]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/layout.cc
*** empty log message ***
[thirdparty/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
84 this->length_ = len;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101 if (start == end)
102 return;
103 gold_assert(start < end);
104
105 ++Free_list::num_removes;
106
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
110
111 for (; p != this->list_.end(); ++p)
112 {
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
116 {
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
123 p->start_ = end;
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
126 p->end_ = start;
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
129 else
130 {
131 Free_list_node newnode(p->start_, start);
132 p->start_ = end;
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
135 }
136 this->last_remove_ = p;
137 return;
138 }
139 }
140
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
159 if (len == 0)
160 return align_address(minoff, align);
161
162 ++Free_list::num_allocates;
163
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165 {
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
170 if (end <= p->end_)
171 {
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
175 p->start_ = end;
176 else if (p->end_ <= end + 3)
177 p->end_ = start;
178 else
179 {
180 Free_list_node newnode(p->start_, start);
181 p->start_ = end;
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
184 }
185 return start;
186 }
187 }
188 return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
230 {
231 for(Layout::Section_list::const_iterator p = sections.begin();
232 p != sections.end();
233 ++p)
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
238 ++p)
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 {
252 Output_section* os = *p;
253 Section_info info;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
259 }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
267 {
268 size_t i = 0;
269 for(Layout::Section_list::const_iterator p = sections.begin();
270 p != sections.end();
271 ++p, ++i)
272 {
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278 if (i >= this->section_infos_.size())
279 {
280 gold_fatal("Section_info of %s missing.\n", os->name());
281 }
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
290 }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections. This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301 Layout* layout = this->layout_;
302 off_t file_size = layout->finalize(this->input_objects_,
303 this->symtab_,
304 this->target_,
305 task);
306
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
309
310 if (this->mapfile_ != NULL)
311 {
312 this->mapfile_->print_discarded_sections(this->input_objects_);
313 layout->print_to_mapfile(this->mapfile_);
314 }
315
316 Output_file* of;
317 if (layout->incremental_base() == NULL)
318 {
319 of = new Output_file(parameters->options().output_file_name());
320 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321 of->set_is_temporary();
322 of->open(file_size);
323 }
324 else
325 {
326 of = layout->incremental_base()->output_file();
327
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
332 // overwriting it.
333 if (parameters->incremental_update())
334 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335 this->layout_,
336 of);
337
338 of->resize(file_size);
339 }
340
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_, this->input_objects_,
343 this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349 : number_of_input_files_(number_of_input_files),
350 script_options_(script_options),
351 namepool_(),
352 sympool_(),
353 dynpool_(),
354 signatures_(),
355 section_name_map_(),
356 segment_list_(),
357 section_list_(),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL),
361 tls_segment_(NULL),
362 relro_segment_(NULL),
363 interp_segment_(NULL),
364 increase_relro_(0),
365 symtab_section_(NULL),
366 symtab_xindex_(NULL),
367 dynsym_section_(NULL),
368 dynsym_xindex_(NULL),
369 dynamic_section_(NULL),
370 dynamic_symbol_(NULL),
371 dynamic_data_(NULL),
372 eh_frame_section_(NULL),
373 eh_frame_data_(NULL),
374 added_eh_frame_data_(false),
375 eh_frame_hdr_section_(NULL),
376 build_id_note_(NULL),
377 debug_abbrev_(NULL),
378 debug_info_(NULL),
379 group_signatures_(),
380 output_file_size_(-1),
381 have_added_input_section_(false),
382 sections_are_attached_(false),
383 input_requires_executable_stack_(false),
384 input_with_gnu_stack_note_(false),
385 input_without_gnu_stack_note_(false),
386 has_static_tls_(false),
387 any_postprocessing_sections_(false),
388 resized_signatures_(false),
389 have_stabstr_section_(false),
390 incremental_inputs_(NULL),
391 record_output_section_data_from_script_(false),
392 script_output_section_data_list_(),
393 segment_states_(NULL),
394 relaxation_debug_check_(NULL),
395 incremental_base_(NULL),
396 free_list_()
397 {
398 // Make space for more than enough segments for a typical file.
399 // This is just for efficiency--it's OK if we wind up needing more.
400 this->segment_list_.reserve(12);
401
402 // We expect two unattached Output_data objects: the file header and
403 // the segment headers.
404 this->special_output_list_.reserve(2);
405
406 // Initialize structure needed for an incremental build.
407 if (parameters->incremental())
408 this->incremental_inputs_ = new Incremental_inputs;
409
410 // The section name pool is worth optimizing in all cases, because
411 // it is small, but there are often overlaps due to .rel sections.
412 this->namepool_.set_optimize();
413 }
414
415 // For incremental links, record the base file to be modified.
416
417 void
418 Layout::set_incremental_base(Incremental_binary* base)
419 {
420 this->incremental_base_ = base;
421 this->free_list_.init(base->output_file()->filesize(), true);
422 }
423
424 // Hash a key we use to look up an output section mapping.
425
426 size_t
427 Layout::Hash_key::operator()(const Layout::Key& k) const
428 {
429 return k.first + k.second.first + k.second.second;
430 }
431
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb. Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
435
436 static const char* gdb_sections[] =
437 { ".debug_abbrev",
438 // ".debug_aranges", // not used by gdb as of 6.7.1
439 ".debug_frame",
440 ".debug_info",
441 ".debug_types",
442 ".debug_line",
443 ".debug_loc",
444 ".debug_macinfo",
445 // ".debug_pubnames", // not used by gdb as of 6.7.1
446 ".debug_ranges",
447 ".debug_str",
448 };
449
450 static const char* lines_only_debug_sections[] =
451 { ".debug_abbrev",
452 // ".debug_aranges", // not used by gdb as of 6.7.1
453 // ".debug_frame",
454 ".debug_info",
455 // ".debug_types",
456 ".debug_line",
457 // ".debug_loc",
458 // ".debug_macinfo",
459 // ".debug_pubnames", // not used by gdb as of 6.7.1
460 // ".debug_ranges",
461 ".debug_str",
462 };
463
464 static inline bool
465 is_gdb_debug_section(const char* str)
466 {
467 // We can do this faster: binary search or a hashtable. But why bother?
468 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469 if (strcmp(str, gdb_sections[i]) == 0)
470 return true;
471 return false;
472 }
473
474 static inline bool
475 is_lines_only_debug_section(const char* str)
476 {
477 // We can do this faster: binary search or a hashtable. But why bother?
478 for (size_t i = 0;
479 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
480 ++i)
481 if (strcmp(str, lines_only_debug_sections[i]) == 0)
482 return true;
483 return false;
484 }
485
486 // Sometimes we compress sections. This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections. This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
494
495 static bool
496 is_compressible_debug_section(const char* secname)
497 {
498 return (is_prefix_of(".debug", secname));
499 }
500
501 // We may see compressed debug sections in input files. Return TRUE
502 // if this is the name of a compressed debug section.
503
504 bool
505 is_compressed_debug_section(const char* secname)
506 {
507 return (is_prefix_of(".zdebug", secname));
508 }
509
510 // Whether to include this section in the link.
511
512 template<int size, bool big_endian>
513 bool
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515 const elfcpp::Shdr<size, big_endian>& shdr)
516 {
517 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
518 return false;
519
520 switch (shdr.get_sh_type())
521 {
522 case elfcpp::SHT_NULL:
523 case elfcpp::SHT_SYMTAB:
524 case elfcpp::SHT_DYNSYM:
525 case elfcpp::SHT_HASH:
526 case elfcpp::SHT_DYNAMIC:
527 case elfcpp::SHT_SYMTAB_SHNDX:
528 return false;
529
530 case elfcpp::SHT_STRTAB:
531 // Discard the sections which have special meanings in the ELF
532 // ABI. Keep others (e.g., .stabstr). We could also do this by
533 // checking the sh_link fields of the appropriate sections.
534 return (strcmp(name, ".dynstr") != 0
535 && strcmp(name, ".strtab") != 0
536 && strcmp(name, ".shstrtab") != 0);
537
538 case elfcpp::SHT_RELA:
539 case elfcpp::SHT_REL:
540 case elfcpp::SHT_GROUP:
541 // If we are emitting relocations these should be handled
542 // elsewhere.
543 gold_assert(!parameters->options().relocatable()
544 && !parameters->options().emit_relocs());
545 return false;
546
547 case elfcpp::SHT_PROGBITS:
548 if (parameters->options().strip_debug()
549 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
550 {
551 if (is_debug_info_section(name))
552 return false;
553 }
554 if (parameters->options().strip_debug_non_line()
555 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
556 {
557 // Debugging sections can only be recognized by name.
558 if (is_prefix_of(".debug", name)
559 && !is_lines_only_debug_section(name))
560 return false;
561 }
562 if (parameters->options().strip_debug_gdb()
563 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
564 {
565 // Debugging sections can only be recognized by name.
566 if (is_prefix_of(".debug", name)
567 && !is_gdb_debug_section(name))
568 return false;
569 }
570 if (parameters->options().strip_lto_sections()
571 && !parameters->options().relocatable()
572 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573 {
574 // Ignore LTO sections containing intermediate code.
575 if (is_prefix_of(".gnu.lto_", name))
576 return false;
577 }
578 // The GNU linker strips .gnu_debuglink sections, so we do too.
579 // This is a feature used to keep debugging information in
580 // separate files.
581 if (strcmp(name, ".gnu_debuglink") == 0)
582 return false;
583 return true;
584
585 default:
586 return true;
587 }
588 }
589
590 // Return an output section named NAME, or NULL if there is none.
591
592 Output_section*
593 Layout::find_output_section(const char* name) const
594 {
595 for (Section_list::const_iterator p = this->section_list_.begin();
596 p != this->section_list_.end();
597 ++p)
598 if (strcmp((*p)->name(), name) == 0)
599 return *p;
600 return NULL;
601 }
602
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear. Return NULL if there is none.
605
606 Output_segment*
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608 elfcpp::Elf_Word clear) const
609 {
610 for (Segment_list::const_iterator p = this->segment_list_.begin();
611 p != this->segment_list_.end();
612 ++p)
613 if (static_cast<elfcpp::PT>((*p)->type()) == type
614 && ((*p)->flags() & set) == set
615 && ((*p)->flags() & clear) == 0)
616 return *p;
617 return NULL;
618 }
619
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS. NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key. ORDER is where this should appear
623 // in the output sections. IS_RELRO is true for a relro section.
624
625 Output_section*
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628 Output_section_order order, bool is_relro)
629 {
630 elfcpp::Elf_Xword lookup_flags = flags;
631
632 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633 // read-write with read-only sections. Some other ELF linkers do
634 // not do this. FIXME: Perhaps there should be an option
635 // controlling this.
636 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
637
638 const Key key(name_key, std::make_pair(type, lookup_flags));
639 const std::pair<Key, Output_section*> v(key, NULL);
640 std::pair<Section_name_map::iterator, bool> ins(
641 this->section_name_map_.insert(v));
642
643 if (!ins.second)
644 return ins.first->second;
645 else
646 {
647 // This is the first time we've seen this name/type/flags
648 // combination. For compatibility with the GNU linker, we
649 // combine sections with contents and zero flags with sections
650 // with non-zero flags. This is a workaround for cases where
651 // assembler code forgets to set section flags. FIXME: Perhaps
652 // there should be an option to control this.
653 Output_section* os = NULL;
654
655 if (type == elfcpp::SHT_PROGBITS)
656 {
657 if (flags == 0)
658 {
659 Output_section* same_name = this->find_output_section(name);
660 if (same_name != NULL
661 && same_name->type() == elfcpp::SHT_PROGBITS
662 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
663 os = same_name;
664 }
665 else if ((flags & elfcpp::SHF_TLS) == 0)
666 {
667 elfcpp::Elf_Xword zero_flags = 0;
668 const Key zero_key(name_key, std::make_pair(type, zero_flags));
669 Section_name_map::iterator p =
670 this->section_name_map_.find(zero_key);
671 if (p != this->section_name_map_.end())
672 os = p->second;
673 }
674 }
675
676 if (os == NULL)
677 os = this->make_output_section(name, type, flags, order, is_relro);
678
679 ins.first->second = os;
680 return os;
681 }
682 }
683
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
686 // linker created section. IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file. ORDER is where this section should appear in the output
689 // sections. IS_RELRO is true for a relro section. This will return
690 // NULL if the input section should be discarded.
691
692 Output_section*
693 Layout::choose_output_section(const Relobj* relobj, const char* name,
694 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
695 bool is_input_section, Output_section_order order,
696 bool is_relro)
697 {
698 // We should not see any input sections after we have attached
699 // sections to segments.
700 gold_assert(!is_input_section || !this->sections_are_attached_);
701
702 // Some flags in the input section should not be automatically
703 // copied to the output section.
704 flags &= ~ (elfcpp::SHF_INFO_LINK
705 | elfcpp::SHF_GROUP
706 | elfcpp::SHF_MERGE
707 | elfcpp::SHF_STRINGS);
708
709 // We only clear the SHF_LINK_ORDER flag in for
710 // a non-relocatable link.
711 if (!parameters->options().relocatable())
712 flags &= ~elfcpp::SHF_LINK_ORDER;
713
714 if (this->script_options_->saw_sections_clause())
715 {
716 // We are using a SECTIONS clause, so the output section is
717 // chosen based only on the name.
718
719 Script_sections* ss = this->script_options_->script_sections();
720 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
721 Output_section** output_section_slot;
722 Script_sections::Section_type script_section_type;
723 const char* orig_name = name;
724 name = ss->output_section_name(file_name, name, &output_section_slot,
725 &script_section_type);
726 if (name == NULL)
727 {
728 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
729 "because it is not allowed by the "
730 "SECTIONS clause of the linker script"),
731 orig_name);
732 // The SECTIONS clause says to discard this input section.
733 return NULL;
734 }
735
736 // We can only handle script section types ST_NONE and ST_NOLOAD.
737 switch (script_section_type)
738 {
739 case Script_sections::ST_NONE:
740 break;
741 case Script_sections::ST_NOLOAD:
742 flags &= elfcpp::SHF_ALLOC;
743 break;
744 default:
745 gold_unreachable();
746 }
747
748 // If this is an orphan section--one not mentioned in the linker
749 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750 // default processing below.
751
752 if (output_section_slot != NULL)
753 {
754 if (*output_section_slot != NULL)
755 {
756 (*output_section_slot)->update_flags_for_input_section(flags);
757 return *output_section_slot;
758 }
759
760 // We don't put sections found in the linker script into
761 // SECTION_NAME_MAP_. That keeps us from getting confused
762 // if an orphan section is mapped to a section with the same
763 // name as one in the linker script.
764
765 name = this->namepool_.add(name, false, NULL);
766
767 Output_section* os = this->make_output_section(name, type, flags,
768 order, is_relro);
769
770 os->set_found_in_sections_clause();
771
772 // Special handling for NOLOAD sections.
773 if (script_section_type == Script_sections::ST_NOLOAD)
774 {
775 os->set_is_noload();
776
777 // The constructor of Output_section sets addresses of non-ALLOC
778 // sections to 0 by default. We don't want that for NOLOAD
779 // sections even if they have no SHF_ALLOC flag.
780 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
781 && os->is_address_valid())
782 {
783 gold_assert(os->address() == 0
784 && !os->is_offset_valid()
785 && !os->is_data_size_valid());
786 os->reset_address_and_file_offset();
787 }
788 }
789
790 *output_section_slot = os;
791 return os;
792 }
793 }
794
795 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
796
797 size_t len = strlen(name);
798 char* uncompressed_name = NULL;
799
800 // Compressed debug sections should be mapped to the corresponding
801 // uncompressed section.
802 if (is_compressed_debug_section(name))
803 {
804 uncompressed_name = new char[len];
805 uncompressed_name[0] = '.';
806 gold_assert(name[0] == '.' && name[1] == 'z');
807 strncpy(&uncompressed_name[1], &name[2], len - 2);
808 uncompressed_name[len - 1] = '\0';
809 len -= 1;
810 name = uncompressed_name;
811 }
812
813 // Turn NAME from the name of the input section into the name of the
814 // output section.
815 if (is_input_section
816 && !this->script_options_->saw_sections_clause()
817 && !parameters->options().relocatable())
818 name = Layout::output_section_name(name, &len);
819
820 Stringpool::Key name_key;
821 name = this->namepool_.add_with_length(name, len, true, &name_key);
822
823 if (uncompressed_name != NULL)
824 delete[] uncompressed_name;
825
826 // Find or make the output section. The output section is selected
827 // based on the section name, type, and flags.
828 return this->get_output_section(name, name_key, type, flags, order, is_relro);
829 }
830
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
833
834 template<int size, bool big_endian>
835 Output_section*
836 Layout::init_fixed_output_section(const char* name,
837 elfcpp::Shdr<size, big_endian>& shdr)
838 {
839 unsigned int sh_type = shdr.get_sh_type();
840
841 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842 // All others will be created from scratch and reallocated.
843 if (sh_type != elfcpp::SHT_PROGBITS
844 && sh_type != elfcpp::SHT_NOBITS
845 && sh_type != elfcpp::SHT_NOTE)
846 return NULL;
847
848 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
849 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
850 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
851 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
852 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
853 shdr.get_sh_addralign();
854
855 // Make the output section.
856 Stringpool::Key name_key;
857 name = this->namepool_.add(name, true, &name_key);
858 Output_section* os = this->get_output_section(name, name_key, sh_type,
859 sh_flags, ORDER_INVALID, false);
860 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
861 if (sh_type != elfcpp::SHT_NOBITS)
862 this->free_list_.remove(sh_offset, sh_offset + sh_size);
863 return os;
864 }
865
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one. RELOC_TYPE is the type of the
870 // relocation section if there is one. Set *OFF to the offset of this
871 // input section without the output section. Return NULL if the
872 // section should be discarded. Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
875
876 template<int size, bool big_endian>
877 Output_section*
878 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
879 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
880 unsigned int reloc_shndx, unsigned int, off_t* off)
881 {
882 *off = 0;
883
884 if (!this->include_section(object, name, shdr))
885 return NULL;
886
887 Output_section* os;
888
889 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890 // correct section types. Force them here.
