endian>
520 void
521 Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
522 {
523 if (this->symtab_buffer_ == NULL)
524 return;
525
526 typename elfcpp::Elf_types<size>::Elf_Addr value;
527 off_t reloc_offset;
528 while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
529 {
530 const unsigned int sym = this->track_relocs_.next_symndx();
531
532 bool is_ordinary;
533 const unsigned int shndx = this->symbol_section(object, sym, &value,
534 &is_ordinary);
535
536 // There is no reason to record non-ordinary section indexes, or
537 // SHN_UNDEF, because they will never match the real section.
538 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
539 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
540
541 this->track_relocs_.advance(reloc_offset + 1);
542 }
543 }
544
545 // Read the line number info.
546
547 template<int size, bool big_endian>
548 void
549 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
550 unsigned int shndx)
551 {
552 gold_assert(this->data_valid_ == true);
553
554 this->read_relocs(object);
555 while (this->buffer_ < this->buffer_end_)
556 {
557 const unsigned char* lineptr = this->buffer_;
558 lineptr = this->read_header_prolog(lineptr);
559 lineptr = this->read_header_tables(lineptr);
560 lineptr = this->read_lines(lineptr, shndx);
561 this->buffer_ = lineptr;
562 }
563
564 // Sort the lines numbers, so addr2line can use binary search.
565 for (typename Lineno_map::iterator it = line_number_map_.begin();
566 it != line_number_map_.end();
567 ++it)
568 // Each vector needs to be sorted by offset.
569 std::sort(it->second.begin(), it->second.end());
570 }
571
572 // Some processing depends on whether the input is a .o file or not.
573 // For instance, .o files have relocs, and have .debug_lines
574 // information on a per section basis. .so files, on the other hand,
575 // lack relocs, and offsets are unique, so we can ignore the section
576 // information.
577
578 template<int size, bool big_endian>
579 bool
580 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
581 {
582 // Only .o files have relocs and the symtab buffer that goes with them.
583 return this->symtab_buffer_ != NULL;
584 }
585
586 // Given an Offset_to_lineno_entry vector, and an offset, figure out
587 // if the offset points into a function according to the vector (see
588 // comments below for the algorithm). If it does, return an iterator
589 // into the vector that points to the line-number that contains that
590 // offset. If not, it returns vector::end().
591
592 static std::vector<Offset_to_lineno_entry>::const_iterator
593 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
594 off_t offset)
595 {
596 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
597
598 // lower_bound() returns the smallest offset which is >= lookup_key.
599 // If no offset in offsets is >= lookup_key, returns end().
600 std::vector<Offset_to_lineno_entry>::const_iterator it
601 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
602
603 // This code is easiest to understand with a concrete example.
604 // Here's a possible offsets array:
605 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
606 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
607 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
608 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
609 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
610 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
611 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
612 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
613 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
614 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
615 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
616 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
617 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
618 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
619 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
620 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
621 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
622 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
623 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
624 // The entries with line_num == -1 mark the end of a function: the
625 // associated offset is one past the last instruction in the
626 // function. This can correspond to the beginning of the next
627 // function (as is true for offset 3232); alternately, there can be
628 // a gap between the end of one function and the start of the next
629 // (as is true for some others, most obviously from 3236->5764).
630 //
631 // Case 1: lookup_key has offset == 10. lower_bound returns
632 // offsets[0]. Since it's not an exact match and we're
633 // at the beginning of offsets, we return end() (invalid).
634 // Case 2: lookup_key has offset 10000. lower_bound returns
635 // offset[19] (end()). We return end() (invalid).
636 // Case 3: lookup_key has offset == 3211. lower_bound matches
637 // offsets[0] exactly, and that's the entry we return.
638 // Case 4: lookup_key has offset == 3232. lower_bound returns
639 // offsets[4]. That's an exact match, but indicates
640 // end-of-function. We check if offsets[5] is also an
641 // exact match but not end-of-function. It is, so we
642 // return offsets[5].
643 // Case 5: lookup_key has offset == 3214. lower_bound returns
644 // offsets[1]. Since it's not an exact match, we back
645 // up to the offset that's < lookup_key, offsets[0].
