]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/incremental.cc
2012-03-21 Cary Coutant <ccoutant@google.com>
[thirdparty/binutils-gdb.git] / gold / incremental.cc
1 // inremental.cc -- incremental linking support for gold
2
3 // Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Mikolaj Zalewski <mikolajz@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <set>
26 #include <cstdarg>
27 #include "libiberty.h"
28
29 #include "elfcpp.h"
30 #include "options.h"
31 #include "output.h"
32 #include "symtab.h"
33 #include "incremental.h"
34 #include "archive.h"
35 #include "object.h"
36 #include "output.h"
37 #include "target-select.h"
38 #include "target.h"
39 #include "fileread.h"
40 #include "script.h"
41
42 namespace gold {
43
44 // Version information. Will change frequently during the development, later
45 // we could think about backward (and forward?) compatibility.
46 const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
48 // This class manages the .gnu_incremental_inputs section, which holds
49 // the header information, a directory of input files, and separate
50 // entries for each input file.
51
52 template<int size, bool big_endian>
53 class Output_section_incremental_inputs : public Output_section_data
54 {
55 public:
56 Output_section_incremental_inputs(const Incremental_inputs* inputs,
57 const Symbol_table* symtab)
58 : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59 { }
60
61 protected:
62 // This is called to update the section size prior to assigning
63 // the address and file offset.
64 void
65 update_data_size()
66 { this->set_final_data_size(); }
67
68 // Set the final data size.
69 void
70 set_final_data_size();
71
72 // Write the data to the file.
73 void
74 do_write(Output_file*);
75
76 // Write to a map file.
77 void
78 do_print_to_mapfile(Mapfile* mapfile) const
79 { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
81 private:
82 // Write the section header.
83 unsigned char*
84 write_header(unsigned char* pov, unsigned int input_file_count,
85 section_offset_type command_line_offset);
86
87 // Write the input file entries.
88 unsigned char*
89 write_input_files(unsigned char* oview, unsigned char* pov,
90 Stringpool* strtab);
91
92 // Write the supplemental information blocks.
93 unsigned char*
94 write_info_blocks(unsigned char* oview, unsigned char* pov,
95 Stringpool* strtab, unsigned int* global_syms,
96 unsigned int global_sym_count);
97
98 // Write the contents of the .gnu_incremental_symtab section.
99 void
100 write_symtab(unsigned char* pov, unsigned int* global_syms,
101 unsigned int global_sym_count);
102
103 // Write the contents of the .gnu_incremental_got_plt section.
104 void
105 write_got_plt(unsigned char* pov, off_t view_size);
106
107 // Typedefs for writing the data to the output sections.
108 typedef elfcpp::Swap<size, big_endian> Swap;
109 typedef elfcpp::Swap<16, big_endian> Swap16;
110 typedef elfcpp::Swap<32, big_endian> Swap32;
111 typedef elfcpp::Swap<64, big_endian> Swap64;
112
113 // Sizes of various structures.
114 static const int sizeof_addr = size / 8;
115 static const int header_size = 16;
116 static const int input_entry_size = 24;
117
118 // The Incremental_inputs object.
119 const Incremental_inputs* inputs_;
120
121 // The symbol table.
122 const Symbol_table* symtab_;
123 };
124
125 // Inform the user why we don't do an incremental link. Not called in
126 // the obvious case of missing output file. TODO: Is this helpful?
127
128 void
129 vexplain_no_incremental(const char* format, va_list args)
130 {
131 char* buf = NULL;
132 if (vasprintf(&buf, format, args) < 0)
133 gold_nomem();
134 gold_info(_("the link might take longer: "
135 "cannot perform incremental link: %s"), buf);
136 free(buf);
137 }
138
139 void
140 explain_no_incremental(const char* format, ...)
141 {
142 va_list args;
143 va_start(args, format);
144 vexplain_no_incremental(format, args);
145 va_end(args);
146 }
147
148 // Report an error.
149
150 void
151 Incremental_binary::error(const char* format, ...) const
152 {
153 va_list args;
154 va_start(args, format);
155 // Current code only checks if the file can be used for incremental linking,
156 // so errors shouldn't fail the build, but only result in a fallback to a
157 // full build.
158 // TODO: when we implement incremental editing of the file, we may need a
159 // flag that will cause errors to be treated seriously.
160 vexplain_no_incremental(format, args);
161 va_end(args);
162 }
163
164 // Return TRUE if a section of type SH_TYPE can be updated in place
165 // during an incremental update. We can update sections of type PROGBITS,
166 // NOBITS, INIT_ARRAY, FINI_ARRAY, PREINIT_ARRAY, and NOTE. All others
167 // will be regenerated.
168
169 bool
170 can_incremental_update(unsigned int sh_type)
171 {
172 return (sh_type == elfcpp::SHT_PROGBITS
173 || sh_type == elfcpp::SHT_NOBITS
174 || sh_type == elfcpp::SHT_INIT_ARRAY
175 || sh_type == elfcpp::SHT_FINI_ARRAY
176 || sh_type == elfcpp::SHT_PREINIT_ARRAY
177 || sh_type == elfcpp::SHT_NOTE);
178 }
179
180 // Find the .gnu_incremental_inputs section and related sections.
181
182 template<int size, bool big_endian>
183 bool
184 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
185 unsigned int* p_inputs_shndx,
186 unsigned int* p_symtab_shndx,
187 unsigned int* p_relocs_shndx,
188 unsigned int* p_got_plt_shndx,
189 unsigned int* p_strtab_shndx)
190 {
191 unsigned int inputs_shndx =
192 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
193 if (inputs_shndx == elfcpp::SHN_UNDEF) // Not found.
194 return false;
195
196 unsigned int symtab_shndx =
197 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
198 if (symtab_shndx == elfcpp::SHN_UNDEF) // Not found.
199 return false;
200 if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
201 return false;
202
203 unsigned int relocs_shndx =
204 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
205 if (relocs_shndx == elfcpp::SHN_UNDEF) // Not found.
206 return false;
207 if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
208 return false;
209
210 unsigned int got_plt_shndx =
211 this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
212 if (got_plt_shndx == elfcpp::SHN_UNDEF) // Not found.
213 return false;
214 if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
215 return false;
216
217 unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
218 if (strtab_shndx == elfcpp::SHN_UNDEF
219 || strtab_shndx > this->elf_file_.shnum()
220 || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
221 return false;
222
223 if (p_inputs_shndx != NULL)
224 *p_inputs_shndx = inputs_shndx;
225 if (p_symtab_shndx != NULL)
226 *p_symtab_shndx = symtab_shndx;
227 if (p_relocs_shndx != NULL)
228 *p_relocs_shndx = relocs_shndx;
229 if (p_got_plt_shndx != NULL)
230 *p_got_plt_shndx = got_plt_shndx;
231 if (p_strtab_shndx != NULL)
232 *p_strtab_shndx = strtab_shndx;
233 return true;
234 }
235
236 // Set up the readers into the incremental info sections.
237
238 template<int size, bool big_endian>
239 void
240 Sized_incremental_binary<size, big_endian>::setup_readers()
241 {
242 unsigned int inputs_shndx;
243 unsigned int symtab_shndx;
244 unsigned int relocs_shndx;
245 unsigned int got_plt_shndx;
246 unsigned int strtab_shndx;
247
248 if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
249 &relocs_shndx, &got_plt_shndx,
250 &strtab_shndx))
251 return;
252
253 Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
254 Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
255 Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
256 Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
257 Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
258
259 View inputs_view = this->view(inputs_location);
260 View symtab_view = this->view(symtab_location);
261 View relocs_view = this->view(relocs_location);
262 View got_plt_view = this->view(got_plt_location);
263 View strtab_view = this->view(strtab_location);
264
265 elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
266
267 this->inputs_reader_ =
268 Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
269 this->symtab_reader_ =
270 Incremental_symtab_reader<big_endian>(symtab_view.data(),
271 symtab_location.data_size);
272 this->relocs_reader_ =
273 Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
274 relocs_location.data_size);
275 this->got_plt_reader_ =
276 Incremental_got_plt_reader<big_endian>(got_plt_view.data());
277
278 // Find the main symbol table.
279 unsigned int main_symtab_shndx =
280 this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
281 gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
282 this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
283
284 // Find the main symbol string table.
285 unsigned int main_strtab_shndx =
286 this->elf_file_.section_link(main_symtab_shndx);
287 gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
288 && main_strtab_shndx < this->elf_file_.shnum());
289 this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
290
291 // Walk the list of input files (a) to setup an Input_reader for each
292 // input file, and (b) to record maps of files added from archive
293 // libraries and scripts.
294 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
295 unsigned int count = inputs.input_file_count();
296 this->input_objects_.resize(count);
297 this->input_entry_readers_.reserve(count);
298 this->library_map_.resize(count);
299 this->script_map_.resize(count);
300 for (unsigned int i = 0; i < count; i++)
301 {
302 Input_entry_reader input_file = inputs.input_file(i);
303 this->input_entry_readers_.push_back(Sized_input_reader(input_file));
304 switch (input_file.type())
305 {
306 case INCREMENTAL_INPUT_OBJECT:
307 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
308 case INCREMENTAL_INPUT_SHARED_LIBRARY:
309 // No special treatment necessary.
310 break;
311 case INCREMENTAL_INPUT_ARCHIVE:
312 {
313 Incremental_library* lib =
314 new Incremental_library(input_file.filename(), i,
315 &this->input_entry_readers_[i]);
316 this->library_map_[i] = lib;
317 unsigned int member_count = input_file.get_member_count();
318 for (unsigned int j = 0; j < member_count; j++)
319 {
320 int member_offset = input_file.get_member_offset(j);
321 int member_index = inputs.input_file_index(member_offset);
322 this->library_map_[member_index] = lib;
323 }
324 }
325 break;
326 case INCREMENTAL_INPUT_SCRIPT:
327 {
328 Script_info* script = new Script_info(input_file.filename(), i);
329 this->script_map_[i] = script;
330 unsigned int object_count = input_file.get_object_count();
331 for (unsigned int j = 0; j < object_count; j++)
332 {
333 int object_offset = input_file.get_object_offset(j);
334 int object_index = inputs.input_file_index(object_offset);
335 this->script_map_[object_index] = script;
336 }
337 }
338 break;
339 default:
340 gold_unreachable();
341 }
342 }
343
344 // Initialize the map of global symbols.
345 unsigned int nglobals = this->symtab_reader_.symbol_count();
346 this->symbol_map_.resize(nglobals);
347
348 this->has_incremental_info_ = true;
349 }
350
351 // Walk the list of input files given on the command line, and build
352 // a direct map of file index to the corresponding input argument.
353
354 void
355 check_input_args(std::vector<const Input_argument*>& input_args_map,
356 Input_arguments::const_iterator begin,
357 Input_arguments::const_iterator end)
358 {
359 for (Input_arguments::const_iterator p = begin;
360 p != end;
361 ++p)
362 {
363 if (p->is_group())
364 {
365 const Input_file_group* group = p->group();
366 check_input_args(input_args_map, group->begin(), group->end());
367 }
368 else if (p->is_lib())
369 {
370 const Input_file_lib* lib = p->lib();
371 check_input_args(input_args_map, lib->begin(), lib->end());
372 }
373 else
374 {
375 gold_assert(p->is_file());
376 unsigned int arg_serial = p->file().arg_serial();
377 if (arg_serial > 0)
378 {
379 gold_assert(arg_serial <= input_args_map.size());
380 gold_assert(input_args_map[arg_serial - 1] == 0);
381 input_args_map[arg_serial - 1] = &*p;
382 }
383 }
384 }
385 }
386
387 // Determine whether an incremental link based on the existing output file
388 // can be done.
389
390 template<int size, bool big_endian>
391 bool
392 Sized_incremental_binary<size, big_endian>::do_check_inputs(
393 const Command_line& cmdline,
394 Incremental_inputs* incremental_inputs)
395 {
396 Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
397
398 if (!this->has_incremental_info_)
399 {
400 explain_no_incremental(_("no incremental data from previous build"));
401 return false;
402 }
403
404 if (inputs.version() != INCREMENTAL_LINK_VERSION)
405 {
406 explain_no_incremental(_("different version of incremental build data"));
407 return false;
408 }
409
410 if (incremental_inputs->command_line() != inputs.command_line())
411 {
412 gold_debug(DEBUG_INCREMENTAL,
413 "old command line: %s",
414 inputs.command_line());
415 gold_debug(DEBUG_INCREMENTAL,
416 "new command line: %s",
417 incremental_inputs->command_line().c_str());
418 explain_no_incremental(_("command line changed"));
419 return false;
420 }
421
422 // Walk the list of input files given on the command line, and build
423 // a direct map of argument serial numbers to the corresponding input
424 // arguments.