891 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
892 if (sh_type == elfcpp::SHT_PROGBITS)
893 {
894 static const char init_array_prefix[] = ".init_array";
895 static const char preinit_array_prefix[] = ".preinit_array";
896 static const char fini_array_prefix[] = ".fini_array";
897 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
898 static size_t preinit_array_prefix_size =
899 sizeof(preinit_array_prefix) - 1;
900 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
901
902 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
903 sh_type = elfcpp::SHT_INIT_ARRAY;
904 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
905 == 0)
906 sh_type = elfcpp::SHT_PREINIT_ARRAY;
907 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
908 sh_type = elfcpp::SHT_FINI_ARRAY;
909 }
910
911 // In a relocatable link a grouped section must not be combined with
912 // any other sections.
913 if (parameters->options().relocatable()
914 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
915 {
916 name = this->namepool_.add(name, true, NULL);
917 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
918 ORDER_INVALID, false);
919 }
920 else
921 {
922 os = this->choose_output_section(object, name, sh_type,
923 shdr.get_sh_flags(), true,
924 ORDER_INVALID, false);
925 if (os == NULL)
926 return NULL;
927 }
928
929 // By default the GNU linker sorts input sections whose names match
930 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
931 // are sorted by name. This is used to implement constructor
932 // priority ordering. We are compatible.
933 if (!this->script_options_->saw_sections_clause()
934 && (is_prefix_of(".ctors.", name)
935 || is_prefix_of(".dtors.", name)
936 || is_prefix_of(".init_array.", name)
937 || is_prefix_of(".fini_array.", name)))
938 os->set_must_sort_attached_input_sections();
939
940 // FIXME: Handle SHF_LINK_ORDER somewhere.
941
942 elfcpp::Elf_Xword orig_flags = os->flags();
943
944 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
945 this->script_options_->saw_sections_clause());
946
947 // If the flags changed, we may have to change the order.
948 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
949 {
950 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
951 elfcpp::Elf_Xword new_flags =
952 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
953 if (orig_flags != new_flags)
954 os->set_order(this->default_section_order(os, false));
955 }
956
957 this->have_added_input_section_ = true;
958
959 return os;
960 }
961
962 // Handle a relocation section when doing a relocatable link.
963
964 template<int size, bool big_endian>
965 Output_section*
966 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
967 unsigned int,
968 const elfcpp::Shdr<size, big_endian>& shdr,
969 Output_section* data_section,
970 Relocatable_relocs* rr)
971 {
972 gold_assert(parameters->options().relocatable()
973 || parameters->options().emit_relocs());
974
975 int sh_type = shdr.get_sh_type();
976
977 std::string name;
978 if (sh_type == elfcpp::SHT_REL)
979 name = ".rel";
980 else if (sh_type == elfcpp::SHT_RELA)
981 name = ".rela";
982 else
983 gold_unreachable();
984 name += data_section->name();
985
986 // In a relocatable link relocs for a grouped section must not be
987 // combined with other reloc sections.
988 Output_section* os;
989 if (!parameters->options().relocatable()
990 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
991 os = this->choose_output_section(object, name.c_str(), sh_type,
992 shdr.get_sh_flags(), false,
993 ORDER_INVALID, false);
994 else
995 {
996 const char* n = this->namepool_.add(name.c_str(), true, NULL);
997 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
998 ORDER_INVALID, false);
999 }
1000
1001 os->set_should_link_to_symtab();
1002 os->set_info_section(data_section);
1003
1004 Output_section_data* posd;
1005 if (sh_type == elfcpp::SHT_REL)
1006 {
1007 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1008 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1009 size,
1010 big_endian>(rr);
1011 }
1012 else if (sh_type == elfcpp::SHT_RELA)
1013 {
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1015 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1016 size,
1017 big_endian>(rr);
1018 }
1019 else
1020 gold_unreachable();
1021
1022 os->add_output_section_data(posd);
1023 rr->set_output_data(posd);
1024
1025 return os;
1026 }
1027
1028 // Handle a group section when doing a relocatable link.
1029
1030 template<int size, bool big_endian>
1031 void
1032 Layout::layout_group(Symbol_table* symtab,
1033 Sized_relobj_file<size, big_endian>* object,
1034 unsigned int,
1035 const char* group_section_name,
1036 const char* signature,
1037 const elfcpp::Shdr<size, big_endian>& shdr,
1038 elfcpp::Elf_Word flags,
1039 std::vector<unsigned int>* shndxes)
1040 {
1041 gold_assert(parameters->options().relocatable());
1042 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1043 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1044 Output_section* os = this->make_output_section(group_section_name,
1045 elfcpp::SHT_GROUP,
1046 shdr.get_sh_flags(),
1047 ORDER_INVALID, false);
1048
1049 // We need to find a symbol with the signature in the symbol table.
1050 // If we don't find one now, we need to look again later.
1051 Symbol* sym = symtab->lookup(signature, NULL);
1052 if (sym != NULL)
1053 os->set_info_symndx(sym);
1054 else
1055 {
1056 // Reserve some space to minimize reallocations.
1057 if (this->group_signatures_.empty())
1058 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1059
1060 // We will wind up using a symbol whose name is the signature.
1061 // So just put the signature in the symbol name pool to save it.
1062 signature = symtab->canonicalize_name(signature);
1063 this->group_signatures_.push_back(Group_signature(os, signature));
1064 }
1065
1066 os->set_should_link_to_symtab();
1067 os->set_entsize(4);
1068
1069 section_size_type entry_count =
1070 convert_to_section_size_type(shdr.get_sh_size() / 4);
1071 Output_section_data* posd =
1072 new Output_data_group<size, big_endian>(object, entry_count, flags,
1073 shndxes);
1074 os->add_output_section_data(posd);
1075 }
1076
1077 // Special GNU handling of sections name .eh_frame. They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1080
1081 template<int size, bool big_endian>
1082 Output_section*
1083 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1084 const unsigned char* symbols,
1085 off_t symbols_size,
1086 const unsigned char* symbol_names,
1087 off_t symbol_names_size,
1088 unsigned int shndx,
1089 const elfcpp::Shdr<size, big_endian>& shdr,
1090 unsigned int reloc_shndx, unsigned int reloc_type,
1091 off_t* off)
1092 {
1093 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1094 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1095
1096 const char* const name = ".eh_frame";
1097 Output_section* os = this->choose_output_section(object, name,
1098 elfcpp::SHT_PROGBITS,
1099 elfcpp::SHF_ALLOC, false,
1100 ORDER_EHFRAME, false);
1101 if (os == NULL)
1102 return NULL;
1103
1104 if (this->eh_frame_section_ == NULL)
1105 {
1106 this->eh_frame_section_ = os;
1107 this->eh_frame_data_ = new Eh_frame();
1108
1109 // For incremental linking, we do not optimize .eh_frame sections
1110 // or create a .eh_frame_hdr section.
1111 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1112 {
1113 Output_section* hdr_os =
1114 this->choose_output_section(NULL, ".eh_frame_hdr",
1115 elfcpp::SHT_PROGBITS,
1116 elfcpp::SHF_ALLOC, false,
1117 ORDER_EHFRAME, false);
1118
1119 if (hdr_os != NULL)
1120 {
1121 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1122 this->eh_frame_data_);
1123 hdr_os->add_output_section_data(hdr_posd);
1124
1125 hdr_os->set_after_input_sections();
1126
1127 if (!this->script_options_->saw_phdrs_clause())
1128 {
1129 Output_segment* hdr_oseg;
1130 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1131 elfcpp::PF_R);
1132 hdr_oseg->add_output_section_to_nonload(hdr_os,
1133 elfcpp::PF_R);
1134 }
1135
1136 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1137 }
1138 }
1139 }
1140
1141 gold_assert(this->eh_frame_section_ == os);
1142
1143 elfcpp::Elf_Xword orig_flags = os->flags();
1144
1145 if (!parameters->incremental()
1146 && this->eh_frame_data_->add_ehframe_input_section(object,
1147 symbols,
1148 symbols_size,
1149 symbol_names,
1150 symbol_names_size,
1151 shndx,
1152 reloc_shndx,
1153 reloc_type))
1154 {
1155 os->update_flags_for_input_section(shdr.get_sh_flags());
1156
1157 // A writable .eh_frame section is a RELRO section.
1158 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1159 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1160 {
1161 os->set_is_relro();
1162 os->set_order(ORDER_RELRO);
1163 }
1164
1165 // We found a .eh_frame section we are going to optimize, so now
1166 // we can add the set of optimized sections to the output
1167 // section. We need to postpone adding this until we've found a
1168 // section we can optimize so that the .eh_frame section in
1169 // crtbegin.o winds up at the start of the output section.
1170 if (!this->added_eh_frame_data_)
1171 {
1172 os->add_output_section_data(this->eh_frame_data_);
1173 this->added_eh_frame_data_ = true;
1174 }
1175 *off = -1;
1176 }
1177 else
1178 {
1179 // We couldn't handle this .eh_frame section for some reason.
1180 // Add it as a normal section.
1181 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1182 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1183 saw_sections_clause);
1184 this->have_added_input_section_ = true;
1185
1186 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1187 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1188 os->set_order(this->default_section_order(os, false));
1189 }
1190
1191 return os;
1192 }
1193
1194 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1195 // the output section.
1196
1197 Output_section*
1198 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1199 elfcpp::Elf_Xword flags,
1200 Output_section_data* posd,
1201 Output_section_order order, bool is_relro)
1202 {
1203 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1204 false, order, is_relro);
1205 if (os != NULL)
1206 os->add_output_section_data(posd);
1207 return os;
1208 }
1209
1210 // Map section flags to segment flags.
1211
1212 elfcpp::Elf_Word
1213 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1214 {
1215 elfcpp::Elf_Word ret = elfcpp::PF_R;
1216 if ((flags & elfcpp::SHF_WRITE) != 0)
1217 ret |= elfcpp::PF_W;
1218 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1219 ret |= elfcpp::PF_X;
1220 return ret;
1221 }
1222
1223 // Make a new Output_section, and attach it to segments as
1224 // appropriate. ORDER is the order in which this section should
1225 // appear in the output segment. IS_RELRO is true if this is a relro
1226 // (read-only after relocations) section.
1227
1228 Output_section*
1229 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1230 elfcpp::Elf_Xword flags,
1231 Output_section_order order, bool is_relro)
1232 {
1233 Output_section* os;
1234 if ((flags & elfcpp::SHF_ALLOC) == 0
1235 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1236 && is_compressible_debug_section(name))
1237 os = new Output_compressed_section(&parameters->options(), name, type,
1238 flags);
1239 else if ((flags & elfcpp::SHF_ALLOC) == 0
1240 && parameters->options().strip_debug_non_line()
1241 && strcmp(".debug_abbrev", name) == 0)
1242 {
1243 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1244 name, type, flags);
1245 if (this->debug_info_)
1246 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1247 }
1248 else if ((flags & elfcpp::SHF_ALLOC) == 0
1249 && parameters->options().strip_debug_non_line()
1250 && strcmp(".debug_info", name) == 0)
1251 {
1252 os = this->debug_info_ = new Output_reduced_debug_info_section(
1253 name, type, flags);
1254 if (this->debug_abbrev_)
1255 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1256 }
1257 else
1258 {
1259 // FIXME: const_cast is ugly.
1260 Target* target = const_cast<Target*>(&parameters->target());
1261 os = target->make_output_section(name, type, flags);
1262 }
1263
1264 // With -z relro, we have to recognize the special sections by name.
1265 // There is no other way.
1266 bool is_relro_local = false;
1267 if (!this->script_options_->saw_sections_clause()
1268 && parameters->options().relro()
1269 && type == elfcpp::SHT_PROGBITS
1270 && (flags & elfcpp::SHF_ALLOC) != 0
1271 && (flags & elfcpp::SHF_WRITE) != 0)
1272 {
1273 if (strcmp(name, ".data.rel.ro") == 0)
1274 is_relro = true;
1275 else if (strcmp(name, ".data.rel.ro.local") == 0)
1276 {
1277 is_relro = true;
1278 is_relro_local = true;
1279 }
1280 else if (type == elfcpp::SHT_INIT_ARRAY
1281 || type == elfcpp::SHT_FINI_ARRAY
1282 || type == elfcpp::SHT_PREINIT_ARRAY)
1283 is_relro = true;
1284 else if (strcmp(name, ".ctors") == 0
1285 || strcmp(name, ".dtors") == 0
1286 || strcmp(name, ".jcr") == 0)
1287 is_relro = true;
1288 }
1289
1290 if (is_relro)
1291 os->set_is_relro();
1292
1293 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1294 order = this->default_section_order(os, is_relro_local);
1295
1296 os->set_order(order);
1297
1298 parameters->target().new_output_section(os);
1299
1300 this->section_list_.push_back(os);
1301
1302 // The GNU linker by default sorts some sections by priority, so we
1303 // do the same. We need to know that this might happen before we
1304 // attach any input sections.
1305 if (!this->script_options_->saw_sections_clause()
1306 && (strcmp(name, ".ctors") == 0
1307 || strcmp(name, ".dtors") == 0
1308 || strcmp(name, ".init_array") == 0
1309 || strcmp(name, ".fini_array") == 0))
1310 os->set_may_sort_attached_input_sections();
1311
1312 // Check for .stab*str sections, as .stab* sections need to link to
1313 // them.
1314 if (type == elfcpp::SHT_STRTAB
1315 && !this->have_stabstr_section_
1316 && strncmp(name, ".stab", 5) == 0
1317 && strcmp(name + strlen(name) - 3, "str") == 0)
1318 this->have_stabstr_section_ = true;
1319
1320 // If we have already attached the sections to segments, then we
1321 // need to attach this one now. This happens for sections created
1322 // directly by the linker.
1323 if (this->sections_are_attached_)
1324 this->attach_section_to_segment(os);
1325
1326 return os;
1327 }
1328
1329 // Return the default order in which a section should be placed in an
1330 // output segment. This function captures a lot of the ideas in
1331 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1332 // linker created section is normally set when the section is created;
1333 // this function is used for input sections.
1334
1335 Output_section_order
1336 Layout::default_section_order(Output_section* os, bool is_relro_local)
1337 {
1338 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1339 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1340 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1341 bool is_bss = false;
1342
1343 switch (os->type())
1344 {
1345 default:
1346 case elfcpp::SHT_PROGBITS:
1347 break;
1348 case elfcpp::SHT_NOBITS:
1349 is_bss = true;
1350 break;
1351 case elfcpp::SHT_RELA:
1352 case elfcpp::SHT_REL:
1353 if (!is_write)
1354 return ORDER_DYNAMIC_RELOCS;
1355 break;
1356 case elfcpp::SHT_HASH:
1357 case elfcpp::SHT_DYNAMIC:
1358 case elfcpp::SHT_SHLIB:
1359 case elfcpp::SHT_DYNSYM:
1360 case elfcpp::SHT_GNU_HASH:
1361 case elfcpp::SHT_GNU_verdef:
1362 case elfcpp::SHT_GNU_verneed:
1363 case elfcpp::SHT_GNU_versym:
1364 if (!is_write)
1365 return ORDER_DYNAMIC_LINKER;
1366 break;
1367 case elfcpp::SHT_NOTE:
1368 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1369 }
1370
1371 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1372 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1373
1374 if (!is_bss && !is_write)
1375 {
1376 if (is_execinstr)
1377 {
1378 if (strcmp(os->name(), ".init") == 0)
1379 return ORDER_INIT;
1380 else if (strcmp(os->name(), ".fini") == 0)
1381 return ORDER_FINI;
1382 }
1383 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1384 }
1385
1386 if (os->is_relro())
1387 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1388
1389 if (os->is_small_section())
1390 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1391 if (os->is_large_section())
1392 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1393
1394 return is_bss ? ORDER_BSS : ORDER_DATA;
1395 }
1396
1397 // Attach output sections to segments. This is called after we have
1398 // seen all the input sections.
1399
1400 void
1401 Layout::attach_sections_to_segments()
1402 {
1403 for (Section_list::iterator p = this->section_list_.begin();
1404 p != this->section_list_.end();
1405 ++p)
1406 this->attach_section_to_segment(*p);
1407
1408 this->sections_are_attached_ = true;
1409 }
1410
1411 // Attach an output section to a segment.
1412
1413 void
1414 Layout::attach_section_to_segment(Output_section* os)
1415 {
1416 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1417 this->unattached_section_list_.push_back(os);
1418 else
1419 this->attach_allocated_section_to_segment(os);
1420 }
1421
1422 // Attach an allocated output section to a segment.
1423
1424 void
1425 Layout::attach_allocated_section_to_segment(Output_section* os)
1426 {
1427 elfcpp::Elf_Xword flags = os->flags();
1428 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1429
1430 if (parameters->options().relocatable())
1431 return;
1432
1433 // If we have a SECTIONS clause, we can't handle the attachment to
1434 // segments until after we've seen all the sections.
1435 if (this->script_options_->saw_sections_clause())
1436 return;
1437
1438 gold_assert(!this->script_options_->saw_phdrs_clause());
1439
1440 // This output section goes into a PT_LOAD segment.
1441
1442 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1443
1444 // Check for --section-start.
1445 uint64_t addr;
1446 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1447
1448 // In general the only thing we really care about for PT_LOAD
1449 // segments is whether or not they are writable or executable,
1450 // so that is how we search for them.
1451 // Large data sections also go into their own PT_LOAD segment.
1452 // People who need segments sorted on some other basis will
1453 // have to use a linker script.
1454
1455 Segment_list::const_iterator p;
1456 for (p = this->segment_list_.begin();
1457 p != this->segment_list_.end();
1458 ++p)
1459 {
1460 if ((*p)->type() != elfcpp::PT_LOAD)
1461 continue;
1462 if (!parameters->options().omagic()
1463 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1464 continue;
1465 if (parameters->options().rosegment()
1466 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1467 continue;
1468 // If -Tbss was specified, we need to separate the data and BSS
1469 // segments.
1470 if (parameters->options().user_set_Tbss())
1471 {
1472 if ((os->type() == elfcpp::SHT_NOBITS)
1473 == (*p)->has_any_data_sections())
1474 continue;
1475 }
1476 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1477 continue;
1478
1479 if (is_address_set)
1480 {
1481 if ((*p)->are_addresses_set())
1482 continue;
1483
1484 (*p)->add_initial_output_data(os);
1485 (*p)->update_flags_for_output_section(seg_flags);
1486 (*p)->set_addresses(addr, addr);
1487 break;
1488 }
1489
1490 (*p)->add_output_section_to_load(this, os, seg_flags);
1491 break;
1492 }
1493
1494 if (p == this->segment_list_.end())
1495 {
1496 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1497 seg_flags);
1498 if (os->is_large_data_section())
1499 oseg->set_is_large_data_segment();
1500 oseg->add_output_section_to_load(this, os, seg_flags);
1501 if (is_address_set)
1502 oseg->set_addresses(addr, addr);
1503 }
1504
1505 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1506 // segment.
