]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
PR gold/13850
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 // We usually want to drop free chunks smaller than 4 bytes.
166 // If we need to guarantee a minimum hole size, though, we need
167 // to keep track of all free chunks.
168 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
170 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171 {
172 ++Free_list::num_allocate_visits;
173 off_t start = p->start_ > minoff ? p->start_ : minoff;
174 start = align_address(start, align);
175 off_t end = start + len;
176 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177 {
178 this->length_ = end;
179 p->end_ = end;
180 }
181 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182 {
183 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184 this->list_.erase(p);
185 else if (p->start_ + fuzz >= start)
186 p->start_ = end;
187 else if (p->end_ <= end + fuzz)
188 p->end_ = start;
189 else
190 {
191 Free_list_node newnode(p->start_, start);
192 p->start_ = end;
193 this->list_.insert(p, newnode);
194 ++Free_list::num_nodes;
195 }
196 return start;
197 }
198 }
199 if (this->extend_)
200 {
201 off_t start = align_address(this->length_, align);
202 this->length_ = start + len;
203 return start;
204 }
205 return -1;
206 }
207
208 // Dump the free list (for debugging).
209 void
210 Free_list::dump()
211 {
212 gold_info("Free list:\n start end length\n");
213 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
215 static_cast<long>(p->end_),
216 static_cast<long>(p->end_ - p->start_));
217 }
218
219 // Print the statistics for the free lists.
220 void
221 Free_list::print_stats()
222 {
223 fprintf(stderr, _("%s: total free lists: %u\n"),
224 program_name, Free_list::num_lists);
225 fprintf(stderr, _("%s: total free list nodes: %u\n"),
226 program_name, Free_list::num_nodes);
227 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228 program_name, Free_list::num_removes);
229 fprintf(stderr, _("%s: nodes visited: %u\n"),
230 program_name, Free_list::num_remove_visits);
231 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232 program_name, Free_list::num_allocates);
233 fprintf(stderr, _("%s: nodes visited: %u\n"),
234 program_name, Free_list::num_allocate_visits);
235 }
236
237 // Layout::Relaxation_debug_check methods.
238
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
243 void
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245 const Layout::Section_list& sections,
246 const Layout::Data_list& special_outputs)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 gold_assert((*p)->address_and_file_offset_have_reset_values());
252
253 for(Layout::Data_list::const_iterator p = special_outputs.begin();
254 p != special_outputs.end();
255 ++p)
256 gold_assert((*p)->address_and_file_offset_have_reset_values());
257 }
258
259 // Save information of SECTIONS for checking later.
260
261 void
262 Layout::Relaxation_debug_check::read_sections(
263 const Layout::Section_list& sections)
264 {
265 for(Layout::Section_list::const_iterator p = sections.begin();
266 p != sections.end();
267 ++p)
268 {
269 Output_section* os = *p;
270 Section_info info;
271 info.output_section = os;
272 info.address = os->is_address_valid() ? os->address() : 0;
273 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274 info.offset = os->is_offset_valid()? os->offset() : -1 ;
275 this->section_infos_.push_back(info);
276 }
277 }
278
279 // Verify SECTIONS using previously recorded information.
280
281 void
282 Layout::Relaxation_debug_check::verify_sections(
283 const Layout::Section_list& sections)
284 {
285 size_t i = 0;
286 for(Layout::Section_list::const_iterator p = sections.begin();
287 p != sections.end();
288 ++p, ++i)
289 {
290 Output_section* os = *p;
291 uint64_t address = os->is_address_valid() ? os->address() : 0;
292 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
295 if (i >= this->section_infos_.size())
296 {
297 gold_fatal("Section_info of %s missing.\n", os->name());
298 }
299 const Section_info& info = this->section_infos_[i];
300 if (os != info.output_section)
301 gold_fatal("Section order changed. Expecting %s but see %s\n",
302 info.output_section->name(), os->name());
303 if (address != info.address
304 || data_size != info.data_size
305 || offset != info.offset)
306 gold_fatal("Section %s changed.\n", os->name());
307 }
308 }
309
310 // Layout_task_runner methods.
311
312 // Lay out the sections. This is called after all the input objects
313 // have been read.
314
315 void
316 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317 {
318 Layout* layout = this->layout_;
319 off_t file_size = layout->finalize(this->input_objects_,
320 this->symtab_,
321 this->target_,
322 task);
323
324 // Now we know the final size of the output file and we know where
325 // each piece of information goes.
326
327 if (this->mapfile_ != NULL)
328 {
329 this->mapfile_->print_discarded_sections(this->input_objects_);
330 layout->print_to_mapfile(this->mapfile_);
331 }
332
333 Output_file* of;
334 if (layout->incremental_base() == NULL)
335 {
336 of = new Output_file(parameters->options().output_file_name());
337 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338 of->set_is_temporary();
339 of->open(file_size);
340 }
341 else
342 {
343 of = layout->incremental_base()->output_file();
344
345 // Apply the incremental relocations for symbols whose values
346 // have changed. We do this before we resize the file and start
347 // writing anything else to it, so that we can read the old
348 // incremental information from the file before (possibly)
349 // overwriting it.
350 if (parameters->incremental_update())
351 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352 this->layout_,
353 of);
354
355 of->resize(file_size);
356 }
357
358 // Queue up the final set of tasks.
359 gold::queue_final_tasks(this->options_, this->input_objects_,
360 this->symtab_, layout, workqueue, of);
361 }
362
363 // Layout methods.
364
365 Layout::Layout(int number_of_input_files, Script_options* script_options)
366 : number_of_input_files_(number_of_input_files),
367 script_options_(script_options),
368 namepool_(),
369 sympool_(),
370 dynpool_(),
371 signatures_(),
372 section_name_map_(),
373 segment_list_(),
374 section_list_(),
375 unattached_section_list_(),
376 special_output_list_(),
377 section_headers_(NULL),
378 tls_segment_(NULL),
379 relro_segment_(NULL),
380 interp_segment_(NULL),
381 increase_relro_(0),
382 symtab_section_(NULL),
383 symtab_xindex_(NULL),
384 dynsym_section_(NULL),
385 dynsym_xindex_(NULL),
386 dynamic_section_(NULL),
387 dynamic_symbol_(NULL),
388 dynamic_data_(NULL),
389 eh_frame_section_(NULL),
390 eh_frame_data_(NULL),
391 added_eh_frame_data_(false),
392 eh_frame_hdr_section_(NULL),
393 build_id_note_(NULL),
394 debug_abbrev_(NULL),
395 debug_info_(NULL),
396 group_signatures_(),
397 output_file_size_(-1),
398 have_added_input_section_(false),
399 sections_are_attached_(false),
400 input_requires_executable_stack_(false),
401 input_with_gnu_stack_note_(false),
402 input_without_gnu_stack_note_(false),
403 has_static_tls_(false),
404 any_postprocessing_sections_(false),
405 resized_signatures_(false),
406 have_stabstr_section_(false),
407 section_ordering_specified_(false),
408 incremental_inputs_(NULL),
409 record_output_section_data_from_script_(false),
410 script_output_section_data_list_(),
411 segment_states_(NULL),
412 relaxation_debug_check_(NULL),
413 section_order_map_(),
414 input_section_position_(),
415 input_section_glob_(),
416 incremental_base_(NULL),
417 free_list_()
418 {
419 // Make space for more than enough segments for a typical file.
420 // This is just for efficiency--it's OK if we wind up needing more.
421 this->segment_list_.reserve(12);
422
423 // We expect two unattached Output_data objects: the file header and
424 // the segment headers.
425 this->special_output_list_.reserve(2);
426
427 // Initialize structure needed for an incremental build.
428 if (parameters->incremental())
429 this->incremental_inputs_ = new Incremental_inputs;
430
431 // The section name pool is worth optimizing in all cases, because
432 // it is small, but there are often overlaps due to .rel sections.
433 this->namepool_.set_optimize();
434 }
435
436 // For incremental links, record the base file to be modified.
437
438 void
439 Layout::set_incremental_base(Incremental_binary* base)
440 {
441 this->incremental_base_ = base;
442 this->free_list_.init(base->output_file()->filesize(), true);
443 }
444
445 // Hash a key we use to look up an output section mapping.
446
447 size_t
448 Layout::Hash_key::operator()(const Layout::Key& k) const
449 {
450 return k.first + k.second.first + k.second.second;
451 }
452
453 // Returns whether the given section is in the list of
454 // debug-sections-used-by-some-version-of-gdb. Currently,
455 // we've checked versions of gdb up to and including 6.7.1.
456
457 static const char* gdb_sections[] =
458 { ".debug_abbrev",
459 // ".debug_aranges", // not used by gdb as of 6.7.1
460 ".debug_frame",
461 ".debug_info",
462 ".debug_types",
463 ".debug_line",
464 ".debug_loc",
465 ".debug_macinfo",
466 // ".debug_pubnames", // not used by gdb as of 6.7.1
467 ".debug_ranges",
468 ".debug_str",
469 };
470
471 static const char* lines_only_debug_sections[] =
472 { ".debug_abbrev",
473 // ".debug_aranges", // not used by gdb as of 6.7.1
474 // ".debug_frame",
475 ".debug_info",
476 // ".debug_types",
477 ".debug_line",
478 // ".debug_loc",
479 // ".debug_macinfo",
480 // ".debug_pubnames", // not used by gdb as of 6.7.1
481 // ".debug_ranges",
482 ".debug_str",
483 };
484
485 static inline bool
486 is_gdb_debug_section(const char* str)
487 {
488 // We can do this faster: binary search or a hashtable. But why bother?
489 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
490 if (strcmp(str, gdb_sections[i]) == 0)
491 return true;
492 return false;
493 }
494
495 static inline bool
496 is_lines_only_debug_section(const char* str)
497 {
498 // We can do this faster: binary search or a hashtable. But why bother?
499 for (size_t i = 0;
500 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
501 ++i)
502 if (strcmp(str, lines_only_debug_sections[i]) == 0)
503 return true;
504 return false;
505 }
506
507 // Sometimes we compress sections. This is typically done for
508 // sections that are not part of normal program execution (such as
509 // .debug_* sections), and where the readers of these sections know
510 // how to deal with compressed sections. This routine doesn't say for
511 // certain whether we'll compress -- it depends on commandline options
512 // as well -- just whether this section is a candidate for compression.
513 // (The Output_compressed_section class decides whether to compress
514 // a given section, and picks the name of the compressed section.)
515
516 static bool
517 is_compressible_debug_section(const char* secname)
518 {
519 return (is_prefix_of(".debug", secname));
520 }
521
522 // We may see compressed debug sections in input files. Return TRUE
523 // if this is the name of a compressed debug section.
524
525 bool
526 is_compressed_debug_section(const char* secname)
527 {
528 return (is_prefix_of(".zdebug", secname));
529 }
530
531 // Whether to include this section in the link.
532
533 template<int size, bool big_endian>
534 bool
535 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
536 const elfcpp::Shdr<size, big_endian>& shdr)
537 {
538 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
539 return false;
540
541 switch (shdr.get_sh_type())
542 {
543 case elfcpp::SHT_NULL:
544 case elfcpp::SHT_SYMTAB:
545 case elfcpp::SHT_DYNSYM:
546 case elfcpp::SHT_HASH:
547 case elfcpp::SHT_DYNAMIC:
548 case elfcpp::SHT_SYMTAB_SHNDX:
549 return false;
550
551 case elfcpp::SHT_STRTAB:
552 // Discard the sections which have special meanings in the ELF
553 // ABI. Keep others (e.g., .stabstr). We could also do this by
554 // checking the sh_link fields of the appropriate sections.
555 return (strcmp(name, ".dynstr") != 0
556 && strcmp(name, ".strtab") != 0
557 && strcmp(name, ".shstrtab") != 0);
558
559 case elfcpp::SHT_RELA:
560 case elfcpp::SHT_REL:
561 case elfcpp::SHT_GROUP:
562 // If we are emitting relocations these should be handled
563 // elsewhere.
564 gold_assert(!parameters->options().relocatable()
565 && !parameters->options().emit_relocs());
566 return false;
567
568 case elfcpp::SHT_PROGBITS:
569 if (parameters->options().strip_debug()
570 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
571 {
572 if (is_debug_info_section(name))
573 return false;
574 }
575 if (parameters->options().strip_debug_non_line()
576 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
577 {
578 // Debugging sections can only be recognized by name.
579 if (is_prefix_of(".debug", name)
580 && !is_lines_only_debug_section(name))
581 return false;
582 }
583 if (parameters->options().strip_debug_gdb()
584 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
585 {
586 // Debugging sections can only be recognized by name.
587 if (is_prefix_of(".debug", name)
588 && !is_gdb_debug_section(name))
589 return false;
590 }
591 if (parameters->options().strip_lto_sections()
592 && !parameters->options().relocatable()
593 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
594 {
595 // Ignore LTO sections containing intermediate code.
596 if (is_prefix_of(".gnu.lto_", name))
597 return false;
598 }
599 // The GNU linker strips .gnu_debuglink sections, so we do too.
600 // This is a feature used to keep debugging information in
601 // separate files.
602 if (strcmp(name, ".gnu_debuglink") == 0)
603 return false;
604 return true;
605
606 default:
607 return true;
608 }
609 }
610
611 // Return an output section named NAME, or NULL if there is none.
612
613 Output_section*
614 Layout::find_output_section(const char* name) const
615 {
616 for (Section_list::const_iterator p = this->section_list_.begin();
617 p != this->section_list_.end();
618 ++p)
619 if (strcmp((*p)->name(), name) == 0)
620 return *p;
621 return NULL;
622 }
623
624 // Return an output segment of type TYPE, with segment flags SET set
625 // and segment flags CLEAR clear. Return NULL if there is none.
626
627 Output_segment*
628 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
629 elfcpp::Elf_Word clear) const
630 {
631 for (Segment_list::const_iterator p = this->segment_list_.begin();
632 p != this->segment_list_.end();
633 ++p)
634 if (static_cast<elfcpp::PT>((*p)->type()) == type
635 && ((*p)->flags() & set) == set
636 && ((*p)->flags() & clear) == 0)
637 return *p;
638 return NULL;
639 }
640
641 // When we put a .ctors or .dtors section with more than one word into
642 // a .init_array or .fini_array section, we need to reverse the words
643 // in the .ctors/.dtors section. This is because .init_array executes
644 // constructors front to back, where .ctors executes them back to
645 // front, and vice-versa for .fini_array/.dtors. Although we do want
646 // to remap .ctors/.dtors into .init_array/.fini_array because it can
647 // be more efficient, we don't want to change the order in which
648 // constructors/destructors are run. This set just keeps track of
649 // these sections which need to be reversed. It is only changed by
650 // Layout::layout. It should be a private member of Layout, but that
651 // would require layout.h to #include object.h to get the definition
652 // of Section_id.
653 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
654
655 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
656 // .init_array/.fini_array section.
657
658 bool
659 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
660 {
661 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
662 != ctors_sections_in_init_array.end());
663 }
664
665 // Return the output section to use for section NAME with type TYPE
666 // and section flags FLAGS. NAME must be canonicalized in the string
667 // pool, and NAME_KEY is the key. ORDER is where this should appear
668 // in the output sections. IS_RELRO is true for a relro section.
669
670 Output_section*
671 Layout::get_output_section(const char* name, Stringpool::Key name_key,
672 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
673 Output_section_order order, bool is_relro)
674 {
675 elfcpp::Elf_Word lookup_type = type;
676
677 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
678 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
679 // .init_array, .fini_array, and .preinit_array sections by name
680 // whatever their type in the input file. We do this because the
681 // types are not always right in the input files.
682 if (lookup_type == elfcpp::SHT_INIT_ARRAY
683 || lookup_type == elfcpp::SHT_FINI_ARRAY
684 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
685 lookup_type = elfcpp::SHT_PROGBITS;
686
687 elfcpp::Elf_Xword lookup_flags = flags;
688
689 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
690 // read-write with read-only sections. Some other ELF linkers do
691 // not do this. FIXME: Perhaps there should be an option
692 // controlling this.
693 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
694
695 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
696 const std::pair<Key, Output_section*> v(key, NULL);
697 std::pair<Section_name_map::iterator, bool> ins(
698 this->section_name_map_.insert(v));
699
700 if (!ins.second)
701 return ins.first->second;
702 else
703 {
704 // This is the first time we've seen this name/type/flags
705 // combination. For compatibility with the GNU linker, we
706 // combine sections with contents and zero flags with sections
707 // with non-zero flags. This is a workaround for cases where
708 // assembler code forgets to set section flags. FIXME: Perhaps
709 // there should be an option to control this.
710 Output_section* os = NULL;
711
712 if (lookup_type == elfcpp::SHT_PROGBITS)
713 {
714 if (flags == 0)
715 {
716 Output_section* same_name = this->find_output_section(name);
717 if (same_name != NULL
718 && (same_name->type() == elfcpp::SHT_PROGBITS
719 || same_name->type() == elfcpp::SHT_INIT_ARRAY
720 || same_name->type() == elfcpp::SHT_FINI_ARRAY
721 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
722 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
723 os = same_name;
724 }
725 else if ((flags & elfcpp::SHF_TLS) == 0)
726 {
727 elfcpp::Elf_Xword zero_flags = 0;
728 const Key zero_key(name_key, std::make_pair(lookup_type,
729 zero_flags));
730 Section_name_map::iterator p =
731 this->section_name_map_.find(zero_key);
732 if (p != this->section_name_map_.end())
733 os = p->second;
734 }
735 }
736
737 if (os == NULL)
738 os = this->make_output_section(name, type, flags, order, is_relro);
739
740 ins.first->second = os;
741 return os;
742 }
743 }
744
745 // Pick the output section to use for section NAME, in input file
746 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
747 // linker created section. IS_INPUT_SECTION is true if we are
748 // choosing an output section for an input section found in a input
749 // file. ORDER is where this section should appear in the output
750 // sections. IS_RELRO is true for a relro section. This will return
751 // NULL if the input section should be discarded.
752
753 Output_section*
754 Layout::choose_output_section(const Relobj* relobj, const char* name,
755 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
756 bool is_input_section, Output_section_order order,
757 bool is_relro)
758 {
759 // We should not see any input sections after we have attached
760 // sections to segments.
761 gold_assert(!is_input_section || !this->sections_are_attached_);
762
763 // Some flags in the input section should not be automatically
764 // copied to the output section.
765 flags &= ~ (elfcpp::SHF_INFO_LINK
766 | elfcpp::SHF_GROUP
767 | elfcpp::SHF_MERGE
768 | elfcpp::SHF_STRINGS);
769
770 // We only clear the SHF_LINK_ORDER flag in for
771 // a non-relocatable link.
772 if (!parameters->options().relocatable())
773 flags &= ~elfcpp::SHF_LINK_ORDER;
774
775 if (this->script_options_->saw_sections_clause())
776 {
777 // We are using a SECTIONS clause, so the output section is
778 // chosen based only on the name.
779
780 Script_sections* ss = this->script_options_->script_sections();
781 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
782 Output_section** output_section_slot;
783 Script_sections::Section_type script_section_type;
784 const char* orig_name = name;
785 name = ss->output_section_name(file_name, name, &output_section_slot,
786 &script_section_type);
787 if (name == NULL)
788 {
789 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
790 "because it is not allowed by the "
791 "SECTIONS clause of the linker script"),
792 orig_name);
793 // The SECTIONS clause says to discard this input section.
794 return NULL;
795 }
796
797 // We can only handle script section types ST_NONE and ST_NOLOAD.
798 switch (script_section_type)
799 {
800 case Script_sections::ST_NONE:
801 break;
802 case Script_sections::ST_NOLOAD:
803 flags &= elfcpp::SHF_ALLOC;
804 break;
805 default:
806 gold_unreachable();
807 }
808
809 // If this is an orphan section--one not mentioned in the linker
810 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
811 // default processing below.
812
813 if (output_section_slot != NULL)
814 {
815 if (*output_section_slot != NULL)
816 {
817 (*output_section_slot)->update_flags_for_input_section(flags);
818 return *output_section_slot;
819 }
820
821 // We don't put sections found in the linker script into
822 // SECTION_NAME_MAP_. That keeps us from getting confused
823 // if an orphan section is mapped to a section with the same
824 // name as one in the linker script.