425 this->input_args_map_.resize(cmdline.number_of_input_files());
426 check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
427
428 // Walk the list of input files to check for conditions that prevent
429 // an incremental update link.
430 unsigned int count = inputs.input_file_count();
431 for (unsigned int i = 0; i < count; i++)
432 {
433 Input_entry_reader input_file = inputs.input_file(i);
434 switch (input_file.type())
435 {
436 case INCREMENTAL_INPUT_OBJECT:
437 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
438 case INCREMENTAL_INPUT_SHARED_LIBRARY:
439 case INCREMENTAL_INPUT_ARCHIVE:
440 // No special treatment necessary.
441 break;
442 case INCREMENTAL_INPUT_SCRIPT:
443 if (this->do_file_has_changed(i))
444 {
445 explain_no_incremental(_("%s: script file changed"),
446 input_file.filename());
447 return false;
448 }
449 break;
450 default:
451 gold_unreachable();
452 }
453 }
454
455 return true;
456 }
457
458 // Return TRUE if input file N has changed since the last incremental link.
459
460 template<int size, bool big_endian>
461 bool
462 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
463 unsigned int n) const
464 {
465 Input_entry_reader input_file = this->inputs_reader_.input_file(n);
466 Incremental_disposition disp = INCREMENTAL_CHECK;
467
468 // For files named in scripts, find the file that was actually named
469 // on the command line, so that we can get the incremental disposition
470 // flag.
471 Script_info* script = this->get_script_info(n);
472 if (script != NULL)
473 n = script->input_file_index();
474
475 const Input_argument* input_argument = this->get_input_argument(n);
476 if (input_argument != NULL)
477 disp = input_argument->file().options().incremental_disposition();
478
479 // For files at the beginning of the command line (i.e., those added
480 // implicitly by gcc), check whether the --incremental-startup-unchanged
481 // option was used.
482 if (disp == INCREMENTAL_STARTUP)
483 disp = parameters->options().incremental_startup_disposition();
484
485 if (disp != INCREMENTAL_CHECK)
486 return disp == INCREMENTAL_CHANGED;
487
488 const char* filename = input_file.filename();
489 Timespec old_mtime = input_file.get_mtime();
490 Timespec new_mtime;
491 if (!get_mtime(filename, &new_mtime))
492 {
493 // If we can't open get the current modification time, assume it has
494 // changed. If the file doesn't exist, we'll issue an error when we
495 // try to open it later.
496 return true;
497 }
498
499 if (new_mtime.seconds > old_mtime.seconds)
500 return true;
501 if (new_mtime.seconds == old_mtime.seconds
502 && new_mtime.nanoseconds > old_mtime.nanoseconds)
503 return true;
504 return false;
505 }
506
507 // Initialize the layout of the output file based on the existing
508 // output file.
509
510 template<int size, bool big_endian>
511 void
512 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
513 {
514 typedef elfcpp::Shdr<size, big_endian> Shdr;
515 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
516
517 // Get views of the section headers and the section string table.
518 const off_t shoff = this->elf_file_.shoff();
519 const unsigned int shnum = this->elf_file_.shnum();
520 const unsigned int shstrndx = this->elf_file_.shstrndx();
521 Location shdrs_location(shoff, shnum * shdr_size);
522 Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
523 View shdrs_view = this->view(shdrs_location);
524 View shstrndx_view = this->view(shstrndx_location);
525 elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
526 shstrndx_location.data_size);
527
528 layout->set_incremental_base(this);
529
530 // Initialize the layout.
531 this->section_map_.resize(shnum);
532 const unsigned char* pshdr = shdrs_view.data() + shdr_size;
533 for (unsigned int i = 1; i < shnum; i++)
534 {
535 Shdr shdr(pshdr);
536 const char* name;
537 if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
538 name = NULL;
539 gold_debug(DEBUG_INCREMENTAL,
540 "Output section: %2d %08lx %08lx %08lx %3d %s",
541 i,
542 static_cast<long>(shdr.get_sh_addr()),
543 static_cast<long>(shdr.get_sh_offset()),
544 static_cast<long>(shdr.get_sh_size()),
545 shdr.get_sh_type(), name ? name : "<null>");
546 this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
547 pshdr += shdr_size;
548 }
549 }
550
551 // Mark regions of the input file that must be kept unchanged.
552
553 template<int size, bool big_endian>
554 void
555 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
556 unsigned int input_file_index)
557 {
558 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
559
560 Input_entry_reader input_file =
561 this->inputs_reader_.input_file(input_file_index);
562
563 if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
564 {
565 // Reserve the BSS space used for COPY relocations.
566 unsigned int nsyms = input_file.get_global_symbol_count();
567 Incremental_binary::View symtab_view(NULL);
568 unsigned int symtab_count;
569 elfcpp::Elf_strtab strtab(NULL, 0);
570 this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
571 for (unsigned int i = 0; i < nsyms; ++i)
572 {
573 bool is_def;
574 bool is_copy;
575 unsigned int output_symndx =
576 input_file.get_output_symbol_index(i, &is_def, &is_copy);
577 if (is_copy)
578 {
579 const unsigned char* sym_p = (symtab_view.data()
580 + output_symndx * sym_size);
581 elfcpp::Sym<size, big_endian> gsym(sym_p);
582 unsigned int shndx = gsym.get_st_shndx();
583 if (shndx < 1 || shndx >= this->section_map_.size())
584 continue;
585 Output_section* os = this->section_map_[shndx];
586 off_t offset = gsym.get_st_value() - os->address();
587 os->reserve(offset, gsym.get_st_size());
588 gold_debug(DEBUG_INCREMENTAL,
589 "Reserve for COPY reloc: %s, off %d, size %d",
590 os->name(),
591 static_cast<int>(offset),
592 static_cast<int>(gsym.get_st_size()));
593 }
594 }
595 return;
596 }
597
598 unsigned int shnum = input_file.get_input_section_count();
599 for (unsigned int i = 0; i < shnum; i++)
600 {
601 typename Input_entry_reader::Input_section_info sect =
602 input_file.get_input_section(i);
603 if (sect.output_shndx == 0 || sect.sh_offset == -1)
604 continue;
605 Output_section* os = this->section_map_[sect.output_shndx];
606 gold_assert(os != NULL);
607 os->reserve(sect.sh_offset, sect.sh_size);
608 }
609 }
610
611 // Process the GOT and PLT entries from the existing output file.
612
613 template<int size, bool big_endian>
614 void
615 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
616 Symbol_table* symtab,
617 Layout* layout)
618 {
619 Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
620 Sized_target<size, big_endian>* target =
621 parameters->sized_target<size, big_endian>();
622
623 // Get the number of symbols in the main symbol table and in the
624 // incremental symbol table. The difference between the two counts
625 // is the index of the first forced-local or global symbol in the
626 // main symbol table.
627 unsigned int symtab_count =
628 this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
629 unsigned int isym_count = this->symtab_reader_.symbol_count();
630 unsigned int first_global = symtab_count - isym_count;
631
632 // Tell the target how big the GOT and PLT sections are.
633 unsigned int got_count = got_plt_reader.get_got_entry_count();
634 unsigned int plt_count = got_plt_reader.get_plt_entry_count();
635 Output_data_got_base* got =
636 target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
637
638 // Read the GOT entries from the base file and build the outgoing GOT.
639 for (unsigned int i = 0; i < got_count; ++i)
640 {
641 unsigned int got_type = got_plt_reader.get_got_type(i);
642 if ((got_type & 0x7f) == 0x7f)
643 {
644 // This is the second entry of a pair.
645 got->reserve_slot(i);
646 continue;
647 }
648 unsigned int symndx = got_plt_reader.get_got_symndx(i);
649 if (got_type & 0x80)
650 {
651 // This is an entry for a local symbol. Ignore this entry if
652 // the object file was replaced.
653 unsigned int input_index = got_plt_reader.get_got_input_index(i);
654 gold_debug(DEBUG_INCREMENTAL,
655 "GOT entry %d, type %02x: (local symbol)",
656 i, got_type & 0x7f);
657 Sized_relobj_incr<size, big_endian>* obj =
658 this->input_object(input_index);
659 if (obj != NULL)
660 target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
661 }
662 else
663 {
664 // This is an entry for a global symbol. GOT_DESC is the symbol
665 // table index.
666 // FIXME: This should really be a fatal error (corrupt input).
667 gold_assert(symndx >= first_global && symndx < symtab_count);
668 Symbol* sym = this->global_symbol(symndx - first_global);
669 // Add the GOT entry only if the symbol is still referenced.
670 if (sym != NULL && sym->in_reg())
671 {
672 gold_debug(DEBUG_INCREMENTAL,
673 "GOT entry %d, type %02x: %s",
674 i, got_type, sym->name());
675 target->reserve_global_got_entry(i, sym, got_type);
676 }
677 }
678 }
679
680 // Read the PLT entries from the base file and pass each to the target.
681 for (unsigned int i = 0; i < plt_count; ++i)
682 {
683 unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
684 // FIXME: This should really be a fatal error (corrupt input).
685 gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
686 Symbol* sym = this->global_symbol(plt_desc - first_global);
687 // Add the PLT entry only if the symbol is still referenced.
688 if (sym != NULL && sym->in_reg())
689 {
690 gold_debug(DEBUG_INCREMENTAL,
691 "PLT entry %d: %s",
692 i, sym->name());
693 target->register_global_plt_entry(symtab, layout, i, sym);
694 }
695 }
696 }
697
698 // Emit COPY relocations from the existing output file.
699
700 template<int size, bool big_endian>
701 void
702 Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
703 Symbol_table* symtab)
704 {
705 Sized_target<size, big_endian>* target =
706 parameters->sized_target<size, big_endian>();
707
708 for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
709 p != this->copy_relocs_.end();
710 ++p)
711 {
712 if (!(*p).symbol->is_copied_from_dynobj())
713 target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
714 (*p).offset);
715 }
716 }
717
718 // Apply incremental relocations for symbols whose values have changed.
719
720 template<int size, bool big_endian>
721 void
722 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
723 const Symbol_table* symtab,
724 Layout* layout,
725 Output_file* of)
726 {
727 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
728 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
729 Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
730 Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
731 unsigned int nglobals = isymtab.symbol_count();
732 const unsigned int incr_reloc_size = irelocs.reloc_size;
733
734 Relocate_info<size, big_endian> relinfo;
735 relinfo.symtab = symtab;
736 relinfo.layout = layout;
737 relinfo.object = NULL;
738 relinfo.reloc_shndx = 0;
739 relinfo.reloc_shdr = NULL;
740 relinfo.data_shndx = 0;
741 relinfo.data_shdr = NULL;
742
743 Sized_target<size, big_endian>* target =
744 parameters->sized_target<size, big_endian>();
745
746 for (unsigned int i = 0; i < nglobals; i++)
747 {
748 const Symbol* gsym = this->global_symbol(i);
749
750 // If the symbol is not referenced from any unchanged input files,
751 // we do not need to reapply any of its relocations.
752 if (gsym == NULL)
753 continue;
754
755 // If the symbol is defined in an unchanged file, we do not need to
756 // reapply any of its relocations.
757 if (gsym->source() == Symbol::FROM_OBJECT
758 && gsym->object()->is_incremental())
759 continue;
760
761 gold_debug(DEBUG_INCREMENTAL,
762 "Applying incremental relocations for global symbol %s [%d]",
763 gsym->name(), i);
764
765 // Follow the linked list of input symbol table entries for this symbol.
766 // We don't bother to figure out whether the symbol table entry belongs
767 // to a changed or unchanged file because it's easier just to apply all
768 // the relocations -- although we might scribble over an area that has
769 // been reallocated, we do this before copying any new data into the
770 // output file.
771 unsigned int offset = isymtab.get_list_head(i);
772 while (offset > 0)
773 {
774 Incremental_global_symbol_reader<big_endian> sym_info =
775 this->inputs_reader().global_symbol_reader_at_offset(offset);
776 unsigned int r_base = sym_info.reloc_offset();
777 unsigned int r_count = sym_info.reloc_count();
778
779 // Apply each relocation for this symbol table entry.