646 // We note offsets[0] is a valid entry (not end-of-function),
647 // so that's the entry we return.
648 // Case 6: lookup_key has offset == 4000. lower_bound returns
649 // offsets[8]. Since it's not an exact match, we back
650 // up to offsets[7]. Since offsets[7] indicates
651 // end-of-function, we know lookup_key is between
652 // functions, so we return end() (not a valid offset).
653 // Case 7: lookup_key has offset == 5794. lower_bound returns
654 // offsets[17]. Since it's not an exact match, we back
655 // up to offsets[15]. Note we back up to the *first*
656 // entry with offset 5793, not just offsets[17-1].
657 // We note offsets[15] is a valid entry, so we return it.
658 // If offsets[15] had had line_num == -1, we would have
659 // checked offsets[16]. The reason for this is that
660 // 15 and 16 can be in an arbitrary order, since we sort
661 // only by offset. (Note it doesn't help to use line_number
662 // as a secondary sort key, since sometimes we want the -1
663 // to be first and sometimes we want it to be last.)
664
665 // This deals with cases (1) and (2).
666 if ((it == offsets->begin() && offset < it->offset)
667 || it == offsets->end())
668 return offsets->end();
669
670 // This deals with cases (3) and (4).
671 if (offset == it->offset)
672 {
673 while (it != offsets->end()
674 && it->offset == offset
675 && it->line_num == -1)
676 ++it;
677 if (it == offsets->end() || it->offset != offset)
678 return offsets->end();
679 else
680 return it;
681 }
682
683 // This handles the first part of case (7) -- we back up to the
684 // *first* entry that has the offset that's behind us.
685 gold_assert(it != offsets->begin());
686 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
687 --it;
688 const off_t range_value = it->offset;
689 while (it != offsets->begin() && (it-1)->offset == range_value)
690 --it;
691
692 // This handles cases (5), (6), and (7): if any entry in the
693 // equal_range [it, range_end) has a line_num != -1, it's a valid
694 // match. If not, we're not in a function.
695 for (; it != range_end; ++it)
696 if (it->line_num != -1)
697 return it;
698 return offsets->end();
699 }
700
701 // Return a string for a file name and line number.
702
703 template<int size, bool big_endian>
704 std::string
705 Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
706 off_t offset)
707 {
708 if (this->data_valid_ == false)
709 return "";
710
711 const std::vector<Offset_to_lineno_entry>* offsets;
712 // If we do not have reloc information, then our input is a .so or
713 // some similar data structure where all the information is held in
714 // the offset. In that case, we ignore the input shndx.
715 if (this->input_is_relobj())
716 offsets = &this->line_number_map_[shndx];
717 else
718 offsets = &this->line_number_map_[-1U];
719 if (offsets->empty())
720 return "";
721
722 typename std::vector<Offset_to_lineno_entry>::const_iterator it
723 = offset_to_iterator(offsets, offset);
724 if (it == offsets->end())
725 return "";
726
727 // Convert the file_num + line_num into a string.
728 std::string ret;
729
730 gold_assert(it->header_num < static_cast<int>(this->files_.size()));
731 gold_assert(it->file_num
732 < static_cast<int>(this->files_[it->header_num].size()));
733 const std::pair<int, std::string>& filename_pair
734 = this->files_[it->header_num][it->file_num];
735 const std::string& filename = filename_pair.second;
736
737 gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
738 gold_assert(filename_pair.first
739 < static_cast<int>(this->directories_[it->header_num].size()));
740 const std::string& dirname
741 = this->directories_[it->header_num][filename_pair.first];
742
743 if (!dirname.empty())
744 {
745 ret += dirname;
746 ret += "/";
747 }
748 ret += filename;
749 if (ret.empty())
750 ret = "(unknown)";
751
752 char buffer[64]; // enough to hold a line number
753 snprintf(buffer, sizeof(buffer), "%d", it->line_num);
754 ret += ":";
755 ret += buffer;
756
757 return ret;
758 }
759
760 // Dwarf_line_info routines.