825
826 name = this->namepool_.add(name, false, NULL);
827
828 Output_section* os = this->make_output_section(name, type, flags,
829 order, is_relro);
830
831 os->set_found_in_sections_clause();
832
833 // Special handling for NOLOAD sections.
834 if (script_section_type == Script_sections::ST_NOLOAD)
835 {
836 os->set_is_noload();
837
838 // The constructor of Output_section sets addresses of non-ALLOC
839 // sections to 0 by default. We don't want that for NOLOAD
840 // sections even if they have no SHF_ALLOC flag.
841 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
842 && os->is_address_valid())
843 {
844 gold_assert(os->address() == 0
845 && !os->is_offset_valid()
846 && !os->is_data_size_valid());
847 os->reset_address_and_file_offset();
848 }
849 }
850
851 *output_section_slot = os;
852 return os;
853 }
854 }
855
856 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
857
858 size_t len = strlen(name);
859 char* uncompressed_name = NULL;
860
861 // Compressed debug sections should be mapped to the corresponding
862 // uncompressed section.
863 if (is_compressed_debug_section(name))
864 {
865 uncompressed_name = new char[len];
866 uncompressed_name[0] = '.';
867 gold_assert(name[0] == '.' && name[1] == 'z');
868 strncpy(&uncompressed_name[1], &name[2], len - 2);
869 uncompressed_name[len - 1] = '\0';
870 len -= 1;
871 name = uncompressed_name;
872 }
873
874 // Turn NAME from the name of the input section into the name of the
875 // output section.
876 if (is_input_section
877 && !this->script_options_->saw_sections_clause()
878 && !parameters->options().relocatable())
879 name = Layout::output_section_name(relobj, name, &len);
880
881 Stringpool::Key name_key;
882 name = this->namepool_.add_with_length(name, len, true, &name_key);
883
884 if (uncompressed_name != NULL)
885 delete[] uncompressed_name;
886
887 // Find or make the output section. The output section is selected
888 // based on the section name, type, and flags.
889 return this->get_output_section(name, name_key, type, flags, order, is_relro);
890 }
891
892 // For incremental links, record the initial fixed layout of a section
893 // from the base file, and return a pointer to the Output_section.
894
895 template<int size, bool big_endian>
896 Output_section*
897 Layout::init_fixed_output_section(const char* name,
898 elfcpp::Shdr<size, big_endian>& shdr)
899 {
900 unsigned int sh_type = shdr.get_sh_type();
901
902 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
903 // PRE_INIT_ARRAY, and NOTE sections.
904 // All others will be created from scratch and reallocated.
905 if (!can_incremental_update(sh_type))
906 return NULL;
907
908 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
909 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
910 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
911 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
912 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
913 shdr.get_sh_addralign();
914
915 // Make the output section.
916 Stringpool::Key name_key;
917 name = this->namepool_.add(name, true, &name_key);
918 Output_section* os = this->get_output_section(name, name_key, sh_type,
919 sh_flags, ORDER_INVALID, false);
920 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
921 if (sh_type != elfcpp::SHT_NOBITS)
922 this->free_list_.remove(sh_offset, sh_offset + sh_size);
923 return os;
924 }
925
926 // Return the output section to use for input section SHNDX, with name
927 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
928 // index of a relocation section which applies to this section, or 0
929 // if none, or -1U if more than one. RELOC_TYPE is the type of the
930 // relocation section if there is one. Set *OFF to the offset of this
931 // input section without the output section. Return NULL if the
932 // section should be discarded. Set *OFF to -1 if the section
933 // contents should not be written directly to the output file, but
934 // will instead receive special handling.
935
936 template<int size, bool big_endian>
937 Output_section*
938 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
939 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
940 unsigned int reloc_shndx, unsigned int, off_t* off)
941 {
942 *off = 0;
943
944 if (!this->include_section(object, name, shdr))
945 return NULL;
946
947 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
948
949 // In a relocatable link a grouped section must not be combined with
950 // any other sections.
951 Output_section* os;
952 if (parameters->options().relocatable()
953 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
954 {
955 name = this->namepool_.add(name, true, NULL);
956 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
957 ORDER_INVALID, false);
958 }
959 else
960 {
961 os = this->choose_output_section(object, name, sh_type,
962 shdr.get_sh_flags(), true,
963 ORDER_INVALID, false);
964 if (os == NULL)
965 return NULL;
966 }
967
968 // By default the GNU linker sorts input sections whose names match
969 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
970 // sections are sorted by name. This is used to implement
971 // constructor priority ordering. We are compatible. When we put
972 // .ctor sections in .init_array and .dtor sections in .fini_array,
973 // we must also sort plain .ctor and .dtor sections.
974 if (!this->script_options_->saw_sections_clause()
975 && !parameters->options().relocatable()
976 && (is_prefix_of(".ctors.", name)
977 || is_prefix_of(".dtors.", name)
978 || is_prefix_of(".init_array.", name)
979 || is_prefix_of(".fini_array.", name)
980 || (parameters->options().ctors_in_init_array()
981 && (strcmp(name, ".ctors") == 0
982 || strcmp(name, ".dtors") == 0))))
983 os->set_must_sort_attached_input_sections();
984
985 // If this is a .ctors or .ctors.* section being mapped to a
986 // .init_array section, or a .dtors or .dtors.* section being mapped
987 // to a .fini_array section, we will need to reverse the words if
988 // there is more than one. Record this section for later. See
989 // ctors_sections_in_init_array above.
990 if (!this->script_options_->saw_sections_clause()
991 && !parameters->options().relocatable()
992 && shdr.get_sh_size() > size / 8
993 && (((strcmp(name, ".ctors") == 0
994 || is_prefix_of(".ctors.", name))
995 && strcmp(os->name(), ".init_array") == 0)
996 || ((strcmp(name, ".dtors") == 0
997 || is_prefix_of(".dtors.", name))
998 && strcmp(os->name(), ".fini_array") == 0)))
999 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1000
1001 // FIXME: Handle SHF_LINK_ORDER somewhere.
1002
1003 elfcpp::Elf_Xword orig_flags = os->flags();
1004
1005 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1006 this->script_options_->saw_sections_clause());
1007
1008 // If the flags changed, we may have to change the order.
1009 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1010 {
1011 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1012 elfcpp::Elf_Xword new_flags =
1013 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1014 if (orig_flags != new_flags)
1015 os->set_order(this->default_section_order(os, false));
1016 }
1017
1018 this->have_added_input_section_ = true;
1019
1020 return os;
1021 }
1022
1023 // Handle a relocation section when doing a relocatable link.
1024
1025 template<int size, bool big_endian>
1026 Output_section*
1027 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1028 unsigned int,
1029 const elfcpp::Shdr<size, big_endian>& shdr,
1030 Output_section* data_section,
1031 Relocatable_relocs* rr)
1032 {
1033 gold_assert(parameters->options().relocatable()
1034 || parameters->options().emit_relocs());
1035
1036 int sh_type = shdr.get_sh_type();
1037
1038 std::string name;
1039 if (sh_type == elfcpp::SHT_REL)
1040 name = ".rel";
1041 else if (sh_type == elfcpp::SHT_RELA)
1042 name = ".rela";
1043 else
1044 gold_unreachable();
1045 name += data_section->name();
1046
1047 // In a relocatable link relocs for a grouped section must not be
1048 // combined with other reloc sections.
1049 Output_section* os;
1050 if (!parameters->options().relocatable()
1051 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1052 os = this->choose_output_section(object, name.c_str(), sh_type,
1053 shdr.get_sh_flags(), false,
1054 ORDER_INVALID, false);
1055 else
1056 {
1057 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1058 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1059 ORDER_INVALID, false);
1060 }
1061
1062 os->set_should_link_to_symtab();
1063 os->set_info_section(data_section);
1064
1065 Output_section_data* posd;
1066 if (sh_type == elfcpp::SHT_REL)
1067 {
1068 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1069 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1070 size,
1071 big_endian>(rr);
1072 }
1073 else if (sh_type == elfcpp::SHT_RELA)
1074 {
1075 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1076 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1077 size,
1078 big_endian>(rr);
1079 }
1080 else
1081 gold_unreachable();
1082
1083 os->add_output_section_data(posd);
1084 rr->set_output_data(posd);
1085
1086 return os;
1087 }
1088
1089 // Handle a group section when doing a relocatable link.
1090
1091 template<int size, bool big_endian>
1092 void
1093 Layout::layout_group(Symbol_table* symtab,
1094 Sized_relobj_file<size, big_endian>* object,
1095 unsigned int,
1096 const char* group_section_name,
1097 const char* signature,
1098 const elfcpp::Shdr<size, big_endian>& shdr,
1099 elfcpp::Elf_Word flags,
1100 std::vector<unsigned int>* shndxes)
1101 {
1102 gold_assert(parameters->options().relocatable());
1103 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1104 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1105 Output_section* os = this->make_output_section(group_section_name,
1106 elfcpp::SHT_GROUP,
1107 shdr.get_sh_flags(),
1108 ORDER_INVALID, false);
1109
1110 // We need to find a symbol with the signature in the symbol table.
1111 // If we don't find one now, we need to look again later.
1112 Symbol* sym = symtab->lookup(signature, NULL);
1113 if (sym != NULL)
1114 os->set_info_symndx(sym);
1115 else
1116 {
1117 // Reserve some space to minimize reallocations.
1118 if (this->group_signatures_.empty())
1119 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1120
1121 // We will wind up using a symbol whose name is the signature.
1122 // So just put the signature in the symbol name pool to save it.
1123 signature = symtab->canonicalize_name(signature);
1124 this->group_signatures_.push_back(Group_signature(os, signature));
1125 }
1126
1127 os->set_should_link_to_symtab();
1128 os->set_entsize(4);
1129
1130 section_size_type entry_count =
1131 convert_to_section_size_type(shdr.get_sh_size() / 4);
1132 Output_section_data* posd =
1133 new Output_data_group<size, big_endian>(object, entry_count, flags,
1134 shndxes);
1135 os->add_output_section_data(posd);
1136 }
1137
1138 // Special GNU handling of sections name .eh_frame. They will
1139 // normally hold exception frame data as defined by the C++ ABI
1140 // (http://codesourcery.com/cxx-abi/).
1141
1142 template<int size, bool big_endian>
1143 Output_section*
1144 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1145 const unsigned char* symbols,
1146 off_t symbols_size,
1147 const unsigned char* symbol_names,
1148 off_t symbol_names_size,
1149 unsigned int shndx,
1150 const elfcpp::Shdr<size, big_endian>& shdr,
1151 unsigned int reloc_shndx, unsigned int reloc_type,
1152 off_t* off)
1153 {
1154 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1155 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1156 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1157
1158 Output_section* os = this->make_eh_frame_section(object);
1159 if (os == NULL)
1160 return NULL;
1161
1162 gold_assert(this->eh_frame_section_ == os);
1163
1164 elfcpp::Elf_Xword orig_flags = os->flags();
1165
1166 if (!parameters->incremental()
1167 && this->eh_frame_data_->add_ehframe_input_section(object,
1168 symbols,
1169 symbols_size,
1170 symbol_names,
1171 symbol_names_size,
1172 shndx,
1173 reloc_shndx,
1174 reloc_type))
1175 {
1176 os->update_flags_for_input_section(shdr.get_sh_flags());
1177
1178 // A writable .eh_frame section is a RELRO section.
1179 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1180 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1181 {
1182 os->set_is_relro();
1183 os->set_order(ORDER_RELRO);
1184 }
1185
1186 // We found a .eh_frame section we are going to optimize, so now
1187 // we can add the set of optimized sections to the output
1188 // section. We need to postpone adding this until we've found a
1189 // section we can optimize so that the .eh_frame section in
1190 // crtbegin.o winds up at the start of the output section.
1191 if (!this->added_eh_frame_data_)
1192 {
1193 os->add_output_section_data(this->eh_frame_data_);
1194 this->added_eh_frame_data_ = true;
1195 }
1196 *off = -1;
1197 }
1198 else
1199 {
1200 // We couldn't handle this .eh_frame section for some reason.
1201 // Add it as a normal section.
1202 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1203 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1204 reloc_shndx, saw_sections_clause);
1205 this->have_added_input_section_ = true;
1206
1207 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1208 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1209 os->set_order(this->default_section_order(os, false));
1210 }
1211
1212 return os;
1213 }
1214
1215 // Create and return the magic .eh_frame section. Create
1216 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1217 // input .eh_frame section; it may be NULL.
1218
1219 Output_section*
1220 Layout::make_eh_frame_section(const Relobj* object)
1221 {
1222 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1223 // SHT_PROGBITS.
1224 Output_section* os = this->choose_output_section(object, ".eh_frame",
1225 elfcpp::SHT_PROGBITS,
1226 elfcpp::SHF_ALLOC, false,
1227 ORDER_EHFRAME, false);
1228 if (os == NULL)
1229 return NULL;
1230
1231 if (this->eh_frame_section_ == NULL)
1232 {
1233 this->eh_frame_section_ = os;
1234 this->eh_frame_data_ = new Eh_frame();
1235
1236 // For incremental linking, we do not optimize .eh_frame sections
1237 // or create a .eh_frame_hdr section.
1238 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1239 {
1240 Output_section* hdr_os =
1241 this->choose_output_section(NULL, ".eh_frame_hdr",
1242 elfcpp::SHT_PROGBITS,
1243 elfcpp::SHF_ALLOC, false,
1244 ORDER_EHFRAME, false);
1245
1246 if (hdr_os != NULL)
1247 {
1248 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1249 this->eh_frame_data_);
1250 hdr_os->add_output_section_data(hdr_posd);
1251
1252 hdr_os->set_after_input_sections();
1253
1254 if (!this->script_options_->saw_phdrs_clause())
1255 {
1256 Output_segment* hdr_oseg;
1257 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1258 elfcpp::PF_R);
1259 hdr_oseg->add_output_section_to_nonload(hdr_os,
1260 elfcpp::PF_R);
1261 }
1262
1263 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1264 }
1265 }
1266 }
1267
1268 return os;
1269 }
1270
1271 // Add an exception frame for a PLT. This is called from target code.
1272
1273 void
1274 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1275 size_t cie_length, const unsigned char* fde_data,
1276 size_t fde_length)
1277 {
1278 if (parameters->incremental())
1279 {
1280 // FIXME: Maybe this could work some day....
1281 return;
1282 }
1283 Output_section* os = this->make_eh_frame_section(NULL);
1284 if (os == NULL)
1285 return;
1286 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1287 fde_data, fde_length);
1288 if (!this->added_eh_frame_data_)
1289 {
1290 os->add_output_section_data(this->eh_frame_data_);
1291 this->added_eh_frame_data_ = true;
1292 }
1293 }
1294
1295 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1296 // the output section.
1297
1298 Output_section*
1299 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1300 elfcpp::Elf_Xword flags,
1301 Output_section_data* posd,
1302 Output_section_order order, bool is_relro)
1303 {
1304 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1305 false, order, is_relro);
1306 if (os != NULL)
1307 os->add_output_section_data(posd);
1308 return os;
1309 }
1310
1311 // Map section flags to segment flags.
1312
1313 elfcpp::Elf_Word
1314 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1315 {
1316 elfcpp::Elf_Word ret = elfcpp::PF_R;
1317 if ((flags & elfcpp::SHF_WRITE) != 0)
1318 ret |= elfcpp::PF_W;
1319 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1320 ret |= elfcpp::PF_X;
1321 return ret;
1322 }
1323
1324 // Make a new Output_section, and attach it to segments as
1325 // appropriate. ORDER is the order in which this section should
1326 // appear in the output segment. IS_RELRO is true if this is a relro
1327 // (read-only after relocations) section.
1328
1329 Output_section*
1330 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1331 elfcpp::Elf_Xword flags,
1332 Output_section_order order, bool is_relro)
1333 {
1334 Output_section* os;
1335 if ((flags & elfcpp::SHF_ALLOC) == 0
1336 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1337 && is_compressible_debug_section(name))
1338 os = new Output_compressed_section(&parameters->options(), name, type,
1339 flags);
1340 else if ((flags & elfcpp::SHF_ALLOC) == 0
1341 && parameters->options().strip_debug_non_line()
1342 && strcmp(".debug_abbrev", name) == 0)
1343 {
1344 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1345 name, type, flags);
1346 if (this->debug_info_)
1347 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1348 }
1349 else if ((flags & elfcpp::SHF_ALLOC) == 0
1350 && parameters->options().strip_debug_non_line()
1351 && strcmp(".debug_info", name) == 0)
1352 {
1353 os = this->debug_info_ = new Output_reduced_debug_info_section(
1354 name, type, flags);
1355 if (this->debug_abbrev_)
1356 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1357 }
1358 else
1359 {
1360 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361 // not have correct section types. Force them here.
1362 if (type == elfcpp::SHT_PROGBITS)
1363 {
1364 if (is_prefix_of(".init_array", name))
1365 type = elfcpp::SHT_INIT_ARRAY;
1366 else if (is_prefix_of(".preinit_array", name))
1367 type = elfcpp::SHT_PREINIT_ARRAY;
1368 else if (is_prefix_of(".fini_array", name))
1369 type = elfcpp::SHT_FINI_ARRAY;
1370 }
1371
1372 // FIXME: const_cast is ugly.
1373 Target* target = const_cast<Target*>(&parameters->target());
1374 os = target->make_output_section(name, type, flags);
1375 }
1376
1377 // With -z relro, we have to recognize the special sections by name.
1378 // There is no other way.
1379 bool is_relro_local = false;
1380 if (!this->script_options_->saw_sections_clause()
1381 && parameters->options().relro()
1382 && (flags & elfcpp::SHF_ALLOC) != 0
1383 && (flags & elfcpp::SHF_WRITE) != 0)
1384 {
1385 if (type == elfcpp::SHT_PROGBITS)
1386 {
1387 if (strcmp(name, ".data.rel.ro") == 0)
1388 is_relro = true;
1389 else if (strcmp(name, ".data.rel.ro.local") == 0)
1390 {
1391 is_relro = true;
1392 is_relro_local = true;
1393 }
1394 else if (strcmp(name, ".ctors") == 0
1395 || strcmp(name, ".dtors") == 0
1396 || strcmp(name, ".jcr") == 0)
1397 is_relro = true;
1398 }
1399 else if (type == elfcpp::SHT_INIT_ARRAY
1400 || type == elfcpp::SHT_FINI_ARRAY
1401 || type == elfcpp::SHT_PREINIT_ARRAY)
1402 is_relro = true;
1403 }
1404
1405 if (is_relro)
1406 os->set_is_relro();
1407
1408 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1409 order = this->default_section_order(os, is_relro_local);
1410
1411 os->set_order(order);
1412
1413 parameters->target().new_output_section(os);
1414
1415 this->section_list_.push_back(os);
1416
1417 // The GNU linker by default sorts some sections by priority, so we
1418 // do the same. We need to know that this might happen before we
1419 // attach any input sections.
1420 if (!this->script_options_->saw_sections_clause()
1421 && !parameters->options().relocatable()
1422 && (strcmp(name, ".init_array") == 0
1423 || strcmp(name, ".fini_array") == 0
1424 || (!parameters->options().ctors_in_init_array()
1425 && (strcmp(name, ".ctors") == 0
1426 || strcmp(name, ".dtors") == 0))))
1427 os->set_may_sort_attached_input_sections();
1428
1429 // Check for .stab*str sections, as .stab* sections need to link to
1430 // them.
1431 if (type == elfcpp::SHT_STRTAB
1432 && !this->have_stabstr_section_
1433 && strncmp(name, ".stab", 5) == 0
1434 && strcmp(name + strlen(name) - 3, "str") == 0)
1435 this->have_stabstr_section_ = true;
1436
1437 // During a full incremental link, we add patch space to most
1438 // PROGBITS and NOBITS sections. Flag those that may be
1439 // arbitrarily padded.