780 for (unsigned int j = 0; j < r_count;
781 ++j, r_base += incr_reloc_size)
782 {
783 unsigned int r_type = irelocs.get_r_type(r_base);
784 unsigned int r_shndx = irelocs.get_r_shndx(r_base);
785 Address r_offset = irelocs.get_r_offset(r_base);
786 Addend r_addend = irelocs.get_r_addend(r_base);
787 Output_section* os = this->output_section(r_shndx);
788 Address address = os->address();
789 off_t section_offset = os->offset();
790 size_t view_size = os->data_size();
791 unsigned char* const view = of->get_output_view(section_offset,
792 view_size);
793
794 gold_debug(DEBUG_INCREMENTAL,
795 " %08lx: %s + %d: type %d addend %ld",
796 (long)(section_offset + r_offset),
797 os->name(),
798 (int)r_offset,
799 r_type,
800 (long)r_addend);
801
802 target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
803 gsym, view, address, view_size);
804
805 // FIXME: Do something more efficient if write_output_view
806 // ever becomes more than a no-op.
807 of->write_output_view(section_offset, view_size, view);
808 }
809 offset = sym_info.next_offset();
810 }
811 }
812 }
813
814 // Get a view of the main symbol table and the symbol string table.
815
816 template<int size, bool big_endian>
817 void
818 Sized_incremental_binary<size, big_endian>::get_symtab_view(
819 View* symtab_view,
820 unsigned int* nsyms,
821 elfcpp::Elf_strtab* strtab)
822 {
823 *symtab_view = this->view(this->main_symtab_loc_);
824 *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
825
826 View strtab_view(this->view(this->main_strtab_loc_));
827 *strtab = elfcpp::Elf_strtab(strtab_view.data(),
828 this->main_strtab_loc_.data_size);
829 }
830
831 namespace
832 {
833
834 // Create a Sized_incremental_binary object of the specified size and
835 // endianness. Fails if the target architecture is not supported.
836
837 template<int size, bool big_endian>
838 Incremental_binary*
839 make_sized_incremental_binary(Output_file* file,
840 const elfcpp::Ehdr<size, big_endian>& ehdr)
841 {
842 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
843 ehdr.get_e_ident()[elfcpp::EI_OSABI],
844 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
845 if (target == NULL)
846 {
847 explain_no_incremental(_("unsupported ELF machine number %d"),
848 ehdr.get_e_machine());
849 return NULL;
850 }
851
852 if (!parameters->target_valid())
853 set_parameters_target(target);
854 else if (target != &parameters->target())
855 gold_error(_("%s: incompatible target"), file->filename());
856
857 return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
858 }
859
860 } // End of anonymous namespace.
861
862 // Create an Incremental_binary object for FILE. Returns NULL is this is not
863 // possible, e.g. FILE is not an ELF file or has an unsupported target. FILE
864 // should be opened.
865
866 Incremental_binary*
867 open_incremental_binary(Output_file* file)
868 {
869 off_t filesize = file->filesize();
870 int want = elfcpp::Elf_recognizer::max_header_size;
871 if (filesize < want)
872 want = filesize;
873
874 const unsigned char* p = file->get_input_view(0, want);
875 if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
876 {
877 explain_no_incremental(_("output is not an ELF file."));
878 return NULL;
879 }
880
881 int size = 0;
882 bool big_endian = false;
883 std::string error;
884 if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
885 &error))
886 {
887 explain_no_incremental(error.c_str());
888 return NULL;
889 }
890
891 Incremental_binary* result = NULL;
892 if (size == 32)
893 {
894 if (big_endian)
895 {
896 #ifdef HAVE_TARGET_32_BIG
897 result = make_sized_incremental_binary<32, true>(
898 file, elfcpp::Ehdr<32, true>(p));
899 #else
900 explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
901 #endif
902 }
903 else
904 {
905 #ifdef HAVE_TARGET_32_LITTLE
906 result = make_sized_incremental_binary<32, false>(
907 file, elfcpp::Ehdr<32, false>(p));
908 #else
909 explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
910 #endif
911 }
912 }
913 else if (size == 64)
914 {
915 if (big_endian)
916 {
917 #ifdef HAVE_TARGET_64_BIG
918 result = make_sized_incremental_binary<64, true>(
919 file, elfcpp::Ehdr<64, true>(p));
920 #else
921 explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
922 #endif
923 }
924 else
925 {
926 #ifdef HAVE_TARGET_64_LITTLE
927 result = make_sized_incremental_binary<64, false>(
928 file, elfcpp::Ehdr<64, false>(p));
929 #else
930 explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
931 #endif
932 }
933 }
934 else
935 gold_unreachable();
936
937 return result;
938 }
939
940 // Class Incremental_inputs.
941
942 // Add the command line to the string table, setting
943 // command_line_key_. In incremental builds, the command line is
944 // stored in .gnu_incremental_inputs so that the next linker run can
945 // check if the command line options didn't change.
946
947 void
948 Incremental_inputs::report_command_line(int argc, const char* const* argv)
949 {
950 // Always store 'gold' as argv[0] to avoid a full relink if the user used a
951 // different path to the linker.
952 std::string args("gold");
953 // Copied from collect_argv in main.cc.
954 for (int i = 1; i < argc; ++i)
955 {
956 // Adding/removing these options should not result in a full relink.
957 if (strcmp(argv[i], "--incremental") == 0
958 || strcmp(argv[i], "--incremental-full") == 0
959 || strcmp(argv[i], "--incremental-update") == 0
960 || strcmp(argv[i], "--incremental-changed") == 0
961 || strcmp(argv[i], "--incremental-unchanged") == 0
962 || strcmp(argv[i], "--incremental-unknown") == 0
963 || strcmp(argv[i], "--incremental-startup-unchanged") == 0
964 || is_prefix_of("--incremental-base=", argv[i])
965 || is_prefix_of("--incremental-patch=", argv[i])
966 || is_prefix_of("--debug=", argv[i]))
967 continue;
968 if (strcmp(argv[i], "--incremental-base") == 0
969 || strcmp(argv[i], "--incremental-patch") == 0
970 || strcmp(argv[i], "--debug") == 0)
971 {
972 // When these options are used without the '=', skip the
973 // following parameter as well.
974 ++i;
975 continue;
976 }
977
978 args.append(" '");
979 // Now append argv[i], but with all single-quotes escaped
980 const char* argpos = argv[i];
981 while (1)
982 {
983 const int len = strcspn(argpos, "'");
984 args.append(argpos, len);
985 if (argpos[len] == '\0')
986 break;
987 args.append("'\"'\"'");
988 argpos += len + 1;
989 }
990 args.append("'");
991 }
992
993 this->command_line_ = args;
994 this->strtab_->add(this->command_line_.c_str(), false,
995 &this->command_line_key_);
996 }
997
998 // Record the input archive file ARCHIVE. This is called by the
999 // Add_archive_symbols task before determining which archive members
1000 // to include. We create the Incremental_archive_entry here and
1001 // attach it to the Archive, but we do not add it to the list of
1002 // input objects until report_archive_end is called.
1003
1004 void
1005 Incremental_inputs::report_archive_begin(Library_base* arch,
1006 unsigned int arg_serial,
1007 Script_info* script_info)
1008 {
1009 Stringpool::Key filename_key;
1010 Timespec mtime = arch->get_mtime();
1011
1012 // For a file loaded from a script, don't record its argument serial number.
1013 if (script_info != NULL)
1014 arg_serial = 0;
1015
1016 this->strtab_->add(arch->filename().c_str(), false, &filename_key);
1017 Incremental_archive_entry* entry =
1018 new Incremental_archive_entry(filename_key, arg_serial, mtime);
1019 arch->set_incremental_info(entry);
1020
1021 if (script_info != NULL)
1022 {
1023 Incremental_script_entry* script_entry = script_info->incremental_info();
1024 gold_assert(script_entry != NULL);
1025 script_entry->add_object(entry);
1026 }
1027 }
1028
1029 // Visitor class for processing the unused global symbols in a library.
1030 // An instance of this class is passed to the library's
1031 // for_all_unused_symbols() iterator, which will call the visit()
1032 // function for each global symbol defined in each unused library
1033 // member. We add those symbol names to the incremental info for the
1034 // library.
1035
1036 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1037 {
1038 public:
1039 Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1040 : entry_(entry), strtab_(strtab)
1041 { }
1042
1043 void
1044 visit(const char* sym)
1045 {
1046 Stringpool::Key symbol_key;
1047 this->strtab_->add(sym, true, &symbol_key);
1048 this->entry_->add_unused_global_symbol(symbol_key);
1049 }
1050
1051 private:
1052 Incremental_archive_entry* entry_;
1053 Stringpool* strtab_;
1054 };
1055
1056 // Finish recording the input archive file ARCHIVE. This is called by the
1057 // Add_archive_symbols task after determining which archive members
1058 // to include.
1059
1060 void
1061 Incremental_inputs::report_archive_end(Library_base* arch)
1062 {
1063 Incremental_archive_entry* entry = arch->incremental_info();
1064
1065 gold_assert(entry != NULL);
1066 this->inputs_.push_back(entry);
1067
1068 // Collect unused global symbols.
1069 Unused_symbol_visitor v(entry, this->strtab_);
1070 arch->for_all_unused_symbols(&v);
1071 }
1072
1073 // Record the input object file OBJ. If ARCH is not NULL, attach
1074 // the object file to the archive. This is called by the
1075 // Add_symbols task after finding out the type of the file.
1076
1077 void
1078 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1079 Library_base* arch, Script_info* script_info)
1080 {
1081 Stringpool::Key filename_key;
1082 Timespec mtime = obj->get_mtime();
1083
1084 // For a file loaded from a script, don't record its argument serial number.
1085 if (script_info != NULL)
1086 arg_serial = 0;
1087
1088 this->strtab_->add(obj->name().c_str(), false, &filename_key);
1089
1090 Incremental_input_entry* input_entry;
1091
1092 this->current_object_ = obj;
1093
1094 if (!obj->is_dynamic())
1095 {
1096 this->current_object_entry_ =
1097 new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1098 input_entry = this->current_object_entry_;
1099 if (arch != NULL)
1100 {
1101 Incremental_archive_entry* arch_entry = arch->incremental_info();
1102 gold_assert(arch_entry != NULL);
1103 arch_entry->add_object(this->current_object_entry_);
1104 }
1105 }
1106 else
1107 {
1108 this->current_object_entry_ = NULL;
1109 Stringpool::Key soname_key;
1110 Dynobj* dynobj = obj->dynobj();
1111 gold_assert(dynobj != NULL);
1112 this->strtab_->add(dynobj->soname(), false, &soname_key);
1113 input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1114 arg_serial, mtime);
1115 }
1116
1117 if (obj->is_in_system_directory())
1118 input_entry->set_is_in_system_directory();
1119
1120 if (obj->as_needed())
1121 input_entry->set_as_needed();
1122
1123 this->inputs_.push_back(input_entry);
1124
1125 if (script_info != NULL)
1126 {
1127 Incremental_script_entry* script_entry = script_info->incremental_info();
1128 gold_assert(script_entry != NULL);
1129 script_entry->add_object(input_entry);
1130 }
1131 }
1132
1133 // Record an input section SHNDX from object file OBJ.
1134
1135 void
1136 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1137 const char* name, off_t sh_size)
1138 {
1139 Stringpool::Key key = 0;
1140
1141 if (name != NULL)
1142 this->strtab_->add(name, true, &key);
1143
1144 gold_assert(obj == this->current_object_);
1145 gold_assert(this->current_object_entry_ != NULL);
1146 this->current_object_entry_->add_input_section(shndx, key, sh_size);
1147 }
1148
1149 // Record a kept COMDAT group belonging to object file OBJ.
1150
1151 void
1152 Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1153 {
1154 Stringpool::Key key = 0;
1155
1156 if (name != NULL)
1157 this->strtab_->add(name, true, &key);
1158 gold_assert(obj == this->current_object_);
1159 gold_assert(this->current_object_entry_ != NULL);
1160 this->current_object_entry_->add_comdat_group(key);
1161 }
1162
1163 // Record that the input argument INPUT is a script SCRIPT. This is
1164 // called by read_script after parsing the script and reading the list
1165 // of inputs added by this script.
1166
1167 void
1168 Incremental_inputs::report_script(Script_info* script,
1169 unsigned int arg_serial,
1170 Timespec mtime)
1171 {
1172 Stringpool::Key filename_key;
1173
1174 this->strtab_->add(script->filename().c_str(), false, &filename_key);
1175 Incremental_script_entry* entry =
1176 new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1177 this->inputs_.push_back(entry);
1178 script->set_incremental_info(entry);
1179 }
1180
1181 // Finalize the incremental link information. Called from
1182 // Layout::finalize.
1183
1184 void
1185 Incremental_inputs::finalize()
1186 {
1187 // Finalize the string table.