1507 if (os->type() == elfcpp::SHT_NOTE)
1508 {
1509 // See if we already have an equivalent PT_NOTE segment.
1510 for (p = this->segment_list_.begin();
1511 p != segment_list_.end();
1512 ++p)
1513 {
1514 if ((*p)->type() == elfcpp::PT_NOTE
1515 && (((*p)->flags() & elfcpp::PF_W)
1516 == (seg_flags & elfcpp::PF_W)))
1517 {
1518 (*p)->add_output_section_to_nonload(os, seg_flags);
1519 break;
1520 }
1521 }
1522
1523 if (p == this->segment_list_.end())
1524 {
1525 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1526 seg_flags);
1527 oseg->add_output_section_to_nonload(os, seg_flags);
1528 }
1529 }
1530
1531 // If we see a loadable SHF_TLS section, we create a PT_TLS
1532 // segment. There can only be one such segment.
1533 if ((flags & elfcpp::SHF_TLS) != 0)
1534 {
1535 if (this->tls_segment_ == NULL)
1536 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1537 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1538 }
1539
1540 // If -z relro is in effect, and we see a relro section, we create a
1541 // PT_GNU_RELRO segment. There can only be one such segment.
1542 if (os->is_relro() && parameters->options().relro())
1543 {
1544 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1545 if (this->relro_segment_ == NULL)
1546 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1547 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1548 }
1549
1550 // If we see a section named .interp, put it into a PT_INTERP
1551 // segment. This seems broken to me, but this is what GNU ld does,
1552 // and glibc expects it.
1553 if (strcmp(os->name(), ".interp") == 0
1554 && !this->script_options_->saw_phdrs_clause())
1555 {
1556 if (this->interp_segment_ == NULL)
1557 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1558 else
1559 gold_warning(_("multiple '.interp' sections in input files "
1560 "may cause confusing PT_INTERP segment"));
1561 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1562 }
1563 }
1564
1565 // Make an output section for a script.
1566
1567 Output_section*
1568 Layout::make_output_section_for_script(
1569 const char* name,
1570 Script_sections::Section_type section_type)
1571 {
1572 name = this->namepool_.add(name, false, NULL);
1573 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1574 if (section_type == Script_sections::ST_NOLOAD)
1575 sh_flags = 0;
1576 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1577 sh_flags, ORDER_INVALID,
1578 false);
1579 os->set_found_in_sections_clause();
1580 if (section_type == Script_sections::ST_NOLOAD)
1581 os->set_is_noload();
1582 return os;
1583 }
1584
1585 // Return the number of segments we expect to see.
1586
1587 size_t
1588 Layout::expected_segment_count() const
1589 {
1590 size_t ret = this->segment_list_.size();
1591
1592 // If we didn't see a SECTIONS clause in a linker script, we should
1593 // already have the complete list of segments. Otherwise we ask the
1594 // SECTIONS clause how many segments it expects, and add in the ones
1595 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1596
1597 if (!this->script_options_->saw_sections_clause())
1598 return ret;
1599 else
1600 {
1601 const Script_sections* ss = this->script_options_->script_sections();
1602 return ret + ss->expected_segment_count(this);
1603 }
1604 }
1605
1606 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1607 // is whether we saw a .note.GNU-stack section in the object file.
1608 // GNU_STACK_FLAGS is the section flags. The flags give the
1609 // protection required for stack memory. We record this in an
1610 // executable as a PT_GNU_STACK segment. If an object file does not
1611 // have a .note.GNU-stack segment, we must assume that it is an old
1612 // object. On some targets that will force an executable stack.
1613
1614 void
1615 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1616 const Object* obj)
1617 {
1618 if (!seen_gnu_stack)
1619 {
1620 this->input_without_gnu_stack_note_ = true;
1621 if (parameters->options().warn_execstack()
1622 && parameters->target().is_default_stack_executable())
1623 gold_warning(_("%s: missing .note.GNU-stack section"
1624 " implies executable stack"),
1625 obj->name().c_str());
1626 }
1627 else
1628 {
1629 this->input_with_gnu_stack_note_ = true;
1630 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1631 {
1632 this->input_requires_executable_stack_ = true;
1633 if (parameters->options().warn_execstack()
1634 || parameters->options().is_stack_executable())
1635 gold_warning(_("%s: requires executable stack"),
1636 obj->name().c_str());
1637 }
1638 }
1639 }
1640
1641 // Create automatic note sections.
1642
1643 void
1644 Layout::create_notes()
1645 {
1646 this->create_gold_note();
1647 this->create_executable_stack_info();
1648 this->create_build_id();
1649 }
1650
1651 // Create the dynamic sections which are needed before we read the
1652 // relocs.
1653
1654 void
1655 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1656 {
1657 if (parameters->doing_static_link())
1658 return;
1659
1660 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1661 elfcpp::SHT_DYNAMIC,
1662 (elfcpp::SHF_ALLOC
1663 | elfcpp::SHF_WRITE),
1664 false, ORDER_RELRO,
1665 true);
1666
1667 this->dynamic_symbol_ =
1668 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1669 this->dynamic_section_, 0, 0,
1670 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1671 elfcpp::STV_HIDDEN, 0, false, false);
1672
1673 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1674
1675 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1676 }
1677
1678 // For each output section whose name can be represented as C symbol,
1679 // define __start and __stop symbols for the section. This is a GNU
1680 // extension.
1681
1682 void
1683 Layout::define_section_symbols(Symbol_table* symtab)
1684 {
1685 for (Section_list::const_iterator p = this->section_list_.begin();
1686 p != this->section_list_.end();
1687 ++p)
1688 {
1689 const char* const name = (*p)->name();
1690 if (is_cident(name))
1691 {
1692 const std::string name_string(name);
1693 const std::string start_name(cident_section_start_prefix
1694 + name_string);
1695 const std::string stop_name(cident_section_stop_prefix
1696 + name_string);
1697
1698 symtab->define_in_output_data(start_name.c_str(),
1699 NULL, // version
1700 Symbol_table::PREDEFINED,
1701 *p,
1702 0, // value
1703 0, // symsize
1704 elfcpp::STT_NOTYPE,
1705 elfcpp::STB_GLOBAL,
1706 elfcpp::STV_DEFAULT,
1707 0, // nonvis
1708 false, // offset_is_from_end
1709 true); // only_if_ref
1710
1711 symtab->define_in_output_data(stop_name.c_str(),
1712 NULL, // version
1713 Symbol_table::PREDEFINED,
1714 *p,
1715 0, // value
1716 0, // symsize
1717 elfcpp::STT_NOTYPE,
1718 elfcpp::STB_GLOBAL,
1719 elfcpp::STV_DEFAULT,
1720 0, // nonvis
1721 true, // offset_is_from_end
1722 true); // only_if_ref
1723 }
1724 }
1725 }
1726
1727 // Define symbols for group signatures.
1728
1729 void
1730 Layout::define_group_signatures(Symbol_table* symtab)
1731 {
1732 for (Group_signatures::iterator p = this->group_signatures_.begin();
1733 p != this->group_signatures_.end();
1734 ++p)
1735 {
1736 Symbol* sym = symtab->lookup(p->signature, NULL);
1737 if (sym != NULL)
1738 p->section->set_info_symndx(sym);
1739 else
1740 {
1741 // Force the name of the group section to the group
1742 // signature, and use the group's section symbol as the
1743 // signature symbol.
1744 if (strcmp(p->section->name(), p->signature) != 0)
1745 {
1746 const char* name = this->namepool_.add(p->signature,
1747 true, NULL);
1748 p->section->set_name(name);
1749 }
1750 p->section->set_needs_symtab_index();
1751 p->section->set_info_section_symndx(p->section);
1752 }
1753 }
1754
1755 this->group_signatures_.clear();
1756 }
1757
1758 // Find the first read-only PT_LOAD segment, creating one if
1759 // necessary.
1760
1761 Output_segment*
1762 Layout::find_first_load_seg()
1763 {
1764 Output_segment* best = NULL;
1765 for (Segment_list::const_iterator p = this->segment_list_.begin();
1766 p != this->segment_list_.end();
1767 ++p)
1768 {
1769 if ((*p)->type() == elfcpp::PT_LOAD
1770 && ((*p)->flags() & elfcpp::PF_R) != 0
1771 && (parameters->options().omagic()
1772 || ((*p)->flags() & elfcpp::PF_W) == 0))
1773 {
1774 if (best == NULL || this->segment_precedes(*p, best))
1775 best = *p;
1776 }
1777 }
1778 if (best != NULL)
1779 return best;
1780
1781 gold_assert(!this->script_options_->saw_phdrs_clause());
1782
1783 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1784 elfcpp::PF_R);
1785 return load_seg;
1786 }
1787
1788 // Save states of all current output segments. Store saved states
1789 // in SEGMENT_STATES.
1790
1791 void
1792 Layout::save_segments(Segment_states* segment_states)
1793 {
1794 for (Segment_list::const_iterator p = this->segment_list_.begin();
1795 p != this->segment_list_.end();
1796 ++p)
1797 {
1798 Output_segment* segment = *p;
1799 // Shallow copy.
1800 Output_segment* copy = new Output_segment(*segment);
1801 (*segment_states)[segment] = copy;
1802 }
1803 }
1804
1805 // Restore states of output segments and delete any segment not found in
1806 // SEGMENT_STATES.
1807
1808 void
1809 Layout::restore_segments(const Segment_states* segment_states)
1810 {
1811 // Go through the segment list and remove any segment added in the
1812 // relaxation loop.
1813 this->tls_segment_ = NULL;
1814 this->relro_segment_ = NULL;
1815 Segment_list::iterator list_iter = this->segment_list_.begin();
1816 while (list_iter != this->segment_list_.end())
1817 {
1818 Output_segment* segment = *list_iter;
1819 Segment_states::const_iterator states_iter =
1820 segment_states->find(segment);
1821 if (states_iter != segment_states->end())
1822 {
1823 const Output_segment* copy = states_iter->second;
1824 // Shallow copy to restore states.
1825 *segment = *copy;
1826
1827 // Also fix up TLS and RELRO segment pointers as appropriate.
1828 if (segment->type() == elfcpp::PT_TLS)
1829 this->tls_segment_ = segment;
1830 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1831 this->relro_segment_ = segment;
1832
1833 ++list_iter;
1834 }
1835 else
1836 {
1837 list_iter = this->segment_list_.erase(list_iter);
1838 // This is a segment created during section layout. It should be
1839 // safe to remove it since we should have removed all pointers to it.
1840 delete segment;
1841 }
1842 }
1843 }
1844
1845 // Clean up after relaxation so that sections can be laid out again.
1846
1847 void
1848 Layout::clean_up_after_relaxation()
1849 {
1850 // Restore the segments to point state just prior to the relaxation loop.
1851 Script_sections* script_section = this->script_options_->script_sections();
1852 script_section->release_segments();
1853 this->restore_segments(this->segment_states_);
1854
1855 // Reset section addresses and file offsets
1856 for (Section_list::iterator p = this->section_list_.begin();
1857 p != this->section_list_.end();
1858 ++p)
1859 {
1860 (*p)->restore_states();
1861
1862 // If an input section changes size because of relaxation,
1863 // we need to adjust the section offsets of all input sections.
1864 // after such a section.
1865 if ((*p)->section_offsets_need_adjustment())
1866 (*p)->adjust_section_offsets();
1867
1868 (*p)->reset_address_and_file_offset();
1869 }
1870
1871 // Reset special output object address and file offsets.
1872 for (Data_list::iterator p = this->special_output_list_.begin();
1873 p != this->special_output_list_.end();
1874 ++p)
1875 (*p)->reset_address_and_file_offset();
1876
1877 // A linker script may have created some output section data objects.
1878 // They are useless now.
1879 for (Output_section_data_list::const_iterator p =
1880 this->script_output_section_data_list_.begin();
1881 p != this->script_output_section_data_list_.end();
1882 ++p)
1883 delete *p;
1884 this->script_output_section_data_list_.clear();
1885 }
1886
1887 // Prepare for relaxation.
1888
1889 void
1890 Layout::prepare_for_relaxation()
1891 {
1892 // Create an relaxation debug check if in debugging mode.
1893 if (is_debugging_enabled(DEBUG_RELAXATION))
1894 this->relaxation_debug_check_ = new Relaxation_debug_check();
1895
1896 // Save segment states.
1897 this->segment_states_ = new Segment_states();
1898 this->save_segments(this->segment_states_);
1899
1900 for(Section_list::const_iterator p = this->section_list_.begin();
1901 p != this->section_list_.end();
1902 ++p)
1903 (*p)->save_states();
1904
1905 if (is_debugging_enabled(DEBUG_RELAXATION))
1906 this->relaxation_debug_check_->check_output_data_for_reset_values(
1907 this->section_list_, this->special_output_list_);
1908
1909 // Also enable recording of output section data from scripts.
1910 this->record_output_section_data_from_script_ = true;
1911 }
1912
1913 // Relaxation loop body: If target has no relaxation, this runs only once
1914 // Otherwise, the target relaxation hook is called at the end of
1915 // each iteration. If the hook returns true, it means re-layout of
1916 // section is required.
1917 //
1918 // The number of segments created by a linking script without a PHDRS
1919 // clause may be affected by section sizes and alignments. There is
1920 // a remote chance that relaxation causes different number of PT_LOAD
1921 // segments are created and sections are attached to different segments.
1922 // Therefore, we always throw away all segments created during section
1923 // layout. In order to be able to restart the section layout, we keep
1924 // a copy of the segment list right before the relaxation loop and use
1925 // that to restore the segments.
1926 //
1927 // PASS is the current relaxation pass number.
1928 // SYMTAB is a symbol table.
1929 // PLOAD_SEG is the address of a pointer for the load segment.
1930 // PHDR_SEG is a pointer to the PHDR segment.
1931 // SEGMENT_HEADERS points to the output segment header.
1932 // FILE_HEADER points to the output file header.
1933 // PSHNDX is the address to store the output section index.
1934
1935 off_t inline
1936 Layout::relaxation_loop_body(
1937 int pass,
1938 Target* target,
1939 Symbol_table* symtab,
1940 Output_segment** pload_seg,
1941 Output_segment* phdr_seg,
1942 Output_segment_headers* segment_headers,
1943 Output_file_header* file_header,
1944 unsigned int* pshndx)
1945 {
1946 // If this is not the first iteration, we need to clean up after
1947 // relaxation so that we can lay out the sections again.
1948 if (pass != 0)
1949 this->clean_up_after_relaxation();
1950
1951 // If there is a SECTIONS clause, put all the input sections into
1952 // the required order.
1953 Output_segment* load_seg;
1954 if (this->script_options_->saw_sections_clause())
1955 load_seg = this->set_section_addresses_from_script(symtab);
1956 else if (parameters->options().relocatable())
1957 load_seg = NULL;
1958 else
1959 load_seg = this->find_first_load_seg();
1960
1961 if (parameters->options().oformat_enum()
1962 != General_options::OBJECT_FORMAT_ELF)
1963 load_seg = NULL;
1964
1965 // If the user set the address of the text segment, that may not be
1966 // compatible with putting the segment headers and file headers into
1967 // that segment.
1968 if (parameters->options().user_set_Ttext())
1969 load_seg = NULL;
1970
1971 gold_assert(phdr_seg == NULL
1972 || load_seg != NULL
1973 || this->script_options_->saw_sections_clause());
1974
1975 // If the address of the load segment we found has been set by
1976 // --section-start rather than by a script, then adjust the VMA and
1977 // LMA downward if possible to include the file and section headers.
1978 uint64_t header_gap = 0;
1979 if (load_seg != NULL
1980 && load_seg->are_addresses_set()
1981 && !this->script_options_->saw_sections_clause()
1982 && !parameters->options().relocatable())
1983 {
1984 file_header->finalize_data_size();
1985 segment_headers->finalize_data_size();
1986 size_t sizeof_headers = (file_header->data_size()
1987 + segment_headers->data_size());
1988 const uint64_t abi_pagesize = target->abi_pagesize();
1989 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1990 hdr_paddr &= ~(abi_pagesize - 1);
1991 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1992 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1993 load_seg = NULL;
1994 else
1995 {
1996 load_seg->set_addresses(load_seg->vaddr() - subtract,
1997 load_seg->paddr() - subtract);
1998 header_gap = subtract - sizeof_headers;
1999 }
2000 }
2001
2002 // Lay out the segment headers.
2003 if (!parameters->options().relocatable())
2004 {
2005 gold_assert(segment_headers != NULL);
2006 if (header_gap != 0 && load_seg != NULL)
2007 {
2008 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2009 load_seg->add_initial_output_data(z);
2010 }
2011 if (load_seg != NULL)
2012 load_seg->add_initial_output_data(segment_headers);
2013 if (phdr_seg != NULL)
2014 phdr_seg->add_initial_output_data(segment_headers);
2015 }
2016
2017 // Lay out the file header.
2018 if (load_seg != NULL)
2019 load_seg->add_initial_output_data(file_header);
2020
2021 if (this->script_options_->saw_phdrs_clause()
2022 && !parameters->options().relocatable())
2023 {
2024 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2025 // clause in a linker script.
2026 Script_sections* ss = this->script_options_->script_sections();
2027 ss->put_headers_in_phdrs(file_header, segment_headers);
2028 }
2029
2030 // We set the output section indexes in set_segment_offsets and
2031 // set_section_indexes.
2032 *pshndx = 1;
2033
2034 // Set the file offsets of all the segments, and all the sections
2035 // they contain.
2036 off_t off;
2037 if (!parameters->options().relocatable())
2038 off = this->set_segment_offsets(target, load_seg, pshndx);
2039 else
2040 off = this->set_relocatable_section_offsets(file_header, pshndx);
2041
2042 // Verify that the dummy relaxation does not change anything.
2043 if (is_debugging_enabled(DEBUG_RELAXATION))
2044 {
2045 if (pass == 0)
2046 this->relaxation_debug_check_->read_sections(this->section_list_);
2047 else
2048 this->relaxation_debug_check_->verify_sections(this->section_list_);
2049 }
2050
2051 *pload_seg = load_seg;
2052 return off;
2053 }
2054
2055 // Search the list of patterns and find the postion of the given section
2056 // name in the output section. If the section name matches a glob
2057 // pattern and a non-glob name, then the non-glob position takes
2058 // precedence. Return 0 if no match is found.