1440 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1441 && order != ORDER_INTERP
1442 && order != ORDER_INIT
1443 && order != ORDER_PLT
1444 && order != ORDER_FINI
1445 && order != ORDER_RELRO_LAST
1446 && order != ORDER_NON_RELRO_FIRST
1447 && strcmp(name, ".eh_frame") != 0
1448 && strcmp(name, ".ctors") != 0
1449 && strcmp(name, ".dtors") != 0
1450 && strcmp(name, ".jcr") != 0)
1451 {
1452 os->set_is_patch_space_allowed();
1453
1454 // Certain sections require "holes" to be filled with
1455 // specific fill patterns. These fill patterns may have
1456 // a minimum size, so we must prevent allocations from the
1457 // free list that leave a hole smaller than the minimum.
1458 if (strcmp(name, ".debug_info") == 0)
1459 os->set_free_space_fill(new Output_fill_debug_info(false));
1460 else if (strcmp(name, ".debug_types") == 0)
1461 os->set_free_space_fill(new Output_fill_debug_info(true));
1462 else if (strcmp(name, ".debug_line") == 0)
1463 os->set_free_space_fill(new Output_fill_debug_line());
1464 }
1465
1466 // If we have already attached the sections to segments, then we
1467 // need to attach this one now. This happens for sections created
1468 // directly by the linker.
1469 if (this->sections_are_attached_)
1470 this->attach_section_to_segment(os);
1471
1472 return os;
1473 }
1474
1475 // Return the default order in which a section should be placed in an
1476 // output segment. This function captures a lot of the ideas in
1477 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1478 // linker created section is normally set when the section is created;
1479 // this function is used for input sections.
1480
1481 Output_section_order
1482 Layout::default_section_order(Output_section* os, bool is_relro_local)
1483 {
1484 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1485 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1486 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1487 bool is_bss = false;
1488
1489 switch (os->type())
1490 {
1491 default:
1492 case elfcpp::SHT_PROGBITS:
1493 break;
1494 case elfcpp::SHT_NOBITS:
1495 is_bss = true;
1496 break;
1497 case elfcpp::SHT_RELA:
1498 case elfcpp::SHT_REL:
1499 if (!is_write)
1500 return ORDER_DYNAMIC_RELOCS;
1501 break;
1502 case elfcpp::SHT_HASH:
1503 case elfcpp::SHT_DYNAMIC:
1504 case elfcpp::SHT_SHLIB:
1505 case elfcpp::SHT_DYNSYM:
1506 case elfcpp::SHT_GNU_HASH:
1507 case elfcpp::SHT_GNU_verdef:
1508 case elfcpp::SHT_GNU_verneed:
1509 case elfcpp::SHT_GNU_versym:
1510 if (!is_write)
1511 return ORDER_DYNAMIC_LINKER;
1512 break;
1513 case elfcpp::SHT_NOTE:
1514 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1515 }
1516
1517 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1518 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1519
1520 if (!is_bss && !is_write)
1521 {
1522 if (is_execinstr)
1523 {
1524 if (strcmp(os->name(), ".init") == 0)
1525 return ORDER_INIT;
1526 else if (strcmp(os->name(), ".fini") == 0)
1527 return ORDER_FINI;
1528 }
1529 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1530 }
1531
1532 if (os->is_relro())
1533 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1534
1535 if (os->is_small_section())
1536 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1537 if (os->is_large_section())
1538 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1539
1540 return is_bss ? ORDER_BSS : ORDER_DATA;
1541 }
1542
1543 // Attach output sections to segments. This is called after we have
1544 // seen all the input sections.
1545
1546 void
1547 Layout::attach_sections_to_segments()
1548 {
1549 for (Section_list::iterator p = this->section_list_.begin();
1550 p != this->section_list_.end();
1551 ++p)
1552 this->attach_section_to_segment(*p);
1553
1554 this->sections_are_attached_ = true;
1555 }
1556
1557 // Attach an output section to a segment.
1558
1559 void
1560 Layout::attach_section_to_segment(Output_section* os)
1561 {
1562 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1563 this->unattached_section_list_.push_back(os);
1564 else
1565 this->attach_allocated_section_to_segment(os);
1566 }
1567
1568 // Attach an allocated output section to a segment.
1569
1570 void
1571 Layout::attach_allocated_section_to_segment(Output_section* os)
1572 {
1573 elfcpp::Elf_Xword flags = os->flags();
1574 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1575
1576 if (parameters->options().relocatable())
1577 return;
1578
1579 // If we have a SECTIONS clause, we can't handle the attachment to
1580 // segments until after we've seen all the sections.
1581 if (this->script_options_->saw_sections_clause())
1582 return;
1583
1584 gold_assert(!this->script_options_->saw_phdrs_clause());
1585
1586 // This output section goes into a PT_LOAD segment.
1587
1588 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1589
1590 // Check for --section-start.
1591 uint64_t addr;
1592 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1593
1594 // In general the only thing we really care about for PT_LOAD
1595 // segments is whether or not they are writable or executable,
1596 // so that is how we search for them.
1597 // Large data sections also go into their own PT_LOAD segment.
1598 // People who need segments sorted on some other basis will
1599 // have to use a linker script.
1600
1601 Segment_list::const_iterator p;
1602 for (p = this->segment_list_.begin();
1603 p != this->segment_list_.end();
1604 ++p)
1605 {
1606 if ((*p)->type() != elfcpp::PT_LOAD)
1607 continue;
1608 if (!parameters->options().omagic()
1609 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1610 continue;
1611 if (parameters->options().rosegment()
1612 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1613 continue;
1614 // If -Tbss was specified, we need to separate the data and BSS
1615 // segments.
1616 if (parameters->options().user_set_Tbss())
1617 {
1618 if ((os->type() == elfcpp::SHT_NOBITS)
1619 == (*p)->has_any_data_sections())
1620 continue;
1621 }
1622 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1623 continue;
1624
1625 if (is_address_set)
1626 {
1627 if ((*p)->are_addresses_set())
1628 continue;
1629
1630 (*p)->add_initial_output_data(os);
1631 (*p)->update_flags_for_output_section(seg_flags);
1632 (*p)->set_addresses(addr, addr);
1633 break;
1634 }
1635
1636 (*p)->add_output_section_to_load(this, os, seg_flags);
1637 break;
1638 }
1639
1640 if (p == this->segment_list_.end())
1641 {
1642 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1643 seg_flags);
1644 if (os->is_large_data_section())
1645 oseg->set_is_large_data_segment();
1646 oseg->add_output_section_to_load(this, os, seg_flags);
1647 if (is_address_set)
1648 oseg->set_addresses(addr, addr);
1649 }
1650
1651 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1652 // segment.
1653 if (os->type() == elfcpp::SHT_NOTE)
1654 {
1655 // See if we already have an equivalent PT_NOTE segment.
1656 for (p = this->segment_list_.begin();
1657 p != segment_list_.end();
1658 ++p)
1659 {
1660 if ((*p)->type() == elfcpp::PT_NOTE
1661 && (((*p)->flags() & elfcpp::PF_W)
1662 == (seg_flags & elfcpp::PF_W)))
1663 {
1664 (*p)->add_output_section_to_nonload(os, seg_flags);
1665 break;
1666 }
1667 }
1668
1669 if (p == this->segment_list_.end())
1670 {
1671 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1672 seg_flags);
1673 oseg->add_output_section_to_nonload(os, seg_flags);
1674 }
1675 }
1676
1677 // If we see a loadable SHF_TLS section, we create a PT_TLS
1678 // segment. There can only be one such segment.
1679 if ((flags & elfcpp::SHF_TLS) != 0)
1680 {
1681 if (this->tls_segment_ == NULL)
1682 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1683 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1684 }
1685
1686 // If -z relro is in effect, and we see a relro section, we create a
1687 // PT_GNU_RELRO segment. There can only be one such segment.
1688 if (os->is_relro() && parameters->options().relro())
1689 {
1690 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1691 if (this->relro_segment_ == NULL)
1692 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1693 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1694 }
1695
1696 // If we see a section named .interp, put it into a PT_INTERP
1697 // segment. This seems broken to me, but this is what GNU ld does,
1698 // and glibc expects it.
1699 if (strcmp(os->name(), ".interp") == 0
1700 && !this->script_options_->saw_phdrs_clause())
1701 {
1702 if (this->interp_segment_ == NULL)
1703 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1704 else
1705 gold_warning(_("multiple '.interp' sections in input files "
1706 "may cause confusing PT_INTERP segment"));
1707 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1708 }
1709 }
1710
1711 // Make an output section for a script.
1712
1713 Output_section*
1714 Layout::make_output_section_for_script(
1715 const char* name,
1716 Script_sections::Section_type section_type)
1717 {
1718 name = this->namepool_.add(name, false, NULL);
1719 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1720 if (section_type == Script_sections::ST_NOLOAD)
1721 sh_flags = 0;
1722 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1723 sh_flags, ORDER_INVALID,
1724 false);
1725 os->set_found_in_sections_clause();
1726 if (section_type == Script_sections::ST_NOLOAD)
1727 os->set_is_noload();
1728 return os;
1729 }
1730
1731 // Return the number of segments we expect to see.
1732
1733 size_t
1734 Layout::expected_segment_count() const
1735 {
1736 size_t ret = this->segment_list_.size();
1737
1738 // If we didn't see a SECTIONS clause in a linker script, we should
1739 // already have the complete list of segments. Otherwise we ask the
1740 // SECTIONS clause how many segments it expects, and add in the ones
1741 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1742
1743 if (!this->script_options_->saw_sections_clause())
1744 return ret;
1745 else
1746 {
1747 const Script_sections* ss = this->script_options_->script_sections();
1748 return ret + ss->expected_segment_count(this);
1749 }
1750 }
1751
1752 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1753 // is whether we saw a .note.GNU-stack section in the object file.
1754 // GNU_STACK_FLAGS is the section flags. The flags give the
1755 // protection required for stack memory. We record this in an
1756 // executable as a PT_GNU_STACK segment. If an object file does not
1757 // have a .note.GNU-stack segment, we must assume that it is an old
1758 // object. On some targets that will force an executable stack.
1759
1760 void
1761 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1762 const Object* obj)
1763 {
1764 if (!seen_gnu_stack)
1765 {
1766 this->input_without_gnu_stack_note_ = true;
1767 if (parameters->options().warn_execstack()
1768 && parameters->target().is_default_stack_executable())
1769 gold_warning(_("%s: missing .note.GNU-stack section"
1770 " implies executable stack"),
1771 obj->name().c_str());
1772 }
1773 else
1774 {
1775 this->input_with_gnu_stack_note_ = true;
1776 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1777 {
1778 this->input_requires_executable_stack_ = true;
1779 if (parameters->options().warn_execstack()
1780 || parameters->options().is_stack_executable())
1781 gold_warning(_("%s: requires executable stack"),
1782 obj->name().c_str());
1783 }
1784 }
1785 }
1786
1787 // Create automatic note sections.
1788
1789 void
1790 Layout::create_notes()
1791 {
1792 this->create_gold_note();
1793 this->create_executable_stack_info();
1794 this->create_build_id();
1795 }
1796
1797 // Create the dynamic sections which are needed before we read the
1798 // relocs.
1799
1800 void
1801 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1802 {
1803 if (parameters->doing_static_link())
1804 return;
1805
1806 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1807 elfcpp::SHT_DYNAMIC,
1808 (elfcpp::SHF_ALLOC
1809 | elfcpp::SHF_WRITE),
1810 false, ORDER_RELRO,
1811 true);
1812
1813 // A linker script may discard .dynamic, so check for NULL.
1814 if (this->dynamic_section_ != NULL)
1815 {
1816 this->dynamic_symbol_ =
1817 symtab->define_in_output_data("_DYNAMIC", NULL,
1818 Symbol_table::PREDEFINED,
1819 this->dynamic_section_, 0, 0,
1820 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1821 elfcpp::STV_HIDDEN, 0, false, false);
1822
1823 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1824
1825 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1826 }
1827 }
1828
1829 // For each output section whose name can be represented as C symbol,
1830 // define __start and __stop symbols for the section. This is a GNU
1831 // extension.
1832
1833 void
1834 Layout::define_section_symbols(Symbol_table* symtab)
1835 {
1836 for (Section_list::const_iterator p = this->section_list_.begin();
1837 p != this->section_list_.end();
1838 ++p)
1839 {
1840 const char* const name = (*p)->name();
1841 if (is_cident(name))
1842 {
1843 const std::string name_string(name);
1844 const std::string start_name(cident_section_start_prefix
1845 + name_string);
1846 const std::string stop_name(cident_section_stop_prefix
1847 + name_string);
1848
1849 symtab->define_in_output_data(start_name.c_str(),
1850 NULL, // version
1851 Symbol_table::PREDEFINED,
1852 *p,
1853 0, // value
1854 0, // symsize
1855 elfcpp::STT_NOTYPE,
1856 elfcpp::STB_GLOBAL,
1857 elfcpp::STV_DEFAULT,
1858 0, // nonvis
1859 false, // offset_is_from_end
1860 true); // only_if_ref
1861
1862 symtab->define_in_output_data(stop_name.c_str(),
1863 NULL, // version
1864 Symbol_table::PREDEFINED,
1865 *p,
1866 0, // value
1867 0, // symsize
1868 elfcpp::STT_NOTYPE,
1869 elfcpp::STB_GLOBAL,
1870 elfcpp::STV_DEFAULT,
1871 0, // nonvis
1872 true, // offset_is_from_end
1873 true); // only_if_ref
1874 }
1875 }
1876 }
1877
1878 // Define symbols for group signatures.
1879
1880 void
1881 Layout::define_group_signatures(Symbol_table* symtab)
1882 {
1883 for (Group_signatures::iterator p = this->group_signatures_.begin();
1884 p != this->group_signatures_.end();
1885 ++p)
1886 {
1887 Symbol* sym = symtab->lookup(p->signature, NULL);
1888 if (sym != NULL)
1889 p->section->set_info_symndx(sym);
1890 else
1891 {
1892 // Force the name of the group section to the group
1893 // signature, and use the group's section symbol as the
1894 // signature symbol.
1895 if (strcmp(p->section->name(), p->signature) != 0)
1896 {
1897 const char* name = this->namepool_.add(p->signature,
1898 true, NULL);
1899 p->section->set_name(name);
1900 }
1901 p->section->set_needs_symtab_index();
1902 p->section->set_info_section_symndx(p->section);
1903 }
1904 }
1905
1906 this->group_signatures_.clear();
1907 }
1908
1909 // Find the first read-only PT_LOAD segment, creating one if
1910 // necessary.
1911
1912 Output_segment*
1913 Layout::find_first_load_seg()
1914 {
1915 Output_segment* best = NULL;
1916 for (Segment_list::const_iterator p = this->segment_list_.begin();
1917 p != this->segment_list_.end();
1918 ++p)
1919 {
1920 if ((*p)->type() == elfcpp::PT_LOAD
1921 && ((*p)->flags() & elfcpp::PF_R) != 0
1922 && (parameters->options().omagic()
1923 || ((*p)->flags() & elfcpp::PF_W) == 0))
1924 {
1925 if (best == NULL || this->segment_precedes(*p, best))
1926 best = *p;
1927 }
1928 }
1929 if (best != NULL)
1930 return best;
1931
1932 gold_assert(!this->script_options_->saw_phdrs_clause());
1933
1934 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1935 elfcpp::PF_R);
1936 return load_seg;
1937 }
1938
1939 // Save states of all current output segments. Store saved states
1940 // in SEGMENT_STATES.
1941
1942 void
1943 Layout::save_segments(Segment_states* segment_states)
1944 {
1945 for (Segment_list::const_iterator p = this->segment_list_.begin();
1946 p != this->segment_list_.end();
1947 ++p)
1948 {
1949 Output_segment* segment = *p;
1950 // Shallow copy.
1951 Output_segment* copy = new Output_segment(*segment);
1952 (*segment_states)[segment] = copy;
1953 }
1954 }
1955
1956 // Restore states of output segments and delete any segment not found in
1957 // SEGMENT_STATES.
1958
1959 void
1960 Layout::restore_segments(const Segment_states* segment_states)
1961 {
1962 // Go through the segment list and remove any segment added in the
1963 // relaxation loop.
1964 this->tls_segment_ = NULL;
1965 this->relro_segment_ = NULL;
1966 Segment_list::iterator list_iter = this->segment_list_.begin();
1967 while (list_iter != this->segment_list_.end())
1968 {
1969 Output_segment* segment = *list_iter;
1970 Segment_states::const_iterator states_iter =
1971 segment_states->find(segment);
1972 if (states_iter != segment_states->end())
1973 {
1974 const Output_segment* copy = states_iter->second;
1975 // Shallow copy to restore states.
1976 *segment = *copy;
1977
1978 // Also fix up TLS and RELRO segment pointers as appropriate.
1979 if (segment->type() == elfcpp::PT_TLS)
1980 this->tls_segment_ = segment;
1981 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1982 this->relro_segment_ = segment;
1983
1984 ++list_iter;
1985 }
1986 else
1987 {
1988 list_iter = this->segment_list_.erase(list_iter);
1989 // This is a segment created during section layout. It should be
1990 // safe to remove it since we should have removed all pointers to it.
1991 delete segment;
1992 }
1993 }
1994 }
1995
1996 // Clean up after relaxation so that sections can be laid out again.
1997
1998 void
1999 Layout::clean_up_after_relaxation()
2000 {
2001 // Restore the segments to point state just prior to the relaxation loop.
2002 Script_sections* script_section = this->script_options_->script_sections();
2003 script_section->release_segments();
2004 this->restore_segments(this->segment_states_);
2005
2006 // Reset section addresses and file offsets
2007 for (Section_list::iterator p = this->section_list_.begin();
2008 p != this->section_list_.end();
2009 ++p)
2010 {
2011 (*p)->restore_states();
2012
2013 // If an input section changes size because of relaxation,
2014 // we need to adjust the section offsets of all input sections.
2015 // after such a section.
2016 if ((*p)->section_offsets_need_adjustment())
2017 (*p)->adjust_section_offsets();
2018
2019 (*p)->reset_address_and_file_offset();
2020 }
2021
2022 // Reset special output object address and file offsets.
2023 for (Data_list::iterator p = this->special_output_list_.begin();
2024 p != this->special_output_list_.end();
2025 ++p)
2026 (*p)->reset_address_and_file_offset();
2027
2028 // A linker script may have created some output section data objects.
2029 // They are useless now.
2030 for (Output_section_data_list::const_iterator p =
2031 this->script_output_section_data_list_.begin();
2032 p != this->script_output_section_data_list_.end();
2033 ++p)
2034 delete *p;
2035 this->script_output_section_data_list_.clear();
2036 }
2037
2038 // Prepare for relaxation.
2039
2040 void
2041 Layout::prepare_for_relaxation()
2042 {
2043 // Create an relaxation debug check if in debugging mode.
2044 if (is_debugging_enabled(DEBUG_RELAXATION))
2045 this->relaxation_debug_check_ = new Relaxation_debug_check();
2046
2047 // Save segment states.
2048 this->segment_states_ = new Segment_states();
2049 this->save_segments(this->segment_states_);
2050
2051 for(Section_list::const_iterator p = this->section_list_.begin();
2052 p != this->section_list_.end();
2053 ++p)
2054 (*p)->save_states();
2055
2056 if (is_debugging_enabled(DEBUG_RELAXATION))
2057 this->relaxation_debug_check_->check_output_data_for_reset_values(
2058 this->section_list_, this->special_output_list_);
2059
2060 // Also enable recording of output section data from scripts.
2061 this->record_output_section_data_from_script_ = true;
2062 }
2063
2064 // Relaxation loop body: If target has no relaxation, this runs only once
2065 // Otherwise, the target relaxation hook is called at the end of
2066 // each iteration. If the hook returns true, it means re-layout of
2067 // section is required.
2068 //
2069 // The number of segments created by a linking script without a PHDRS
2070 // clause may be affected by section sizes and alignments. There is
2071 // a remote chance that relaxation causes different number of PT_LOAD
2072 // segments are created and sections are attached to different segments.
2073 // Therefore, we always throw away all segments created during section
2074 // layout. In order to be able to restart the section layout, we keep
2075 // a copy of the segment list right before the relaxation loop and use
2076 // that to restore the segments.
2077 //
2078 // PASS is the current relaxation pass number.
2079 // SYMTAB is a symbol table.
2080 // PLOAD_SEG is the address of a pointer for the load segment.
2081 // PHDR_SEG is a pointer to the PHDR segment.