1188 this->strtab_->set_string_offsets();
1189 }
1190
1191 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1192
1193 void
1194 Incremental_inputs::create_data_sections(Symbol_table* symtab)
1195 {
1196 switch (parameters->size_and_endianness())
1197 {
1198 #ifdef HAVE_TARGET_32_LITTLE
1199 case Parameters::TARGET_32_LITTLE:
1200 this->inputs_section_ =
1201 new Output_section_incremental_inputs<32, false>(this, symtab);
1202 break;
1203 #endif
1204 #ifdef HAVE_TARGET_32_BIG
1205 case Parameters::TARGET_32_BIG:
1206 this->inputs_section_ =
1207 new Output_section_incremental_inputs<32, true>(this, symtab);
1208 break;
1209 #endif
1210 #ifdef HAVE_TARGET_64_LITTLE
1211 case Parameters::TARGET_64_LITTLE:
1212 this->inputs_section_ =
1213 new Output_section_incremental_inputs<64, false>(this, symtab);
1214 break;
1215 #endif
1216 #ifdef HAVE_TARGET_64_BIG
1217 case Parameters::TARGET_64_BIG:
1218 this->inputs_section_ =
1219 new Output_section_incremental_inputs<64, true>(this, symtab);
1220 break;
1221 #endif
1222 default:
1223 gold_unreachable();
1224 }
1225 this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1226 this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1227 this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1228 }
1229
1230 // Return the sh_entsize value for the .gnu_incremental_relocs section.
1231 unsigned int
1232 Incremental_inputs::relocs_entsize() const
1233 {
1234 return 8 + 2 * parameters->target().get_size() / 8;
1235 }
1236
1237 // Class Output_section_incremental_inputs.
1238
1239 // Finalize the offsets for each input section and supplemental info block,
1240 // and set the final data size of the incremental output sections.
1241
1242 template<int size, bool big_endian>
1243 void
1244 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1245 {
1246 const Incremental_inputs* inputs = this->inputs_;
1247 const unsigned int sizeof_addr = size / 8;
1248 const unsigned int rel_size = 8 + 2 * sizeof_addr;
1249
1250 // Offset of each input entry.
1251 unsigned int input_offset = this->header_size;
1252
1253 // Offset of each supplemental info block.
1254 unsigned int file_index = 0;
1255 unsigned int info_offset = this->header_size;
1256 info_offset += this->input_entry_size * inputs->input_file_count();
1257
1258 // Count each input file and its supplemental information block.
1259 for (Incremental_inputs::Input_list::const_iterator p =
1260 inputs->input_files().begin();
1261 p != inputs->input_files().end();
1262 ++p)
1263 {
1264 // Set the index and offset of the input file entry.
1265 (*p)->set_offset(file_index, input_offset);
1266 ++file_index;
1267 input_offset += this->input_entry_size;
1268
1269 // Set the offset of the supplemental info block.
1270 switch ((*p)->type())
1271 {
1272 case INCREMENTAL_INPUT_SCRIPT:
1273 {
1274 Incremental_script_entry *entry = (*p)->script_entry();
1275 gold_assert(entry != NULL);
1276 (*p)->set_info_offset(info_offset);
1277 // Object count.
1278 info_offset += 4;
1279 // Each member.
1280 info_offset += (entry->get_object_count() * 4);
1281 }
1282 break;
1283 case INCREMENTAL_INPUT_OBJECT:
1284 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1285 {
1286 Incremental_object_entry* entry = (*p)->object_entry();
1287 gold_assert(entry != NULL);
1288 (*p)->set_info_offset(info_offset);
1289 // Input section count, global symbol count, local symbol offset,
1290 // local symbol count, first dynamic reloc, dynamic reloc count,
1291 // comdat group count.
1292 info_offset += 28;
1293 // Each input section.
1294 info_offset += (entry->get_input_section_count()
1295 * (8 + 2 * sizeof_addr));
1296 // Each global symbol.
1297 const Object::Symbols* syms = entry->object()->get_global_symbols();
1298 info_offset += syms->size() * 20;
1299 // Each comdat group.
1300 info_offset += entry->get_comdat_group_count() * 4;
1301 }
1302 break;
1303 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1304 {
1305 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1306 gold_assert(entry != NULL);
1307 (*p)->set_info_offset(info_offset);
1308 // Global symbol count, soname index.
1309 info_offset += 8;
1310 // Each global symbol.
1311 const Object::Symbols* syms = entry->object()->get_global_symbols();
1312 gold_assert(syms != NULL);
1313 unsigned int nsyms = syms->size();
1314 unsigned int nsyms_out = 0;
1315 for (unsigned int i = 0; i < nsyms; ++i)
1316 {
1317 const Symbol* sym = (*syms)[i];
1318 if (sym == NULL)
1319 continue;
1320 if (sym->is_forwarder())
1321 sym = this->symtab_->resolve_forwards(sym);
1322 if (sym->symtab_index() != -1U)
1323 ++nsyms_out;
1324 }
1325 info_offset += nsyms_out * 4;
1326 }
1327 break;
1328 case INCREMENTAL_INPUT_ARCHIVE:
1329 {
1330 Incremental_archive_entry* entry = (*p)->archive_entry();
1331 gold_assert(entry != NULL);
1332 (*p)->set_info_offset(info_offset);
1333 // Member count + unused global symbol count.
1334 info_offset += 8;
1335 // Each member.
1336 info_offset += (entry->get_member_count() * 4);
1337 // Each global symbol.
1338 info_offset += (entry->get_unused_global_symbol_count() * 4);
1339 }
1340 break;
1341 default:
1342 gold_unreachable();
1343 }
1344 }
1345
1346 this->set_data_size(info_offset);
1347
1348 // Set the size of the .gnu_incremental_symtab section.
1349 inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1350 * sizeof(unsigned int));
1351
1352 // Set the size of the .gnu_incremental_relocs section.
1353 inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1354 * rel_size);
1355
1356 // Set the size of the .gnu_incremental_got_plt section.
1357 Sized_target<size, big_endian>* target =
1358 parameters->sized_target<size, big_endian>();
1359 unsigned int got_count = target->got_entry_count();
1360 unsigned int plt_count = target->plt_entry_count();
1361 unsigned int got_plt_size = 8; // GOT entry count, PLT entry count.
1362 got_plt_size = (got_plt_size + got_count + 3) & ~3; // GOT type array.
1363 got_plt_size += got_count * 8 + plt_count * 4; // GOT array, PLT array.
1364 inputs->got_plt_section()->set_current_data_size(got_plt_size);
1365 }
1366
1367 // Write the contents of the .gnu_incremental_inputs and
1368 // .gnu_incremental_symtab sections.
1369
1370 template<int size, bool big_endian>
1371 void
1372 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1373 {
1374 const Incremental_inputs* inputs = this->inputs_;
1375 Stringpool* strtab = inputs->get_stringpool();
1376
1377 // Get a view into the .gnu_incremental_inputs section.
1378 const off_t off = this->offset();
1379 const off_t oview_size = this->data_size();
1380 unsigned char* const oview = of->get_output_view(off, oview_size);
1381 unsigned char* pov = oview;
1382
1383 // Get a view into the .gnu_incremental_symtab section.
1384 const off_t symtab_off = inputs->symtab_section()->offset();
1385 const off_t symtab_size = inputs->symtab_section()->data_size();
1386 unsigned char* const symtab_view = of->get_output_view(symtab_off,
1387 symtab_size);
1388
1389 // Allocate an array of linked list heads for the .gnu_incremental_symtab
1390 // section. Each element corresponds to a global symbol in the output
1391 // symbol table, and points to the head of the linked list that threads
1392 // through the object file input entries. The value of each element
1393 // is the section-relative offset to a global symbol entry in a
1394 // supplemental information block.
1395 unsigned int global_sym_count = this->symtab_->output_count();
1396 unsigned int* global_syms = new unsigned int[global_sym_count];
1397 memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1398
1399 // Write the section header.
1400 Stringpool::Key command_line_key = inputs->command_line_key();
1401 pov = this->write_header(pov, inputs->input_file_count(),
1402 strtab->get_offset_from_key(command_line_key));
1403
1404 // Write the list of input files.
1405 pov = this->write_input_files(oview, pov, strtab);
1406
1407 // Write the supplemental information blocks for each input file.
1408 pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1409 global_sym_count);
1410
1411 gold_assert(pov - oview == oview_size);
1412
1413 // Write the .gnu_incremental_symtab section.
1414 gold_assert(global_sym_count * 4 == symtab_size);
1415 this->write_symtab(symtab_view, global_syms, global_sym_count);
1416
1417 delete[] global_syms;
1418
1419 // Write the .gnu_incremental_got_plt section.
1420 const off_t got_plt_off = inputs->got_plt_section()->offset();
1421 const off_t got_plt_size = inputs->got_plt_section()->data_size();
1422 unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1423 got_plt_size);
1424 this->write_got_plt(got_plt_view, got_plt_size);
1425
1426 of->write_output_view(off, oview_size, oview);
1427 of->write_output_view(symtab_off, symtab_size, symtab_view);
1428 of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1429 }
1430
1431 // Write the section header: version, input file count, offset of command line
1432 // in the string table, and 4 bytes of padding.
1433
1434 template<int size, bool big_endian>
1435 unsigned char*
1436 Output_section_incremental_inputs<size, big_endian>::write_header(
1437 unsigned char* pov,
1438 unsigned int input_file_count,
1439 section_offset_type command_line_offset)
1440 {
1441 Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1442 Swap32::writeval(pov + 4, input_file_count);
1443 Swap32::writeval(pov + 8, command_line_offset);
1444 Swap32::writeval(pov + 12, 0);
1445 return pov + this->header_size;
1446 }
1447
1448 // Write the input file entries.
1449
1450 template<int size, bool big_endian>
1451 unsigned char*
1452 Output_section_incremental_inputs<size, big_endian>::write_input_files(
1453 unsigned char* oview,
1454 unsigned char* pov,
1455 Stringpool* strtab)
1456 {
1457 const Incremental_inputs* inputs = this->inputs_;
1458
1459 for (Incremental_inputs::Input_list::const_iterator p =
1460 inputs->input_files().begin();
1461 p != inputs->input_files().end();
1462 ++p)
1463 {
1464 gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1465 section_offset_type filename_offset =
1466 strtab->get_offset_from_key((*p)->get_filename_key());
1467 const Timespec& mtime = (*p)->get_mtime();
1468 unsigned int flags = (*p)->type();
1469 if ((*p)->is_in_system_directory())
1470 flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1471 if ((*p)->as_needed())
1472 flags |= INCREMENTAL_INPUT_AS_NEEDED;
1473 Swap32::writeval(pov, filename_offset);
1474 Swap32::writeval(pov + 4, (*p)->get_info_offset());
1475 Swap64::writeval(pov + 8, mtime.seconds);
1476 Swap32::writeval(pov + 16, mtime.nanoseconds);
1477 Swap16::writeval(pov + 20, flags);
1478 Swap16::writeval(pov + 22, (*p)->arg_serial());
1479 pov += this->input_entry_size;
1480 }
1481 return pov;
1482 }
1483
1484 // Write the supplemental information blocks.
1485
1486 template<int size, bool big_endian>
1487 unsigned char*
1488 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1489 unsigned char* oview,
1490 unsigned char* pov,
1491 Stringpool* strtab,
1492 unsigned int* global_syms,
1493 unsigned int global_sym_count)
1494 {
1495 const Incremental_inputs* inputs = this->inputs_;
1496 unsigned int first_global_index = this->symtab_->first_global_index();
1497
1498 for (Incremental_inputs::Input_list::const_iterator p =
1499 inputs->input_files().begin();
1500 p != inputs->input_files().end();
1501 ++p)
1502 {
1503 switch ((*p)->type())
1504 {
1505 case INCREMENTAL_INPUT_SCRIPT:
1506 {
1507 gold_assert(static_cast<unsigned int>(pov - oview)
1508 == (*p)->get_info_offset());
1509 Incremental_script_entry* entry = (*p)->script_entry();
1510 gold_assert(entry != NULL);
1511
1512 // Write the object count.
1513 unsigned int nobjects = entry->get_object_count();
1514 Swap32::writeval(pov, nobjects);
1515 pov += 4;
1516
1517 // For each object, write the offset to its input file entry.