2059
2060 unsigned int
2061 Layout::find_section_order_index(const std::string& section_name)
2062 {
2063 Unordered_map<std::string, unsigned int>::iterator map_it;
2064 map_it = this->input_section_position_.find(section_name);
2065 if (map_it != this->input_section_position_.end())
2066 return map_it->second;
2067
2068 // Absolute match failed. Linear search the glob patterns.
2069 std::vector<std::string>::iterator it;
2070 for (it = this->input_section_glob_.begin();
2071 it != this->input_section_glob_.end();
2072 ++it)
2073 {
2074 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2075 {
2076 map_it = this->input_section_position_.find(*it);
2077 gold_assert(map_it != this->input_section_position_.end());
2078 return map_it->second;
2079 }
2080 }
2081 return 0;
2082 }
2083
2084 // Read the sequence of input sections from the file specified with
2085 // --section-ordering-file.
2086
2087 void
2088 Layout::read_layout_from_file()
2089 {
2090 const char* filename = parameters->options().section_ordering_file();
2091 std::ifstream in;
2092 std::string line;
2093
2094 in.open(filename);
2095 if (!in)
2096 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2097 filename, strerror(errno));
2098
2099 std::getline(in, line); // this chops off the trailing \n, if any
2100 unsigned int position = 1;
2101
2102 while (in)
2103 {
2104 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2105 line.resize(line.length() - 1);
2106 // Ignore comments, beginning with '#'
2107 if (line[0] == '#')
2108 {
2109 std::getline(in, line);
2110 continue;
2111 }
2112 this->input_section_position_[line] = position;
2113 // Store all glob patterns in a vector.
2114 if (is_wildcard_string(line.c_str()))
2115 this->input_section_glob_.push_back(line);
2116 position++;
2117 std::getline(in, line);
2118 }
2119 }
2120
2121 // Finalize the layout. When this is called, we have created all the
2122 // output sections and all the output segments which are based on
2123 // input sections. We have several things to do, and we have to do
2124 // them in the right order, so that we get the right results correctly
2125 // and efficiently.
2126
2127 // 1) Finalize the list of output segments and create the segment
2128 // table header.
2129
2130 // 2) Finalize the dynamic symbol table and associated sections.
2131
2132 // 3) Determine the final file offset of all the output segments.
2133
2134 // 4) Determine the final file offset of all the SHF_ALLOC output
2135 // sections.
2136
2137 // 5) Create the symbol table sections and the section name table
2138 // section.
2139
2140 // 6) Finalize the symbol table: set symbol values to their final
2141 // value and make a final determination of which symbols are going
2142 // into the output symbol table.
2143
2144 // 7) Create the section table header.
2145
2146 // 8) Determine the final file offset of all the output sections which
2147 // are not SHF_ALLOC, including the section table header.
2148
2149 // 9) Finalize the ELF file header.
2150
2151 // This function returns the size of the output file.
2152
2153 off_t
2154 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2155 Target* target, const Task* task)
2156 {
2157 target->finalize_sections(this, input_objects, symtab);
2158
2159 this->count_local_symbols(task, input_objects);
2160
2161 this->link_stabs_sections();
2162
2163 Output_segment* phdr_seg = NULL;
2164 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2165 {
2166 // There was a dynamic object in the link. We need to create
2167 // some information for the dynamic linker.
2168
2169 // Create the PT_PHDR segment which will hold the program
2170 // headers.
2171 if (!this->script_options_->saw_phdrs_clause())
2172 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2173
2174 // Create the dynamic symbol table, including the hash table.
2175 Output_section* dynstr;
2176 std::vector<Symbol*> dynamic_symbols;
2177 unsigned int local_dynamic_count;
2178 Versions versions(*this->script_options()->version_script_info(),
2179 &this->dynpool_);
2180 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2181 &local_dynamic_count, &dynamic_symbols,
2182 &versions);
2183
2184 // Create the .interp section to hold the name of the
2185 // interpreter, and put it in a PT_INTERP segment. Don't do it
2186 // if we saw a .interp section in an input file.
2187 if ((!parameters->options().shared()
2188 || parameters->options().dynamic_linker() != NULL)
2189 && this->interp_segment_ == NULL)
2190 this->create_interp(target);
2191
2192 // Finish the .dynamic section to hold the dynamic data, and put
2193 // it in a PT_DYNAMIC segment.
2194 this->finish_dynamic_section(input_objects, symtab);
2195
2196 // We should have added everything we need to the dynamic string
2197 // table.
2198 this->dynpool_.set_string_offsets();
2199
2200 // Create the version sections. We can't do this until the
2201 // dynamic string table is complete.
2202 this->create_version_sections(&versions, symtab, local_dynamic_count,
2203 dynamic_symbols, dynstr);
2204
2205 // Set the size of the _DYNAMIC symbol. We can't do this until
2206 // after we call create_version_sections.
2207 this->set_dynamic_symbol_size(symtab);
2208 }
2209
2210 // Create segment headers.
2211 Output_segment_headers* segment_headers =
2212 (parameters->options().relocatable()
2213 ? NULL
2214 : new Output_segment_headers(this->segment_list_));
2215
2216 // Lay out the file header.
2217 Output_file_header* file_header = new Output_file_header(target, symtab,
2218 segment_headers);
2219
2220 this->special_output_list_.push_back(file_header);
2221 if (segment_headers != NULL)
2222 this->special_output_list_.push_back(segment_headers);
2223
2224 // Find approriate places for orphan output sections if we are using
2225 // a linker script.
2226 if (this->script_options_->saw_sections_clause())
2227 this->place_orphan_sections_in_script();
2228
2229 Output_segment* load_seg;
2230 off_t off;
2231 unsigned int shndx;
2232 int pass = 0;
2233
2234 // Take a snapshot of the section layout as needed.
2235 if (target->may_relax())
2236 this->prepare_for_relaxation();
2237
2238 // Run the relaxation loop to lay out sections.
2239 do
2240 {
2241 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2242 phdr_seg, segment_headers, file_header,
2243 &shndx);
2244 pass++;
2245 }
2246 while (target->may_relax()
2247 && target->relax(pass, input_objects, symtab, this, task));
2248
2249 // Set the file offsets of all the non-data sections we've seen so
2250 // far which don't have to wait for the input sections. We need
2251 // this in order to finalize local symbols in non-allocated
2252 // sections.
2253 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2254
2255 // Set the section indexes of all unallocated sections seen so far,
2256 // in case any of them are somehow referenced by a symbol.
2257 shndx = this->set_section_indexes(shndx);
2258
2259 // Create the symbol table sections.
2260 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2261 if (!parameters->doing_static_link())
2262 this->assign_local_dynsym_offsets(input_objects);
2263
2264 // Process any symbol assignments from a linker script. This must
2265 // be called after the symbol table has been finalized.
2266 this->script_options_->finalize_symbols(symtab, this);
2267
2268 // Create the incremental inputs sections.
2269 if (this->incremental_inputs_)
2270 {
2271 this->incremental_inputs_->finalize();
2272 this->create_incremental_info_sections(symtab);
2273 }
2274
2275 // Create the .shstrtab section.
2276 Output_section* shstrtab_section = this->create_shstrtab();
2277
2278 // Set the file offsets of the rest of the non-data sections which
2279 // don't have to wait for the input sections.
2280 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2281
2282 // Now that all sections have been created, set the section indexes
2283 // for any sections which haven't been done yet.
2284 shndx = this->set_section_indexes(shndx);
2285
2286 // Create the section table header.
2287 this->create_shdrs(shstrtab_section, &off);
2288
2289 // If there are no sections which require postprocessing, we can
2290 // handle the section names now, and avoid a resize later.
2291 if (!this->any_postprocessing_sections_)
2292 {
2293 off = this->set_section_offsets(off,
2294 POSTPROCESSING_SECTIONS_PASS);
2295 off =
2296 this->set_section_offsets(off,
2297 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2298 }
2299
2300 file_header->set_section_info(this->section_headers_, shstrtab_section);
2301
2302 // Now we know exactly where everything goes in the output file
2303 // (except for non-allocated sections which require postprocessing).
2304 Output_data::layout_complete();
2305
2306 this->output_file_size_ = off;
2307
2308 return off;
2309 }
2310
2311 // Create a note header following the format defined in the ELF ABI.
2312 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2313 // of the section to create, DESCSZ is the size of the descriptor.
2314 // ALLOCATE is true if the section should be allocated in memory.
2315 // This returns the new note section. It sets *TRAILING_PADDING to
2316 // the number of trailing zero bytes required.
2317
2318 Output_section*
2319 Layout::create_note(const char* name, int note_type,
2320 const char* section_name, size_t descsz,
2321 bool allocate, size_t* trailing_padding)
2322 {
2323 // Authorities all agree that the values in a .note field should
2324 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2325 // they differ on what the alignment is for 64-bit binaries.
2326 // The GABI says unambiguously they take 8-byte alignment:
2327 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2328 // Other documentation says alignment should always be 4 bytes:
2329 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2330 // GNU ld and GNU readelf both support the latter (at least as of
2331 // version 2.16.91), and glibc always generates the latter for
2332 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2333 // here.
2334 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2335 const int size = parameters->target().get_size();
2336 #else
2337 const int size = 32;
2338 #endif
2339
2340 // The contents of the .note section.
2341 size_t namesz = strlen(name) + 1;
2342 size_t aligned_namesz = align_address(namesz, size / 8);
2343 size_t aligned_descsz = align_address(descsz, size / 8);
2344
2345 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2346
2347 unsigned char* buffer = new unsigned char[notehdrsz];
2348 memset(buffer, 0, notehdrsz);
2349
2350 bool is_big_endian = parameters->target().is_big_endian();
2351
2352 if (size == 32)
2353 {
2354 if (!is_big_endian)
2355 {
2356 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2357 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2358 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2359 }
2360 else
2361 {
2362 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2363 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2364 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2365 }
2366 }
2367 else if (size == 64)
2368 {
2369 if (!is_big_endian)
2370 {
2371 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2372 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2373 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2374 }
2375 else
2376 {
2377 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2378 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2379 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2380 }
2381 }
2382 else
2383 gold_unreachable();
2384
2385 memcpy(buffer + 3 * (size / 8), name, namesz);
2386
2387 elfcpp::Elf_Xword flags = 0;
2388 Output_section_order order = ORDER_INVALID;
2389 if (allocate)
2390 {
2391 flags = elfcpp::SHF_ALLOC;
2392 order = ORDER_RO_NOTE;
2393 }
2394 Output_section* os = this->choose_output_section(NULL, section_name,
2395 elfcpp::SHT_NOTE,
2396 flags, false, order, false);
2397 if (os == NULL)
2398 return NULL;
2399
2400 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2401 size / 8,
2402 "** note header");
2403 os->add_output_section_data(posd);
2404
2405 *trailing_padding = aligned_descsz - descsz;
2406
2407 return os;
2408 }
2409
2410 // For an executable or shared library, create a note to record the
2411 // version of gold used to create the binary.
2412
2413 void
2414 Layout::create_gold_note()
2415 {
2416 if (parameters->options().relocatable()
2417 || parameters->incremental_update())
2418 return;
2419
2420 std::string desc = std::string("gold ") + gold::get_version_string();
2421
2422 size_t trailing_padding;
2423 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2424 ".note.gnu.gold-version", desc.size(),
2425 false, &trailing_padding);
2426 if (os == NULL)
2427 return;
2428
2429 Output_section_data* posd = new Output_data_const(desc, 4);
2430 os->add_output_section_data(posd);
2431
2432 if (trailing_padding > 0)
2433 {
2434 posd = new Output_data_zero_fill(trailing_padding, 0);
2435 os->add_output_section_data(posd);
2436 }
2437 }
2438
2439 // Record whether the stack should be executable. This can be set
2440 // from the command line using the -z execstack or -z noexecstack
2441 // options. Otherwise, if any input file has a .note.GNU-stack
2442 // section with the SHF_EXECINSTR flag set, the stack should be
2443 // executable. Otherwise, if at least one input file a
2444 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2445 // section, we use the target default for whether the stack should be
2446 // executable. Otherwise, we don't generate a stack note. When
2447 // generating a object file, we create a .note.GNU-stack section with
2448 // the appropriate marking. When generating an executable or shared
2449 // library, we create a PT_GNU_STACK segment.
2450
2451 void
2452 Layout::create_executable_stack_info()
2453 {
2454 bool is_stack_executable;
2455 if (parameters->options().is_execstack_set())
2456 is_stack_executable = parameters->options().is_stack_executable();
2457 else if (!this->input_with_gnu_stack_note_)
2458 return;
2459 else
2460 {
2461 if (this->input_requires_executable_stack_)
2462 is_stack_executable = true;
2463 else if (this->input_without_gnu_stack_note_)
2464 is_stack_executable =
2465 parameters->target().is_default_stack_executable();
2466 else
2467 is_stack_executable = false;
2468 }
2469
2470 if (parameters->options().relocatable())
2471 {
2472 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2473 elfcpp::Elf_Xword flags = 0;
2474 if (is_stack_executable)
2475 flags |= elfcpp::SHF_EXECINSTR;
2476 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2477 ORDER_INVALID, false);
2478 }
2479 else
2480 {
2481 if (this->script_options_->saw_phdrs_clause())
2482 return;
2483 int flags = elfcpp::PF_R | elfcpp::PF_W;
2484 if (is_stack_executable)
2485 flags |= elfcpp::PF_X;
2486 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2487 }
2488 }
2489
2490 // If --build-id was used, set up the build ID note.
2491
2492 void
2493 Layout::create_build_id()
2494 {
2495 if (!parameters->options().user_set_build_id())
2496 return;
2497
2498 const char* style = parameters->options().build_id();
2499 if (strcmp(style, "none") == 0)
2500 return;
2501
2502 // Set DESCSZ to the size of the note descriptor. When possible,
2503 // set DESC to the note descriptor contents.
2504 size_t descsz;
2505 std::string desc;
2506 if (strcmp(style, "md5") == 0)
2507 descsz = 128 / 8;
2508 else if (strcmp(style, "sha1") == 0)
2509 descsz = 160 / 8;
2510 else if (strcmp(style, "uuid") == 0)
2511 {
2512 const size_t uuidsz = 128 / 8;
2513
2514 char buffer[uuidsz];
2515 memset(buffer, 0, uuidsz);
2516
2517 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2518 if (descriptor < 0)
2519 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2520 strerror(errno));
2521 else
2522 {
2523 ssize_t got = ::read(descriptor, buffer, uuidsz);
2524 release_descriptor(descriptor, true);
2525 if (got < 0)
2526 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2527 else if (static_cast<size_t>(got) != uuidsz)
2528 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2529 uuidsz, got);
2530 }
2531
2532 desc.assign(buffer, uuidsz);
2533 descsz = uuidsz;
2534 }
2535 else if (strncmp(style, "0x", 2) == 0)
2536 {
2537 hex_init();
2538 const char* p = style + 2;
2539 while (*p != '\0')
2540 {
2541 if (hex_p(p[0]) && hex_p(p[1]))
2542 {
2543 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2544 desc += c;
2545 p += 2;
2546 }
2547 else if (*p == '-' || *p == ':')
2548 ++p;
2549 else
2550 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2551 style);
2552 }
2553 descsz = desc.size();
2554 }
2555 else
2556 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2557
2558 // Create the note.
2559 size_t trailing_padding;
2560 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2561 ".note.gnu.build-id", descsz, true,
2562 &trailing_padding);
2563 if (os == NULL)
2564 return;
2565
2566 if (!desc.empty())
2567 {
2568 // We know the value already, so we fill it in now.
2569 gold_assert(desc.size() == descsz);
2570
2571 Output_section_data* posd = new Output_data_const(desc, 4);
2572 os->add_output_section_data(posd);
2573
2574 if (trailing_padding != 0)
2575 {
2576 posd = new Output_data_zero_fill(trailing_padding, 0);
2577 os->add_output_section_data(posd);
2578 }
2579 }
2580 else
2581 {
2582 // We need to compute a checksum after we have completed the
2583 // link.
2584 gold_assert(trailing_padding == 0);
2585 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2586 os->add_output_section_data(this->build_id_note_);
2587 }
2588 }
2589
2590 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2591 // field of the former should point to the latter. I'm not sure who
2592 // started this, but the GNU linker does it, and some tools depend
2593 // upon it.
2594
2595 void
2596 Layout::link_stabs_sections()
2597 {
2598 if (!this->have_stabstr_section_)
2599 return;
2600
2601 for (Section_list::iterator p = this->section_list_.begin();
2602 p != this->section_list_.end();
2603 ++p)
2604 {
2605 if ((*p)->type() != elfcpp::SHT_STRTAB)
2606 continue;
2607
2608 const char* name = (*p)->name();
2609 if (strncmp(name, ".stab", 5) != 0)
2610 continue;
2611
2612 size_t len = strlen(name);
2613 if (strcmp(name + len - 3, "str") != 0)
2614 continue;
2615
2616 std::string stab_name(name, len - 3);
2617 Output_section* stab_sec;
2618 stab_sec = this->find_output_section(stab_name.c_str());
2619 if (stab_sec != NULL)
2620 stab_sec->set_link_section(*p);
2621 }
2622 }
2623
2624 // Create .gnu_incremental_inputs and related sections needed
2625 // for the next run of incremental linking to check what has changed.
2626
2627 void
2628 Layout::create_incremental_info_sections(Symbol_table* symtab)
2629 {
2630 Incremental_inputs* incr = this->incremental_inputs_;
2631
2632 gold_assert(incr != NULL);
2633
2634 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2635 incr->create_data_sections(symtab);
2636
2637 // Add the .gnu_incremental_inputs section.
2638 const char* incremental_inputs_name =
2639 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2640 Output_section* incremental_inputs_os =
2641 this->make_output_section(incremental_inputs_name,
2642 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2643 ORDER_INVALID, false);
2644 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2645
2646 // Add the .gnu_incremental_symtab section.
2647 const char* incremental_symtab_name =
2648 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2649 Output_section* incremental_symtab_os =
2650 this->make_output_section(incremental_symtab_name,
2651 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2652 ORDER_INVALID, false);
2653 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2654 incremental_symtab_os->set_entsize(4);
2655
2656 // Add the .gnu_incremental_relocs section.