2082 // SEGMENT_HEADERS points to the output segment header.
2083 // FILE_HEADER points to the output file header.
2084 // PSHNDX is the address to store the output section index.
2085
2086 off_t inline
2087 Layout::relaxation_loop_body(
2088 int pass,
2089 Target* target,
2090 Symbol_table* symtab,
2091 Output_segment** pload_seg,
2092 Output_segment* phdr_seg,
2093 Output_segment_headers* segment_headers,
2094 Output_file_header* file_header,
2095 unsigned int* pshndx)
2096 {
2097 // If this is not the first iteration, we need to clean up after
2098 // relaxation so that we can lay out the sections again.
2099 if (pass != 0)
2100 this->clean_up_after_relaxation();
2101
2102 // If there is a SECTIONS clause, put all the input sections into
2103 // the required order.
2104 Output_segment* load_seg;
2105 if (this->script_options_->saw_sections_clause())
2106 load_seg = this->set_section_addresses_from_script(symtab);
2107 else if (parameters->options().relocatable())
2108 load_seg = NULL;
2109 else
2110 load_seg = this->find_first_load_seg();
2111
2112 if (parameters->options().oformat_enum()
2113 != General_options::OBJECT_FORMAT_ELF)
2114 load_seg = NULL;
2115
2116 // If the user set the address of the text segment, that may not be
2117 // compatible with putting the segment headers and file headers into
2118 // that segment.
2119 if (parameters->options().user_set_Ttext()
2120 && parameters->options().Ttext() % target->common_pagesize() != 0)
2121 {
2122 load_seg = NULL;
2123 phdr_seg = NULL;
2124 }
2125
2126 gold_assert(phdr_seg == NULL
2127 || load_seg != NULL
2128 || this->script_options_->saw_sections_clause());
2129
2130 // If the address of the load segment we found has been set by
2131 // --section-start rather than by a script, then adjust the VMA and
2132 // LMA downward if possible to include the file and section headers.
2133 uint64_t header_gap = 0;
2134 if (load_seg != NULL
2135 && load_seg->are_addresses_set()
2136 && !this->script_options_->saw_sections_clause()
2137 && !parameters->options().relocatable())
2138 {
2139 file_header->finalize_data_size();
2140 segment_headers->finalize_data_size();
2141 size_t sizeof_headers = (file_header->data_size()
2142 + segment_headers->data_size());
2143 const uint64_t abi_pagesize = target->abi_pagesize();
2144 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2145 hdr_paddr &= ~(abi_pagesize - 1);
2146 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2147 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2148 load_seg = NULL;
2149 else
2150 {
2151 load_seg->set_addresses(load_seg->vaddr() - subtract,
2152 load_seg->paddr() - subtract);
2153 header_gap = subtract - sizeof_headers;
2154 }
2155 }
2156
2157 // Lay out the segment headers.
2158 if (!parameters->options().relocatable())
2159 {
2160 gold_assert(segment_headers != NULL);
2161 if (header_gap != 0 && load_seg != NULL)
2162 {
2163 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2164 load_seg->add_initial_output_data(z);
2165 }
2166 if (load_seg != NULL)
2167 load_seg->add_initial_output_data(segment_headers);
2168 if (phdr_seg != NULL)
2169 phdr_seg->add_initial_output_data(segment_headers);
2170 }
2171
2172 // Lay out the file header.
2173 if (load_seg != NULL)
2174 load_seg->add_initial_output_data(file_header);
2175
2176 if (this->script_options_->saw_phdrs_clause()
2177 && !parameters->options().relocatable())
2178 {
2179 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2180 // clause in a linker script.
2181 Script_sections* ss = this->script_options_->script_sections();
2182 ss->put_headers_in_phdrs(file_header, segment_headers);
2183 }
2184
2185 // We set the output section indexes in set_segment_offsets and
2186 // set_section_indexes.
2187 *pshndx = 1;
2188
2189 // Set the file offsets of all the segments, and all the sections
2190 // they contain.
2191 off_t off;
2192 if (!parameters->options().relocatable())
2193 off = this->set_segment_offsets(target, load_seg, pshndx);
2194 else
2195 off = this->set_relocatable_section_offsets(file_header, pshndx);
2196
2197 // Verify that the dummy relaxation does not change anything.
2198 if (is_debugging_enabled(DEBUG_RELAXATION))
2199 {
2200 if (pass == 0)
2201 this->relaxation_debug_check_->read_sections(this->section_list_);
2202 else
2203 this->relaxation_debug_check_->verify_sections(this->section_list_);
2204 }
2205
2206 *pload_seg = load_seg;
2207 return off;
2208 }
2209
2210 // Search the list of patterns and find the postion of the given section
2211 // name in the output section. If the section name matches a glob
2212 // pattern and a non-glob name, then the non-glob position takes
2213 // precedence. Return 0 if no match is found.
2214
2215 unsigned int
2216 Layout::find_section_order_index(const std::string& section_name)
2217 {
2218 Unordered_map<std::string, unsigned int>::iterator map_it;
2219 map_it = this->input_section_position_.find(section_name);
2220 if (map_it != this->input_section_position_.end())
2221 return map_it->second;
2222
2223 // Absolute match failed. Linear search the glob patterns.
2224 std::vector<std::string>::iterator it;
2225 for (it = this->input_section_glob_.begin();
2226 it != this->input_section_glob_.end();
2227 ++it)
2228 {
2229 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2230 {
2231 map_it = this->input_section_position_.find(*it);
2232 gold_assert(map_it != this->input_section_position_.end());
2233 return map_it->second;
2234 }
2235 }
2236 return 0;
2237 }
2238
2239 // Read the sequence of input sections from the file specified with
2240 // option --section-ordering-file.
2241
2242 void
2243 Layout::read_layout_from_file()
2244 {
2245 const char* filename = parameters->options().section_ordering_file();
2246 std::ifstream in;
2247 std::string line;
2248
2249 in.open(filename);
2250 if (!in)
2251 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2252 filename, strerror(errno));
2253
2254 std::getline(in, line); // this chops off the trailing \n, if any
2255 unsigned int position = 1;
2256 this->set_section_ordering_specified();
2257
2258 while (in)
2259 {
2260 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2261 line.resize(line.length() - 1);
2262 // Ignore comments, beginning with '#'
2263 if (line[0] == '#')
2264 {
2265 std::getline(in, line);
2266 continue;
2267 }
2268 this->input_section_position_[line] = position;
2269 // Store all glob patterns in a vector.
2270 if (is_wildcard_string(line.c_str()))
2271 this->input_section_glob_.push_back(line);
2272 position++;
2273 std::getline(in, line);
2274 }
2275 }
2276
2277 // Finalize the layout. When this is called, we have created all the
2278 // output sections and all the output segments which are based on
2279 // input sections. We have several things to do, and we have to do
2280 // them in the right order, so that we get the right results correctly
2281 // and efficiently.
2282
2283 // 1) Finalize the list of output segments and create the segment
2284 // table header.
2285
2286 // 2) Finalize the dynamic symbol table and associated sections.
2287
2288 // 3) Determine the final file offset of all the output segments.
2289
2290 // 4) Determine the final file offset of all the SHF_ALLOC output
2291 // sections.
2292
2293 // 5) Create the symbol table sections and the section name table
2294 // section.
2295
2296 // 6) Finalize the symbol table: set symbol values to their final
2297 // value and make a final determination of which symbols are going
2298 // into the output symbol table.
2299
2300 // 7) Create the section table header.
2301
2302 // 8) Determine the final file offset of all the output sections which
2303 // are not SHF_ALLOC, including the section table header.
2304
2305 // 9) Finalize the ELF file header.
2306
2307 // This function returns the size of the output file.
2308
2309 off_t
2310 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2311 Target* target, const Task* task)
2312 {
2313 target->finalize_sections(this, input_objects, symtab);
2314
2315 this->count_local_symbols(task, input_objects);
2316
2317 this->link_stabs_sections();
2318
2319 Output_segment* phdr_seg = NULL;
2320 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2321 {
2322 // There was a dynamic object in the link. We need to create
2323 // some information for the dynamic linker.
2324
2325 // Create the PT_PHDR segment which will hold the program
2326 // headers.
2327 if (!this->script_options_->saw_phdrs_clause())
2328 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2329
2330 // Create the dynamic symbol table, including the hash table.
2331 Output_section* dynstr;
2332 std::vector<Symbol*> dynamic_symbols;
2333 unsigned int local_dynamic_count;
2334 Versions versions(*this->script_options()->version_script_info(),
2335 &this->dynpool_);
2336 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2337 &local_dynamic_count, &dynamic_symbols,
2338 &versions);
2339
2340 // Create the .interp section to hold the name of the
2341 // interpreter, and put it in a PT_INTERP segment. Don't do it
2342 // if we saw a .interp section in an input file.
2343 if ((!parameters->options().shared()
2344 || parameters->options().dynamic_linker() != NULL)
2345 && this->interp_segment_ == NULL)
2346 this->create_interp(target);
2347
2348 // Finish the .dynamic section to hold the dynamic data, and put
2349 // it in a PT_DYNAMIC segment.
2350 this->finish_dynamic_section(input_objects, symtab);
2351
2352 // We should have added everything we need to the dynamic string
2353 // table.
2354 this->dynpool_.set_string_offsets();
2355
2356 // Create the version sections. We can't do this until the
2357 // dynamic string table is complete.
2358 this->create_version_sections(&versions, symtab, local_dynamic_count,
2359 dynamic_symbols, dynstr);
2360
2361 // Set the size of the _DYNAMIC symbol. We can't do this until
2362 // after we call create_version_sections.
2363 this->set_dynamic_symbol_size(symtab);
2364 }
2365
2366 // Create segment headers.
2367 Output_segment_headers* segment_headers =
2368 (parameters->options().relocatable()
2369 ? NULL
2370 : new Output_segment_headers(this->segment_list_));
2371
2372 // Lay out the file header.
2373 Output_file_header* file_header = new Output_file_header(target, symtab,
2374 segment_headers);
2375
2376 this->special_output_list_.push_back(file_header);
2377 if (segment_headers != NULL)
2378 this->special_output_list_.push_back(segment_headers);
2379
2380 // Find approriate places for orphan output sections if we are using
2381 // a linker script.
2382 if (this->script_options_->saw_sections_clause())
2383 this->place_orphan_sections_in_script();
2384
2385 Output_segment* load_seg;
2386 off_t off;
2387 unsigned int shndx;
2388 int pass = 0;
2389
2390 // Take a snapshot of the section layout as needed.
2391 if (target->may_relax())
2392 this->prepare_for_relaxation();
2393
2394 // Run the relaxation loop to lay out sections.
2395 do
2396 {
2397 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2398 phdr_seg, segment_headers, file_header,
2399 &shndx);
2400 pass++;
2401 }
2402 while (target->may_relax()
2403 && target->relax(pass, input_objects, symtab, this, task));
2404
2405 // Set the file offsets of all the non-data sections we've seen so
2406 // far which don't have to wait for the input sections. We need
2407 // this in order to finalize local symbols in non-allocated
2408 // sections.
2409 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2410
2411 // Set the section indexes of all unallocated sections seen so far,
2412 // in case any of them are somehow referenced by a symbol.
2413 shndx = this->set_section_indexes(shndx);
2414
2415 // Create the symbol table sections.
2416 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2417 if (!parameters->doing_static_link())
2418 this->assign_local_dynsym_offsets(input_objects);
2419
2420 // Process any symbol assignments from a linker script. This must
2421 // be called after the symbol table has been finalized.
2422 this->script_options_->finalize_symbols(symtab, this);
2423
2424 // Create the incremental inputs sections.
2425 if (this->incremental_inputs_)
2426 {
2427 this->incremental_inputs_->finalize();
2428 this->create_incremental_info_sections(symtab);
2429 }
2430
2431 // Create the .shstrtab section.
2432 Output_section* shstrtab_section = this->create_shstrtab();
2433
2434 // Set the file offsets of the rest of the non-data sections which
2435 // don't have to wait for the input sections.
2436 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2437
2438 // Now that all sections have been created, set the section indexes
2439 // for any sections which haven't been done yet.
2440 shndx = this->set_section_indexes(shndx);
2441
2442 // Create the section table header.
2443 this->create_shdrs(shstrtab_section, &off);
2444
2445 // If there are no sections which require postprocessing, we can
2446 // handle the section names now, and avoid a resize later.
2447 if (!this->any_postprocessing_sections_)
2448 {
2449 off = this->set_section_offsets(off,
2450 POSTPROCESSING_SECTIONS_PASS);
2451 off =
2452 this->set_section_offsets(off,
2453 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2454 }
2455
2456 file_header->set_section_info(this->section_headers_, shstrtab_section);
2457
2458 // Now we know exactly where everything goes in the output file
2459 // (except for non-allocated sections which require postprocessing).
2460 Output_data::layout_complete();
2461
2462 this->output_file_size_ = off;
2463
2464 return off;
2465 }
2466
2467 // Create a note header following the format defined in the ELF ABI.
2468 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2469 // of the section to create, DESCSZ is the size of the descriptor.
2470 // ALLOCATE is true if the section should be allocated in memory.
2471 // This returns the new note section. It sets *TRAILING_PADDING to
2472 // the number of trailing zero bytes required.
2473
2474 Output_section*
2475 Layout::create_note(const char* name, int note_type,
2476 const char* section_name, size_t descsz,
2477 bool allocate, size_t* trailing_padding)
2478 {
2479 // Authorities all agree that the values in a .note field should
2480 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2481 // they differ on what the alignment is for 64-bit binaries.
2482 // The GABI says unambiguously they take 8-byte alignment:
2483 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2484 // Other documentation says alignment should always be 4 bytes:
2485 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2486 // GNU ld and GNU readelf both support the latter (at least as of
2487 // version 2.16.91), and glibc always generates the latter for
2488 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2489 // here.
2490 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2491 const int size = parameters->target().get_size();
2492 #else
2493 const int size = 32;
2494 #endif
2495
2496 // The contents of the .note section.
2497 size_t namesz = strlen(name) + 1;
2498 size_t aligned_namesz = align_address(namesz, size / 8);
2499 size_t aligned_descsz = align_address(descsz, size / 8);
2500
2501 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2502
2503 unsigned char* buffer = new unsigned char[notehdrsz];
2504 memset(buffer, 0, notehdrsz);
2505
2506 bool is_big_endian = parameters->target().is_big_endian();
2507
2508 if (size == 32)
2509 {
2510 if (!is_big_endian)
2511 {
2512 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2513 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2514 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2515 }
2516 else
2517 {
2518 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2519 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2520 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2521 }
2522 }
2523 else if (size == 64)
2524 {
2525 if (!is_big_endian)
2526 {
2527 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2528 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2529 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2530 }
2531 else
2532 {
2533 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2534 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2535 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2536 }
2537 }
2538 else
2539 gold_unreachable();
2540
2541 memcpy(buffer + 3 * (size / 8), name, namesz);
2542
2543 elfcpp::Elf_Xword flags = 0;
2544 Output_section_order order = ORDER_INVALID;
2545 if (allocate)
2546 {
2547 flags = elfcpp::SHF_ALLOC;
2548 order = ORDER_RO_NOTE;
2549 }
2550 Output_section* os = this->choose_output_section(NULL, section_name,
2551 elfcpp::SHT_NOTE,
2552 flags, false, order, false);
2553 if (os == NULL)
2554 return NULL;
2555
2556 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2557 size / 8,
2558 "** note header");
2559 os->add_output_section_data(posd);
2560
2561 *trailing_padding = aligned_descsz - descsz;
2562
2563 return os;
2564 }
2565
2566 // For an executable or shared library, create a note to record the
2567 // version of gold used to create the binary.
2568
2569 void
2570 Layout::create_gold_note()
2571 {
2572 if (parameters->options().relocatable()
2573 || parameters->incremental_update())
2574 return;
2575
2576 std::string desc = std::string("gold ") + gold::get_version_string();
2577
2578 size_t trailing_padding;
2579 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2580 ".note.gnu.gold-version", desc.size(),
2581 false, &trailing_padding);
2582 if (os == NULL)
2583 return;
2584
2585 Output_section_data* posd = new Output_data_const(desc, 4);
2586 os->add_output_section_data(posd);
2587
2588 if (trailing_padding > 0)
2589 {
2590 posd = new Output_data_zero_fill(trailing_padding, 0);
2591 os->add_output_section_data(posd);
2592 }
2593 }
2594
2595 // Record whether the stack should be executable. This can be set
2596 // from the command line using the -z execstack or -z noexecstack
2597 // options. Otherwise, if any input file has a .note.GNU-stack
2598 // section with the SHF_EXECINSTR flag set, the stack should be
2599 // executable. Otherwise, if at least one input file a
2600 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2601 // section, we use the target default for whether the stack should be
2602 // executable. Otherwise, we don't generate a stack note. When
2603 // generating a object file, we create a .note.GNU-stack section with
2604 // the appropriate marking. When generating an executable or shared
2605 // library, we create a PT_GNU_STACK segment.
2606
2607 void
2608 Layout::create_executable_stack_info()
2609 {
2610 bool is_stack_executable;
2611 if (parameters->options().is_execstack_set())
2612 is_stack_executable = parameters->options().is_stack_executable();
2613 else if (!this->input_with_gnu_stack_note_)
2614 return;
2615 else
2616 {
2617 if (this->input_requires_executable_stack_)
2618 is_stack_executable = true;
2619 else if (this->input_without_gnu_stack_note_)
2620 is_stack_executable =
2621 parameters->target().is_default_stack_executable();
2622 else
2623 is_stack_executable = false;
2624 }
2625
2626 if (parameters->options().relocatable())
2627 {
2628 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2629 elfcpp::Elf_Xword flags = 0;
2630 if (is_stack_executable)
2631 flags |= elfcpp::SHF_EXECINSTR;
2632 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2633 ORDER_INVALID, false);
2634 }
2635 else
2636 {
2637 if (this->script_options_->saw_phdrs_clause())
2638 return;
2639 int flags = elfcpp::PF_R | elfcpp::PF_W;
2640 if (is_stack_executable)
2641 flags |= elfcpp::PF_X;
2642 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2643 }
2644 }
2645
2646 // If --build-id was used, set up the build ID note.
2647
2648 void
2649 Layout::create_build_id()
2650 {
2651 if (!parameters->options().user_set_build_id())
2652 return;
2653
2654 const char* style = parameters->options().build_id();
2655 if (strcmp(style, "none") == 0)
2656 return;
2657
2658 // Set DESCSZ to the size of the note descriptor. When possible,
2659 // set DESC to the note descriptor contents.
2660 size_t descsz;
2661 std::string desc;
2662 if (strcmp(style, "md5") == 0)
2663 descsz = 128 / 8;
2664 else if (strcmp(style, "sha1") == 0)
2665 descsz = 160 / 8;
2666 else if (strcmp(style, "uuid") == 0)
2667 {
2668 const size_t uuidsz = 128 / 8;
2669
2670 char buffer[uuidsz];
2671 memset(buffer, 0, uuidsz);
2672
2673 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2674 if (descriptor < 0)
2675 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2676 strerror(errno));
2677 else
2678 {
2679 ssize_t got = ::read(descriptor, buffer, uuidsz);
2680 release_descriptor(descriptor, true);
2681 if (got < 0)
2682 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2683 else if (static_cast<size_t>(got) != uuidsz)
2684 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2685 uuidsz, got);
2686 }
2687
2688 desc.assign(buffer, uuidsz);
2689 descsz = uuidsz;
2690 }
2691 else if (strncmp(style, "0x", 2) == 0)
2692 {
2693 hex_init();
2694 const char* p = style + 2;
2695 while (*p != '\0')
2696 {
2697 if (hex_p(p[0]) && hex_p(p[1]))
2698 {
2699 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2700 desc += c;
2701 p += 2;
2702 }
2703 else if (*p == '-' || *p == ':')
2704 ++p;
2705 else
2706 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2707 style);
2708 }
2709 descsz = desc.size();
2710 }
2711 else
2712 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2713
2714 // Create the note.
2715 size_t trailing_padding;
2716 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2717 ".note.gnu.build-id", descsz, true,
2718 &trailing_padding);
2719 if (os == NULL)
2720 return;
2721
2722 if (!desc.empty())
2723 {
2724 // We know the value already, so we fill it in now.