1518 for (unsigned int i = 0; i < nobjects; ++i)
1519 {
1520 Incremental_input_entry* obj = entry->get_object(i);
1521 Swap32::writeval(pov, obj->get_offset());
1522 pov += 4;
1523 }
1524 }
1525 break;
1526
1527 case INCREMENTAL_INPUT_OBJECT:
1528 case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1529 {
1530 gold_assert(static_cast<unsigned int>(pov - oview)
1531 == (*p)->get_info_offset());
1532 Incremental_object_entry* entry = (*p)->object_entry();
1533 gold_assert(entry != NULL);
1534 const Object* obj = entry->object();
1535 const Relobj* relobj = static_cast<const Relobj*>(obj);
1536 const Object::Symbols* syms = obj->get_global_symbols();
1537 // Write the input section count and global symbol count.
1538 unsigned int nsections = entry->get_input_section_count();
1539 unsigned int nsyms = syms->size();
1540 off_t locals_offset = relobj->local_symbol_offset();
1541 unsigned int nlocals = relobj->output_local_symbol_count();
1542 unsigned int first_dynrel = relobj->first_dyn_reloc();
1543 unsigned int ndynrel = relobj->dyn_reloc_count();
1544 unsigned int ncomdat = entry->get_comdat_group_count();
1545 Swap32::writeval(pov, nsections);
1546 Swap32::writeval(pov + 4, nsyms);
1547 Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1548 Swap32::writeval(pov + 12, nlocals);
1549 Swap32::writeval(pov + 16, first_dynrel);
1550 Swap32::writeval(pov + 20, ndynrel);
1551 Swap32::writeval(pov + 24, ncomdat);
1552 pov += 28;
1553
1554 // Build a temporary array to map input section indexes
1555 // from the original object file index to the index in the
1556 // incremental info table.
1557 unsigned int* index_map = new unsigned int[obj->shnum()];
1558 memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1559
1560 // For each input section, write the name, output section index,
1561 // offset within output section, and input section size.
1562 for (unsigned int i = 0; i < nsections; i++)
1563 {
1564 unsigned int shndx = entry->get_input_section_index(i);
1565 index_map[shndx] = i + 1;
1566 Stringpool::Key key = entry->get_input_section_name_key(i);
1567 off_t name_offset = 0;
1568 if (key != 0)
1569 name_offset = strtab->get_offset_from_key(key);
1570 int out_shndx = 0;
1571 off_t out_offset = 0;
1572 off_t sh_size = 0;
1573 Output_section* os = obj->output_section(shndx);
1574 if (os != NULL)
1575 {
1576 out_shndx = os->out_shndx();
1577 out_offset = obj->output_section_offset(shndx);
1578 sh_size = entry->get_input_section_size(i);
1579 }
1580 Swap32::writeval(pov, name_offset);
1581 Swap32::writeval(pov + 4, out_shndx);
1582 Swap::writeval(pov + 8, out_offset);
1583 Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1584 pov += 8 + 2 * sizeof_addr;
1585 }
1586
1587 // For each global symbol, write its associated relocations,
1588 // add it to the linked list of globals, then write the
1589 // supplemental information: global symbol table index,
1590 // input section index, linked list chain pointer, relocation
1591 // count, and offset to the relocations.
1592 for (unsigned int i = 0; i < nsyms; i++)
1593 {
1594 const Symbol* sym = (*syms)[i];
1595 if (sym->is_forwarder())
1596 sym = this->symtab_->resolve_forwards(sym);
1597 unsigned int shndx = 0;
1598 if (sym->source() != Symbol::FROM_OBJECT)
1599 {
1600 // The symbol was defined by the linker (e.g., common).
1601 // We mark these symbols with a special SHNDX of -1,
1602 // but exclude linker-predefined symbols and symbols
1603 // copied from shared objects.
1604 if (!sym->is_predefined()
1605 && !sym->is_copied_from_dynobj())
1606 shndx = -1U;
1607 }
1608 else if (sym->object() == obj && sym->is_defined())
1609 {
1610 bool is_ordinary;
1611 unsigned int orig_shndx = sym->shndx(&is_ordinary);
1612 if (is_ordinary)
1613 shndx = index_map[orig_shndx];
1614 else
1615 shndx = 1;
1616 }
1617 unsigned int symtab_index = sym->symtab_index();
1618 unsigned int chain = 0;
1619 unsigned int first_reloc = 0;
1620 unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1621 if (nrelocs > 0)
1622 {
1623 gold_assert(symtab_index != -1U
1624 && (symtab_index - first_global_index
1625 < global_sym_count));
1626 first_reloc = obj->get_incremental_reloc_base(i);
1627 chain = global_syms[symtab_index - first_global_index];
1628 global_syms[symtab_index - first_global_index] =
1629 pov - oview;
1630 }
1631 Swap32::writeval(pov, symtab_index);
1632 Swap32::writeval(pov + 4, shndx);
1633 Swap32::writeval(pov + 8, chain);
1634 Swap32::writeval(pov + 12, nrelocs);
1635 Swap32::writeval(pov + 16,
1636 first_reloc * (8 + 2 * sizeof_addr));
1637 pov += 20;
1638 }
1639
1640 // For each kept COMDAT group, write the group signature.
1641 for (unsigned int i = 0; i < ncomdat; i++)
1642 {
1643 Stringpool::Key key = entry->get_comdat_signature_key(i);
1644 off_t name_offset = 0;
1645 if (key != 0)
1646 name_offset = strtab->get_offset_from_key(key);
1647 Swap32::writeval(pov, name_offset);
1648 pov += 4;
1649 }
1650
1651 delete[] index_map;
1652 }
1653 break;
1654
1655 case INCREMENTAL_INPUT_SHARED_LIBRARY:
1656 {
1657 gold_assert(static_cast<unsigned int>(pov - oview)
1658 == (*p)->get_info_offset());
1659 Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1660 gold_assert(entry != NULL);
1661 Object* obj = entry->object();
1662 Dynobj* dynobj = obj->dynobj();
1663 gold_assert(dynobj != NULL);
1664 const Object::Symbols* syms = obj->get_global_symbols();
1665
1666 // Write the soname string table index.
1667 section_offset_type soname_offset =
1668 strtab->get_offset_from_key(entry->get_soname_key());
1669 Swap32::writeval(pov, soname_offset);
1670 pov += 4;
1671
1672 // Skip the global symbol count for now.
1673 unsigned char* orig_pov = pov;
1674 pov += 4;
1675
1676 // For each global symbol, write the global symbol table index.
1677 unsigned int nsyms = syms->size();
1678 unsigned int nsyms_out = 0;
1679 for (unsigned int i = 0; i < nsyms; i++)
1680 {
1681 const Symbol* sym = (*syms)[i];
1682 if (sym == NULL)
1683 continue;
1684 if (sym->is_forwarder())
1685 sym = this->symtab_->resolve_forwards(sym);
1686 if (sym->symtab_index() == -1U)
1687 continue;
1688 unsigned int flags = 0;
1689 // If the symbol has hidden or internal visibility, we
1690 // mark it as defined in the shared object so we don't
1691 // try to resolve it during an incremental update.
1692 if (sym->visibility() == elfcpp::STV_HIDDEN
1693 || sym->visibility() == elfcpp::STV_INTERNAL)
1694 flags = INCREMENTAL_SHLIB_SYM_DEF;
1695 else if (sym->source() == Symbol::FROM_OBJECT
1696 && sym->object() == obj
1697 && sym->is_defined())
1698 flags = INCREMENTAL_SHLIB_SYM_DEF;
1699 else if (sym->is_copied_from_dynobj()
1700 && this->symtab_->get_copy_source(sym) == dynobj)
1701 flags = INCREMENTAL_SHLIB_SYM_COPY;
1702 flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1703 Swap32::writeval(pov, sym->symtab_index() | flags);
1704 pov += 4;
1705 ++nsyms_out;
1706 }
1707
1708 // Now write the global symbol count.
1709 Swap32::writeval(orig_pov, nsyms_out);
1710 }
1711 break;
1712
1713 case INCREMENTAL_INPUT_ARCHIVE:
1714 {
1715 gold_assert(static_cast<unsigned int>(pov - oview)
1716 == (*p)->get_info_offset());
1717 Incremental_archive_entry* entry = (*p)->archive_entry();
1718 gold_assert(entry != NULL);
1719
1720 // Write the member count and unused global symbol count.
1721 unsigned int nmembers = entry->get_member_count();
1722 unsigned int nsyms = entry->get_unused_global_symbol_count();
1723 Swap32::writeval(pov, nmembers);
1724 Swap32::writeval(pov + 4, nsyms);
1725 pov += 8;
1726
1727 // For each member, write the offset to its input file entry.
1728 for (unsigned int i = 0; i < nmembers; ++i)
1729 {
1730 Incremental_object_entry* member = entry->get_member(i);
1731 Swap32::writeval(pov, member->get_offset());
1732 pov += 4;
1733 }
1734
1735 // For each global symbol, write the name offset.
1736 for (unsigned int i = 0; i < nsyms; ++i)
1737 {
1738 Stringpool::Key key = entry->get_unused_global_symbol(i);
1739 Swap32::writeval(pov, strtab->get_offset_from_key(key));
1740 pov += 4;
1741 }
1742 }
1743 break;
1744
1745 default:
1746 gold_unreachable();
1747 }
1748 }
1749 return pov;
1750 }
1751
1752 // Write the contents of the .gnu_incremental_symtab section.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_section_incremental_inputs<size, big_endian>::write_symtab(
1757 unsigned char* pov,
1758 unsigned int* global_syms,
1759 unsigned int global_sym_count)
1760 {
1761 for (unsigned int i = 0; i < global_sym_count; ++i)
1762 {
1763 Swap32::writeval(pov, global_syms[i]);
1764 pov += 4;
1765 }
1766 }
1767
1768 // This struct holds the view information needed to write the
1769 // .gnu_incremental_got_plt section.
1770
1771 struct Got_plt_view_info
1772 {
1773 // Start of the GOT type array in the output view.
1774 unsigned char* got_type_p;
1775 // Start of the GOT descriptor array in the output view.
1776 unsigned char* got_desc_p;
1777 // Start of the PLT descriptor array in the output view.
1778 unsigned char* plt_desc_p;
1779 // Number of GOT entries.
1780 unsigned int got_count;
1781 // Number of PLT entries.
1782 unsigned int plt_count;
1783 // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1784 unsigned int first_plt_entry_offset;
1785 // Size of a PLT entry (this is a target-dependent value).
1786 unsigned int plt_entry_size;
1787 // Symbol index to write in the GOT descriptor array. For global symbols,
1788 // this is the global symbol table index; for local symbols, it is the
1789 // local symbol table index.
1790 unsigned int sym_index;
1791 // Input file index to write in the GOT descriptor array. For global
1792 // symbols, this is 0; for local symbols, it is the index of the input
1793 // file entry in the .gnu_incremental_inputs section.
1794 unsigned int input_index;
1795 };
1796
1797 // Functor class for processing a GOT offset list for local symbols.
1798 // Writes the GOT type and symbol index into the GOT type and descriptor
1799 // arrays in the output section.
1800
1801 template<int size, bool big_endian>
1802 class Local_got_offset_visitor : public Got_offset_list::Visitor
1803 {
1804 public:
1805 Local_got_offset_visitor(struct Got_plt_view_info& info)
1806 : info_(info)
1807 { }
1808
1809 void
1810 visit(unsigned int got_type, unsigned int got_offset)
1811 {
1812 unsigned int got_index = got_offset / this->got_entry_size_;
1813 gold_assert(got_index < this->info_.got_count);
1814 // We can only handle GOT entry types in the range 0..0x7e
1815 // because we use a byte array to store them, and we use the
1816 // high bit to flag a local symbol.
1817 gold_assert(got_type < 0x7f);
1818 this->info_.got_type_p[got_index] = got_type | 0x80;
1819 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1820 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1821 elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1822 }
1823
1824 private:
1825 static const unsigned int got_entry_size_ = size / 8;
1826 struct Got_plt_view_info& info_;
1827 };
1828
1829 // Functor class for processing a GOT offset list. Writes the GOT type
1830 // and symbol index into the GOT type and descriptor arrays in the output
1831 // section.
1832
1833 template<int size, bool big_endian>
1834 class Global_got_offset_visitor : public Got_offset_list::Visitor
1835 {
1836 public:
1837 Global_got_offset_visitor(struct Got_plt_view_info& info)
1838 : info_(info)
1839 { }
1840
1841 void
1842 visit(unsigned int got_type, unsigned int got_offset)
1843 {
1844 unsigned int got_index = got_offset / this->got_entry_size_;
1845 gold_assert(got_index < this->info_.got_count);
1846 // We can only handle GOT entry types in the range 0..0x7e
1847 // because we use a byte array to store them, and we use the
1848 // high bit to flag a local symbol.