761
762 static unsigned int next_generation_count = 0;
763
764 struct Addr2line_cache_entry
765 {
766 Object* object;
767 unsigned int shndx;
768 Dwarf_line_info* dwarf_line_info;
769 unsigned int generation_count;
770 unsigned int access_count;
771
772 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
773 : object(o), shndx(s), dwarf_line_info(d),
774 generation_count(next_generation_count), access_count(0)
775 {
776 if (next_generation_count < (1U << 31))
777 ++next_generation_count;
778 }
779 };
780 // We expect this cache to be small, so don't bother with a hashtable
781 // or priority queue or anything: just use a simple vector.
782 static std::vector<Addr2line_cache_entry> addr2line_cache;
783
784 std::string
785 Dwarf_line_info::one_addr2line(Object* object,
786 unsigned int shndx, off_t offset,
787 size_t cache_size)
788 {
789 Dwarf_line_info* lineinfo = NULL;
790 std::vector<Addr2line_cache_entry>::iterator it;
791
792 // First, check the cache. If we hit, update the counts.
793 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
794 {
795 if (it->object == object && it->shndx == shndx)
796 {
797 lineinfo = it->dwarf_line_info;
798 it->generation_count = next_generation_count;
799 // We cap generation_count at 2^31 -1 to avoid overflow.
800 if (next_generation_count < (1U << 31))
801 ++next_generation_count;
802 // We cap access_count at 31 so 2^access_count doesn't overflow
803 if (it->access_count < 31)
804 ++it->access_count;
805 break;
806 }
807 }
808
809 // If we don't hit the cache, create a new object and insert into the
810 // cache.
811 if (lineinfo == NULL)
812 {
813 switch (parameters->size_and_endianness())
814 {
815 #ifdef HAVE_TARGET_32_LITTLE
816 case Parameters::TARGET_32_LITTLE:
817 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
818 #endif
819 #ifdef HAVE_TARGET_32_BIG
820 case Parameters::TARGET_32_BIG:
821 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
822 #endif
823 #ifdef HAVE_TARGET_64_LITTLE
824 case Parameters::TARGET_64_LITTLE:
825 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
826 #endif
827 #ifdef HAVE_TARGET_64_BIG
828 case Parameters::TARGET_64_BIG:
829 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
830 #endif
831 default:
832 gold_unreachable();
833 }
834 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
835 }
836
837 // Now that we have our object, figure out the answer
838 std::string retval = lineinfo->addr2line(shndx, offset);
839
840 // Finally, if our cache has grown too big, delete old objects. We
841 // assume the common (probably only) case is deleting only one object.
842 // We use a pretty simple scheme to evict: function of LRU and MFU.
843 while (addr2line_cache.size() > cache_size)
844 {
845 unsigned int lowest_score = ~0U;
846 std::vector<Addr2line_cache_entry>::iterator lowest
847 = addr2line_cache.end();
848 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
849 {
850 const unsigned int score = (it->generation_count
851 + (1U << it->access_count));
852 if (score < lowest_score)
853 {
854 lowest_score = score;
855 lowest = it;
856 }
857 }
858 if (lowest != addr2line_cache.end())
859 {
860 delete lowest->dwarf_line_info;
861 addr2line_cache.erase(lowest);
862 }
863 }
864
865 return retval;
866 }
867
868 void
869 Dwarf_line_info::clear_addr2line_cache()
870 {
871 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
872 it != addr2line_cache.end();
873 ++it)
874 delete it->dwarf_line_info;
875 addr2line_cache.clear();
876 }
877
878 #ifdef HAVE_TARGET_32_LITTLE
879 template
880 class Sized_dwarf_line_info<32, false>;
881 #endif
882
883 #ifdef HAVE_TARGET_32_BIG
884 template
885 class Sized_dwarf_line_info<32, true>;
886 #endif
887
888 #ifdef HAVE_TARGET_64_LITTLE
889 template
890 class Sized_dwarf_line_info<64, false>;
891 #endif
892
893 #ifdef HAVE_TARGET_64_BIG
894 template
895 class Sized_dwarf_line_info<64, true>;
896 #endif
897
898 } // End namespace gold.