2725 gold_assert(desc.size() == descsz);
2726
2727 Output_section_data* posd = new Output_data_const(desc, 4);
2728 os->add_output_section_data(posd);
2729
2730 if (trailing_padding != 0)
2731 {
2732 posd = new Output_data_zero_fill(trailing_padding, 0);
2733 os->add_output_section_data(posd);
2734 }
2735 }
2736 else
2737 {
2738 // We need to compute a checksum after we have completed the
2739 // link.
2740 gold_assert(trailing_padding == 0);
2741 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2742 os->add_output_section_data(this->build_id_note_);
2743 }
2744 }
2745
2746 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2747 // field of the former should point to the latter. I'm not sure who
2748 // started this, but the GNU linker does it, and some tools depend
2749 // upon it.
2750
2751 void
2752 Layout::link_stabs_sections()
2753 {
2754 if (!this->have_stabstr_section_)
2755 return;
2756
2757 for (Section_list::iterator p = this->section_list_.begin();
2758 p != this->section_list_.end();
2759 ++p)
2760 {
2761 if ((*p)->type() != elfcpp::SHT_STRTAB)
2762 continue;
2763
2764 const char* name = (*p)->name();
2765 if (strncmp(name, ".stab", 5) != 0)
2766 continue;
2767
2768 size_t len = strlen(name);
2769 if (strcmp(name + len - 3, "str") != 0)
2770 continue;
2771
2772 std::string stab_name(name, len - 3);
2773 Output_section* stab_sec;
2774 stab_sec = this->find_output_section(stab_name.c_str());
2775 if (stab_sec != NULL)
2776 stab_sec->set_link_section(*p);
2777 }
2778 }
2779
2780 // Create .gnu_incremental_inputs and related sections needed
2781 // for the next run of incremental linking to check what has changed.
2782
2783 void
2784 Layout::create_incremental_info_sections(Symbol_table* symtab)
2785 {
2786 Incremental_inputs* incr = this->incremental_inputs_;
2787
2788 gold_assert(incr != NULL);
2789
2790 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2791 incr->create_data_sections(symtab);
2792
2793 // Add the .gnu_incremental_inputs section.
2794 const char* incremental_inputs_name =
2795 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2796 Output_section* incremental_inputs_os =
2797 this->make_output_section(incremental_inputs_name,
2798 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2799 ORDER_INVALID, false);
2800 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2801
2802 // Add the .gnu_incremental_symtab section.
2803 const char* incremental_symtab_name =
2804 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2805 Output_section* incremental_symtab_os =
2806 this->make_output_section(incremental_symtab_name,
2807 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2808 ORDER_INVALID, false);
2809 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2810 incremental_symtab_os->set_entsize(4);
2811
2812 // Add the .gnu_incremental_relocs section.
2813 const char* incremental_relocs_name =
2814 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2815 Output_section* incremental_relocs_os =
2816 this->make_output_section(incremental_relocs_name,
2817 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2818 ORDER_INVALID, false);
2819 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2820 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2821
2822 // Add the .gnu_incremental_got_plt section.
2823 const char* incremental_got_plt_name =
2824 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2825 Output_section* incremental_got_plt_os =
2826 this->make_output_section(incremental_got_plt_name,
2827 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2828 ORDER_INVALID, false);
2829 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2830
2831 // Add the .gnu_incremental_strtab section.
2832 const char* incremental_strtab_name =
2833 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2834 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2835 elfcpp::SHT_STRTAB, 0,
2836 ORDER_INVALID, false);
2837 Output_data_strtab* strtab_data =
2838 new Output_data_strtab(incr->get_stringpool());
2839 incremental_strtab_os->add_output_section_data(strtab_data);
2840
2841 incremental_inputs_os->set_after_input_sections();
2842 incremental_symtab_os->set_after_input_sections();
2843 incremental_relocs_os->set_after_input_sections();
2844 incremental_got_plt_os->set_after_input_sections();
2845
2846 incremental_inputs_os->set_link_section(incremental_strtab_os);
2847 incremental_symtab_os->set_link_section(incremental_inputs_os);
2848 incremental_relocs_os->set_link_section(incremental_inputs_os);
2849 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2850 }
2851
2852 // Return whether SEG1 should be before SEG2 in the output file. This
2853 // is based entirely on the segment type and flags. When this is
2854 // called the segment addresses have normally not yet been set.
2855
2856 bool
2857 Layout::segment_precedes(const Output_segment* seg1,
2858 const Output_segment* seg2)
2859 {
2860 elfcpp::Elf_Word type1 = seg1->type();
2861 elfcpp::Elf_Word type2 = seg2->type();
2862
2863 // The single PT_PHDR segment is required to precede any loadable
2864 // segment. We simply make it always first.
2865 if (type1 == elfcpp::PT_PHDR)
2866 {
2867 gold_assert(type2 != elfcpp::PT_PHDR);
2868 return true;
2869 }
2870 if (type2 == elfcpp::PT_PHDR)
2871 return false;
2872
2873 // The single PT_INTERP segment is required to precede any loadable
2874 // segment. We simply make it always second.
2875 if (type1 == elfcpp::PT_INTERP)
2876 {
2877 gold_assert(type2 != elfcpp::PT_INTERP);
2878 return true;
2879 }
2880 if (type2 == elfcpp::PT_INTERP)
2881 return false;
2882
2883 // We then put PT_LOAD segments before any other segments.
2884 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2885 return true;
2886 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2887 return false;
2888
2889 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2890 // segment, because that is where the dynamic linker expects to find
2891 // it (this is just for efficiency; other positions would also work
2892 // correctly).
2893 if (type1 == elfcpp::PT_TLS
2894 && type2 != elfcpp::PT_TLS
2895 && type2 != elfcpp::PT_GNU_RELRO)
2896 return false;
2897 if (type2 == elfcpp::PT_TLS
2898 && type1 != elfcpp::PT_TLS
2899 && type1 != elfcpp::PT_GNU_RELRO)
2900 return true;
2901
2902 // We put the PT_GNU_RELRO segment last, because that is where the
2903 // dynamic linker expects to find it (as with PT_TLS, this is just
2904 // for efficiency).
2905 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2906 return false;
2907 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2908 return true;
2909
2910 const elfcpp::Elf_Word flags1 = seg1->flags();
2911 const elfcpp::Elf_Word flags2 = seg2->flags();
2912
2913 // The order of non-PT_LOAD segments is unimportant. We simply sort
2914 // by the numeric segment type and flags values. There should not
2915 // be more than one segment with the same type and flags.
2916 if (type1 != elfcpp::PT_LOAD)
2917 {
2918 if (type1 != type2)
2919 return type1 < type2;
2920 gold_assert(flags1 != flags2);
2921 return flags1 < flags2;
2922 }
2923
2924 // If the addresses are set already, sort by load address.
2925 if (seg1->are_addresses_set())
2926 {
2927 if (!seg2->are_addresses_set())
2928 return true;
2929
2930 unsigned int section_count1 = seg1->output_section_count();
2931 unsigned int section_count2 = seg2->output_section_count();
2932 if (section_count1 == 0 && section_count2 > 0)
2933 return true;
2934 if (section_count1 > 0 && section_count2 == 0)
2935 return false;
2936
2937 uint64_t paddr1 = (seg1->are_addresses_set()
2938 ? seg1->paddr()
2939 : seg1->first_section_load_address());
2940 uint64_t paddr2 = (seg2->are_addresses_set()
2941 ? seg2->paddr()
2942 : seg2->first_section_load_address());
2943
2944 if (paddr1 != paddr2)
2945 return paddr1 < paddr2;
2946 }
2947 else if (seg2->are_addresses_set())
2948 return false;
2949
2950 // A segment which holds large data comes after a segment which does
2951 // not hold large data.
2952 if (seg1->is_large_data_segment())
2953 {
2954 if (!seg2->is_large_data_segment())
2955 return false;
2956 }
2957 else if (seg2->is_large_data_segment())
2958 return true;
2959
2960 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2961 // segments come before writable segments. Then writable segments
2962 // with data come before writable segments without data. Then
2963 // executable segments come before non-executable segments. Then
2964 // the unlikely case of a non-readable segment comes before the
2965 // normal case of a readable segment. If there are multiple
2966 // segments with the same type and flags, we require that the
2967 // address be set, and we sort by virtual address and then physical
2968 // address.
2969 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2970 return (flags1 & elfcpp::PF_W) == 0;
2971 if ((flags1 & elfcpp::PF_W) != 0
2972 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2973 return seg1->has_any_data_sections();
2974 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2975 return (flags1 & elfcpp::PF_X) != 0;
2976 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2977 return (flags1 & elfcpp::PF_R) == 0;
2978
2979 // We shouldn't get here--we shouldn't create segments which we
2980 // can't distinguish. Unless of course we are using a weird linker
2981 // script or overlapping --section-start options.
2982 gold_assert(this->script_options_->saw_phdrs_clause()
2983 || parameters->options().any_section_start());
2984 return false;
2985 }
2986
2987 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2988
2989 static off_t
2990 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2991 {
2992 uint64_t unsigned_off = off;
2993 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2994 | (addr & (abi_pagesize - 1)));
2995 if (aligned_off < unsigned_off)
2996 aligned_off += abi_pagesize;
2997 return aligned_off;
2998 }
2999
3000 // Set the file offsets of all the segments, and all the sections they
3001 // contain. They have all been created. LOAD_SEG must be be laid out
3002 // first. Return the offset of the data to follow.
3003
3004 off_t
3005 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3006 unsigned int* pshndx)
3007 {
3008 // Sort them into the final order. We use a stable sort so that we
3009 // don't randomize the order of indistinguishable segments created
3010 // by linker scripts.
3011 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3012 Layout::Compare_segments(this));
3013
3014 // Find the PT_LOAD segments, and set their addresses and offsets
3015 // and their section's addresses and offsets.
3016 uint64_t addr;
3017 if (parameters->options().user_set_Ttext())
3018 addr = parameters->options().Ttext();
3019 else if (parameters->options().output_is_position_independent())
3020 addr = 0;
3021 else
3022 addr = target->default_text_segment_address();
3023 off_t off = 0;
3024
3025 // If LOAD_SEG is NULL, then the file header and segment headers
3026 // will not be loadable. But they still need to be at offset 0 in
3027 // the file. Set their offsets now.
3028 if (load_seg == NULL)
3029 {
3030 for (Data_list::iterator p = this->special_output_list_.begin();
3031 p != this->special_output_list_.end();
3032 ++p)
3033 {
3034 off = align_address(off, (*p)->addralign());
3035 (*p)->set_address_and_file_offset(0, off);
3036 off += (*p)->data_size();
3037 }
3038 }
3039
3040 unsigned int increase_relro = this->increase_relro_;
3041 if (this->script_options_->saw_sections_clause())
3042 increase_relro = 0;
3043
3044 const bool check_sections = parameters->options().check_sections();
3045 Output_segment* last_load_segment = NULL;
3046
3047 for (Segment_list::iterator p = this->segment_list_.begin();
3048 p != this->segment_list_.end();
3049 ++p)
3050 {
3051 if ((*p)->type() == elfcpp::PT_LOAD)
3052 {
3053 if (load_seg != NULL && load_seg != *p)
3054 gold_unreachable();
3055 load_seg = NULL;
3056
3057 bool are_addresses_set = (*p)->are_addresses_set();
3058 if (are_addresses_set)
3059 {
3060 // When it comes to setting file offsets, we care about
3061 // the physical address.
3062 addr = (*p)->paddr();
3063 }
3064 else if (parameters->options().user_set_Ttext()
3065 && ((*p)->flags() & elfcpp::PF_W) == 0)
3066 {
3067 are_addresses_set = true;
3068 }
3069 else if (parameters->options().user_set_Tdata()
3070 && ((*p)->flags() & elfcpp::PF_W) != 0
3071 && (!parameters->options().user_set_Tbss()
3072 || (*p)->has_any_data_sections()))
3073 {
3074 addr = parameters->options().Tdata();
3075 are_addresses_set = true;
3076 }
3077 else if (parameters->options().user_set_Tbss()
3078 && ((*p)->flags() & elfcpp::PF_W) != 0
3079 && !(*p)->has_any_data_sections())
3080 {
3081 addr = parameters->options().Tbss();
3082 are_addresses_set = true;
3083 }
3084
3085 uint64_t orig_addr = addr;
3086 uint64_t orig_off = off;
3087
3088 uint64_t aligned_addr = 0;
3089 uint64_t abi_pagesize = target->abi_pagesize();
3090 uint64_t common_pagesize = target->common_pagesize();
3091
3092 if (!parameters->options().nmagic()
3093 && !parameters->options().omagic())
3094 (*p)->set_minimum_p_align(common_pagesize);
3095
3096 if (!are_addresses_set)
3097 {
3098 // Skip the address forward one page, maintaining the same
3099 // position within the page. This lets us store both segments
3100 // overlapping on a single page in the file, but the loader will
3101 // put them on different pages in memory. We will revisit this
3102 // decision once we know the size of the segment.
3103
3104 addr = align_address(addr, (*p)->maximum_alignment());
3105 aligned_addr = addr;
3106
3107 if ((addr & (abi_pagesize - 1)) != 0)
3108 addr = addr + abi_pagesize;
3109
3110 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3111 }
3112
3113 if (!parameters->options().nmagic()
3114 && !parameters->options().omagic())
3115 off = align_file_offset(off, addr, abi_pagesize);
3116 else if (load_seg == NULL)
3117 {
3118 // This is -N or -n with a section script which prevents
3119 // us from using a load segment. We need to ensure that
3120 // the file offset is aligned to the alignment of the
3121 // segment. This is because the linker script
3122 // implicitly assumed a zero offset. If we don't align
3123 // here, then the alignment of the sections in the
3124 // linker script may not match the alignment of the
3125 // sections in the set_section_addresses call below,
3126 // causing an error about dot moving backward.
3127 off = align_address(off, (*p)->maximum_alignment());
3128 }
3129
3130 unsigned int shndx_hold = *pshndx;
3131 bool has_relro = false;
3132 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3133 &increase_relro,
3134 &has_relro,
3135 &off, pshndx);
3136
3137 // Now that we know the size of this segment, we may be able
3138 // to save a page in memory, at the cost of wasting some
3139 // file space, by instead aligning to the start of a new
3140 // page. Here we use the real machine page size rather than
3141 // the ABI mandated page size. If the segment has been
3142 // aligned so that the relro data ends at a page boundary,
3143 // we do not try to realign it.
3144
3145 if (!are_addresses_set
3146 && !has_relro
3147 && aligned_addr != addr
3148 && !parameters->incremental())
3149 {
3150 uint64_t first_off = (common_pagesize
3151 - (aligned_addr
3152 & (common_pagesize - 1)));
3153 uint64_t last_off = new_addr & (common_pagesize - 1);
3154 if (first_off > 0
3155 && last_off > 0
3156 && ((aligned_addr & ~ (common_pagesize - 1))
3157 != (new_addr & ~ (common_pagesize - 1)))
3158 && first_off + last_off <= common_pagesize)
3159 {
3160 *pshndx = shndx_hold;
3161 addr = align_address(aligned_addr, common_pagesize);
3162 addr = align_address(addr, (*p)->maximum_alignment());
3163 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3164 off = align_file_offset(off, addr, abi_pagesize);
3165
3166 increase_relro = this->increase_relro_;
3167 if (this->script_options_->saw_sections_clause())
3168 increase_relro = 0;
3169 has_relro = false;
3170
3171 new_addr = (*p)->set_section_addresses(this, true, addr,
3172 &increase_relro,
3173 &has_relro,
3174 &off, pshndx);
3175 }
3176 }
3177
3178 addr = new_addr;
3179
3180 // Implement --check-sections. We know that the segments
3181 // are sorted by LMA.
3182 if (check_sections && last_load_segment != NULL)
3183 {
3184 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3185 if (last_load_segment->paddr() + last_load_segment->memsz()
3186 > (*p)->paddr())
3187 {
3188 unsigned long long lb1 = last_load_segment->paddr();
3189 unsigned long long le1 = lb1 + last_load_segment->memsz();
3190 unsigned long long lb2 = (*p)->paddr();
3191 unsigned long long le2 = lb2 + (*p)->memsz();
3192 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3193 "[0x%llx -> 0x%llx]"),
3194 lb1, le1, lb2, le2);
3195 }
3196 }
3197 last_load_segment = *p;
3198 }
3199 }
3200
3201 // Handle the non-PT_LOAD segments, setting their offsets from their
3202 // section's offsets.
3203 for (Segment_list::iterator p = this->segment_list_.begin();
3204 p != this->segment_list_.end();
3205 ++p)
3206 {
3207 if ((*p)->type() != elfcpp::PT_LOAD)
3208 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3209 ? increase_relro
3210 : 0);
3211 }
3212
3213 // Set the TLS offsets for each section in the PT_TLS segment.
3214 if (this->tls_segment_ != NULL)
3215 this->tls_segment_->set_tls_offsets();
3216
3217 return off;
3218 }
3219
3220 // Set the offsets of all the allocated sections when doing a
3221 // relocatable link. This does the same jobs as set_segment_offsets,
3222 // only for a relocatable link.
3223
3224 off_t
3225 Layout::set_relocatable_section_offsets(Output_data* file_header,
3226 unsigned int* pshndx)
3227 {
3228 off_t off = 0;
3229
3230 file_header->set_address_and_file_offset(0, 0);
3231 off += file_header->data_size();
3232
3233 for (Section_list::iterator p = this->section_list_.begin();
3234 p != this->section_list_.end();
3235 ++p)
3236 {
3237 // We skip unallocated sections here, except that group sections
3238 // have to come first.
3239 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3240 && (*p)->type() != elfcpp::SHT_GROUP)
3241 continue;
3242
3243 off = align_address(off, (*p)->addralign());
3244
3245 // The linker script might have set the address.
3246 if (!(*p)->is_address_valid())
3247 (*p)->set_address(0);
3248 (*p)->set_file_offset(off);
3249 (*p)->finalize_data_size();
3250 off += (*p)->data_size();
3251
3252 (*p)->set_out_shndx(*pshndx);
3253 ++*pshndx;
3254 }
3255
3256 return off;
3257 }
3258
3259 // Set the file offset of all the sections not associated with a
3260 // segment.
3261
3262 off_t
3263 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3264 {
3265 off_t startoff = off;
3266 off_t maxoff = off;
3267
3268 for (Section_list::iterator p = this->unattached_section_list_.begin();
3269 p != this->unattached_section_list_.end();
3270 ++p)
3271 {
3272 // The symtab section is handled in create_symtab_sections.
3273 if (*p == this->symtab_section_)
3274 continue;
3275
3276 // If we've already set the data size, don't set it again.
3277 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3278 continue;
3279
3280 if (pass == BEFORE_INPUT_SECTIONS_PASS
3281 && (*p)->requires_postprocessing())
3282 {
3283 (*p)->create_postprocessing_buffer();
3284 this->any_postprocessing_sections_ = true;
3285 }
3286
3287 if (pass == BEFORE_INPUT_SECTIONS_PASS
3288 && (*p)->after_input_sections())
3289 continue;
3290 else if (pass == POSTPROCESSING_SECTIONS_PASS
3291 && (!(*p)->after_input_sections()
3292 || (*p)->type() == elfcpp::SHT_STRTAB))
3293 continue;
3294 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3295 && (!(*p)->after_input_sections()
3296 || (*p)->type() != elfcpp::SHT_STRTAB))
3297 continue;
3298
3299 if (!parameters->incremental_update())
3300 {
3301 off = align_address(off, (*p)->addralign());
3302 (*p)->set_file_offset(off);
3303 (*p)->finalize_data_size();
3304 }
3305 else
3306 {
3307 // Incremental update: allocate file space from free list.