1849 gold_assert(got_type < 0x7f);
1850 this->info_.got_type_p[got_index] = got_type;
1851 unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1852 elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1853 elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1854 }
1855
1856 private:
1857 static const unsigned int got_entry_size_ = size / 8;
1858 struct Got_plt_view_info& info_;
1859 };
1860
1861 // Functor class for processing the global symbol table. Processes the
1862 // GOT offset list for the symbol, and writes the symbol table index
1863 // into the PLT descriptor array in the output section.
1864
1865 template<int size, bool big_endian>
1866 class Global_symbol_visitor_got_plt
1867 {
1868 public:
1869 Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1870 : info_(info)
1871 { }
1872
1873 void
1874 operator()(const Sized_symbol<size>* sym)
1875 {
1876 typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1877 const Got_offset_list* got_offsets = sym->got_offset_list();
1878 if (got_offsets != NULL)
1879 {
1880 this->info_.sym_index = sym->symtab_index();
1881 this->info_.input_index = 0;
1882 Got_visitor v(this->info_);
1883 got_offsets->for_all_got_offsets(&v);
1884 }
1885 if (sym->has_plt_offset())
1886 {
1887 unsigned int plt_index =
1888 ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1889 / this->info_.plt_entry_size);
1890 gold_assert(plt_index < this->info_.plt_count);
1891 unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1892 elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1893 }
1894 }
1895
1896 private:
1897 struct Got_plt_view_info& info_;
1898 };
1899
1900 // Write the contents of the .gnu_incremental_got_plt section.
1901
1902 template<int size, bool big_endian>
1903 void
1904 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1905 unsigned char* pov,
1906 off_t view_size)
1907 {
1908 Sized_target<size, big_endian>* target =
1909 parameters->sized_target<size, big_endian>();
1910
1911 // Set up the view information for the functors.
1912 struct Got_plt_view_info view_info;
1913 view_info.got_count = target->got_entry_count();
1914 view_info.plt_count = target->plt_entry_count();
1915 view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1916 view_info.plt_entry_size = target->plt_entry_size();
1917 view_info.got_type_p = pov + 8;
1918 view_info.got_desc_p = (view_info.got_type_p
1919 + ((view_info.got_count + 3) & ~3));
1920 view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1921
1922 gold_assert(pov + view_size ==
1923 view_info.plt_desc_p + view_info.plt_count * 4);
1924
1925 // Write the section header.
1926 Swap32::writeval(pov, view_info.got_count);
1927 Swap32::writeval(pov + 4, view_info.plt_count);
1928
1929 // Initialize the GOT type array to 0xff (reserved).
1930 memset(view_info.got_type_p, 0xff, view_info.got_count);
1931
1932 // Write the incremental GOT descriptors for local symbols.
1933 typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1934 for (Incremental_inputs::Input_list::const_iterator p =
1935 this->inputs_->input_files().begin();
1936 p != this->inputs_->input_files().end();
1937 ++p)
1938 {
1939 if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1940 && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1941 continue;
1942 Incremental_object_entry* entry = (*p)->object_entry();
1943 gold_assert(entry != NULL);
1944 const Object* obj = entry->object();
1945 gold_assert(obj != NULL);
1946 view_info.input_index = (*p)->get_file_index();
1947 Got_visitor v(view_info);
1948 obj->for_all_local_got_entries(&v);
1949 }
1950
1951 // Write the incremental GOT and PLT descriptors for global symbols.
1952 typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1953 symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1954 }
1955
1956 // Class Sized_relobj_incr. Most of these methods are not used for
1957 // Incremental objects, but are required to be implemented by the
1958 // base class Object.
1959
1960 template<int size, bool big_endian>
1961 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1962 const std::string& name,
1963 Sized_incremental_binary<size, big_endian>* ibase,
1964 unsigned int input_file_index)
1965 : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1966 input_file_index_(input_file_index),
1967 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1968 local_symbol_count_(0), output_local_dynsym_count_(0),
1969 local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1970 symbols_(), defined_count_(0), incr_reloc_offset_(-1U),
1971 incr_reloc_count_(0), incr_reloc_output_index_(0), incr_relocs_(NULL),
1972 local_symbols_()
1973 {
1974 if (this->input_reader_.is_in_system_directory())
1975 this->set_is_in_system_directory();
1976 const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1977 this->set_shnum(shnum);
1978 ibase->set_input_object(input_file_index, this);
1979 }
1980
1981 // Read the symbols.
1982
1983 template<int size, bool big_endian>
1984 void
1985 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1986 {
1987 gold_unreachable();
1988 }
1989
1990 // Lay out the input sections.
1991
1992 template<int size, bool big_endian>
1993 void
1994 Sized_relobj_incr<size, big_endian>::do_layout(
1995 Symbol_table*,
1996 Layout* layout,
1997 Read_symbols_data*)
1998 {
1999 const unsigned int shnum = this->shnum();
2000 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
2001 gold_assert(incremental_inputs != NULL);
2002 Output_sections& out_sections(this->output_sections());
2003 out_sections.resize(shnum);
2004 this->section_offsets().resize(shnum);
2005
2006 // Keep track of .debug_info and .debug_types sections.
2007 std::vector<unsigned int> debug_info_sections;
2008 std::vector<unsigned int> debug_types_sections;
2009
2010 for (unsigned int i = 1; i < shnum; i++)
2011 {
2012 typename Input_entry_reader::Input_section_info sect =
2013 this->input_reader_.get_input_section(i - 1);
2014 // Add the section to the incremental inputs layout.
2015 incremental_inputs->report_input_section(this, i, sect.name,
2016 sect.sh_size);
2017 if (sect.output_shndx == 0 || sect.sh_offset == -1)
2018 continue;
2019 Output_section* os = this->ibase_->output_section(sect.output_shndx);
2020 gold_assert(os != NULL);
2021 out_sections[i] = os;
2022 this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
2023
2024 // When generating a .gdb_index section, we do additional
2025 // processing of .debug_info and .debug_types sections after all
2026 // the other sections.
2027 if (parameters->options().gdb_index())
2028 {
2029 const char* name = os->name();
2030 if (strcmp(name, ".debug_info") == 0)
2031 debug_info_sections.push_back(i);
2032 else if (strcmp(name, ".debug_types") == 0)
2033 debug_types_sections.push_back(i);
2034 }
2035 }
2036
2037 // Process the COMDAT groups.
2038 unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
2039 for (unsigned int i = 0; i < ncomdat; i++)
2040 {
2041 const char* signature = this->input_reader_.get_comdat_group_signature(i);
2042 if (signature == NULL || signature[0] == '\0')
2043 this->error(_("COMDAT group has no signature"));
2044 bool keep = layout->find_or_add_kept_section(signature, this, i, true,
2045 true, NULL);
2046 if (keep)
2047 incremental_inputs->report_comdat_group(this, signature);
2048 else
2049 this->error(_("COMDAT group %s included twice in incremental link"),
2050 signature);
2051 }
2052
2053 // When building a .gdb_index section, scan the .debug_info and
2054 // .debug_types sections.
2055 for (std::vector<unsigned int>::const_iterator p
2056 = debug_info_sections.begin();
2057 p != debug_info_sections.end();
2058 ++p)
2059 {
2060 unsigned int i = *p;
2061 layout->add_to_gdb_index(false, this, NULL, 0, i, 0, 0);
2062 }
2063 for (std::vector<unsigned int>::const_iterator p
2064 = debug_types_sections.begin();
2065 p != debug_types_sections.end();
2066 ++p)
2067 {
2068 unsigned int i = *p;
2069 layout->add_to_gdb_index(true, this, 0, 0, i, 0, 0);
2070 }
2071 }
2072
2073 // Layout sections whose layout was deferred while waiting for
2074 // input files from a plugin.
2075 template<int size, bool big_endian>
2076 void
2077 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
2078 {
2079 }
2080
2081 // Add the symbols to the symbol table.
2082
2083 template<int size, bool big_endian>
2084 void
2085 Sized_relobj_incr<size, big_endian>::do_add_symbols(
2086 Symbol_table* symtab,
2087 Read_symbols_data*,
2088 Layout*)
2089 {
2090 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2091 unsigned char symbuf[sym_size];
2092 elfcpp::Sym<size, big_endian> sym(symbuf);
2093 elfcpp::Sym_write<size, big_endian> osym(symbuf);
2094
2095 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2096
2097 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2098 this->symbols_.resize(nsyms);
2099
2100 Incremental_binary::View symtab_view(NULL);
2101 unsigned int symtab_count;
2102 elfcpp::Elf_strtab strtab(NULL, 0);
2103 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2104
2105 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2106 unsigned int isym_count = isymtab.symbol_count();
2107 unsigned int first_global = symtab_count - isym_count;
2108
2109 const unsigned char* sym_p;
2110 for (unsigned int i = 0; i < nsyms; ++i)
2111 {
2112 Incremental_global_symbol_reader<big_endian> info =
2113 this->input_reader_.get_global_symbol_reader(i);
2114 unsigned int output_symndx = info.output_symndx();
2115 sym_p = symtab_view.data() + output_symndx * sym_size;
2116 elfcpp::Sym<size, big_endian> gsym(sym_p);
2117 const char* name;
2118 if (!strtab.get_c_string(gsym.get_st_name(), &name))
2119 name = "";
2120
2121 typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2122 unsigned int shndx = gsym.get_st_shndx();
2123 elfcpp::STB st_bind = gsym.get_st_bind();
2124 elfcpp::STT st_type = gsym.get_st_type();
2125
2126 // Local hidden symbols start out as globals, but get converted to
2127 // to local during output.
2128 if (st_bind == elfcpp::STB_LOCAL)
2129 st_bind = elfcpp::STB_GLOBAL;
2130
2131 unsigned int input_shndx = info.shndx();
2132 if (input_shndx == 0 || input_shndx == -1U)
2133 {
2134 shndx = elfcpp::SHN_UNDEF;
2135 v = 0;
2136 }
2137 else if (shndx != elfcpp::SHN_ABS)
2138 {
2139 // Find the input section and calculate the section-relative value.
2140 gold_assert(shndx != elfcpp::SHN_UNDEF);
2141 Output_section* os = this->ibase_->output_section(shndx);
2142 gold_assert(os != NULL && os->has_fixed_layout());
2143 typename Input_entry_reader::Input_section_info sect =
2144 this->input_reader_.get_input_section(input_shndx - 1);
2145 gold_assert(sect.output_shndx == shndx);
2146 if (st_type != elfcpp::STT_TLS)
2147 v -= os->address();
2148 v -= sect.sh_offset;
2149 shndx = input_shndx;
2150 }
2151
2152 osym.put_st_name(0);
2153 osym.put_st_value(v);
2154 osym.put_st_size(gsym.get_st_size());
2155 osym.put_st_info(st_bind, st_type);
2156 osym.put_st_other(gsym.get_st_other());
2157 osym.put_st_shndx(shndx);
2158
2159 Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2160
2161 if (shndx != elfcpp::SHN_UNDEF)
2162 ++this->defined_count_;
2163
2164 // If this is a linker-defined symbol that hasn't yet been defined,
2165 // define it now.
2166 if (input_shndx == -1U && !res->is_defined())
2167 {
2168 shndx = gsym.get_st_shndx();
2169 v = gsym.get_st_value();
2170 Elf_size_type symsize = gsym.get_st_size();
2171 if (shndx == elfcpp::SHN_ABS)
2172 {
2173 symtab->define_as_constant(name, NULL,
2174 Symbol_table::INCREMENTAL_BASE,
2175 v, symsize, st_type, st_bind,
2176 gsym.get_st_visibility(), 0,
2177 false, false);
2178 }
2179 else
2180 {
2181 Output_section* os = this->ibase_->output_section(shndx);
2182 gold_assert(os != NULL && os->has_fixed_layout());
2183 v -= os->address();
2184 if (symsize > 0)
2185 os->reserve(v, symsize);
2186 symtab->define_in_output_data(name, NULL,
2187 Symbol_table::INCREMENTAL_BASE,
2188 os, v, symsize, st_type, st_bind,
2189 gsym.get_st_visibility(), 0,
2190 false, false);
2191 }
2192 }
2193
2194 this->symbols_[i] = res;
2195 this->ibase_->add_global_symbol(output_symndx - first_global, res);
2196 }
2197 }
2198
2199 // Return TRUE if we should include this object from an archive library.