2657 const char* incremental_relocs_name =
2658 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2659 Output_section* incremental_relocs_os =
2660 this->make_output_section(incremental_relocs_name,
2661 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2662 ORDER_INVALID, false);
2663 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2664 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2665
2666 // Add the .gnu_incremental_got_plt section.
2667 const char* incremental_got_plt_name =
2668 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2669 Output_section* incremental_got_plt_os =
2670 this->make_output_section(incremental_got_plt_name,
2671 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2672 ORDER_INVALID, false);
2673 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2674
2675 // Add the .gnu_incremental_strtab section.
2676 const char* incremental_strtab_name =
2677 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2678 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2679 elfcpp::SHT_STRTAB, 0,
2680 ORDER_INVALID, false);
2681 Output_data_strtab* strtab_data =
2682 new Output_data_strtab(incr->get_stringpool());
2683 incremental_strtab_os->add_output_section_data(strtab_data);
2684
2685 incremental_inputs_os->set_after_input_sections();
2686 incremental_symtab_os->set_after_input_sections();
2687 incremental_relocs_os->set_after_input_sections();
2688 incremental_got_plt_os->set_after_input_sections();
2689
2690 incremental_inputs_os->set_link_section(incremental_strtab_os);
2691 incremental_symtab_os->set_link_section(incremental_inputs_os);
2692 incremental_relocs_os->set_link_section(incremental_inputs_os);
2693 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2694 }
2695
2696 // Return whether SEG1 should be before SEG2 in the output file. This
2697 // is based entirely on the segment type and flags. When this is
2698 // called the segment addresses has normally not yet been set.
2699
2700 bool
2701 Layout::segment_precedes(const Output_segment* seg1,
2702 const Output_segment* seg2)
2703 {
2704 elfcpp::Elf_Word type1 = seg1->type();
2705 elfcpp::Elf_Word type2 = seg2->type();
2706
2707 // The single PT_PHDR segment is required to precede any loadable
2708 // segment. We simply make it always first.
2709 if (type1 == elfcpp::PT_PHDR)
2710 {
2711 gold_assert(type2 != elfcpp::PT_PHDR);
2712 return true;
2713 }
2714 if (type2 == elfcpp::PT_PHDR)
2715 return false;
2716
2717 // The single PT_INTERP segment is required to precede any loadable
2718 // segment. We simply make it always second.
2719 if (type1 == elfcpp::PT_INTERP)
2720 {
2721 gold_assert(type2 != elfcpp::PT_INTERP);
2722 return true;
2723 }
2724 if (type2 == elfcpp::PT_INTERP)
2725 return false;
2726
2727 // We then put PT_LOAD segments before any other segments.
2728 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2729 return true;
2730 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2731 return false;
2732
2733 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2734 // segment, because that is where the dynamic linker expects to find
2735 // it (this is just for efficiency; other positions would also work
2736 // correctly).
2737 if (type1 == elfcpp::PT_TLS
2738 && type2 != elfcpp::PT_TLS
2739 && type2 != elfcpp::PT_GNU_RELRO)
2740 return false;
2741 if (type2 == elfcpp::PT_TLS
2742 && type1 != elfcpp::PT_TLS
2743 && type1 != elfcpp::PT_GNU_RELRO)
2744 return true;
2745
2746 // We put the PT_GNU_RELRO segment last, because that is where the
2747 // dynamic linker expects to find it (as with PT_TLS, this is just
2748 // for efficiency).
2749 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2750 return false;
2751 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2752 return true;
2753
2754 const elfcpp::Elf_Word flags1 = seg1->flags();
2755 const elfcpp::Elf_Word flags2 = seg2->flags();
2756
2757 // The order of non-PT_LOAD segments is unimportant. We simply sort
2758 // by the numeric segment type and flags values. There should not
2759 // be more than one segment with the same type and flags.
2760 if (type1 != elfcpp::PT_LOAD)
2761 {
2762 if (type1 != type2)
2763 return type1 < type2;
2764 gold_assert(flags1 != flags2);
2765 return flags1 < flags2;
2766 }
2767
2768 // If the addresses are set already, sort by load address.
2769 if (seg1->are_addresses_set())
2770 {
2771 if (!seg2->are_addresses_set())
2772 return true;
2773
2774 unsigned int section_count1 = seg1->output_section_count();
2775 unsigned int section_count2 = seg2->output_section_count();
2776 if (section_count1 == 0 && section_count2 > 0)
2777 return true;
2778 if (section_count1 > 0 && section_count2 == 0)
2779 return false;
2780
2781 uint64_t paddr1 = (seg1->are_addresses_set()
2782 ? seg1->paddr()
2783 : seg1->first_section_load_address());
2784 uint64_t paddr2 = (seg2->are_addresses_set()
2785 ? seg2->paddr()
2786 : seg2->first_section_load_address());
2787
2788 if (paddr1 != paddr2)
2789 return paddr1 < paddr2;
2790 }
2791 else if (seg2->are_addresses_set())
2792 return false;
2793
2794 // A segment which holds large data comes after a segment which does
2795 // not hold large data.
2796 if (seg1->is_large_data_segment())
2797 {
2798 if (!seg2->is_large_data_segment())
2799 return false;
2800 }
2801 else if (seg2->is_large_data_segment())
2802 return true;
2803
2804 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2805 // segments come before writable segments. Then writable segments
2806 // with data come before writable segments without data. Then
2807 // executable segments come before non-executable segments. Then
2808 // the unlikely case of a non-readable segment comes before the
2809 // normal case of a readable segment. If there are multiple
2810 // segments with the same type and flags, we require that the
2811 // address be set, and we sort by virtual address and then physical
2812 // address.
2813 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2814 return (flags1 & elfcpp::PF_W) == 0;
2815 if ((flags1 & elfcpp::PF_W) != 0
2816 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2817 return seg1->has_any_data_sections();
2818 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2819 return (flags1 & elfcpp::PF_X) != 0;
2820 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2821 return (flags1 & elfcpp::PF_R) == 0;
2822
2823 // We shouldn't get here--we shouldn't create segments which we
2824 // can't distinguish.
2825 gold_unreachable();
2826 }
2827
2828 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2829
2830 static off_t
2831 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2832 {
2833 uint64_t unsigned_off = off;
2834 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2835 | (addr & (abi_pagesize - 1)));
2836 if (aligned_off < unsigned_off)
2837 aligned_off += abi_pagesize;
2838 return aligned_off;
2839 }
2840
2841 // Set the file offsets of all the segments, and all the sections they
2842 // contain. They have all been created. LOAD_SEG must be be laid out
2843 // first. Return the offset of the data to follow.
2844
2845 off_t
2846 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2847 unsigned int* pshndx)
2848 {
2849 // Sort them into the final order.
2850 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2851 Layout::Compare_segments());
2852
2853 // Find the PT_LOAD segments, and set their addresses and offsets
2854 // and their section's addresses and offsets.
2855 uint64_t addr;
2856 if (parameters->options().user_set_Ttext())
2857 addr = parameters->options().Ttext();
2858 else if (parameters->options().output_is_position_independent())
2859 addr = 0;
2860 else
2861 addr = target->default_text_segment_address();
2862 off_t off = 0;
2863
2864 // If LOAD_SEG is NULL, then the file header and segment headers
2865 // will not be loadable. But they still need to be at offset 0 in
2866 // the file. Set their offsets now.
2867 if (load_seg == NULL)
2868 {
2869 for (Data_list::iterator p = this->special_output_list_.begin();
2870 p != this->special_output_list_.end();
2871 ++p)
2872 {
2873 off = align_address(off, (*p)->addralign());
2874 (*p)->set_address_and_file_offset(0, off);
2875 off += (*p)->data_size();
2876 }
2877 }
2878
2879 unsigned int increase_relro = this->increase_relro_;
2880 if (this->script_options_->saw_sections_clause())
2881 increase_relro = 0;
2882
2883 const bool check_sections = parameters->options().check_sections();
2884 Output_segment* last_load_segment = NULL;
2885
2886 for (Segment_list::iterator p = this->segment_list_.begin();
2887 p != this->segment_list_.end();
2888 ++p)
2889 {
2890 if ((*p)->type() == elfcpp::PT_LOAD)
2891 {
2892 if (load_seg != NULL && load_seg != *p)
2893 gold_unreachable();
2894 load_seg = NULL;
2895
2896 bool are_addresses_set = (*p)->are_addresses_set();
2897 if (are_addresses_set)
2898 {
2899 // When it comes to setting file offsets, we care about
2900 // the physical address.
2901 addr = (*p)->paddr();
2902 }
2903 else if (parameters->options().user_set_Tdata()
2904 && ((*p)->flags() & elfcpp::PF_W) != 0
2905 && (!parameters->options().user_set_Tbss()
2906 || (*p)->has_any_data_sections()))
2907 {
2908 addr = parameters->options().Tdata();
2909 are_addresses_set = true;
2910 }
2911 else if (parameters->options().user_set_Tbss()
2912 && ((*p)->flags() & elfcpp::PF_W) != 0
2913 && !(*p)->has_any_data_sections())
2914 {
2915 addr = parameters->options().Tbss();
2916 are_addresses_set = true;
2917 }
2918
2919 uint64_t orig_addr = addr;
2920 uint64_t orig_off = off;
2921
2922 uint64_t aligned_addr = 0;
2923 uint64_t abi_pagesize = target->abi_pagesize();
2924 uint64_t common_pagesize = target->common_pagesize();
2925
2926 if (!parameters->options().nmagic()
2927 && !parameters->options().omagic())
2928 (*p)->set_minimum_p_align(common_pagesize);
2929
2930 if (!are_addresses_set)
2931 {
2932 // Skip the address forward one page, maintaining the same
2933 // position within the page. This lets us store both segments
2934 // overlapping on a single page in the file, but the loader will
2935 // put them on different pages in memory. We will revisit this
2936 // decision once we know the size of the segment.
2937
2938 addr = align_address(addr, (*p)->maximum_alignment());
2939 aligned_addr = addr;
2940
2941 if ((addr & (abi_pagesize - 1)) != 0)
2942 addr = addr + abi_pagesize;
2943
2944 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2945 }
2946
2947 if (!parameters->options().nmagic()
2948 && !parameters->options().omagic())
2949 off = align_file_offset(off, addr, abi_pagesize);
2950 else if (load_seg == NULL)
2951 {
2952 // This is -N or -n with a section script which prevents
2953 // us from using a load segment. We need to ensure that
2954 // the file offset is aligned to the alignment of the
2955 // segment. This is because the linker script
2956 // implicitly assumed a zero offset. If we don't align
2957 // here, then the alignment of the sections in the
2958 // linker script may not match the alignment of the
2959 // sections in the set_section_addresses call below,
2960 // causing an error about dot moving backward.
2961 off = align_address(off, (*p)->maximum_alignment());
2962 }
2963
2964 unsigned int shndx_hold = *pshndx;
2965 bool has_relro = false;
2966 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2967 &increase_relro,
2968 &has_relro,
2969 &off, pshndx);
2970
2971 // Now that we know the size of this segment, we may be able
2972 // to save a page in memory, at the cost of wasting some
2973 // file space, by instead aligning to the start of a new
2974 // page. Here we use the real machine page size rather than
2975 // the ABI mandated page size. If the segment has been
2976 // aligned so that the relro data ends at a page boundary,
2977 // we do not try to realign it.
2978
2979 if (!are_addresses_set
2980 && !has_relro
2981 && aligned_addr != addr
2982 && !parameters->incremental())
2983 {
2984 uint64_t first_off = (common_pagesize
2985 - (aligned_addr
2986 & (common_pagesize - 1)));
2987 uint64_t last_off = new_addr & (common_pagesize - 1);
2988 if (first_off > 0
2989 && last_off > 0
2990 && ((aligned_addr & ~ (common_pagesize - 1))
2991 != (new_addr & ~ (common_pagesize - 1)))
2992 && first_off + last_off <= common_pagesize)
2993 {
2994 *pshndx = shndx_hold;
2995 addr = align_address(aligned_addr, common_pagesize);
2996 addr = align_address(addr, (*p)->maximum_alignment());
2997 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2998 off = align_file_offset(off, addr, abi_pagesize);
2999
3000 increase_relro = this->increase_relro_;
3001 if (this->script_options_->saw_sections_clause())
3002 increase_relro = 0;
3003 has_relro = false;
3004
3005 new_addr = (*p)->set_section_addresses(this, true, addr,
3006 &increase_relro,
3007 &has_relro,
3008 &off, pshndx);
3009 }
3010 }
3011
3012 addr = new_addr;
3013
3014 // Implement --check-sections. We know that the segments
3015 // are sorted by LMA.
3016 if (check_sections && last_load_segment != NULL)
3017 {
3018 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3019 if (last_load_segment->paddr() + last_load_segment->memsz()
3020 > (*p)->paddr())
3021 {
3022 unsigned long long lb1 = last_load_segment->paddr();
3023 unsigned long long le1 = lb1 + last_load_segment->memsz();
3024 unsigned long long lb2 = (*p)->paddr();
3025 unsigned long long le2 = lb2 + (*p)->memsz();
3026 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3027 "[0x%llx -> 0x%llx]"),
3028 lb1, le1, lb2, le2);
3029 }
3030 }
3031 last_load_segment = *p;
3032 }
3033 }
3034
3035 // Handle the non-PT_LOAD segments, setting their offsets from their
3036 // section's offsets.
3037 for (Segment_list::iterator p = this->segment_list_.begin();
3038 p != this->segment_list_.end();
3039 ++p)
3040 {
3041 if ((*p)->type() != elfcpp::PT_LOAD)
3042 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3043 ? increase_relro
3044 : 0);
3045 }
3046
3047 // Set the TLS offsets for each section in the PT_TLS segment.
3048 if (this->tls_segment_ != NULL)
3049 this->tls_segment_->set_tls_offsets();
3050
3051 return off;
3052 }
3053
3054 // Set the offsets of all the allocated sections when doing a
3055 // relocatable link. This does the same jobs as set_segment_offsets,
3056 // only for a relocatable link.
3057
3058 off_t
3059 Layout::set_relocatable_section_offsets(Output_data* file_header,
3060 unsigned int* pshndx)
3061 {
3062 off_t off = 0;
3063
3064 file_header->set_address_and_file_offset(0, 0);
3065 off += file_header->data_size();
3066
3067 for (Section_list::iterator p = this->section_list_.begin();
3068 p != this->section_list_.end();
3069 ++p)
3070 {
3071 // We skip unallocated sections here, except that group sections
3072 // have to come first.
3073 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3074 && (*p)->type() != elfcpp::SHT_GROUP)
3075 continue;
3076
3077 off = align_address(off, (*p)->addralign());
3078
3079 // The linker script might have set the address.
3080 if (!(*p)->is_address_valid())
3081 (*p)->set_address(0);
3082 (*p)->set_file_offset(off);
3083 (*p)->finalize_data_size();
3084 off += (*p)->data_size();
3085
3086 (*p)->set_out_shndx(*pshndx);
3087 ++*pshndx;
3088 }
3089
3090 return off;
3091 }
3092
3093 // Set the file offset of all the sections not associated with a
3094 // segment.
3095
3096 off_t
3097 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3098 {
3099 off_t startoff = off;
3100 off_t maxoff = off;
3101
3102 for (Section_list::iterator p = this->unattached_section_list_.begin();
3103 p != this->unattached_section_list_.end();
3104 ++p)
3105 {
3106 // The symtab section is handled in create_symtab_sections.
3107 if (*p == this->symtab_section_)
3108 continue;
3109
3110 // If we've already set the data size, don't set it again.
3111 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3112 continue;
3113
3114 if (pass == BEFORE_INPUT_SECTIONS_PASS
3115 && (*p)->requires_postprocessing())
3116 {
3117 (*p)->create_postprocessing_buffer();
3118 this->any_postprocessing_sections_ = true;
3119 }
3120
3121 if (pass == BEFORE_INPUT_SECTIONS_PASS
3122 && (*p)->after_input_sections())
3123 continue;
3124 else if (pass == POSTPROCESSING_SECTIONS_PASS
3125 && (!(*p)->after_input_sections()
3126 || (*p)->type() == elfcpp::SHT_STRTAB))
3127 continue;
3128 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3129 && (!(*p)->after_input_sections()
3130 || (*p)->type() != elfcpp::SHT_STRTAB))
3131 continue;
3132
3133 if (!parameters->incremental_update())
3134 {
3135 off = align_address(off, (*p)->addralign());
3136 (*p)->set_file_offset(off);
3137 (*p)->finalize_data_size();
3138 }
3139 else
3140 {
3141 // Incremental update: allocate file space from free list.
3142 (*p)->pre_finalize_data_size();
3143 off_t current_size = (*p)->current_data_size();
3144 off = this->allocate(current_size, (*p)->addralign(), startoff);
3145 if (off == -1)
3146 {
3147 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3148 this->free_list_.dump();
3149 gold_assert((*p)->output_section() != NULL);
3150 gold_fallback(_("out of patch space for section %s; "
3151 "relink with --incremental-full"),
3152 (*p)->output_section()->name());
3153 }
3154 (*p)->set_file_offset(off);
3155 (*p)->finalize_data_size();
3156 if ((*p)->data_size() > current_size)
3157 {
3158 gold_assert((*p)->output_section() != NULL);
3159 gold_fallback(_("%s: section changed size; "
3160 "relink with --incremental-full"),
3161 (*p)->output_section()->name());
3162 }
3163 gold_debug(DEBUG_INCREMENTAL,
3164 "set_section_offsets: %08lx %08lx %s",
3165 static_cast<long>(off),
3166 static_cast<long>((*p)->data_size()),
3167 ((*p)->output_section() != NULL
3168 ? (*p)->output_section()->name() : "(special)"));
3169 }
3170
3171 off += (*p)->data_size();
3172 if (off > maxoff)
3173 maxoff = off;
3174
3175 // At this point the name must be set.
3176 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3177 this->namepool_.add((*p)->name(), false, NULL);
3178 }
3179 return maxoff;
3180 }
3181
3182 // Set the section indexes of all the sections not associated with a
3183 // segment.