3308 (*p)->pre_finalize_data_size();
3309 off_t current_size = (*p)->current_data_size();
3310 off = this->allocate(current_size, (*p)->addralign(), startoff);
3311 if (off == -1)
3312 {
3313 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3314 this->free_list_.dump();
3315 gold_assert((*p)->output_section() != NULL);
3316 gold_fallback(_("out of patch space for section %s; "
3317 "relink with --incremental-full"),
3318 (*p)->output_section()->name());
3319 }
3320 (*p)->set_file_offset(off);
3321 (*p)->finalize_data_size();
3322 if ((*p)->data_size() > current_size)
3323 {
3324 gold_assert((*p)->output_section() != NULL);
3325 gold_fallback(_("%s: section changed size; "
3326 "relink with --incremental-full"),
3327 (*p)->output_section()->name());
3328 }
3329 gold_debug(DEBUG_INCREMENTAL,
3330 "set_section_offsets: %08lx %08lx %s",
3331 static_cast<long>(off),
3332 static_cast<long>((*p)->data_size()),
3333 ((*p)->output_section() != NULL
3334 ? (*p)->output_section()->name() : "(special)"));
3335 }
3336
3337 off += (*p)->data_size();
3338 if (off > maxoff)
3339 maxoff = off;
3340
3341 // At this point the name must be set.
3342 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3343 this->namepool_.add((*p)->name(), false, NULL);
3344 }
3345 return maxoff;
3346 }
3347
3348 // Set the section indexes of all the sections not associated with a
3349 // segment.
3350
3351 unsigned int
3352 Layout::set_section_indexes(unsigned int shndx)
3353 {
3354 for (Section_list::iterator p = this->unattached_section_list_.begin();
3355 p != this->unattached_section_list_.end();
3356 ++p)
3357 {
3358 if (!(*p)->has_out_shndx())
3359 {
3360 (*p)->set_out_shndx(shndx);
3361 ++shndx;
3362 }
3363 }
3364 return shndx;
3365 }
3366
3367 // Set the section addresses according to the linker script. This is
3368 // only called when we see a SECTIONS clause. This returns the
3369 // program segment which should hold the file header and segment
3370 // headers, if any. It will return NULL if they should not be in a
3371 // segment.
3372
3373 Output_segment*
3374 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3375 {
3376 Script_sections* ss = this->script_options_->script_sections();
3377 gold_assert(ss->saw_sections_clause());
3378 return this->script_options_->set_section_addresses(symtab, this);
3379 }
3380
3381 // Place the orphan sections in the linker script.
3382
3383 void
3384 Layout::place_orphan_sections_in_script()
3385 {
3386 Script_sections* ss = this->script_options_->script_sections();
3387 gold_assert(ss->saw_sections_clause());
3388
3389 // Place each orphaned output section in the script.
3390 for (Section_list::iterator p = this->section_list_.begin();
3391 p != this->section_list_.end();
3392 ++p)
3393 {
3394 if (!(*p)->found_in_sections_clause())
3395 ss->place_orphan(*p);
3396 }
3397 }
3398
3399 // Count the local symbols in the regular symbol table and the dynamic
3400 // symbol table, and build the respective string pools.
3401
3402 void
3403 Layout::count_local_symbols(const Task* task,
3404 const Input_objects* input_objects)
3405 {
3406 // First, figure out an upper bound on the number of symbols we'll
3407 // be inserting into each pool. This helps us create the pools with
3408 // the right size, to avoid unnecessary hashtable resizing.
3409 unsigned int symbol_count = 0;
3410 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3411 p != input_objects->relobj_end();
3412 ++p)
3413 symbol_count += (*p)->local_symbol_count();
3414
3415 // Go from "upper bound" to "estimate." We overcount for two
3416 // reasons: we double-count symbols that occur in more than one
3417 // object file, and we count symbols that are dropped from the
3418 // output. Add it all together and assume we overcount by 100%.
3419 symbol_count /= 2;
3420
3421 // We assume all symbols will go into both the sympool and dynpool.
3422 this->sympool_.reserve(symbol_count);
3423 this->dynpool_.reserve(symbol_count);
3424
3425 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3426 p != input_objects->relobj_end();
3427 ++p)
3428 {
3429 Task_lock_obj<Object> tlo(task, *p);
3430 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3431 }
3432 }
3433
3434 // Create the symbol table sections. Here we also set the final
3435 // values of the symbols. At this point all the loadable sections are
3436 // fully laid out. SHNUM is the number of sections so far.
3437
3438 void
3439 Layout::create_symtab_sections(const Input_objects* input_objects,
3440 Symbol_table* symtab,
3441 unsigned int shnum,
3442 off_t* poff)
3443 {
3444 int symsize;
3445 unsigned int align;
3446 if (parameters->target().get_size() == 32)
3447 {
3448 symsize = elfcpp::Elf_sizes<32>::sym_size;
3449 align = 4;
3450 }
3451 else if (parameters->target().get_size() == 64)
3452 {
3453 symsize = elfcpp::Elf_sizes<64>::sym_size;
3454 align = 8;
3455 }
3456 else
3457 gold_unreachable();
3458
3459 // Compute file offsets relative to the start of the symtab section.
3460 off_t off = 0;
3461
3462 // Save space for the dummy symbol at the start of the section. We
3463 // never bother to write this out--it will just be left as zero.
3464 off += symsize;
3465 unsigned int local_symbol_index = 1;
3466
3467 // Add STT_SECTION symbols for each Output section which needs one.
3468 for (Section_list::iterator p = this->section_list_.begin();
3469 p != this->section_list_.end();
3470 ++p)
3471 {
3472 if (!(*p)->needs_symtab_index())
3473 (*p)->set_symtab_index(-1U);
3474 else
3475 {
3476 (*p)->set_symtab_index(local_symbol_index);
3477 ++local_symbol_index;
3478 off += symsize;
3479 }
3480 }
3481
3482 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3483 p != input_objects->relobj_end();
3484 ++p)
3485 {
3486 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3487 off, symtab);
3488 off += (index - local_symbol_index) * symsize;
3489 local_symbol_index = index;
3490 }
3491
3492 unsigned int local_symcount = local_symbol_index;
3493 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3494
3495 off_t dynoff;
3496 size_t dyn_global_index;
3497 size_t dyncount;
3498 if (this->dynsym_section_ == NULL)
3499 {
3500 dynoff = 0;
3501 dyn_global_index = 0;
3502 dyncount = 0;
3503 }
3504 else
3505 {
3506 dyn_global_index = this->dynsym_section_->info();
3507 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3508 dynoff = this->dynsym_section_->offset() + locsize;
3509 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3510 gold_assert(static_cast<off_t>(dyncount * symsize)
3511 == this->dynsym_section_->data_size() - locsize);
3512 }
3513
3514 off_t global_off = off;
3515 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3516 &this->sympool_, &local_symcount);
3517
3518 if (!parameters->options().strip_all())
3519 {
3520 this->sympool_.set_string_offsets();
3521
3522 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3523 Output_section* osymtab = this->make_output_section(symtab_name,
3524 elfcpp::SHT_SYMTAB,
3525 0, ORDER_INVALID,
3526 false);
3527 this->symtab_section_ = osymtab;
3528
3529 Output_section_data* pos = new Output_data_fixed_space(off, align,
3530 "** symtab");
3531 osymtab->add_output_section_data(pos);
3532
3533 // We generate a .symtab_shndx section if we have more than
3534 // SHN_LORESERVE sections. Technically it is possible that we
3535 // don't need one, because it is possible that there are no
3536 // symbols in any of sections with indexes larger than
3537 // SHN_LORESERVE. That is probably unusual, though, and it is
3538 // easier to always create one than to compute section indexes
3539 // twice (once here, once when writing out the symbols).
3540 if (shnum >= elfcpp::SHN_LORESERVE)
3541 {
3542 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3543 false, NULL);
3544 Output_section* osymtab_xindex =
3545 this->make_output_section(symtab_xindex_name,
3546 elfcpp::SHT_SYMTAB_SHNDX, 0,
3547 ORDER_INVALID, false);
3548
3549 size_t symcount = off / symsize;
3550 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3551
3552 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3553
3554 osymtab_xindex->set_link_section(osymtab);
3555 osymtab_xindex->set_addralign(4);
3556 osymtab_xindex->set_entsize(4);
3557
3558 osymtab_xindex->set_after_input_sections();
3559
3560 // This tells the driver code to wait until the symbol table
3561 // has written out before writing out the postprocessing
3562 // sections, including the .symtab_shndx section.
3563 this->any_postprocessing_sections_ = true;
3564 }
3565
3566 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3567 Output_section* ostrtab = this->make_output_section(strtab_name,
3568 elfcpp::SHT_STRTAB,
3569 0, ORDER_INVALID,
3570 false);
3571
3572 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3573 ostrtab->add_output_section_data(pstr);
3574
3575 off_t symtab_off;
3576 if (!parameters->incremental_update())
3577 symtab_off = align_address(*poff, align);
3578 else
3579 {
3580 symtab_off = this->allocate(off, align, *poff);
3581 if (off == -1)
3582 gold_fallback(_("out of patch space for symbol table; "
3583 "relink with --incremental-full"));
3584 gold_debug(DEBUG_INCREMENTAL,
3585 "create_symtab_sections: %08lx %08lx .symtab",
3586 static_cast<long>(symtab_off),
3587 static_cast<long>(off));
3588 }
3589
3590 symtab->set_file_offset(symtab_off + global_off);
3591 osymtab->set_file_offset(symtab_off);
3592 osymtab->finalize_data_size();
3593 osymtab->set_link_section(ostrtab);
3594 osymtab->set_info(local_symcount);
3595 osymtab->set_entsize(symsize);
3596
3597 if (symtab_off + off > *poff)
3598 *poff = symtab_off + off;
3599 }
3600 }
3601
3602 // Create the .shstrtab section, which holds the names of the
3603 // sections. At the time this is called, we have created all the
3604 // output sections except .shstrtab itself.
3605
3606 Output_section*
3607 Layout::create_shstrtab()
3608 {
3609 // FIXME: We don't need to create a .shstrtab section if we are
3610 // stripping everything.
3611
3612 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3613
3614 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3615 ORDER_INVALID, false);
3616
3617 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3618 {
3619 // We can't write out this section until we've set all the
3620 // section names, and we don't set the names of compressed
3621 // output sections until relocations are complete. FIXME: With
3622 // the current names we use, this is unnecessary.
3623 os->set_after_input_sections();
3624 }
3625
3626 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3627 os->add_output_section_data(posd);
3628
3629 return os;
3630 }
3631
3632 // Create the section headers. SIZE is 32 or 64. OFF is the file
3633 // offset.
3634
3635 void
3636 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3637 {
3638 Output_section_headers* oshdrs;
3639 oshdrs = new Output_section_headers(this,
3640 &this->segment_list_,
3641 &this->section_list_,
3642 &this->unattached_section_list_,
3643 &this->namepool_,
3644 shstrtab_section);
3645 off_t off;
3646 if (!parameters->incremental_update())
3647 off = align_address(*poff, oshdrs->addralign());
3648 else
3649 {
3650 oshdrs->pre_finalize_data_size();
3651 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3652 if (off == -1)
3653 gold_fallback(_("out of patch space for section header table; "
3654 "relink with --incremental-full"));
3655 gold_debug(DEBUG_INCREMENTAL,
3656 "create_shdrs: %08lx %08lx (section header table)",
3657 static_cast<long>(off),
3658 static_cast<long>(off + oshdrs->data_size()));
3659 }
3660 oshdrs->set_address_and_file_offset(0, off);
3661 off += oshdrs->data_size();
3662 if (off > *poff)
3663 *poff = off;
3664 this->section_headers_ = oshdrs;
3665 }
3666
3667 // Count the allocated sections.
3668
3669 size_t
3670 Layout::allocated_output_section_count() const
3671 {
3672 size_t section_count = 0;
3673 for (Segment_list::const_iterator p = this->segment_list_.begin();
3674 p != this->segment_list_.end();
3675 ++p)
3676 section_count += (*p)->output_section_count();
3677 return section_count;
3678 }
3679
3680 // Create the dynamic symbol table.
3681
3682 void
3683 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3684 Symbol_table* symtab,
3685 Output_section** pdynstr,
3686 unsigned int* plocal_dynamic_count,
3687 std::vector<Symbol*>* pdynamic_symbols,
3688 Versions* pversions)
3689 {
3690 // Count all the symbols in the dynamic symbol table, and set the
3691 // dynamic symbol indexes.
3692
3693 // Skip symbol 0, which is always all zeroes.
3694 unsigned int index = 1;
3695
3696 // Add STT_SECTION symbols for each Output section which needs one.
3697 for (Section_list::iterator p = this->section_list_.begin();
3698 p != this->section_list_.end();
3699 ++p)
3700 {
3701 if (!(*p)->needs_dynsym_index())
3702 (*p)->set_dynsym_index(-1U);
3703 else
3704 {
3705 (*p)->set_dynsym_index(index);
3706 ++index;
3707 }
3708 }
3709
3710 // Count the local symbols that need to go in the dynamic symbol table,
3711 // and set the dynamic symbol indexes.
3712 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3713 p != input_objects->relobj_end();
3714 ++p)
3715 {
3716 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3717 index = new_index;
3718 }
3719
3720 unsigned int local_symcount = index;
3721 *plocal_dynamic_count = local_symcount;
3722
3723 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3724 &this->dynpool_, pversions);
3725
3726 int symsize;
3727 unsigned int align;
3728 const int size = parameters->target().get_size();
3729 if (size == 32)
3730 {
3731 symsize = elfcpp::Elf_sizes<32>::sym_size;
3732 align = 4;
3733 }
3734 else if (size == 64)
3735 {
3736 symsize = elfcpp::Elf_sizes<64>::sym_size;
3737 align = 8;
3738 }
3739 else
3740 gold_unreachable();
3741
3742 // Create the dynamic symbol table section.
3743
3744 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3745 elfcpp::SHT_DYNSYM,
3746 elfcpp::SHF_ALLOC,
3747 false,
3748 ORDER_DYNAMIC_LINKER,
3749 false);
3750
3751 // Check for NULL as a linker script may discard .dynsym.
3752 if (dynsym != NULL)
3753 {
3754 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3755 align,
3756 "** dynsym");
3757 dynsym->add_output_section_data(odata);
3758
3759 dynsym->set_info(local_symcount);
3760 dynsym->set_entsize(symsize);
3761 dynsym->set_addralign(align);
3762
3763 this->dynsym_section_ = dynsym;
3764 }
3765
3766 Output_data_dynamic* const odyn = this->dynamic_data_;
3767 if (odyn != NULL)
3768 {
3769 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3770 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3771 }
3772
3773 // If there are more than SHN_LORESERVE allocated sections, we
3774 // create a .dynsym_shndx section. It is possible that we don't
3775 // need one, because it is possible that there are no dynamic
3776 // symbols in any of the sections with indexes larger than
3777 // SHN_LORESERVE. This is probably unusual, though, and at this
3778 // time we don't know the actual section indexes so it is
3779 // inconvenient to check.
3780 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3781 {
3782 Output_section* dynsym_xindex =
3783 this->choose_output_section(NULL, ".dynsym_shndx",
3784 elfcpp::SHT_SYMTAB_SHNDX,
3785 elfcpp::SHF_ALLOC,
3786 false, ORDER_DYNAMIC_LINKER, false);
3787
3788 if (dynsym_xindex != NULL)
3789 {
3790 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3791
3792 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3793
3794 dynsym_xindex->set_link_section(dynsym);
3795 dynsym_xindex->set_addralign(4);
3796 dynsym_xindex->set_entsize(4);
3797
3798 dynsym_xindex->set_after_input_sections();
3799
3800 // This tells the driver code to wait until the symbol table
3801 // has written out before writing out the postprocessing
3802 // sections, including the .dynsym_shndx section.
3803 this->any_postprocessing_sections_ = true;
3804 }
3805 }
3806
3807 // Create the dynamic string table section.
3808
3809 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3810 elfcpp::SHT_STRTAB,
3811 elfcpp::SHF_ALLOC,
3812 false,
3813 ORDER_DYNAMIC_LINKER,
3814 false);
3815
3816 if (dynstr != NULL)
3817 {
3818 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3819 dynstr->add_output_section_data(strdata);
3820
3821 if (dynsym != NULL)
3822 dynsym->set_link_section(dynstr);
3823 if (this->dynamic_section_ != NULL)
3824 this->dynamic_section_->set_link_section(dynstr);
3825
3826 if (odyn != NULL)
3827 {
3828 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3829 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3830 }
3831
3832 *pdynstr = dynstr;
3833 }
3834
3835 // Create the hash tables.
3836
3837 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3838 || strcmp(parameters->options().hash_style(), "both") == 0)
3839 {
3840 unsigned char* phash;
3841 unsigned int hashlen;
3842 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3843 &phash, &hashlen);
3844
3845 Output_section* hashsec =
3846 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3847 elfcpp::SHF_ALLOC, false,
3848 ORDER_DYNAMIC_LINKER, false);
3849
3850 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3851 hashlen,
3852 align,
3853 "** hash");
3854 if (hashsec != NULL && hashdata != NULL)
3855 hashsec->add_output_section_data(hashdata);
3856
3857 if (hashsec != NULL)
3858 {
3859 if (dynsym != NULL)
3860 hashsec->set_link_section(dynsym);
3861 hashsec->set_entsize(4);
3862 }
3863
3864 if (odyn != NULL)
3865 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3866 }
3867
3868 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3869 || strcmp(parameters->options().hash_style(), "both") == 0)
3870 {
3871 unsigned char* phash;
3872 unsigned int hashlen;
3873 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3874 &phash, &hashlen);
3875
3876 Output_section* hashsec =
3877 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3878 elfcpp::SHF_ALLOC, false,
3879 ORDER_DYNAMIC_LINKER, false);
3880
3881 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3882 hashlen,
3883 align,
3884 "** hash");
3885 if (hashsec != NULL && hashdata != NULL)
3886 hashsec->add_output_section_data(hashdata);
3887
3888 if (hashsec != NULL)
3889 {
3890 if (dynsym != NULL)
3891 hashsec->set_link_section(dynsym);
3892
3893 // For a 64-bit target, the entries in .gnu.hash do not have
3894 // a uniform size, so we only set the entry size for a
3895 // 32-bit target.
3896 if (parameters->target().get_size() == 32)
3897 hashsec->set_entsize(4);
3898
3899 if (odyn != NULL)
3900 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3901 }
3902 }
3903 }
3904
3905 // Assign offsets to each local portion of the dynamic symbol table.
3906
3907 void
3908 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3909 {
3910 Output_section* dynsym = this->dynsym_section_;
3911 if (dynsym == NULL)
3912 return;
3913
3914 off_t off = dynsym->offset();
3915
3916 // Skip the dummy symbol at the start of the section.
3917 off += dynsym->entsize();
3918
3919 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3920 p != input_objects->relobj_end();
3921 ++p)
3922 {
3923 unsigned int count = (*p)->set_local_dynsym_offset(off);
3924 off += count * dynsym->entsize();
3925 }
3926 }
3927
3928 // Create the version sections.
3929
3930 void
3931 Layout::create_version_sections(const Versions* versions,
3932 const Symbol_table* symtab,
3933 unsigned int local_symcount,
3934 const std::vector<Symbol*>& dynamic_symbols,
3935 const Output_section* dynstr)
3936 {
3937 if (!versions->any_defs() && !versions->any_needs())
3938 return;
3939
3940 switch (parameters->size_and_endianness())
3941 {
3942 #ifdef HAVE_TARGET_32_LITTLE
3943 case Parameters::TARGET_32_LITTLE:
3944 this->sized_create_version_sections<32, false>(versions, symtab,
3945 local_symcount,
3946 dynamic_symbols, dynstr);
3947 break;
3948 #endif
3949 #ifdef HAVE_TARGET_32_BIG
3950 case Parameters::TARGET_32_BIG:
3951 this->sized_create_version_sections<32, true>(versions, symtab,
3952 local_symcount,
3953 dynamic_symbols, dynstr);
3954 break;
3955 #endif
3956 #ifdef HAVE_TARGET_64_LITTLE
3957 case Parameters::TARGET_64_LITTLE:
3958 this->sized_create_version_sections<64, false>(versions, symtab,
3959 local_symcount,
3960 dynamic_symbols, dynstr);
3961 break;
3962 #endif
3963 #ifdef HAVE_TARGET_64_BIG
3964 case Parameters::TARGET_64_BIG:
3965 this->sized_create_version_sections<64, true>(versions, symtab,
3966 local_symcount,
3967 dynamic_symbols, dynstr);
3968 break;
3969 #endif
3970 default:
3971 gold_unreachable();
3972 }
3973 }
3974
3975 // Create the version sections, sized version.