2200
2201 template<int size, bool big_endian>
2202 Archive::Should_include
2203 Sized_relobj_incr<size, big_endian>::do_should_include_member(
2204 Symbol_table*,
2205 Layout*,
2206 Read_symbols_data*,
2207 std::string*)
2208 {
2209 gold_unreachable();
2210 }
2211
2212 // Iterate over global symbols, calling a visitor class V for each.
2213
2214 template<int size, bool big_endian>
2215 void
2216 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2217 Read_symbols_data*,
2218 Library_base::Symbol_visitor_base*)
2219 {
2220 // This routine is not used for incremental objects.
2221 }
2222
2223 // Get the size of a section.
2224
2225 template<int size, bool big_endian>
2226 uint64_t
2227 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2228 {
2229 gold_unreachable();
2230 }
2231
2232 // Get the name of a section. This returns the name of the output
2233 // section, because we don't usually track the names of the input
2234 // sections.
2235
2236 template<int size, bool big_endian>
2237 std::string
2238 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int shndx)
2239 {
2240 Output_sections& out_sections(this->output_sections());
2241 Output_section* os = out_sections[shndx];
2242 if (os == NULL)
2243 return NULL;
2244 return os->name();
2245 }
2246
2247 // Return a view of the contents of a section.
2248
2249 template<int size, bool big_endian>
2250 const unsigned char*
2251 Sized_relobj_incr<size, big_endian>::do_section_contents(
2252 unsigned int shndx,
2253 section_size_type* plen,
2254 bool)
2255 {
2256 Output_sections& out_sections(this->output_sections());
2257 Output_section* os = out_sections[shndx];
2258 gold_assert(os != NULL);
2259 off_t section_offset = os->offset();
2260 typename Input_entry_reader::Input_section_info sect =
2261 this->input_reader_.get_input_section(shndx - 1);
2262 section_offset += sect.sh_offset;
2263 *plen = sect.sh_size;
2264 return this->ibase_->view(section_offset, sect.sh_size).data();
2265 }
2266
2267 // Return section flags.
2268
2269 template<int size, bool big_endian>
2270 uint64_t
2271 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2272 {
2273 gold_unreachable();
2274 }
2275
2276 // Return section entsize.
2277
2278 template<int size, bool big_endian>
2279 uint64_t
2280 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2281 {
2282 gold_unreachable();
2283 }
2284
2285 // Return section address.
2286
2287 template<int size, bool big_endian>
2288 uint64_t
2289 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2290 {
2291 gold_unreachable();
2292 }
2293
2294 // Return section type.
2295
2296 template<int size, bool big_endian>
2297 unsigned int
2298 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2299 {
2300 gold_unreachable();
2301 }
2302
2303 // Return the section link field.
2304
2305 template<int size, bool big_endian>
2306 unsigned int
2307 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2308 {
2309 gold_unreachable();
2310 }
2311
2312 // Return the section link field.
2313
2314 template<int size, bool big_endian>
2315 unsigned int
2316 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2317 {
2318 gold_unreachable();
2319 }
2320
2321 // Return the section alignment.
2322
2323 template<int size, bool big_endian>
2324 uint64_t
2325 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2326 {
2327 gold_unreachable();
2328 }
2329
2330 // Return the Xindex structure to use.
2331
2332 template<int size, bool big_endian>
2333 Xindex*
2334 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2335 {
2336 gold_unreachable();
2337 }
2338
2339 // Get symbol counts.
2340
2341 template<int size, bool big_endian>
2342 void
2343 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2344 const Symbol_table*,
2345 size_t* defined,
2346 size_t* used) const
2347 {
2348 *defined = this->defined_count_;
2349 size_t count = 0;
2350 for (typename Symbols::const_iterator p = this->symbols_.begin();
2351 p != this->symbols_.end();
2352 ++p)
2353 if (*p != NULL
2354 && (*p)->source() == Symbol::FROM_OBJECT
2355 && (*p)->object() == this
2356 && (*p)->is_defined())
2357 ++count;
2358 *used = count;
2359 }
2360
2361 // Read the relocs.
2362
2363 template<int size, bool big_endian>
2364 void
2365 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2366 {
2367 }
2368
2369 // Process the relocs to find list of referenced sections. Used only
2370 // during garbage collection.
2371
2372 template<int size, bool big_endian>
2373 void
2374 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2375 Layout*,
2376 Read_relocs_data*)
2377 {
2378 gold_unreachable();
2379 }
2380
2381 // Scan the relocs and adjust the symbol table.
2382
2383 template<int size, bool big_endian>
2384 void
2385 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2386 Layout* layout,
2387 Read_relocs_data*)
2388 {
2389 // Count the incremental relocations for this object.
2390 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2391 this->allocate_incremental_reloc_counts();
2392 for (unsigned int i = 0; i < nsyms; i++)
2393 {
2394 Incremental_global_symbol_reader<big_endian> sym =
2395 this->input_reader_.get_global_symbol_reader(i);
2396 unsigned int reloc_count = sym.reloc_count();
2397 if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2398 this->incr_reloc_offset_ = sym.reloc_offset();
2399 this->incr_reloc_count_ += reloc_count;
2400 for (unsigned int j = 0; j < reloc_count; j++)
2401 this->count_incremental_reloc(i);
2402 }
2403 this->incr_reloc_output_index_ =
2404 layout->incremental_inputs()->get_reloc_count();
2405 this->finalize_incremental_relocs(layout, false);
2406
2407 // The incoming incremental relocations may not end up in the same
2408 // location after the incremental update, because the incremental info
2409 // is regenerated in each link. Because the new location may overlap
2410 // with other data in the updated output file, we need to copy the
2411 // relocations into a buffer so that we can still read them safely
2412 // after we start writing updates to the output file.
2413 if (this->incr_reloc_count_ > 0)
2414 {
2415 const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2416 this->ibase_->relocs_reader();
2417 const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2418 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2419 this->incr_relocs_ = new unsigned char[len];
2420 memcpy(this->incr_relocs_,
2421 relocs_reader.data(this->incr_reloc_offset_),
2422 len);
2423 }
2424 }
2425
2426 // Count the local symbols.
2427
2428 template<int size, bool big_endian>
2429 void
2430 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2431 Stringpool_template<char>* pool,
2432 Stringpool_template<char>*)
2433 {
2434 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2435
2436 // Set the count of local symbols based on the incremental info.
2437 unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2438 this->local_symbol_count_ = nlocals;
2439 this->local_symbols_.reserve(nlocals);
2440
2441 // Get views of the base file's symbol table and string table.
2442 Incremental_binary::View symtab_view(NULL);
2443 unsigned int symtab_count;
2444 elfcpp::Elf_strtab strtab(NULL, 0);
2445 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2446
2447 // Read the local symbols from the base file's symbol table.
2448 off_t off = this->input_reader_.get_local_symbol_offset();
2449 const unsigned char* symp = symtab_view.data() + off;
2450 for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2451 {
2452 elfcpp::Sym<size, big_endian> sym(symp);
2453 const char* name;
2454 if (!strtab.get_c_string(sym.get_st_name(), &name))
2455 name = "";
2456 gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2457 name = pool->add(name, true, NULL);
2458 this->local_symbols_.push_back(Local_symbol(name,
2459 sym.get_st_value(),
2460 sym.get_st_size(),
2461 sym.get_st_shndx(),
2462 sym.get_st_type(),
2463 false));
2464 }
2465 }
2466
2467 // Finalize the local symbols.
2468
2469 template<int size, bool big_endian>
2470 unsigned int
2471 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2472 unsigned int index,
2473 off_t off,
2474 Symbol_table*)
2475 {
2476 this->local_symbol_index_ = index;
2477 this->local_symbol_offset_ = off;
2478 return index + this->local_symbol_count_;
2479 }
2480
2481 // Set the offset where local dynamic symbol information will be stored.
2482
2483 template<int size, bool big_endian>
2484 unsigned int
2485 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2486 unsigned int index)
2487 {
2488 // FIXME: set local dynsym indexes.
2489 return index;
2490 }
2491
2492 // Set the offset where local dynamic symbol information will be stored.
2493
2494 template<int size, bool big_endian>
2495 unsigned int
2496 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2497 {
2498 return 0;
2499 }
2500
2501 // Relocate the input sections and write out the local symbols.
2502 // We don't actually do any relocation here. For unchanged input files,
2503 // we reapply relocations only for symbols that have changed; that happens
2504 // in queue_final_tasks. We do need to rewrite the incremental relocations
2505 // for this object.
2506
2507 template<int size, bool big_endian>
2508 void
2509 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2510 const Layout* layout,
2511 Output_file* of)
2512 {
2513 if (this->incr_reloc_count_ == 0)
2514 return;
2515
2516 const unsigned int incr_reloc_size =
2517 Incremental_relocs_reader<size, big_endian>::reloc_size;
2518
2519 // Get a view for the .gnu_incremental_relocs section.
2520 Incremental_inputs* inputs = layout->incremental_inputs();
2521 gold_assert(inputs != NULL);
2522 const off_t relocs_off = inputs->relocs_section()->offset();
2523 const off_t relocs_size = inputs->relocs_section()->data_size();
2524 unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2525
2526 // Copy the relocations from the buffer.
2527 off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2528 unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2529 memcpy(view + off, this->incr_relocs_, len);
2530
2531 // The output section table may have changed, so we need to map
2532 // the old section index to the new section index for each relocation.
2533 for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2534 {
2535 unsigned char* pov = view + off + i * incr_reloc_size;
2536 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2537 Output_section* os = this->ibase_->output_section(shndx);
2538 gold_assert(os != NULL);
2539 shndx = os->out_shndx();
2540 elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2541 }
2542
2543 of->write_output_view(off, len, view);
2544
2545 // Get views into the output file for the portions of the symbol table
2546 // and the dynamic symbol table that we will be writing.
2547 off_t symtab_off = layout->symtab_section()->offset();
2548 off_t output_size = this->local_symbol_count_ * This::sym_size;
2549 unsigned char* oview = NULL;
2550 if (output_size > 0)
2551 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2552 output_size);
2553
2554 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2555 unsigned char* dyn_oview = NULL;
2556 if (dyn_output_size > 0)
2557 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2558 dyn_output_size);
2559
2560 // Write the local symbols.
2561 unsigned char* ov = oview;
2562 unsigned char* dyn_ov = dyn_oview;
2563 const Stringpool* sympool = layout->sympool();
2564 const Stringpool* dynpool = layout->dynpool();
2565 Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2566 Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2567 for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2568 {
2569 Local_symbol& lsym(this->local_symbols_[i]);
2570
2571 bool is_ordinary;
2572 unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2573 &is_ordinary);
2574 if (is_ordinary)
2575 {
2576 Output_section* os = this->ibase_->output_section(st_shndx);
2577 st_shndx = os->out_shndx();
2578 if (st_shndx >= elfcpp::SHN_LORESERVE)
2579 {
2580 symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2581 if (lsym.needs_dynsym_entry)
2582 dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2583 st_shndx = elfcpp::SHN_XINDEX;
2584 }
2585 }
2586
2587 // Write the symbol to the output symbol table.
2588 {
2589 elfcpp::Sym_write<size, big_endian> osym(ov);
2590 osym.put_st_name(sympool->get_offset(lsym.name));
2591 osym.put_st_value(lsym.st_value);
2592 osym.put_st_size(lsym.st_size);
2593 osym.put_st_info(elfcpp::STB_LOCAL,
2594 static_cast<elfcpp::STT>(lsym.st_type));
2595 osym.put_st_other(0);
2596 osym.put_st_shndx(st_shndx);
2597 ov += sym_size;
2598 }
2599
2600 // Write the symbol to the output dynamic symbol table.
2601 if (lsym.needs_dynsym_entry)
2602 {
2603 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2604 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2605 osym.put_st_name(dynpool->get_offset(lsym.name));
2606 osym.put_st_value(lsym.st_value);
2607 osym.put_st_size(lsym.st_size);
2608 osym.put_st_info(elfcpp::STB_LOCAL,
2609 static_cast<elfcpp::STT>(lsym.st_type));
2610 osym.put_st_other(0);
2611 osym.put_st_shndx(st_shndx);
2612 dyn_ov += sym_size;
2613 }
2614 }
2615
2616 if (output_size > 0)
2617 {
2618 gold_assert(ov - oview == output_size);
2619 of->write_output_view(symtab_off + this->local_symbol_offset_,
2620 output_size, oview);
2621 }
2622
2623 if (dyn_output_size > 0)
2624 {
2625 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2626 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2627 dyn_oview);
2628 }
2629 }
2630
2631 // Set the offset of a section.