3184
3185 unsigned int
3186 Layout::set_section_indexes(unsigned int shndx)
3187 {
3188 for (Section_list::iterator p = this->unattached_section_list_.begin();
3189 p != this->unattached_section_list_.end();
3190 ++p)
3191 {
3192 if (!(*p)->has_out_shndx())
3193 {
3194 (*p)->set_out_shndx(shndx);
3195 ++shndx;
3196 }
3197 }
3198 return shndx;
3199 }
3200
3201 // Set the section addresses according to the linker script. This is
3202 // only called when we see a SECTIONS clause. This returns the
3203 // program segment which should hold the file header and segment
3204 // headers, if any. It will return NULL if they should not be in a
3205 // segment.
3206
3207 Output_segment*
3208 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3209 {
3210 Script_sections* ss = this->script_options_->script_sections();
3211 gold_assert(ss->saw_sections_clause());
3212 return this->script_options_->set_section_addresses(symtab, this);
3213 }
3214
3215 // Place the orphan sections in the linker script.
3216
3217 void
3218 Layout::place_orphan_sections_in_script()
3219 {
3220 Script_sections* ss = this->script_options_->script_sections();
3221 gold_assert(ss->saw_sections_clause());
3222
3223 // Place each orphaned output section in the script.
3224 for (Section_list::iterator p = this->section_list_.begin();
3225 p != this->section_list_.end();
3226 ++p)
3227 {
3228 if (!(*p)->found_in_sections_clause())
3229 ss->place_orphan(*p);
3230 }
3231 }
3232
3233 // Count the local symbols in the regular symbol table and the dynamic
3234 // symbol table, and build the respective string pools.
3235
3236 void
3237 Layout::count_local_symbols(const Task* task,
3238 const Input_objects* input_objects)
3239 {
3240 // First, figure out an upper bound on the number of symbols we'll
3241 // be inserting into each pool. This helps us create the pools with
3242 // the right size, to avoid unnecessary hashtable resizing.
3243 unsigned int symbol_count = 0;
3244 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3245 p != input_objects->relobj_end();
3246 ++p)
3247 symbol_count += (*p)->local_symbol_count();
3248
3249 // Go from "upper bound" to "estimate." We overcount for two
3250 // reasons: we double-count symbols that occur in more than one
3251 // object file, and we count symbols that are dropped from the
3252 // output. Add it all together and assume we overcount by 100%.
3253 symbol_count /= 2;
3254
3255 // We assume all symbols will go into both the sympool and dynpool.
3256 this->sympool_.reserve(symbol_count);
3257 this->dynpool_.reserve(symbol_count);
3258
3259 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3260 p != input_objects->relobj_end();
3261 ++p)
3262 {
3263 Task_lock_obj<Object> tlo(task, *p);
3264 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3265 }
3266 }
3267
3268 // Create the symbol table sections. Here we also set the final
3269 // values of the symbols. At this point all the loadable sections are
3270 // fully laid out. SHNUM is the number of sections so far.
3271
3272 void
3273 Layout::create_symtab_sections(const Input_objects* input_objects,
3274 Symbol_table* symtab,
3275 unsigned int shnum,
3276 off_t* poff)
3277 {
3278 int symsize;
3279 unsigned int align;
3280 if (parameters->target().get_size() == 32)
3281 {
3282 symsize = elfcpp::Elf_sizes<32>::sym_size;
3283 align = 4;
3284 }
3285 else if (parameters->target().get_size() == 64)
3286 {
3287 symsize = elfcpp::Elf_sizes<64>::sym_size;
3288 align = 8;
3289 }
3290 else
3291 gold_unreachable();
3292
3293 // Compute file offsets relative to the start of the symtab section.
3294 off_t off = 0;
3295
3296 // Save space for the dummy symbol at the start of the section. We
3297 // never bother to write this out--it will just be left as zero.
3298 off += symsize;
3299 unsigned int local_symbol_index = 1;
3300
3301 // Add STT_SECTION symbols for each Output section which needs one.
3302 for (Section_list::iterator p = this->section_list_.begin();
3303 p != this->section_list_.end();
3304 ++p)
3305 {
3306 if (!(*p)->needs_symtab_index())
3307 (*p)->set_symtab_index(-1U);
3308 else
3309 {
3310 (*p)->set_symtab_index(local_symbol_index);
3311 ++local_symbol_index;
3312 off += symsize;
3313 }
3314 }
3315
3316 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3317 p != input_objects->relobj_end();
3318 ++p)
3319 {
3320 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3321 off, symtab);
3322 off += (index - local_symbol_index) * symsize;
3323 local_symbol_index = index;
3324 }
3325
3326 unsigned int local_symcount = local_symbol_index;
3327 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3328
3329 off_t dynoff;
3330 size_t dyn_global_index;
3331 size_t dyncount;
3332 if (this->dynsym_section_ == NULL)
3333 {
3334 dynoff = 0;
3335 dyn_global_index = 0;
3336 dyncount = 0;
3337 }
3338 else
3339 {
3340 dyn_global_index = this->dynsym_section_->info();
3341 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3342 dynoff = this->dynsym_section_->offset() + locsize;
3343 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3344 gold_assert(static_cast<off_t>(dyncount * symsize)
3345 == this->dynsym_section_->data_size() - locsize);
3346 }
3347
3348 off_t global_off = off;
3349 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3350 &this->sympool_, &local_symcount);
3351
3352 if (!parameters->options().strip_all())
3353 {
3354 this->sympool_.set_string_offsets();
3355
3356 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3357 Output_section* osymtab = this->make_output_section(symtab_name,
3358 elfcpp::SHT_SYMTAB,
3359 0, ORDER_INVALID,
3360 false);
3361 this->symtab_section_ = osymtab;
3362
3363 Output_section_data* pos = new Output_data_fixed_space(off, align,
3364 "** symtab");
3365 osymtab->add_output_section_data(pos);
3366
3367 // We generate a .symtab_shndx section if we have more than
3368 // SHN_LORESERVE sections. Technically it is possible that we
3369 // don't need one, because it is possible that there are no
3370 // symbols in any of sections with indexes larger than
3371 // SHN_LORESERVE. That is probably unusual, though, and it is
3372 // easier to always create one than to compute section indexes
3373 // twice (once here, once when writing out the symbols).
3374 if (shnum >= elfcpp::SHN_LORESERVE)
3375 {
3376 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3377 false, NULL);
3378 Output_section* osymtab_xindex =
3379 this->make_output_section(symtab_xindex_name,
3380 elfcpp::SHT_SYMTAB_SHNDX, 0,
3381 ORDER_INVALID, false);
3382
3383 size_t symcount = off / symsize;
3384 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3385
3386 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3387
3388 osymtab_xindex->set_link_section(osymtab);
3389 osymtab_xindex->set_addralign(4);
3390 osymtab_xindex->set_entsize(4);
3391
3392 osymtab_xindex->set_after_input_sections();
3393
3394 // This tells the driver code to wait until the symbol table
3395 // has written out before writing out the postprocessing
3396 // sections, including the .symtab_shndx section.
3397 this->any_postprocessing_sections_ = true;
3398 }
3399
3400 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3401 Output_section* ostrtab = this->make_output_section(strtab_name,
3402 elfcpp::SHT_STRTAB,
3403 0, ORDER_INVALID,
3404 false);
3405
3406 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3407 ostrtab->add_output_section_data(pstr);
3408
3409 off_t symtab_off;
3410 if (!parameters->incremental_update())
3411 symtab_off = align_address(*poff, align);
3412 else
3413 {
3414 symtab_off = this->allocate(off, align, *poff);
3415 if (off == -1)
3416 gold_fallback(_("out of patch space for symbol table; "
3417 "relink with --incremental-full"));
3418 gold_debug(DEBUG_INCREMENTAL,
3419 "create_symtab_sections: %08lx %08lx .symtab",
3420 static_cast<long>(symtab_off),
3421 static_cast<long>(off));
3422 }
3423
3424 symtab->set_file_offset(symtab_off + global_off);
3425 osymtab->set_file_offset(symtab_off);
3426 osymtab->finalize_data_size();
3427 osymtab->set_link_section(ostrtab);
3428 osymtab->set_info(local_symcount);
3429 osymtab->set_entsize(symsize);
3430
3431 if (symtab_off + off > *poff)
3432 *poff = symtab_off + off;
3433 }
3434 }
3435
3436 // Create the .shstrtab section, which holds the names of the
3437 // sections. At the time this is called, we have created all the
3438 // output sections except .shstrtab itself.
3439
3440 Output_section*
3441 Layout::create_shstrtab()
3442 {
3443 // FIXME: We don't need to create a .shstrtab section if we are
3444 // stripping everything.
3445
3446 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3447
3448 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3449 ORDER_INVALID, false);
3450
3451 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3452 {
3453 // We can't write out this section until we've set all the
3454 // section names, and we don't set the names of compressed
3455 // output sections until relocations are complete. FIXME: With
3456 // the current names we use, this is unnecessary.
3457 os->set_after_input_sections();
3458 }
3459
3460 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3461 os->add_output_section_data(posd);
3462
3463 return os;
3464 }
3465
3466 // Create the section headers. SIZE is 32 or 64. OFF is the file
3467 // offset.
3468
3469 void
3470 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3471 {
3472 Output_section_headers* oshdrs;
3473 oshdrs = new Output_section_headers(this,
3474 &this->segment_list_,
3475 &this->section_list_,
3476 &this->unattached_section_list_,
3477 &this->namepool_,
3478 shstrtab_section);
3479 off_t off;
3480 if (!parameters->incremental_update())
3481 off = align_address(*poff, oshdrs->addralign());
3482 else
3483 {
3484 oshdrs->pre_finalize_data_size();
3485 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3486 if (off == -1)
3487 gold_fallback(_("out of patch space for section header table; "
3488 "relink with --incremental-full"));
3489 gold_debug(DEBUG_INCREMENTAL,
3490 "create_shdrs: %08lx %08lx (section header table)",
3491 static_cast<long>(off),
3492 static_cast<long>(off + oshdrs->data_size()));
3493 }
3494 oshdrs->set_address_and_file_offset(0, off);
3495 off += oshdrs->data_size();
3496 if (off > *poff)
3497 *poff = off;
3498 this->section_headers_ = oshdrs;
3499 }
3500
3501 // Count the allocated sections.
3502
3503 size_t
3504 Layout::allocated_output_section_count() const
3505 {
3506 size_t section_count = 0;
3507 for (Segment_list::const_iterator p = this->segment_list_.begin();
3508 p != this->segment_list_.end();
3509 ++p)
3510 section_count += (*p)->output_section_count();
3511 return section_count;
3512 }
3513
3514 // Create the dynamic symbol table.
3515
3516 void
3517 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3518 Symbol_table* symtab,
3519 Output_section** pdynstr,
3520 unsigned int* plocal_dynamic_count,
3521 std::vector<Symbol*>* pdynamic_symbols,
3522 Versions* pversions)
3523 {
3524 // Count all the symbols in the dynamic symbol table, and set the
3525 // dynamic symbol indexes.
3526
3527 // Skip symbol 0, which is always all zeroes.
3528 unsigned int index = 1;
3529
3530 // Add STT_SECTION symbols for each Output section which needs one.
3531 for (Section_list::iterator p = this->section_list_.begin();
3532 p != this->section_list_.end();
3533 ++p)
3534 {
3535 if (!(*p)->needs_dynsym_index())
3536 (*p)->set_dynsym_index(-1U);
3537 else
3538 {
3539 (*p)->set_dynsym_index(index);
3540 ++index;
3541 }
3542 }
3543
3544 // Count the local symbols that need to go in the dynamic symbol table,
3545 // and set the dynamic symbol indexes.
3546 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3547 p != input_objects->relobj_end();
3548 ++p)
3549 {
3550 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3551 index = new_index;
3552 }
3553
3554 unsigned int local_symcount = index;
3555 *plocal_dynamic_count = local_symcount;
3556
3557 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3558 &this->dynpool_, pversions);
3559
3560 int symsize;
3561 unsigned int align;
3562 const int size = parameters->target().get_size();
3563 if (size == 32)
3564 {
3565 symsize = elfcpp::Elf_sizes<32>::sym_size;
3566 align = 4;
3567 }
3568 else if (size == 64)
3569 {
3570 symsize = elfcpp::Elf_sizes<64>::sym_size;
3571 align = 8;
3572 }
3573 else
3574 gold_unreachable();
3575
3576 // Create the dynamic symbol table section.
3577
3578 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3579 elfcpp::SHT_DYNSYM,
3580 elfcpp::SHF_ALLOC,
3581 false,
3582 ORDER_DYNAMIC_LINKER,
3583 false);
3584
3585 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3586 align,
3587 "** dynsym");
3588 dynsym->add_output_section_data(odata);
3589
3590 dynsym->set_info(local_symcount);
3591 dynsym->set_entsize(symsize);
3592 dynsym->set_addralign(align);
3593
3594 this->dynsym_section_ = dynsym;
3595
3596 Output_data_dynamic* const odyn = this->dynamic_data_;
3597 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3598 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3599
3600 // If there are more than SHN_LORESERVE allocated sections, we
3601 // create a .dynsym_shndx section. It is possible that we don't
3602 // need one, because it is possible that there are no dynamic
3603 // symbols in any of the sections with indexes larger than
3604 // SHN_LORESERVE. This is probably unusual, though, and at this
3605 // time we don't know the actual section indexes so it is
3606 // inconvenient to check.
3607 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3608 {
3609 Output_section* dynsym_xindex =
3610 this->choose_output_section(NULL, ".dynsym_shndx",
3611 elfcpp::SHT_SYMTAB_SHNDX,
3612 elfcpp::SHF_ALLOC,
3613 false, ORDER_DYNAMIC_LINKER, false);
3614
3615 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3616
3617 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3618
3619 dynsym_xindex->set_link_section(dynsym);
3620 dynsym_xindex->set_addralign(4);
3621 dynsym_xindex->set_entsize(4);
3622
3623 dynsym_xindex->set_after_input_sections();
3624
3625 // This tells the driver code to wait until the symbol table has
3626 // written out before writing out the postprocessing sections,
3627 // including the .dynsym_shndx section.
3628 this->any_postprocessing_sections_ = true;
3629 }
3630
3631 // Create the dynamic string table section.
3632
3633 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3634 elfcpp::SHT_STRTAB,
3635 elfcpp::SHF_ALLOC,
3636 false,
3637 ORDER_DYNAMIC_LINKER,
3638 false);
3639
3640 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3641 dynstr->add_output_section_data(strdata);
3642
3643 dynsym->set_link_section(dynstr);
3644 this->dynamic_section_->set_link_section(dynstr);
3645
3646 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3647 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3648
3649 *pdynstr = dynstr;
3650
3651 // Create the hash tables.
3652
3653 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3654 || strcmp(parameters->options().hash_style(), "both") == 0)
3655 {
3656 unsigned char* phash;
3657 unsigned int hashlen;
3658 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3659 &phash, &hashlen);
3660
3661 Output_section* hashsec =
3662 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3663 elfcpp::SHF_ALLOC, false,
3664 ORDER_DYNAMIC_LINKER, false);
3665
3666 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3667 hashlen,
3668 align,
3669 "** hash");
3670 hashsec->add_output_section_data(hashdata);
3671
3672 hashsec->set_link_section(dynsym);
3673 hashsec->set_entsize(4);
3674
3675 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3676 }
3677
3678 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3679 || strcmp(parameters->options().hash_style(), "both") == 0)
3680 {
3681 unsigned char* phash;
3682 unsigned int hashlen;
3683 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3684 &phash, &hashlen);
3685
3686 Output_section* hashsec =
3687 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3688 elfcpp::SHF_ALLOC, false,
3689 ORDER_DYNAMIC_LINKER, false);
3690
3691 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3692 hashlen,
3693 align,
3694 "** hash");
3695 hashsec->add_output_section_data(hashdata);
3696
3697 hashsec->set_link_section(dynsym);
3698
3699 // For a 64-bit target, the entries in .gnu.hash do not have a
3700 // uniform size, so we only set the entry size for a 32-bit
3701 // target.
3702 if (parameters->target().get_size() == 32)
3703 hashsec->set_entsize(4);
3704
3705 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3706 }
3707 }
3708
3709 // Assign offsets to each local portion of the dynamic symbol table.
3710
3711 void
3712 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3713 {
3714 Output_section* dynsym = this->dynsym_section_;
3715 gold_assert(dynsym != NULL);
3716
3717 off_t off = dynsym->offset();
3718
3719 // Skip the dummy symbol at the start of the section.
3720 off += dynsym->entsize();
3721
3722 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3723 p != input_objects->relobj_end();
3724 ++p)
3725 {
3726 unsigned int count = (*p)->set_local_dynsym_offset(off);
3727 off += count * dynsym->entsize();
3728 }
3729 }
3730
3731 // Create the version sections.
3732
3733 void
3734 Layout::create_version_sections(const Versions* versions,
3735 const Symbol_table* symtab,
3736 unsigned int local_symcount,
3737 const std::vector<Symbol*>& dynamic_symbols,
3738 const Output_section* dynstr)
3739 {
3740 if (!versions->any_defs() && !versions->any_needs())
3741 return;
3742
3743 switch (parameters->size_and_endianness())
3744 {
3745 #ifdef HAVE_TARGET_32_LITTLE
3746 case Parameters::TARGET_32_LITTLE:
3747 this->sized_create_version_sections<32, false>(versions, symtab,
3748 local_symcount,
3749 dynamic_symbols, dynstr);
3750 break;
3751 #endif
3752 #ifdef HAVE_TARGET_32_BIG
3753 case Parameters::TARGET_32_BIG:
3754 this->sized_create_version_sections<32, true>(versions, symtab,
3755 local_symcount,
3756 dynamic_symbols, dynstr);
3757 break;
3758 #endif
3759 #ifdef HAVE_TARGET_64_LITTLE
3760 case Parameters::TARGET_64_LITTLE:
3761 this->sized_create_version_sections<64, false>(versions, symtab,
3762 local_symcount,
3763 dynamic_symbols, dynstr);
3764 break;
3765 #endif
3766 #ifdef HAVE_TARGET_64_BIG
3767 case Parameters::TARGET_64_BIG:
3768 this->sized_create_version_sections<64, true>(versions, symtab,
3769 local_symcount,
3770 dynamic_symbols, dynstr);
3771 break;
3772 #endif
3773 default:
3774 gold_unreachable();
3775 }
3776 }
3777
3778 // Create the version sections, sized version.