3976
3977 template<int size, bool big_endian>
3978 void
3979 Layout::sized_create_version_sections(
3980 const Versions* versions,
3981 const Symbol_table* symtab,
3982 unsigned int local_symcount,
3983 const std::vector<Symbol*>& dynamic_symbols,
3984 const Output_section* dynstr)
3985 {
3986 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3987 elfcpp::SHT_GNU_versym,
3988 elfcpp::SHF_ALLOC,
3989 false,
3990 ORDER_DYNAMIC_LINKER,
3991 false);
3992
3993 // Check for NULL since a linker script may discard this section.
3994 if (vsec != NULL)
3995 {
3996 unsigned char* vbuf;
3997 unsigned int vsize;
3998 versions->symbol_section_contents<size, big_endian>(symtab,
3999 &this->dynpool_,
4000 local_symcount,
4001 dynamic_symbols,
4002 &vbuf, &vsize);
4003
4004 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4005 "** versions");
4006
4007 vsec->add_output_section_data(vdata);
4008 vsec->set_entsize(2);
4009 vsec->set_link_section(this->dynsym_section_);
4010 }
4011
4012 Output_data_dynamic* const odyn = this->dynamic_data_;
4013 if (odyn != NULL && vsec != NULL)
4014 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4015
4016 if (versions->any_defs())
4017 {
4018 Output_section* vdsec;
4019 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4020 elfcpp::SHT_GNU_verdef,
4021 elfcpp::SHF_ALLOC,
4022 false, ORDER_DYNAMIC_LINKER, false);
4023
4024 if (vdsec != NULL)
4025 {
4026 unsigned char* vdbuf;
4027 unsigned int vdsize;
4028 unsigned int vdentries;
4029 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4030 &vdbuf, &vdsize,
4031 &vdentries);
4032
4033 Output_section_data* vddata =
4034 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4035
4036 vdsec->add_output_section_data(vddata);
4037 vdsec->set_link_section(dynstr);
4038 vdsec->set_info(vdentries);
4039
4040 if (odyn != NULL)
4041 {
4042 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4043 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4044 }
4045 }
4046 }
4047
4048 if (versions->any_needs())
4049 {
4050 Output_section* vnsec;
4051 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4052 elfcpp::SHT_GNU_verneed,
4053 elfcpp::SHF_ALLOC,
4054 false, ORDER_DYNAMIC_LINKER, false);
4055
4056 if (vnsec != NULL)
4057 {
4058 unsigned char* vnbuf;
4059 unsigned int vnsize;
4060 unsigned int vnentries;
4061 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4062 &vnbuf, &vnsize,
4063 &vnentries);
4064
4065 Output_section_data* vndata =
4066 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4067
4068 vnsec->add_output_section_data(vndata);
4069 vnsec->set_link_section(dynstr);
4070 vnsec->set_info(vnentries);
4071
4072 if (odyn != NULL)
4073 {
4074 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4075 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4076 }
4077 }
4078 }
4079 }
4080
4081 // Create the .interp section and PT_INTERP segment.
4082
4083 void
4084 Layout::create_interp(const Target* target)
4085 {
4086 gold_assert(this->interp_segment_ == NULL);
4087
4088 const char* interp = parameters->options().dynamic_linker();
4089 if (interp == NULL)
4090 {
4091 interp = target->dynamic_linker();
4092 gold_assert(interp != NULL);
4093 }
4094
4095 size_t len = strlen(interp) + 1;
4096
4097 Output_section_data* odata = new Output_data_const(interp, len, 1);
4098
4099 Output_section* osec = this->choose_output_section(NULL, ".interp",
4100 elfcpp::SHT_PROGBITS,
4101 elfcpp::SHF_ALLOC,
4102 false, ORDER_INTERP,
4103 false);
4104 if (osec != NULL)
4105 osec->add_output_section_data(odata);
4106 }
4107
4108 // Add dynamic tags for the PLT and the dynamic relocs. This is
4109 // called by the target-specific code. This does nothing if not doing
4110 // a dynamic link.
4111
4112 // USE_REL is true for REL relocs rather than RELA relocs.
4113
4114 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4115
4116 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4117 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4118 // some targets have multiple reloc sections in PLT_REL.
4119
4120 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4121 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4122 // section.
4123
4124 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4125 // executable.
4126
4127 void
4128 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4129 const Output_data* plt_rel,
4130 const Output_data_reloc_generic* dyn_rel,
4131 bool add_debug, bool dynrel_includes_plt)
4132 {
4133 Output_data_dynamic* odyn = this->dynamic_data_;
4134 if (odyn == NULL)
4135 return;
4136
4137 if (plt_got != NULL && plt_got->output_section() != NULL)
4138 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4139
4140 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4141 {
4142 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4143 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4144 odyn->add_constant(elfcpp::DT_PLTREL,
4145 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4146 }
4147
4148 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4149 {
4150 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4151 dyn_rel->output_section());
4152 if (plt_rel != NULL
4153 && plt_rel->output_section() != NULL
4154 && dynrel_includes_plt)
4155 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4156 dyn_rel->output_section(),
4157 plt_rel->output_section());
4158 else
4159 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4160 dyn_rel->output_section());
4161 const int size = parameters->target().get_size();
4162 elfcpp::DT rel_tag;
4163 int rel_size;
4164 if (use_rel)
4165 {
4166 rel_tag = elfcpp::DT_RELENT;
4167 if (size == 32)
4168 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4169 else if (size == 64)
4170 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4171 else
4172 gold_unreachable();
4173 }
4174 else
4175 {
4176 rel_tag = elfcpp::DT_RELAENT;
4177 if (size == 32)
4178 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4179 else if (size == 64)
4180 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4181 else
4182 gold_unreachable();
4183 }
4184 odyn->add_constant(rel_tag, rel_size);
4185
4186 if (parameters->options().combreloc())
4187 {
4188 size_t c = dyn_rel->relative_reloc_count();
4189 if (c > 0)
4190 odyn->add_constant((use_rel
4191 ? elfcpp::DT_RELCOUNT
4192 : elfcpp::DT_RELACOUNT),
4193 c);
4194 }
4195 }
4196
4197 if (add_debug && !parameters->options().shared())
4198 {
4199 // The value of the DT_DEBUG tag is filled in by the dynamic
4200 // linker at run time, and used by the debugger.
4201 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4202 }
4203 }
4204
4205 // Finish the .dynamic section and PT_DYNAMIC segment.
4206
4207 void
4208 Layout::finish_dynamic_section(const Input_objects* input_objects,
4209 const Symbol_table* symtab)
4210 {
4211 if (!this->script_options_->saw_phdrs_clause()
4212 && this->dynamic_section_ != NULL)
4213 {
4214 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4215 (elfcpp::PF_R
4216 | elfcpp::PF_W));
4217 oseg->add_output_section_to_nonload(this->dynamic_section_,
4218 elfcpp::PF_R | elfcpp::PF_W);
4219 }
4220
4221 Output_data_dynamic* const odyn = this->dynamic_data_;
4222 if (odyn == NULL)
4223 return;
4224
4225 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4226 p != input_objects->dynobj_end();
4227 ++p)
4228 {
4229 if (!(*p)->is_needed() && (*p)->as_needed())
4230 {
4231 // This dynamic object was linked with --as-needed, but it
4232 // is not needed.
4233 continue;
4234 }
4235
4236 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4237 }
4238
4239 if (parameters->options().shared())
4240 {
4241 const char* soname = parameters->options().soname();
4242 if (soname != NULL)
4243 odyn->add_string(elfcpp::DT_SONAME, soname);
4244 }
4245
4246 Symbol* sym = symtab->lookup(parameters->options().init());
4247 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4248 odyn->add_symbol(elfcpp::DT_INIT, sym);
4249
4250 sym = symtab->lookup(parameters->options().fini());
4251 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4252 odyn->add_symbol(elfcpp::DT_FINI, sym);
4253
4254 // Look for .init_array, .preinit_array and .fini_array by checking
4255 // section types.
4256 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4257 p != this->section_list_.end();
4258 ++p)
4259 switch((*p)->type())
4260 {
4261 case elfcpp::SHT_FINI_ARRAY:
4262 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4263 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4264 break;
4265 case elfcpp::SHT_INIT_ARRAY:
4266 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4267 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4268 break;
4269 case elfcpp::SHT_PREINIT_ARRAY:
4270 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4271 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4272 break;
4273 default:
4274 break;
4275 }
4276
4277 // Add a DT_RPATH entry if needed.
4278 const General_options::Dir_list& rpath(parameters->options().rpath());
4279 if (!rpath.empty())
4280 {
4281 std::string rpath_val;
4282 for (General_options::Dir_list::const_iterator p = rpath.begin();
4283 p != rpath.end();
4284 ++p)
4285 {
4286 if (rpath_val.empty())
4287 rpath_val = p->name();
4288 else
4289 {
4290 // Eliminate duplicates.
4291 General_options::Dir_list::const_iterator q;
4292 for (q = rpath.begin(); q != p; ++q)
4293 if (q->name() == p->name())
4294 break;
4295 if (q == p)
4296 {
4297 rpath_val += ':';
4298 rpath_val += p->name();
4299 }
4300 }
4301 }
4302
4303 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4304 if (parameters->options().enable_new_dtags())
4305 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4306 }
4307
4308 // Look for text segments that have dynamic relocations.
4309 bool have_textrel = false;
4310 if (!this->script_options_->saw_sections_clause())
4311 {
4312 for (Segment_list::const_iterator p = this->segment_list_.begin();
4313 p != this->segment_list_.end();
4314 ++p)
4315 {
4316 if ((*p)->type() == elfcpp::PT_LOAD
4317 && ((*p)->flags() & elfcpp::PF_W) == 0
4318 && (*p)->has_dynamic_reloc())
4319 {
4320 have_textrel = true;
4321 break;
4322 }
4323 }
4324 }
4325 else
4326 {
4327 // We don't know the section -> segment mapping, so we are
4328 // conservative and just look for readonly sections with
4329 // relocations. If those sections wind up in writable segments,
4330 // then we have created an unnecessary DT_TEXTREL entry.
4331 for (Section_list::const_iterator p = this->section_list_.begin();
4332 p != this->section_list_.end();
4333 ++p)
4334 {
4335 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4336 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4337 && (*p)->has_dynamic_reloc())
4338 {
4339 have_textrel = true;
4340 break;
4341 }
4342 }
4343 }
4344
4345 if (parameters->options().filter() != NULL)
4346 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4347 if (parameters->options().any_auxiliary())
4348 {
4349 for (options::String_set::const_iterator p =
4350 parameters->options().auxiliary_begin();
4351 p != parameters->options().auxiliary_end();
4352 ++p)
4353 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4354 }
4355
4356 // Add a DT_FLAGS entry if necessary.
4357 unsigned int flags = 0;
4358 if (have_textrel)
4359 {
4360 // Add a DT_TEXTREL for compatibility with older loaders.
4361 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4362 flags |= elfcpp::DF_TEXTREL;
4363
4364 if (parameters->options().text())
4365 gold_error(_("read-only segment has dynamic relocations"));
4366 else if (parameters->options().warn_shared_textrel()
4367 && parameters->options().shared())
4368 gold_warning(_("shared library text segment is not shareable"));
4369 }
4370 if (parameters->options().shared() && this->has_static_tls())
4371 flags |= elfcpp::DF_STATIC_TLS;
4372 if (parameters->options().origin())
4373 flags |= elfcpp::DF_ORIGIN;
4374 if (parameters->options().Bsymbolic())
4375 {
4376 flags |= elfcpp::DF_SYMBOLIC;
4377 // Add DT_SYMBOLIC for compatibility with older loaders.
4378 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4379 }
4380 if (parameters->options().now())
4381 flags |= elfcpp::DF_BIND_NOW;
4382 if (flags != 0)
4383 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4384
4385 flags = 0;
4386 if (parameters->options().initfirst())
4387 flags |= elfcpp::DF_1_INITFIRST;
4388 if (parameters->options().interpose())
4389 flags |= elfcpp::DF_1_INTERPOSE;
4390 if (parameters->options().loadfltr())
4391 flags |= elfcpp::DF_1_LOADFLTR;
4392 if (parameters->options().nodefaultlib())
4393 flags |= elfcpp::DF_1_NODEFLIB;
4394 if (parameters->options().nodelete())
4395 flags |= elfcpp::DF_1_NODELETE;
4396 if (parameters->options().nodlopen())
4397 flags |= elfcpp::DF_1_NOOPEN;
4398 if (parameters->options().nodump())
4399 flags |= elfcpp::DF_1_NODUMP;
4400 if (!parameters->options().shared())
4401 flags &= ~(elfcpp::DF_1_INITFIRST
4402 | elfcpp::DF_1_NODELETE
4403 | elfcpp::DF_1_NOOPEN);
4404 if (parameters->options().origin())
4405 flags |= elfcpp::DF_1_ORIGIN;
4406 if (parameters->options().now())
4407 flags |= elfcpp::DF_1_NOW;
4408 if (parameters->options().Bgroup())
4409 flags |= elfcpp::DF_1_GROUP;
4410 if (flags != 0)
4411 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4412 }
4413
4414 // Set the size of the _DYNAMIC symbol table to be the size of the
4415 // dynamic data.
4416
4417 void
4418 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4419 {
4420 Output_data_dynamic* const odyn = this->dynamic_data_;
4421 if (odyn == NULL)
4422 return;
4423 odyn->finalize_data_size();
4424 if (this->dynamic_symbol_ == NULL)
4425 return;
4426 off_t data_size = odyn->data_size();
4427 const int size = parameters->target().get_size();
4428 if (size == 32)
4429 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4430 else if (size == 64)
4431 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4432 else
4433 gold_unreachable();
4434 }
4435
4436 // The mapping of input section name prefixes to output section names.
4437 // In some cases one prefix is itself a prefix of another prefix; in
4438 // such a case the longer prefix must come first. These prefixes are
4439 // based on the GNU linker default ELF linker script.
4440
4441 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4442 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4443 {
4444 MAPPING_INIT(".text.", ".text"),
4445 MAPPING_INIT(".rodata.", ".rodata"),
4446 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4447 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4448 MAPPING_INIT(".data.", ".data"),
4449 MAPPING_INIT(".bss.", ".bss"),
4450 MAPPING_INIT(".tdata.", ".tdata"),
4451 MAPPING_INIT(".tbss.", ".tbss"),
4452 MAPPING_INIT(".init_array.", ".init_array"),
4453 MAPPING_INIT(".fini_array.", ".fini_array"),
4454 MAPPING_INIT(".sdata.", ".sdata"),
4455 MAPPING_INIT(".sbss.", ".sbss"),
4456 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4457 // differently depending on whether it is creating a shared library.
4458 MAPPING_INIT(".sdata2.", ".sdata"),
4459 MAPPING_INIT(".sbss2.", ".sbss"),
4460 MAPPING_INIT(".lrodata.", ".lrodata"),
4461 MAPPING_INIT(".ldata.", ".ldata"),
4462 MAPPING_INIT(".lbss.", ".lbss"),
4463 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4464 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4465 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4466 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4467 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4468 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4469 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4470 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4471 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4472 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4473 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4474 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4475 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4476 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4477 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4478 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4479 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4480 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4481 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4482 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4483 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4484 };
4485 #undef MAPPING_INIT
4486
4487 const int Layout::section_name_mapping_count =
4488 (sizeof(Layout::section_name_mapping)
4489 / sizeof(Layout::section_name_mapping[0]));
4490
4491 // Choose the output section name to use given an input section name.
4492 // Set *PLEN to the length of the name. *PLEN is initialized to the
4493 // length of NAME.
4494
4495 const char*
4496 Layout::output_section_name(const Relobj* relobj, const char* name,
4497 size_t* plen)
4498 {
4499 // gcc 4.3 generates the following sorts of section names when it
4500 // needs a section name specific to a function:
4501 // .text.FN
4502 // .rodata.FN
4503 // .sdata2.FN
4504 // .data.FN
4505 // .data.rel.FN
4506 // .data.rel.local.FN
4507 // .data.rel.ro.FN
4508 // .data.rel.ro.local.FN
4509 // .sdata.FN
4510 // .bss.FN
4511 // .sbss.FN
4512 // .tdata.FN
4513 // .tbss.FN
4514
4515 // The GNU linker maps all of those to the part before the .FN,
4516 // except that .data.rel.local.FN is mapped to .data, and
4517 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4518 // beginning with .data.rel.ro.local are grouped together.
4519
4520 // For an anonymous namespace, the string FN can contain a '.'.
4521
4522 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4523 // GNU linker maps to .rodata.
4524
4525 // The .data.rel.ro sections are used with -z relro. The sections
4526 // are recognized by name. We use the same names that the GNU
4527 // linker does for these sections.
4528
4529 // It is hard to handle this in a principled way, so we don't even
4530 // try. We use a table of mappings. If the input section name is
4531 // not found in the table, we simply use it as the output section
4532 // name.
4533
4534 const Section_name_mapping* psnm = section_name_mapping;
4535 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4536 {
4537 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4538 {
4539 *plen = psnm->tolen;
4540 return psnm->to;
4541 }
4542 }
4543
4544 // As an additional complication, .ctors sections are output in
4545 // either .ctors or .init_array sections, and .dtors sections are
4546 // output in either .dtors or .fini_array sections.
4547 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4548 {
4549 if (parameters->options().ctors_in_init_array())
4550 {
4551 *plen = 11;
4552 return name[1] == 'c' ? ".init_array" : ".fini_array";
4553 }
4554 else
4555 {
4556 *plen = 6;
4557 return name[1] == 'c' ? ".ctors" : ".dtors";
4558 }
4559 }
4560 if (parameters->options().ctors_in_init_array()
4561 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4562 {
4563 // To make .init_array/.fini_array work with gcc we must exclude
4564 // .ctors and .dtors sections from the crtbegin and crtend
4565 // files.
4566 if (relobj == NULL
4567 || (!Layout::match_file_name(relobj, "crtbegin")
4568 && !Layout::match_file_name(relobj, "crtend")))
4569 {
4570 *plen = 11;
4571 return name[1] == 'c' ? ".init_array" : ".fini_array";
4572 }
4573 }
4574
4575 return name;
4576 }
4577
4578 // Return true if RELOBJ is an input file whose base name matches
4579 // FILE_NAME. The base name must have an extension of ".o", and must
4580 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4581 // to match crtbegin.o as well as crtbeginS.o without getting confused
4582 // by other possibilities. Overall matching the file name this way is
4583 // a dreadful hack, but the GNU linker does it in order to better
4584 // support gcc, and we need to be compatible.
4585
4586 bool
4587 Layout::match_file_name(const Relobj* relobj, const char* match)
4588 {
4589 const std::string& file_name(relobj->name());
4590 const char* base_name = lbasename(file_name.c_str());
4591 size_t match_len = strlen(match);
4592 if (strncmp(base_name, match, match_len) != 0)
4593 return false;
4594 size_t base_len = strlen(base_name);
4595 if (base_len != match_len + 2 && base_len != match_len + 3)
4596 return false;
4597 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4598 }
4599
4600 // Check if a comdat group or .gnu.linkonce section with the given
4601 // NAME is selected for the link. If there is already a section,
4602 // *KEPT_SECTION is set to point to the existing section and the
4603 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4604 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4605 // *KEPT_SECTION is set to the internal copy and the function returns
4606 // true.
4607
4608 bool
4609 Layout::find_or_add_kept_section(const std::string& name,
4610 Relobj* object,
4611 unsigned int shndx,
4612 bool is_comdat,
4613 bool is_group_name,
4614 Kept_section** kept_section)
4615 {
4616 // It's normal to see a couple of entries here, for the x86 thunk
4617 // sections. If we see more than a few, we're linking a C++
4618 // program, and we resize to get more space to minimize rehashing.