2632
2633 template<int size, bool big_endian>
2634 void
2635 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2636 uint64_t)
2637 {
2638 }
2639
2640 // Class Sized_incr_dynobj. Most of these methods are not used for
2641 // Incremental objects, but are required to be implemented by the
2642 // base class Object.
2643
2644 template<int size, bool big_endian>
2645 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2646 const std::string& name,
2647 Sized_incremental_binary<size, big_endian>* ibase,
2648 unsigned int input_file_index)
2649 : Dynobj(name, NULL), ibase_(ibase),
2650 input_file_index_(input_file_index),
2651 input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2652 symbols_(), defined_count_(0)
2653 {
2654 if (this->input_reader_.is_in_system_directory())
2655 this->set_is_in_system_directory();
2656 if (this->input_reader_.as_needed())
2657 this->set_as_needed();
2658 this->set_soname_string(this->input_reader_.get_soname());
2659 this->set_shnum(0);
2660 }
2661
2662 // Read the symbols.
2663
2664 template<int size, bool big_endian>
2665 void
2666 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2667 {
2668 gold_unreachable();
2669 }
2670
2671 // Lay out the input sections.
2672
2673 template<int size, bool big_endian>
2674 void
2675 Sized_incr_dynobj<size, big_endian>::do_layout(
2676 Symbol_table*,
2677 Layout*,
2678 Read_symbols_data*)
2679 {
2680 }
2681
2682 // Add the symbols to the symbol table.
2683
2684 template<int size, bool big_endian>
2685 void
2686 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2687 Symbol_table* symtab,
2688 Read_symbols_data*,
2689 Layout*)
2690 {
2691 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2692 unsigned char symbuf[sym_size];
2693 elfcpp::Sym<size, big_endian> sym(symbuf);
2694 elfcpp::Sym_write<size, big_endian> osym(symbuf);
2695
2696 typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2697
2698 unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2699 this->symbols_.resize(nsyms);
2700
2701 Incremental_binary::View symtab_view(NULL);
2702 unsigned int symtab_count;
2703 elfcpp::Elf_strtab strtab(NULL, 0);
2704 this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2705
2706 Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2707 unsigned int isym_count = isymtab.symbol_count();
2708 unsigned int first_global = symtab_count - isym_count;
2709
2710 // We keep a set of symbols that we have generated COPY relocations
2711 // for, indexed by the symbol value. We do not need more than one
2712 // COPY relocation per address.
2713 typedef typename std::set<Address> Copied_symbols;
2714 Copied_symbols copied_symbols;
2715
2716 const unsigned char* sym_p;
2717 for (unsigned int i = 0; i < nsyms; ++i)
2718 {
2719 bool is_def;
2720 bool is_copy;
2721 unsigned int output_symndx =
2722 this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2723 sym_p = symtab_view.data() + output_symndx * sym_size;
2724 elfcpp::Sym<size, big_endian> gsym(sym_p);
2725 const char* name;
2726 if (!strtab.get_c_string(gsym.get_st_name(), &name))
2727 name = "";
2728
2729 Address v;
2730 unsigned int shndx;
2731 elfcpp::STB st_bind = gsym.get_st_bind();
2732 elfcpp::STT st_type = gsym.get_st_type();
2733
2734 // Local hidden symbols start out as globals, but get converted to
2735 // to local during output.
2736 if (st_bind == elfcpp::STB_LOCAL)
2737 st_bind = elfcpp::STB_GLOBAL;
2738
2739 if (!is_def)
2740 {
2741 shndx = elfcpp::SHN_UNDEF;
2742 v = 0;
2743 }
2744 else
2745 {
2746 // For a symbol defined in a shared object, the section index
2747 // is meaningless, as long as it's not SHN_UNDEF.
2748 shndx = 1;
2749 v = gsym.get_st_value();
2750 ++this->defined_count_;
2751 }
2752
2753 osym.put_st_name(0);
2754 osym.put_st_value(v);
2755 osym.put_st_size(gsym.get_st_size());
2756 osym.put_st_info(st_bind, st_type);
2757 osym.put_st_other(gsym.get_st_other());
2758 osym.put_st_shndx(shndx);
2759
2760 Sized_symbol<size>* res =
2761 symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2762 this->symbols_[i] = res;
2763 this->ibase_->add_global_symbol(output_symndx - first_global,
2764 this->symbols_[i]);
2765
2766 if (is_copy)
2767 {
2768 std::pair<typename Copied_symbols::iterator, bool> ins =
2769 copied_symbols.insert(v);
2770 if (ins.second)
2771 {
2772 unsigned int shndx = gsym.get_st_shndx();
2773 Output_section* os = this->ibase_->output_section(shndx);
2774 off_t offset = v - os->address();
2775 this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2776 }
2777 }
2778 }
2779 }
2780
2781 // Return TRUE if we should include this object from an archive library.
2782
2783 template<int size, bool big_endian>
2784 Archive::Should_include
2785 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2786 Symbol_table*,
2787 Layout*,
2788 Read_symbols_data*,
2789 std::string*)
2790 {
2791 gold_unreachable();
2792 }
2793
2794 // Iterate over global symbols, calling a visitor class V for each.
2795
2796 template<int size, bool big_endian>
2797 void
2798 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2799 Read_symbols_data*,
2800 Library_base::Symbol_visitor_base*)
2801 {
2802 // This routine is not used for dynamic libraries.
2803 }
2804
2805 // Iterate over local symbols, calling a visitor class V for each GOT offset
2806 // associated with a local symbol.
2807
2808 template<int size, bool big_endian>
2809 void
2810 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2811 Got_offset_list::Visitor*) const
2812 {
2813 }
2814
2815 // Get the size of a section.
2816
2817 template<int size, bool big_endian>
2818 uint64_t
2819 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2820 {
2821 gold_unreachable();
2822 }
2823
2824 // Get the name of a section.
2825
2826 template<int size, bool big_endian>
2827 std::string
2828 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2829 {
2830 gold_unreachable();
2831 }
2832
2833 // Return a view of the contents of a section.
2834
2835 template<int size, bool big_endian>
2836 const unsigned char*
2837 Sized_incr_dynobj<size, big_endian>::do_section_contents(
2838 unsigned int,
2839 section_size_type*,
2840 bool)
2841 {
2842 gold_unreachable();
2843 }
2844
2845 // Return section flags.
2846
2847 template<int size, bool big_endian>
2848 uint64_t
2849 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2850 {
2851 gold_unreachable();
2852 }
2853
2854 // Return section entsize.
2855
2856 template<int size, bool big_endian>
2857 uint64_t
2858 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2859 {
2860 gold_unreachable();
2861 }
2862
2863 // Return section address.
2864
2865 template<int size, bool big_endian>
2866 uint64_t
2867 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2868 {
2869 gold_unreachable();
2870 }
2871
2872 // Return section type.
2873
2874 template<int size, bool big_endian>
2875 unsigned int
2876 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2877 {
2878 gold_unreachable();
2879 }
2880
2881 // Return the section link field.
2882
2883 template<int size, bool big_endian>
2884 unsigned int
2885 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2886 {
2887 gold_unreachable();
2888 }
2889
2890 // Return the section link field.
2891
2892 template<int size, bool big_endian>
2893 unsigned int
2894 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2895 {
2896 gold_unreachable();
2897 }
2898
2899 // Return the section alignment.
2900
2901 template<int size, bool big_endian>
2902 uint64_t
2903 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2904 {
2905 gold_unreachable();
2906 }
2907
2908 // Return the Xindex structure to use.
2909
2910 template<int size, bool big_endian>
2911 Xindex*
2912 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2913 {
2914 gold_unreachable();
2915 }
2916
2917 // Get symbol counts.
2918
2919 template<int size, bool big_endian>
2920 void
2921 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2922 const Symbol_table*,
2923 size_t* defined,
2924 size_t* used) const
2925 {
2926 *defined = this->defined_count_;
2927 size_t count = 0;
2928 for (typename Symbols::const_iterator p = this->symbols_.begin();
2929 p != this->symbols_.end();
2930 ++p)
2931 if (*p != NULL
2932 && (*p)->source() == Symbol::FROM_OBJECT
2933 && (*p)->object() == this
2934 && (*p)->is_defined()
2935 && (*p)->dynsym_index() != -1U)
2936 ++count;
2937 *used = count;
2938 }
2939
2940 // Allocate an incremental object of the appropriate size and endianness.
2941
2942 Object*
2943 make_sized_incremental_object(
2944 Incremental_binary* ibase,
2945 unsigned int input_file_index,
2946 Incremental_input_type input_type,
2947 const Incremental_binary::Input_reader* input_reader)
2948 {
2949 Object* obj = NULL;
2950 std::string name(input_reader->filename());
2951
2952 switch (parameters->size_and_endianness())
2953 {
2954 #ifdef HAVE_TARGET_32_LITTLE
2955 case Parameters::TARGET_32_LITTLE:
2956 {
2957 Sized_incremental_binary<32, false>* sized_ibase =
2958 static_cast<Sized_incremental_binary<32, false>*>(ibase);
2959 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2960 obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2961 input_file_index);
2962 else
2963 obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2964 input_file_index);
2965 }
2966 break;
2967 #endif
2968 #ifdef HAVE_TARGET_32_BIG
2969 case Parameters::TARGET_32_BIG:
2970 {
2971 Sized_incremental_binary<32, true>* sized_ibase =
2972 static_cast<Sized_incremental_binary<32, true>*>(ibase);
2973 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2974 obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2975 input_file_index);
2976 else
2977 obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2978 input_file_index);
2979 }
2980 break;
2981 #endif
2982 #ifdef HAVE_TARGET_64_LITTLE
2983 case Parameters::TARGET_64_LITTLE:
2984 {
2985 Sized_incremental_binary<64, false>* sized_ibase =
2986 static_cast<Sized_incremental_binary<64, false>*>(ibase);
2987 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2988 obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2989 input_file_index);
2990 else
2991 obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2992 input_file_index);
2993 }
2994 break;
2995 #endif
2996 #ifdef HAVE_TARGET_64_BIG
2997 case Parameters::TARGET_64_BIG:
2998 {
2999 Sized_incremental_binary<64, true>* sized_ibase =
3000 static_cast<Sized_incremental_binary<64, true>*>(ibase);
3001 if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
3002 obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
3003 input_file_index);
3004 else
3005 obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
3006 input_file_index);
3007 }
3008 break;
3009 #endif
3010 default:
3011 gold_unreachable();
3012 }
3013
3014 gold_assert(obj != NULL);
3015 return obj;
3016 }
3017
3018 // Copy the unused symbols from the incremental input info.
3019 // We need to do this because we may be overwriting the incremental
3020 // input info in the base file before we write the new incremental
3021 // info.
3022 void
3023 Incremental_library::copy_unused_symbols()
3024 {
3025 unsigned int symcount = this->input_reader_->get_unused_symbol_count();
3026 this->unused_symbols_.reserve(symcount);
3027 for (unsigned int i = 0; i < symcount; ++i)
3028 {
3029 std::string name(this->input_reader_->get_unused_symbol(i));
3030 this->unused_symbols_.push_back(name);
3031 }
3032 }
3033
3034 // Iterator for unused global symbols in the library.
3035 void
3036 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
3037 {
3038 for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
3039 p != this->unused_symbols_.end();
3040 ++p)
3041 v->visit(p->c_str());
3042 }
3043
3044 // Instantiate the templates we need.
3045
3046 #ifdef HAVE_TARGET_32_LITTLE
3047 template
3048 class Sized_incremental_binary<32, false>;
3049
3050 template
3051 class Sized_relobj_incr<32, false>;
3052
3053 template
3054 class Sized_incr_dynobj<32, false>;
3055 #endif
3056
3057 #ifdef HAVE_TARGET_32_BIG
3058 template
3059 class Sized_incremental_binary<32, true>;
3060
3061 template
3062 class Sized_relobj_incr<32, true>;
3063
3064 template
3065 class Sized_incr_dynobj<32, true>;
3066 #endif
3067
3068 #ifdef HAVE_TARGET_64_LITTLE
3069 template
3070 class Sized_incremental_binary<64, false>;
3071
3072 template
3073 class Sized_relobj_incr<64, false>;
3074
3075 template
3076 class Sized_incr_dynobj<64, false>;
3077 #endif
3078
3079 #ifdef HAVE_TARGET_64_BIG
3080 template
3081 class Sized_incremental_binary<64, true>;
3082
3083 template
3084 class Sized_relobj_incr<64, true>;
3085
3086 template
3087 class Sized_incr_dynobj<64, true>;
3088 #endif
3089
3090 } // End namespace gold.