3779
3780 template<int size, bool big_endian>
3781 void
3782 Layout::sized_create_version_sections(
3783 const Versions* versions,
3784 const Symbol_table* symtab,
3785 unsigned int local_symcount,
3786 const std::vector<Symbol*>& dynamic_symbols,
3787 const Output_section* dynstr)
3788 {
3789 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3790 elfcpp::SHT_GNU_versym,
3791 elfcpp::SHF_ALLOC,
3792 false,
3793 ORDER_DYNAMIC_LINKER,
3794 false);
3795
3796 unsigned char* vbuf;
3797 unsigned int vsize;
3798 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3799 local_symcount,
3800 dynamic_symbols,
3801 &vbuf, &vsize);
3802
3803 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3804 "** versions");
3805
3806 vsec->add_output_section_data(vdata);
3807 vsec->set_entsize(2);
3808 vsec->set_link_section(this->dynsym_section_);
3809
3810 Output_data_dynamic* const odyn = this->dynamic_data_;
3811 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3812
3813 if (versions->any_defs())
3814 {
3815 Output_section* vdsec;
3816 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3817 elfcpp::SHT_GNU_verdef,
3818 elfcpp::SHF_ALLOC,
3819 false, ORDER_DYNAMIC_LINKER, false);
3820
3821 unsigned char* vdbuf;
3822 unsigned int vdsize;
3823 unsigned int vdentries;
3824 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3825 &vdsize, &vdentries);
3826
3827 Output_section_data* vddata =
3828 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3829
3830 vdsec->add_output_section_data(vddata);
3831 vdsec->set_link_section(dynstr);
3832 vdsec->set_info(vdentries);
3833
3834 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3835 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3836 }
3837
3838 if (versions->any_needs())
3839 {
3840 Output_section* vnsec;
3841 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3842 elfcpp::SHT_GNU_verneed,
3843 elfcpp::SHF_ALLOC,
3844 false, ORDER_DYNAMIC_LINKER, false);
3845
3846 unsigned char* vnbuf;
3847 unsigned int vnsize;
3848 unsigned int vnentries;
3849 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3850 &vnbuf, &vnsize,
3851 &vnentries);
3852
3853 Output_section_data* vndata =
3854 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3855
3856 vnsec->add_output_section_data(vndata);
3857 vnsec->set_link_section(dynstr);
3858 vnsec->set_info(vnentries);
3859
3860 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3861 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3862 }
3863 }
3864
3865 // Create the .interp section and PT_INTERP segment.
3866
3867 void
3868 Layout::create_interp(const Target* target)
3869 {
3870 gold_assert(this->interp_segment_ == NULL);
3871
3872 const char* interp = parameters->options().dynamic_linker();
3873 if (interp == NULL)
3874 {
3875 interp = target->dynamic_linker();
3876 gold_assert(interp != NULL);
3877 }
3878
3879 size_t len = strlen(interp) + 1;
3880
3881 Output_section_data* odata = new Output_data_const(interp, len, 1);
3882
3883 Output_section* osec = this->choose_output_section(NULL, ".interp",
3884 elfcpp::SHT_PROGBITS,
3885 elfcpp::SHF_ALLOC,
3886 false, ORDER_INTERP,
3887 false);
3888 osec->add_output_section_data(odata);
3889 }
3890
3891 // Add dynamic tags for the PLT and the dynamic relocs. This is
3892 // called by the target-specific code. This does nothing if not doing
3893 // a dynamic link.
3894
3895 // USE_REL is true for REL relocs rather than RELA relocs.
3896
3897 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3898
3899 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3900 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3901 // some targets have multiple reloc sections in PLT_REL.
3902
3903 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3904 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3905
3906 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3907 // executable.
3908
3909 void
3910 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3911 const Output_data* plt_rel,
3912 const Output_data_reloc_generic* dyn_rel,
3913 bool add_debug, bool dynrel_includes_plt)
3914 {
3915 Output_data_dynamic* odyn = this->dynamic_data_;
3916 if (odyn == NULL)
3917 return;
3918
3919 if (plt_got != NULL && plt_got->output_section() != NULL)
3920 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3921
3922 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3923 {
3924 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3925 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3926 odyn->add_constant(elfcpp::DT_PLTREL,
3927 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3928 }
3929
3930 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3931 {
3932 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3933 dyn_rel);
3934 if (plt_rel != NULL && dynrel_includes_plt)
3935 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3936 dyn_rel, plt_rel);
3937 else
3938 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3939 dyn_rel);
3940 const int size = parameters->target().get_size();
3941 elfcpp::DT rel_tag;
3942 int rel_size;
3943 if (use_rel)
3944 {
3945 rel_tag = elfcpp::DT_RELENT;
3946 if (size == 32)
3947 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3948 else if (size == 64)
3949 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3950 else
3951 gold_unreachable();
3952 }
3953 else
3954 {
3955 rel_tag = elfcpp::DT_RELAENT;
3956 if (size == 32)
3957 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3958 else if (size == 64)
3959 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3960 else
3961 gold_unreachable();
3962 }
3963 odyn->add_constant(rel_tag, rel_size);
3964
3965 if (parameters->options().combreloc())
3966 {
3967 size_t c = dyn_rel->relative_reloc_count();
3968 if (c > 0)
3969 odyn->add_constant((use_rel
3970 ? elfcpp::DT_RELCOUNT
3971 : elfcpp::DT_RELACOUNT),
3972 c);
3973 }
3974 }
3975
3976 if (add_debug && !parameters->options().shared())
3977 {
3978 // The value of the DT_DEBUG tag is filled in by the dynamic
3979 // linker at run time, and used by the debugger.
3980 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3981 }
3982 }
3983
3984 // Finish the .dynamic section and PT_DYNAMIC segment.
3985
3986 void
3987 Layout::finish_dynamic_section(const Input_objects* input_objects,
3988 const Symbol_table* symtab)
3989 {
3990 if (!this->script_options_->saw_phdrs_clause())
3991 {
3992 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3993 (elfcpp::PF_R
3994 | elfcpp::PF_W));
3995 oseg->add_output_section_to_nonload(this->dynamic_section_,
3996 elfcpp::PF_R | elfcpp::PF_W);
3997 }
3998
3999 Output_data_dynamic* const odyn = this->dynamic_data_;
4000
4001 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4002 p != input_objects->dynobj_end();
4003 ++p)
4004 {
4005 if (!(*p)->is_needed() && (*p)->as_needed())
4006 {
4007 // This dynamic object was linked with --as-needed, but it
4008 // is not needed.
4009 continue;
4010 }
4011
4012 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4013 }
4014
4015 if (parameters->options().shared())
4016 {
4017 const char* soname = parameters->options().soname();
4018 if (soname != NULL)
4019 odyn->add_string(elfcpp::DT_SONAME, soname);
4020 }
4021
4022 Symbol* sym = symtab->lookup(parameters->options().init());
4023 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4024 odyn->add_symbol(elfcpp::DT_INIT, sym);
4025
4026 sym = symtab->lookup(parameters->options().fini());
4027 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4028 odyn->add_symbol(elfcpp::DT_FINI, sym);
4029
4030 // Look for .init_array, .preinit_array and .fini_array by checking
4031 // section types.
4032 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4033 p != this->section_list_.end();
4034 ++p)
4035 switch((*p)->type())
4036 {
4037 case elfcpp::SHT_FINI_ARRAY:
4038 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4039 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4040 break;
4041 case elfcpp::SHT_INIT_ARRAY:
4042 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4043 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4044 break;
4045 case elfcpp::SHT_PREINIT_ARRAY:
4046 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4047 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4048 break;
4049 default:
4050 break;
4051 }
4052
4053 // Add a DT_RPATH entry if needed.
4054 const General_options::Dir_list& rpath(parameters->options().rpath());
4055 if (!rpath.empty())
4056 {
4057 std::string rpath_val;
4058 for (General_options::Dir_list::const_iterator p = rpath.begin();
4059 p != rpath.end();
4060 ++p)
4061 {
4062 if (rpath_val.empty())
4063 rpath_val = p->name();
4064 else
4065 {
4066 // Eliminate duplicates.
4067 General_options::Dir_list::const_iterator q;
4068 for (q = rpath.begin(); q != p; ++q)
4069 if (q->name() == p->name())
4070 break;
4071 if (q == p)
4072 {
4073 rpath_val += ':';
4074 rpath_val += p->name();
4075 }
4076 }
4077 }
4078
4079 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4080 if (parameters->options().enable_new_dtags())
4081 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4082 }
4083
4084 // Look for text segments that have dynamic relocations.
4085 bool have_textrel = false;
4086 if (!this->script_options_->saw_sections_clause())
4087 {
4088 for (Segment_list::const_iterator p = this->segment_list_.begin();
4089 p != this->segment_list_.end();
4090 ++p)
4091 {
4092 if ((*p)->type() == elfcpp::PT_LOAD
4093 && ((*p)->flags() & elfcpp::PF_W) == 0
4094 && (*p)->has_dynamic_reloc())
4095 {
4096 have_textrel = true;
4097 break;
4098 }
4099 }
4100 }
4101 else
4102 {
4103 // We don't know the section -> segment mapping, so we are
4104 // conservative and just look for readonly sections with
4105 // relocations. If those sections wind up in writable segments,
4106 // then we have created an unnecessary DT_TEXTREL entry.
4107 for (Section_list::const_iterator p = this->section_list_.begin();
4108 p != this->section_list_.end();
4109 ++p)
4110 {
4111 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4112 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4113 && (*p)->has_dynamic_reloc())
4114 {
4115 have_textrel = true;
4116 break;
4117 }
4118 }
4119 }
4120
4121 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4122 // post-link tools can easily modify these flags if desired.
4123 unsigned int flags = 0;
4124 if (have_textrel)
4125 {
4126 // Add a DT_TEXTREL for compatibility with older loaders.
4127 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4128 flags |= elfcpp::DF_TEXTREL;
4129
4130 if (parameters->options().text())
4131 gold_error(_("read-only segment has dynamic relocations"));
4132 else if (parameters->options().warn_shared_textrel()
4133 && parameters->options().shared())
4134 gold_warning(_("shared library text segment is not shareable"));
4135 }
4136 if (parameters->options().shared() && this->has_static_tls())
4137 flags |= elfcpp::DF_STATIC_TLS;
4138 if (parameters->options().origin())
4139 flags |= elfcpp::DF_ORIGIN;
4140 if (parameters->options().Bsymbolic())
4141 {
4142 flags |= elfcpp::DF_SYMBOLIC;
4143 // Add DT_SYMBOLIC for compatibility with older loaders.
4144 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4145 }
4146 if (parameters->options().now())
4147 flags |= elfcpp::DF_BIND_NOW;
4148 if (flags != 0)
4149 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4150
4151 flags = 0;
4152 if (parameters->options().initfirst())
4153 flags |= elfcpp::DF_1_INITFIRST;
4154 if (parameters->options().interpose())
4155 flags |= elfcpp::DF_1_INTERPOSE;
4156 if (parameters->options().loadfltr())
4157 flags |= elfcpp::DF_1_LOADFLTR;
4158 if (parameters->options().nodefaultlib())
4159 flags |= elfcpp::DF_1_NODEFLIB;
4160 if (parameters->options().nodelete())
4161 flags |= elfcpp::DF_1_NODELETE;
4162 if (parameters->options().nodlopen())
4163 flags |= elfcpp::DF_1_NOOPEN;
4164 if (parameters->options().nodump())
4165 flags |= elfcpp::DF_1_NODUMP;
4166 if (!parameters->options().shared())
4167 flags &= ~(elfcpp::DF_1_INITFIRST
4168 | elfcpp::DF_1_NODELETE
4169 | elfcpp::DF_1_NOOPEN);
4170 if (parameters->options().origin())
4171 flags |= elfcpp::DF_1_ORIGIN;
4172 if (parameters->options().now())
4173 flags |= elfcpp::DF_1_NOW;
4174 if (flags != 0)
4175 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4176 }
4177
4178 // Set the size of the _DYNAMIC symbol table to be the size of the
4179 // dynamic data.
4180
4181 void
4182 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4183 {
4184 Output_data_dynamic* const odyn = this->dynamic_data_;
4185 odyn->finalize_data_size();
4186 off_t data_size = odyn->data_size();
4187 const int size = parameters->target().get_size();
4188 if (size == 32)
4189 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4190 else if (size == 64)
4191 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4192 else
4193 gold_unreachable();
4194 }
4195
4196 // The mapping of input section name prefixes to output section names.
4197 // In some cases one prefix is itself a prefix of another prefix; in
4198 // such a case the longer prefix must come first. These prefixes are
4199 // based on the GNU linker default ELF linker script.
4200
4201 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4202 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4203 {
4204 MAPPING_INIT(".text.", ".text"),
4205 MAPPING_INIT(".ctors.", ".ctors"),
4206 MAPPING_INIT(".dtors.", ".dtors"),
4207 MAPPING_INIT(".rodata.", ".rodata"),
4208 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4209 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4210 MAPPING_INIT(".data.", ".data"),
4211 MAPPING_INIT(".bss.", ".bss"),
4212 MAPPING_INIT(".tdata.", ".tdata"),
4213 MAPPING_INIT(".tbss.", ".tbss"),
4214 MAPPING_INIT(".init_array.", ".init_array"),
4215 MAPPING_INIT(".fini_array.", ".fini_array"),
4216 MAPPING_INIT(".sdata.", ".sdata"),
4217 MAPPING_INIT(".sbss.", ".sbss"),
4218 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4219 // differently depending on whether it is creating a shared library.
4220 MAPPING_INIT(".sdata2.", ".sdata"),
4221 MAPPING_INIT(".sbss2.", ".sbss"),
4222 MAPPING_INIT(".lrodata.", ".lrodata"),
4223 MAPPING_INIT(".ldata.", ".ldata"),
4224 MAPPING_INIT(".lbss.", ".lbss"),
4225 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4226 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4227 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4228 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4229 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4230 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4231 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4232 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4233 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4234 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4235 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4236 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4237 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4238 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4239 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4240 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4241 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4242 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4243 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4244 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4245 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4246 };
4247 #undef MAPPING_INIT
4248
4249 const int Layout::section_name_mapping_count =
4250 (sizeof(Layout::section_name_mapping)
4251 / sizeof(Layout::section_name_mapping[0]));
4252
4253 // Choose the output section name to use given an input section name.
4254 // Set *PLEN to the length of the name. *PLEN is initialized to the
4255 // length of NAME.
4256
4257 const char*
4258 Layout::output_section_name(const char* name, size_t* plen)
4259 {
4260 // gcc 4.3 generates the following sorts of section names when it
4261 // needs a section name specific to a function:
4262 // .text.FN
4263 // .rodata.FN
4264 // .sdata2.FN
4265 // .data.FN
4266 // .data.rel.FN
4267 // .data.rel.local.FN
4268 // .data.rel.ro.FN
4269 // .data.rel.ro.local.FN
4270 // .sdata.FN
4271 // .bss.FN
4272 // .sbss.FN
4273 // .tdata.FN
4274 // .tbss.FN
4275
4276 // The GNU linker maps all of those to the part before the .FN,
4277 // except that .data.rel.local.FN is mapped to .data, and
4278 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4279 // beginning with .data.rel.ro.local are grouped together.
4280
4281 // For an anonymous namespace, the string FN can contain a '.'.
4282
4283 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4284 // GNU linker maps to .rodata.
4285
4286 // The .data.rel.ro sections are used with -z relro. The sections
4287 // are recognized by name. We use the same names that the GNU
4288 // linker does for these sections.
4289
4290 // It is hard to handle this in a principled way, so we don't even
4291 // try. We use a table of mappings. If the input section name is
4292 // not found in the table, we simply use it as the output section
4293 // name.
4294
4295 const Section_name_mapping* psnm = section_name_mapping;
4296 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4297 {
4298 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4299 {
4300 *plen = psnm->tolen;
4301 return psnm->to;
4302 }
4303 }
4304
4305 return name;
4306 }
4307
4308 // Check if a comdat group or .gnu.linkonce section with the given
4309 // NAME is selected for the link. If there is already a section,
4310 // *KEPT_SECTION is set to point to the existing section and the
4311 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4312 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4313 // *KEPT_SECTION is set to the internal copy and the function returns
4314 // true.
4315
4316 bool
4317 Layout::find_or_add_kept_section(const std::string& name,
4318 Relobj* object,
4319 unsigned int shndx,
4320 bool is_comdat,
4321 bool is_group_name,
4322 Kept_section** kept_section)
4323 {
4324 // It's normal to see a couple of entries here, for the x86 thunk
4325 // sections. If we see more than a few, we're linking a C++
4326 // program, and we resize to get more space to minimize rehashing.
4327 if (this->signatures_.size() > 4
4328 && !this->resized_signatures_)
4329 {
4330 reserve_unordered_map(&this->signatures_,
4331 this->number_of_input_files_ * 64);
4332 this->resized_signatures_ = true;
4333 }
4334
4335 Kept_section candidate;
4336 std::pair<Signatures::iterator, bool> ins =
4337 this->signatures_.insert(std::make_pair(name, candidate));
4338
4339 if (kept_section != NULL)
4340 *kept_section = &ins.first->second;
4341 if (ins.second)
4342 {
4343 // This is the first time we've seen this signature.
4344 ins.first->second.set_object(object);
4345 ins.first->second.set_shndx(shndx);
4346 if (is_comdat)
4347 ins.first->second.set_is_comdat();
4348 if (is_group_name)
4349 ins.first->second.set_is_group_name();
4350 return true;
4351 }
4352
4353 // We have already seen this signature.
4354
4355 if (ins.first->second.is_group_name())
4356 {
4357 // We've already seen a real section group with this signature.
4358 // If the kept group is from a plugin object, and we're in the
4359 // replacement phase, accept the new one as a replacement.
4360 if (ins.first->second.object() == NULL
4361 && parameters->options().plugins()->in_replacement_phase())
4362 {
4363 ins.first->second.set_object(object);
4364 ins.first->second.set_shndx(shndx);
4365 return true;
4366 }
4367 return false;
4368 }
4369 else if (is_group_name)
4370 {
4371 // This is a real section group, and we've already seen a
4372 // linkonce section with this signature. Record that we've seen
4373 // a section group, and don't include this section group.
4374 ins.first->second.set_is_group_name();
4375 return false;
4376 }
4377 else
4378 {
4379 // We've already seen a linkonce section and this is a linkonce
4380 // section. These don't block each other--this may be the same
4381 // symbol name with different section types.