4619 if (this->signatures_.size() > 4
4620 && !this->resized_signatures_)
4621 {
4622 reserve_unordered_map(&this->signatures_,
4623 this->number_of_input_files_ * 64);
4624 this->resized_signatures_ = true;
4625 }
4626
4627 Kept_section candidate;
4628 std::pair<Signatures::iterator, bool> ins =
4629 this->signatures_.insert(std::make_pair(name, candidate));
4630
4631 if (kept_section != NULL)
4632 *kept_section = &ins.first->second;
4633 if (ins.second)
4634 {
4635 // This is the first time we've seen this signature.
4636 ins.first->second.set_object(object);
4637 ins.first->second.set_shndx(shndx);
4638 if (is_comdat)
4639 ins.first->second.set_is_comdat();
4640 if (is_group_name)
4641 ins.first->second.set_is_group_name();
4642 return true;
4643 }
4644
4645 // We have already seen this signature.
4646
4647 if (ins.first->second.is_group_name())
4648 {
4649 // We've already seen a real section group with this signature.
4650 // If the kept group is from a plugin object, and we're in the
4651 // replacement phase, accept the new one as a replacement.
4652 if (ins.first->second.object() == NULL
4653 && parameters->options().plugins()->in_replacement_phase())
4654 {
4655 ins.first->second.set_object(object);
4656 ins.first->second.set_shndx(shndx);
4657 return true;
4658 }
4659 return false;
4660 }
4661 else if (is_group_name)
4662 {
4663 // This is a real section group, and we've already seen a
4664 // linkonce section with this signature. Record that we've seen
4665 // a section group, and don't include this section group.
4666 ins.first->second.set_is_group_name();
4667 return false;
4668 }
4669 else
4670 {
4671 // We've already seen a linkonce section and this is a linkonce
4672 // section. These don't block each other--this may be the same
4673 // symbol name with different section types.
4674 return true;
4675 }
4676 }
4677
4678 // Store the allocated sections into the section list.
4679
4680 void
4681 Layout::get_allocated_sections(Section_list* section_list) const
4682 {
4683 for (Section_list::const_iterator p = this->section_list_.begin();
4684 p != this->section_list_.end();
4685 ++p)
4686 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4687 section_list->push_back(*p);
4688 }
4689
4690 // Create an output segment.
4691
4692 Output_segment*
4693 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4694 {
4695 gold_assert(!parameters->options().relocatable());
4696 Output_segment* oseg = new Output_segment(type, flags);
4697 this->segment_list_.push_back(oseg);
4698
4699 if (type == elfcpp::PT_TLS)
4700 this->tls_segment_ = oseg;
4701 else if (type == elfcpp::PT_GNU_RELRO)
4702 this->relro_segment_ = oseg;
4703 else if (type == elfcpp::PT_INTERP)
4704 this->interp_segment_ = oseg;
4705
4706 return oseg;
4707 }
4708
4709 // Return the file offset of the normal symbol table.
4710
4711 off_t
4712 Layout::symtab_section_offset() const
4713 {
4714 if (this->symtab_section_ != NULL)
4715 return this->symtab_section_->offset();
4716 return 0;
4717 }
4718
4719 // Return the section index of the normal symbol table. It may have
4720 // been stripped by the -s/--strip-all option.
4721
4722 unsigned int
4723 Layout::symtab_section_shndx() const
4724 {
4725 if (this->symtab_section_ != NULL)
4726 return this->symtab_section_->out_shndx();
4727 return 0;
4728 }
4729
4730 // Write out the Output_sections. Most won't have anything to write,
4731 // since most of the data will come from input sections which are
4732 // handled elsewhere. But some Output_sections do have Output_data.
4733
4734 void
4735 Layout::write_output_sections(Output_file* of) const
4736 {
4737 for (Section_list::const_iterator p = this->section_list_.begin();
4738 p != this->section_list_.end();
4739 ++p)
4740 {
4741 if (!(*p)->after_input_sections())
4742 (*p)->write(of);
4743 }
4744 }
4745
4746 // Write out data not associated with a section or the symbol table.
4747
4748 void
4749 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4750 {
4751 if (!parameters->options().strip_all())
4752 {
4753 const Output_section* symtab_section = this->symtab_section_;
4754 for (Section_list::const_iterator p = this->section_list_.begin();
4755 p != this->section_list_.end();
4756 ++p)
4757 {
4758 if ((*p)->needs_symtab_index())
4759 {
4760 gold_assert(symtab_section != NULL);
4761 unsigned int index = (*p)->symtab_index();
4762 gold_assert(index > 0 && index != -1U);
4763 off_t off = (symtab_section->offset()
4764 + index * symtab_section->entsize());
4765 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4766 }
4767 }
4768 }
4769
4770 const Output_section* dynsym_section = this->dynsym_section_;
4771 for (Section_list::const_iterator p = this->section_list_.begin();
4772 p != this->section_list_.end();
4773 ++p)
4774 {
4775 if ((*p)->needs_dynsym_index())
4776 {
4777 gold_assert(dynsym_section != NULL);
4778 unsigned int index = (*p)->dynsym_index();
4779 gold_assert(index > 0 && index != -1U);
4780 off_t off = (dynsym_section->offset()
4781 + index * dynsym_section->entsize());
4782 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4783 }
4784 }
4785
4786 // Write out the Output_data which are not in an Output_section.
4787 for (Data_list::const_iterator p = this->special_output_list_.begin();
4788 p != this->special_output_list_.end();
4789 ++p)
4790 (*p)->write(of);
4791 }
4792
4793 // Write out the Output_sections which can only be written after the
4794 // input sections are complete.
4795
4796 void
4797 Layout::write_sections_after_input_sections(Output_file* of)
4798 {
4799 // Determine the final section offsets, and thus the final output
4800 // file size. Note we finalize the .shstrab last, to allow the
4801 // after_input_section sections to modify their section-names before
4802 // writing.
4803 if (this->any_postprocessing_sections_)
4804 {
4805 off_t off = this->output_file_size_;
4806 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4807
4808 // Now that we've finalized the names, we can finalize the shstrab.
4809 off =
4810 this->set_section_offsets(off,
4811 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4812
4813 if (off > this->output_file_size_)
4814 {
4815 of->resize(off);
4816 this->output_file_size_ = off;
4817 }
4818 }
4819
4820 for (Section_list::const_iterator p = this->section_list_.begin();
4821 p != this->section_list_.end();
4822 ++p)
4823 {
4824 if ((*p)->after_input_sections())
4825 (*p)->write(of);
4826 }
4827
4828 this->section_headers_->write(of);
4829 }
4830
4831 // If the build ID requires computing a checksum, do so here, and
4832 // write it out. We compute a checksum over the entire file because
4833 // that is simplest.
4834
4835 void
4836 Layout::write_build_id(Output_file* of) const
4837 {
4838 if (this->build_id_note_ == NULL)
4839 return;
4840
4841 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4842
4843 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4844 this->build_id_note_->data_size());
4845
4846 const char* style = parameters->options().build_id();
4847 if (strcmp(style, "sha1") == 0)
4848 {
4849 sha1_ctx ctx;
4850 sha1_init_ctx(&ctx);
4851 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4852 sha1_finish_ctx(&ctx, ov);
4853 }
4854 else if (strcmp(style, "md5") == 0)
4855 {
4856 md5_ctx ctx;
4857 md5_init_ctx(&ctx);
4858 md5_process_bytes(iv, this->output_file_size_, &ctx);
4859 md5_finish_ctx(&ctx, ov);
4860 }
4861 else
4862 gold_unreachable();
4863
4864 of->write_output_view(this->build_id_note_->offset(),
4865 this->build_id_note_->data_size(),
4866 ov);
4867
4868 of->free_input_view(0, this->output_file_size_, iv);
4869 }
4870
4871 // Write out a binary file. This is called after the link is
4872 // complete. IN is the temporary output file we used to generate the
4873 // ELF code. We simply walk through the segments, read them from
4874 // their file offset in IN, and write them to their load address in
4875 // the output file. FIXME: with a bit more work, we could support
4876 // S-records and/or Intel hex format here.
4877
4878 void
4879 Layout::write_binary(Output_file* in) const
4880 {
4881 gold_assert(parameters->options().oformat_enum()
4882 == General_options::OBJECT_FORMAT_BINARY);
4883
4884 // Get the size of the binary file.
4885 uint64_t max_load_address = 0;
4886 for (Segment_list::const_iterator p = this->segment_list_.begin();
4887 p != this->segment_list_.end();
4888 ++p)
4889 {
4890 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4891 {
4892 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4893 if (max_paddr > max_load_address)
4894 max_load_address = max_paddr;
4895 }
4896 }
4897
4898 Output_file out(parameters->options().output_file_name());
4899 out.open(max_load_address);
4900
4901 for (Segment_list::const_iterator p = this->segment_list_.begin();
4902 p != this->segment_list_.end();
4903 ++p)
4904 {
4905 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4906 {
4907 const unsigned char* vin = in->get_input_view((*p)->offset(),
4908 (*p)->filesz());
4909 unsigned char* vout = out.get_output_view((*p)->paddr(),
4910 (*p)->filesz());
4911 memcpy(vout, vin, (*p)->filesz());
4912 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4913 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4914 }
4915 }
4916
4917 out.close();
4918 }
4919
4920 // Print the output sections to the map file.
4921
4922 void
4923 Layout::print_to_mapfile(Mapfile* mapfile) const
4924 {
4925 for (Segment_list::const_iterator p = this->segment_list_.begin();
4926 p != this->segment_list_.end();
4927 ++p)
4928 (*p)->print_sections_to_mapfile(mapfile);
4929 }
4930
4931 // Print statistical information to stderr. This is used for --stats.
4932
4933 void
4934 Layout::print_stats() const
4935 {
4936 this->namepool_.print_stats("section name pool");
4937 this->sympool_.print_stats("output symbol name pool");
4938 this->dynpool_.print_stats("dynamic name pool");
4939
4940 for (Section_list::const_iterator p = this->section_list_.begin();
4941 p != this->section_list_.end();
4942 ++p)
4943 (*p)->print_merge_stats();
4944 }
4945
4946 // Write_sections_task methods.
4947
4948 // We can always run this task.
4949
4950 Task_token*
4951 Write_sections_task::is_runnable()
4952 {
4953 return NULL;
4954 }
4955
4956 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4957 // when finished.
4958
4959 void
4960 Write_sections_task::locks(Task_locker* tl)
4961 {
4962 tl->add(this, this->output_sections_blocker_);
4963 tl->add(this, this->final_blocker_);
4964 }
4965
4966 // Run the task--write out the data.
4967
4968 void
4969 Write_sections_task::run(Workqueue*)
4970 {
4971 this->layout_->write_output_sections(this->of_);
4972 }
4973
4974 // Write_data_task methods.
4975
4976 // We can always run this task.
4977
4978 Task_token*
4979 Write_data_task::is_runnable()
4980 {
4981 return NULL;
4982 }
4983
4984 // We need to unlock FINAL_BLOCKER when finished.
4985
4986 void
4987 Write_data_task::locks(Task_locker* tl)
4988 {
4989 tl->add(this, this->final_blocker_);
4990 }
4991
4992 // Run the task--write out the data.
4993
4994 void
4995 Write_data_task::run(Workqueue*)
4996 {
4997 this->layout_->write_data(this->symtab_, this->of_);
4998 }
4999
5000 // Write_symbols_task methods.
5001
5002 // We can always run this task.
5003
5004 Task_token*
5005 Write_symbols_task::is_runnable()
5006 {
5007 return NULL;
5008 }
5009
5010 // We need to unlock FINAL_BLOCKER when finished.
5011
5012 void
5013 Write_symbols_task::locks(Task_locker* tl)
5014 {
5015 tl->add(this, this->final_blocker_);
5016 }
5017
5018 // Run the task--write out the symbols.
5019
5020 void
5021 Write_symbols_task::run(Workqueue*)
5022 {
5023 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5024 this->layout_->symtab_xindex(),
5025 this->layout_->dynsym_xindex(), this->of_);
5026 }
5027
5028 // Write_after_input_sections_task methods.
5029
5030 // We can only run this task after the input sections have completed.
5031
5032 Task_token*
5033 Write_after_input_sections_task::is_runnable()
5034 {
5035 if (this->input_sections_blocker_->is_blocked())
5036 return this->input_sections_blocker_;
5037 return NULL;
5038 }
5039
5040 // We need to unlock FINAL_BLOCKER when finished.
5041
5042 void
5043 Write_after_input_sections_task::locks(Task_locker* tl)
5044 {
5045 tl->add(this, this->final_blocker_);
5046 }
5047
5048 // Run the task.
5049
5050 void
5051 Write_after_input_sections_task::run(Workqueue*)
5052 {
5053 this->layout_->write_sections_after_input_sections(this->of_);
5054 }
5055
5056 // Close_task_runner methods.
5057
5058 // Run the task--close the file.
5059
5060 void
5061 Close_task_runner::run(Workqueue*, const Task*)
5062 {
5063 // If we need to compute a checksum for the BUILD if, we do so here.
5064 this->layout_->write_build_id(this->of_);
5065
5066 // If we've been asked to create a binary file, we do so here.
5067 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5068 this->layout_->write_binary(this->of_);
5069
5070 this->of_->close();
5071 }
5072
5073 // Instantiate the templates we need. We could use the configure
5074 // script to restrict this to only the ones for implemented targets.
5075
5076 #ifdef HAVE_TARGET_32_LITTLE
5077 template
5078 Output_section*
5079 Layout::init_fixed_output_section<32, false>(
5080 const char* name,
5081 elfcpp::Shdr<32, false>& shdr);
5082 #endif
5083
5084 #ifdef HAVE_TARGET_32_BIG
5085 template
5086 Output_section*
5087 Layout::init_fixed_output_section<32, true>(
5088 const char* name,
5089 elfcpp::Shdr<32, true>& shdr);
5090 #endif
5091
5092 #ifdef HAVE_TARGET_64_LITTLE
5093 template
5094 Output_section*
5095 Layout::init_fixed_output_section<64, false>(
5096 const char* name,
5097 elfcpp::Shdr<64, false>& shdr);
5098 #endif
5099
5100 #ifdef HAVE_TARGET_64_BIG
5101 template
5102 Output_section*
5103 Layout::init_fixed_output_section<64, true>(
5104 const char* name,
5105 elfcpp::Shdr<64, true>& shdr);
5106 #endif
5107
5108 #ifdef HAVE_TARGET_32_LITTLE
5109 template
5110 Output_section*
5111 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5112 unsigned int shndx,
5113 const char* name,
5114 const elfcpp::Shdr<32, false>& shdr,
5115 unsigned int, unsigned int, off_t*);
5116 #endif
5117
5118 #ifdef HAVE_TARGET_32_BIG
5119 template
5120 Output_section*
5121 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5122 unsigned int shndx,
5123 const char* name,
5124 const elfcpp::Shdr<32, true>& shdr,
5125 unsigned int, unsigned int, off_t*);
5126 #endif
5127
5128 #ifdef HAVE_TARGET_64_LITTLE
5129 template
5130 Output_section*
5131 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5132 unsigned int shndx,
5133 const char* name,
5134 const elfcpp::Shdr<64, false>& shdr,
5135 unsigned int, unsigned int, off_t*);
5136 #endif
5137
5138 #ifdef HAVE_TARGET_64_BIG
5139 template
5140 Output_section*
5141 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5142 unsigned int shndx,
5143 const char* name,
5144 const elfcpp::Shdr<64, true>& shdr,
5145 unsigned int, unsigned int, off_t*);
5146 #endif
5147
5148 #ifdef HAVE_TARGET_32_LITTLE
5149 template
5150 Output_section*
5151 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5152 unsigned int reloc_shndx,
5153 const elfcpp::Shdr<32, false>& shdr,
5154 Output_section* data_section,
5155 Relocatable_relocs* rr);
5156 #endif
5157
5158 #ifdef HAVE_TARGET_32_BIG
5159 template
5160 Output_section*
5161 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5162 unsigned int reloc_shndx,
5163 const elfcpp::Shdr<32, true>& shdr,
5164 Output_section* data_section,
5165 Relocatable_relocs* rr);
5166 #endif
5167
5168 #ifdef HAVE_TARGET_64_LITTLE
5169 template
5170 Output_section*
5171 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5172 unsigned int reloc_shndx,
5173 const elfcpp::Shdr<64, false>& shdr,
5174 Output_section* data_section,
5175 Relocatable_relocs* rr);
5176 #endif
5177
5178 #ifdef HAVE_TARGET_64_BIG
5179 template
5180 Output_section*
5181 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5182 unsigned int reloc_shndx,
5183 const elfcpp::Shdr<64, true>& shdr,
5184 Output_section* data_section,
5185 Relocatable_relocs* rr);
5186 #endif
5187
5188 #ifdef HAVE_TARGET_32_LITTLE
5189 template
5190 void
5191 Layout::layout_group<32, false>(Symbol_table* symtab,
5192 Sized_relobj_file<32, false>* object,
5193 unsigned int,
5194 const char* group_section_name,
5195 const char* signature,
5196 const elfcpp::Shdr<32, false>& shdr,
5197 elfcpp::Elf_Word flags,
5198 std::vector<unsigned int>* shndxes);
5199 #endif
5200
5201 #ifdef HAVE_TARGET_32_BIG
5202 template
5203 void
5204 Layout::layout_group<32, true>(Symbol_table* symtab,
5205 Sized_relobj_file<32, true>* object,
5206 unsigned int,
5207 const char* group_section_name,
5208 const char* signature,
5209 const elfcpp::Shdr<32, true>& shdr,
5210 elfcpp::Elf_Word flags,
5211 std::vector<unsigned int>* shndxes);
5212 #endif
5213
5214 #ifdef HAVE_TARGET_64_LITTLE
5215 template
5216 void
5217 Layout::layout_group<64, false>(Symbol_table* symtab,
5218 Sized_relobj_file<64, false>* object,
5219 unsigned int,
5220 const char* group_section_name,
5221 const char* signature,
5222 const elfcpp::Shdr<64, false>& shdr,
5223 elfcpp::Elf_Word flags,
5224 std::vector<unsigned int>* shndxes);
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_BIG
5228 template
5229 void
5230 Layout::layout_group<64, true>(Symbol_table* symtab,
5231 Sized_relobj_file<64, true>* object,
5232 unsigned int,
5233 const char* group_section_name,
5234 const char* signature,
5235 const elfcpp::Shdr<64, true>& shdr,
5236 elfcpp::Elf_Word flags,
5237 std::vector<unsigned int>* shndxes);
5238 #endif
5239
5240 #ifdef HAVE_TARGET_32_LITTLE
5241 template
5242 Output_section*
5243 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5244 const unsigned char* symbols,
5245 off_t symbols_size,
5246 const unsigned char* symbol_names,
5247 off_t symbol_names_size,
5248 unsigned int shndx,
5249 const elfcpp::Shdr<32, false>& shdr,
5250 unsigned int reloc_shndx,
5251 unsigned int reloc_type,
5252 off_t* off);
5253 #endif
5254
5255 #ifdef HAVE_TARGET_32_BIG
5256 template
5257 Output_section*
5258 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5259 const unsigned char* symbols,
5260 off_t symbols_size,
5261 const unsigned char* symbol_names,
5262 off_t symbol_names_size,
5263 unsigned int shndx,
5264 const elfcpp::Shdr<32, true>& shdr,
5265 unsigned int reloc_shndx,
5266 unsigned int reloc_type,
5267 off_t* off);
5268 #endif
5269
5270 #ifdef HAVE_TARGET_64_LITTLE
5271 template
5272 Output_section*
5273 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5274 const unsigned char* symbols,
5275 off_t symbols_size,
5276 const unsigned char* symbol_names,
5277 off_t symbol_names_size,
5278 unsigned int shndx,
5279 const elfcpp::Shdr<64, false>& shdr,
5280 unsigned int reloc_shndx,
5281 unsigned int reloc_type,
5282 off_t* off);
5283 #endif
5284
5285 #ifdef HAVE_TARGET_64_BIG
5286 template
5287 Output_section*
5288 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5289 const unsigned char* symbols,
5290 off_t symbols_size,
5291 const unsigned char* symbol_names,
5292 off_t symbol_names_size,
5293 unsigned int shndx,
5294 const elfcpp::Shdr<64, true>& shdr,
5295 unsigned int reloc_shndx,
5296 unsigned int reloc_type,
5297 off_t* off);
5298 #endif
5299
5300 } // End namespace gold.