4382 return true;
4383 }
4384 }
4385
4386 // Store the allocated sections into the section list.
4387
4388 void
4389 Layout::get_allocated_sections(Section_list* section_list) const
4390 {
4391 for (Section_list::const_iterator p = this->section_list_.begin();
4392 p != this->section_list_.end();
4393 ++p)
4394 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4395 section_list->push_back(*p);
4396 }
4397
4398 // Create an output segment.
4399
4400 Output_segment*
4401 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4402 {
4403 gold_assert(!parameters->options().relocatable());
4404 Output_segment* oseg = new Output_segment(type, flags);
4405 this->segment_list_.push_back(oseg);
4406
4407 if (type == elfcpp::PT_TLS)
4408 this->tls_segment_ = oseg;
4409 else if (type == elfcpp::PT_GNU_RELRO)
4410 this->relro_segment_ = oseg;
4411 else if (type == elfcpp::PT_INTERP)
4412 this->interp_segment_ = oseg;
4413
4414 return oseg;
4415 }
4416
4417 // Return the file offset of the normal symbol table.
4418
4419 off_t
4420 Layout::symtab_section_offset() const
4421 {
4422 if (this->symtab_section_ != NULL)
4423 return this->symtab_section_->offset();
4424 return 0;
4425 }
4426
4427 // Write out the Output_sections. Most won't have anything to write,
4428 // since most of the data will come from input sections which are
4429 // handled elsewhere. But some Output_sections do have Output_data.
4430
4431 void
4432 Layout::write_output_sections(Output_file* of) const
4433 {
4434 for (Section_list::const_iterator p = this->section_list_.begin();
4435 p != this->section_list_.end();
4436 ++p)
4437 {
4438 if (!(*p)->after_input_sections())
4439 (*p)->write(of);
4440 }
4441 }
4442
4443 // Write out data not associated with a section or the symbol table.
4444
4445 void
4446 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4447 {
4448 if (!parameters->options().strip_all())
4449 {
4450 const Output_section* symtab_section = this->symtab_section_;
4451 for (Section_list::const_iterator p = this->section_list_.begin();
4452 p != this->section_list_.end();
4453 ++p)
4454 {
4455 if ((*p)->needs_symtab_index())
4456 {
4457 gold_assert(symtab_section != NULL);
4458 unsigned int index = (*p)->symtab_index();
4459 gold_assert(index > 0 && index != -1U);
4460 off_t off = (symtab_section->offset()
4461 + index * symtab_section->entsize());
4462 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4463 }
4464 }
4465 }
4466
4467 const Output_section* dynsym_section = this->dynsym_section_;
4468 for (Section_list::const_iterator p = this->section_list_.begin();
4469 p != this->section_list_.end();
4470 ++p)
4471 {
4472 if ((*p)->needs_dynsym_index())
4473 {
4474 gold_assert(dynsym_section != NULL);
4475 unsigned int index = (*p)->dynsym_index();
4476 gold_assert(index > 0 && index != -1U);
4477 off_t off = (dynsym_section->offset()
4478 + index * dynsym_section->entsize());
4479 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4480 }
4481 }
4482
4483 // Write out the Output_data which are not in an Output_section.
4484 for (Data_list::const_iterator p = this->special_output_list_.begin();
4485 p != this->special_output_list_.end();
4486 ++p)
4487 (*p)->write(of);
4488 }
4489
4490 // Write out the Output_sections which can only be written after the
4491 // input sections are complete.
4492
4493 void
4494 Layout::write_sections_after_input_sections(Output_file* of)
4495 {
4496 // Determine the final section offsets, and thus the final output
4497 // file size. Note we finalize the .shstrab last, to allow the
4498 // after_input_section sections to modify their section-names before
4499 // writing.
4500 if (this->any_postprocessing_sections_)
4501 {
4502 off_t off = this->output_file_size_;
4503 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4504
4505 // Now that we've finalized the names, we can finalize the shstrab.
4506 off =
4507 this->set_section_offsets(off,
4508 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4509
4510 if (off > this->output_file_size_)
4511 {
4512 of->resize(off);
4513 this->output_file_size_ = off;
4514 }
4515 }
4516
4517 for (Section_list::const_iterator p = this->section_list_.begin();
4518 p != this->section_list_.end();
4519 ++p)
4520 {
4521 if ((*p)->after_input_sections())
4522 (*p)->write(of);
4523 }
4524
4525 this->section_headers_->write(of);
4526 }
4527
4528 // If the build ID requires computing a checksum, do so here, and
4529 // write it out. We compute a checksum over the entire file because
4530 // that is simplest.
4531
4532 void
4533 Layout::write_build_id(Output_file* of) const
4534 {
4535 if (this->build_id_note_ == NULL)
4536 return;
4537
4538 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4539
4540 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4541 this->build_id_note_->data_size());
4542
4543 const char* style = parameters->options().build_id();
4544 if (strcmp(style, "sha1") == 0)
4545 {
4546 sha1_ctx ctx;
4547 sha1_init_ctx(&ctx);
4548 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4549 sha1_finish_ctx(&ctx, ov);
4550 }
4551 else if (strcmp(style, "md5") == 0)
4552 {
4553 md5_ctx ctx;
4554 md5_init_ctx(&ctx);
4555 md5_process_bytes(iv, this->output_file_size_, &ctx);
4556 md5_finish_ctx(&ctx, ov);
4557 }
4558 else
4559 gold_unreachable();
4560
4561 of->write_output_view(this->build_id_note_->offset(),
4562 this->build_id_note_->data_size(),
4563 ov);
4564
4565 of->free_input_view(0, this->output_file_size_, iv);
4566 }
4567
4568 // Write out a binary file. This is called after the link is
4569 // complete. IN is the temporary output file we used to generate the
4570 // ELF code. We simply walk through the segments, read them from
4571 // their file offset in IN, and write them to their load address in
4572 // the output file. FIXME: with a bit more work, we could support
4573 // S-records and/or Intel hex format here.
4574
4575 void
4576 Layout::write_binary(Output_file* in) const
4577 {
4578 gold_assert(parameters->options().oformat_enum()
4579 == General_options::OBJECT_FORMAT_BINARY);
4580
4581 // Get the size of the binary file.
4582 uint64_t max_load_address = 0;
4583 for (Segment_list::const_iterator p = this->segment_list_.begin();
4584 p != this->segment_list_.end();
4585 ++p)
4586 {
4587 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4588 {
4589 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4590 if (max_paddr > max_load_address)
4591 max_load_address = max_paddr;
4592 }
4593 }
4594
4595 Output_file out(parameters->options().output_file_name());
4596 out.open(max_load_address);
4597
4598 for (Segment_list::const_iterator p = this->segment_list_.begin();
4599 p != this->segment_list_.end();
4600 ++p)
4601 {
4602 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4603 {
4604 const unsigned char* vin = in->get_input_view((*p)->offset(),
4605 (*p)->filesz());
4606 unsigned char* vout = out.get_output_view((*p)->paddr(),
4607 (*p)->filesz());
4608 memcpy(vout, vin, (*p)->filesz());
4609 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4610 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4611 }
4612 }
4613
4614 out.close();
4615 }
4616
4617 // Print the output sections to the map file.
4618
4619 void
4620 Layout::print_to_mapfile(Mapfile* mapfile) const
4621 {
4622 for (Segment_list::const_iterator p = this->segment_list_.begin();
4623 p != this->segment_list_.end();
4624 ++p)
4625 (*p)->print_sections_to_mapfile(mapfile);
4626 }
4627
4628 // Print statistical information to stderr. This is used for --stats.
4629
4630 void
4631 Layout::print_stats() const
4632 {
4633 this->namepool_.print_stats("section name pool");
4634 this->sympool_.print_stats("output symbol name pool");
4635 this->dynpool_.print_stats("dynamic name pool");
4636
4637 for (Section_list::const_iterator p = this->section_list_.begin();
4638 p != this->section_list_.end();
4639 ++p)
4640 (*p)->print_merge_stats();
4641 }
4642
4643 // Write_sections_task methods.
4644
4645 // We can always run this task.
4646
4647 Task_token*
4648 Write_sections_task::is_runnable()
4649 {
4650 return NULL;
4651 }
4652
4653 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4654 // when finished.
4655
4656 void
4657 Write_sections_task::locks(Task_locker* tl)
4658 {
4659 tl->add(this, this->output_sections_blocker_);
4660 tl->add(this, this->final_blocker_);
4661 }
4662
4663 // Run the task--write out the data.
4664
4665 void
4666 Write_sections_task::run(Workqueue*)
4667 {
4668 this->layout_->write_output_sections(this->of_);
4669 }
4670
4671 // Write_data_task methods.
4672
4673 // We can always run this task.
4674
4675 Task_token*
4676 Write_data_task::is_runnable()
4677 {
4678 return NULL;
4679 }
4680
4681 // We need to unlock FINAL_BLOCKER when finished.
4682
4683 void
4684 Write_data_task::locks(Task_locker* tl)
4685 {
4686 tl->add(this, this->final_blocker_);
4687 }
4688
4689 // Run the task--write out the data.
4690
4691 void
4692 Write_data_task::run(Workqueue*)
4693 {
4694 this->layout_->write_data(this->symtab_, this->of_);
4695 }
4696
4697 // Write_symbols_task methods.
4698
4699 // We can always run this task.
4700
4701 Task_token*
4702 Write_symbols_task::is_runnable()
4703 {
4704 return NULL;
4705 }
4706
4707 // We need to unlock FINAL_BLOCKER when finished.
4708
4709 void
4710 Write_symbols_task::locks(Task_locker* tl)
4711 {
4712 tl->add(this, this->final_blocker_);
4713 }
4714
4715 // Run the task--write out the symbols.
4716
4717 void
4718 Write_symbols_task::run(Workqueue*)
4719 {
4720 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4721 this->layout_->symtab_xindex(),
4722 this->layout_->dynsym_xindex(), this->of_);
4723 }
4724
4725 // Write_after_input_sections_task methods.
4726
4727 // We can only run this task after the input sections have completed.
4728
4729 Task_token*
4730 Write_after_input_sections_task::is_runnable()
4731 {
4732 if (this->input_sections_blocker_->is_blocked())
4733 return this->input_sections_blocker_;
4734 return NULL;
4735 }
4736
4737 // We need to unlock FINAL_BLOCKER when finished.
4738
4739 void
4740 Write_after_input_sections_task::locks(Task_locker* tl)
4741 {
4742 tl->add(this, this->final_blocker_);
4743 }
4744
4745 // Run the task.
4746
4747 void
4748 Write_after_input_sections_task::run(Workqueue*)
4749 {
4750 this->layout_->write_sections_after_input_sections(this->of_);
4751 }
4752
4753 // Close_task_runner methods.
4754
4755 // Run the task--close the file.
4756
4757 void
4758 Close_task_runner::run(Workqueue*, const Task*)
4759 {
4760 // If we need to compute a checksum for the BUILD if, we do so here.
4761 this->layout_->write_build_id(this->of_);
4762
4763 // If we've been asked to create a binary file, we do so here.
4764 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4765 this->layout_->write_binary(this->of_);
4766
4767 this->of_->close();
4768 }
4769
4770 // Instantiate the templates we need. We could use the configure
4771 // script to restrict this to only the ones for implemented targets.
4772
4773 #ifdef HAVE_TARGET_32_LITTLE
4774 template
4775 Output_section*
4776 Layout::init_fixed_output_section<32, false>(
4777 const char* name,
4778 elfcpp::Shdr<32, false>& shdr);
4779 #endif
4780
4781 #ifdef HAVE_TARGET_32_BIG
4782 template
4783 Output_section*
4784 Layout::init_fixed_output_section<32, true>(
4785 const char* name,
4786 elfcpp::Shdr<32, true>& shdr);
4787 #endif
4788
4789 #ifdef HAVE_TARGET_64_LITTLE
4790 template
4791 Output_section*
4792 Layout::init_fixed_output_section<64, false>(
4793 const char* name,
4794 elfcpp::Shdr<64, false>& shdr);
4795 #endif
4796
4797 #ifdef HAVE_TARGET_64_BIG
4798 template
4799 Output_section*
4800 Layout::init_fixed_output_section<64, true>(
4801 const char* name,
4802 elfcpp::Shdr<64, true>& shdr);
4803 #endif
4804
4805 #ifdef HAVE_TARGET_32_LITTLE
4806 template
4807 Output_section*
4808 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4809 unsigned int shndx,
4810 const char* name,
4811 const elfcpp::Shdr<32, false>& shdr,
4812 unsigned int, unsigned int, off_t*);
4813 #endif
4814
4815 #ifdef HAVE_TARGET_32_BIG
4816 template
4817 Output_section*
4818 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4819 unsigned int shndx,
4820 const char* name,
4821 const elfcpp::Shdr<32, true>& shdr,
4822 unsigned int, unsigned int, off_t*);
4823 #endif
4824
4825 #ifdef HAVE_TARGET_64_LITTLE
4826 template
4827 Output_section*
4828 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4829 unsigned int shndx,
4830 const char* name,
4831 const elfcpp::Shdr<64, false>& shdr,
4832 unsigned int, unsigned int, off_t*);
4833 #endif
4834
4835 #ifdef HAVE_TARGET_64_BIG
4836 template
4837 Output_section*
4838 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4839 unsigned int shndx,
4840 const char* name,
4841 const elfcpp::Shdr<64, true>& shdr,
4842 unsigned int, unsigned int, off_t*);
4843 #endif
4844
4845 #ifdef HAVE_TARGET_32_LITTLE
4846 template
4847 Output_section*
4848 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4849 unsigned int reloc_shndx,
4850 const elfcpp::Shdr<32, false>& shdr,
4851 Output_section* data_section,
4852 Relocatable_relocs* rr);
4853 #endif
4854
4855 #ifdef HAVE_TARGET_32_BIG
4856 template
4857 Output_section*
4858 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4859 unsigned int reloc_shndx,
4860 const elfcpp::Shdr<32, true>& shdr,
4861 Output_section* data_section,
4862 Relocatable_relocs* rr);
4863 #endif
4864
4865 #ifdef HAVE_TARGET_64_LITTLE
4866 template
4867 Output_section*
4868 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4869 unsigned int reloc_shndx,
4870 const elfcpp::Shdr<64, false>& shdr,
4871 Output_section* data_section,
4872 Relocatable_relocs* rr);
4873 #endif
4874
4875 #ifdef HAVE_TARGET_64_BIG
4876 template
4877 Output_section*
4878 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4879 unsigned int reloc_shndx,
4880 const elfcpp::Shdr<64, true>& shdr,
4881 Output_section* data_section,
4882 Relocatable_relocs* rr);
4883 #endif
4884
4885 #ifdef HAVE_TARGET_32_LITTLE
4886 template
4887 void
4888 Layout::layout_group<32, false>(Symbol_table* symtab,
4889 Sized_relobj_file<32, false>* object,
4890 unsigned int,
4891 const char* group_section_name,
4892 const char* signature,
4893 const elfcpp::Shdr<32, false>& shdr,
4894 elfcpp::Elf_Word flags,
4895 std::vector<unsigned int>* shndxes);
4896 #endif
4897
4898 #ifdef HAVE_TARGET_32_BIG
4899 template
4900 void
4901 Layout::layout_group<32, true>(Symbol_table* symtab,
4902 Sized_relobj_file<32, true>* object,
4903 unsigned int,
4904 const char* group_section_name,
4905 const char* signature,
4906 const elfcpp::Shdr<32, true>& shdr,
4907 elfcpp::Elf_Word flags,
4908 std::vector<unsigned int>* shndxes);
4909 #endif
4910
4911 #ifdef HAVE_TARGET_64_LITTLE
4912 template
4913 void
4914 Layout::layout_group<64, false>(Symbol_table* symtab,
4915 Sized_relobj_file<64, false>* object,
4916 unsigned int,
4917 const char* group_section_name,
4918 const char* signature,
4919 const elfcpp::Shdr<64, false>& shdr,
4920 elfcpp::Elf_Word flags,
4921 std::vector<unsigned int>* shndxes);
4922 #endif
4923
4924 #ifdef HAVE_TARGET_64_BIG
4925 template
4926 void
4927 Layout::layout_group<64, true>(Symbol_table* symtab,
4928 Sized_relobj_file<64, true>* object,
4929 unsigned int,
4930 const char* group_section_name,
4931 const char* signature,
4932 const elfcpp::Shdr<64, true>& shdr,
4933 elfcpp::Elf_Word flags,
4934 std::vector<unsigned int>* shndxes);
4935 #endif
4936
4937 #ifdef HAVE_TARGET_32_LITTLE
4938 template
4939 Output_section*
4940 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4941 const unsigned char* symbols,
4942 off_t symbols_size,
4943 const unsigned char* symbol_names,
4944 off_t symbol_names_size,
4945 unsigned int shndx,
4946 const elfcpp::Shdr<32, false>& shdr,
4947 unsigned int reloc_shndx,
4948 unsigned int reloc_type,
4949 off_t* off);
4950 #endif
4951
4952 #ifdef HAVE_TARGET_32_BIG
4953 template
4954 Output_section*
4955 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4956 const unsigned char* symbols,
4957 off_t symbols_size,
4958 const unsigned char* symbol_names,
4959 off_t symbol_names_size,
4960 unsigned int shndx,
4961 const elfcpp::Shdr<32, true>& shdr,
4962 unsigned int reloc_shndx,
4963 unsigned int reloc_type,
4964 off_t* off);
4965 #endif
4966
4967 #ifdef HAVE_TARGET_64_LITTLE
4968 template
4969 Output_section*
4970 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4971 const unsigned char* symbols,
4972 off_t symbols_size,
4973 const unsigned char* symbol_names,
4974 off_t symbol_names_size,
4975 unsigned int shndx,
4976 const elfcpp::Shdr<64, false>& shdr,
4977 unsigned int reloc_shndx,
4978 unsigned int reloc_type,
4979 off_t* off);
4980 #endif
4981
4982 #ifdef HAVE_TARGET_64_BIG
4983 template
4984 Output_section*
4985 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
4986 const unsigned char* symbols,
4987 off_t symbols_size,
4988 const unsigned char* symbol_names,
4989 off_t symbol_names_size,
4990 unsigned int shndx,
4991 const elfcpp::Shdr<64, true>& shdr,
4992 unsigned int reloc_shndx,
4993 unsigned int reloc_type,
4994 off_t* off);
4995 #endif
4996
4997 } // End namespace gold.